"tests/models/udop/test_tokenization_udop.py" did not exist on "9f9ddcc2def6671802b84668e3f101b5a7b8b402"
run_ner.py 27.5 KB
Newer Older
1
#!/usr/bin/env python
2
# coding=utf-8
3
# Copyright 2020 The HuggingFace Team All rights reserved.
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
16
17
18
"""
Fine-tuning the library models for token classification.
"""
Sylvain Gugger's avatar
Sylvain Gugger committed
19
20
# You can also adapt this script on your own token classification task and datasets. Pointers for this are left as
# comments.
21

22
23
import logging
import os
24
import sys
25
import warnings
Julien Chaumond's avatar
Julien Chaumond committed
26
from dataclasses import dataclass, field
27
from typing import Optional
28

29
import datasets
30
import evaluate
31
import numpy as np
32
from datasets import ClassLabel, load_dataset
Aymeric Augustin's avatar
Aymeric Augustin committed
33

34
import transformers
Aymeric Augustin's avatar
Aymeric Augustin committed
35
from transformers import (
36
37
38
    AutoConfig,
    AutoModelForTokenClassification,
    AutoTokenizer,
39
    DataCollatorForTokenClassification,
Julien Chaumond's avatar
Julien Chaumond committed
40
    HfArgumentParser,
41
    PretrainedConfig,
42
    PreTrainedTokenizerFast,
Julien Chaumond's avatar
Julien Chaumond committed
43
44
45
    Trainer,
    TrainingArguments,
    set_seed,
Aymeric Augustin's avatar
Aymeric Augustin committed
46
)
47
from transformers.trainer_utils import get_last_checkpoint
48
from transformers.utils import check_min_version, send_example_telemetry
49
from transformers.utils.versions import require_version
Aymeric Augustin's avatar
Aymeric Augustin committed
50
51


52
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
Amy Roberts's avatar
Amy Roberts committed
53
check_min_version("4.38.0.dev0")
Sylvain Gugger's avatar
Sylvain Gugger committed
54

55
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/token-classification/requirements.txt")
56

57
58
59
logger = logging.getLogger(__name__)


Julien Chaumond's avatar
Julien Chaumond committed
60
61
62
63
64
@dataclass
class ModelArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
    """
65

Julien Chaumond's avatar
Julien Chaumond committed
66
67
    model_name_or_path: str = field(
        metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
68
    )
Julien Chaumond's avatar
Julien Chaumond committed
69
70
    config_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
71
    )
Julien Chaumond's avatar
Julien Chaumond committed
72
73
    tokenizer_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
74
    )
Julien Chaumond's avatar
Julien Chaumond committed
75
    cache_dir: Optional[str] = field(
76
77
        default=None,
        metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
78
    )
79
80
81
82
    model_revision: str = field(
        default="main",
        metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
    )
83
84
    token: str = field(
        default=None,
85
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
86
            "help": (
87
88
                "The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
                "generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
Sylvain Gugger's avatar
Sylvain Gugger committed
89
            )
90
91
        },
    )
92
93
94
    use_auth_token: bool = field(
        default=None,
        metadata={
95
            "help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead."
96
97
        },
    )
98
99
100
101
    trust_remote_code: bool = field(
        default=False,
        metadata={
            "help": (
102
                "Whether or not to allow for custom models defined on the Hub in their own modeling files. This option "
103
                "should only be set to `True` for repositories you trust and in which you have read the code, as it will "
104
105
106
107
                "execute code present on the Hub on your local machine."
            )
        },
    )
108
109
110
111
    ignore_mismatched_sizes: bool = field(
        default=False,
        metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."},
    )
112
113


Julien Chaumond's avatar
Julien Chaumond committed
114
115
116
117
118
@dataclass
class DataTrainingArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.
    """
119

120
121
122
123
124
125
    task_name: Optional[str] = field(default="ner", metadata={"help": "The name of the task (ner, pos...)."})
    dataset_name: Optional[str] = field(
        default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
    )
    dataset_config_name: Optional[str] = field(
        default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
126
    )
127
128
129
130
    train_file: Optional[str] = field(
        default=None, metadata={"help": "The input training data file (a csv or JSON file)."}
    )
    validation_file: Optional[str] = field(
131
        default=None,
132
        metadata={"help": "An optional input evaluation data file to evaluate on (a csv or JSON file)."},
133
    )
134
135
136
    test_file: Optional[str] = field(
        default=None,
        metadata={"help": "An optional input test data file to predict on (a csv or JSON file)."},
137
    )
138
139
140
141
142
143
    text_column_name: Optional[str] = field(
        default=None, metadata={"help": "The column name of text to input in the file (a csv or JSON file)."}
    )
    label_column_name: Optional[str] = field(
        default=None, metadata={"help": "The column name of label to input in the file (a csv or JSON file)."}
    )
Julien Chaumond's avatar
Julien Chaumond committed
144
145
    overwrite_cache: bool = field(
        default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
146
    )
147
148
149
150
    preprocessing_num_workers: Optional[int] = field(
        default=None,
        metadata={"help": "The number of processes to use for the preprocessing."},
    )
151
152
153
    max_seq_length: int = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
154
155
156
157
            "help": (
                "The maximum total input sequence length after tokenization. If set, sequences longer "
                "than this will be truncated, sequences shorter will be padded."
            )
158
159
        },
    )
160
161
162
    pad_to_max_length: bool = field(
        default=False,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
163
164
165
166
167
            "help": (
                "Whether to pad all samples to model maximum sentence length. "
                "If False, will pad the samples dynamically when batching to the maximum length in the batch. More "
                "efficient on GPU but very bad for TPU."
            )
168
169
        },
    )
170
171
172
    max_train_samples: Optional[int] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
173
174
175
176
            "help": (
                "For debugging purposes or quicker training, truncate the number of training examples to this "
                "value if set."
            )
177
178
        },
    )
179
    max_eval_samples: Optional[int] = field(
180
181
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
182
183
184
185
            "help": (
                "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
                "value if set."
            )
186
187
        },
    )
188
    max_predict_samples: Optional[int] = field(
189
190
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
191
192
193
194
            "help": (
                "For debugging purposes or quicker training, truncate the number of prediction examples to this "
                "value if set."
            )
195
196
        },
    )
197
198
199
    label_all_tokens: bool = field(
        default=False,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
200
201
202
203
            "help": (
                "Whether to put the label for one word on all tokens of generated by that word or just on the "
                "one (in which case the other tokens will have a padding index)."
            )
204
205
        },
    )
206
207
208
209
    return_entity_level_metrics: bool = field(
        default=False,
        metadata={"help": "Whether to return all the entity levels during evaluation or just the overall ones."},
    )
210
211
212
213
214
215
216
217
218
219
220
221

    def __post_init__(self):
        if self.dataset_name is None and self.train_file is None and self.validation_file is None:
            raise ValueError("Need either a dataset name or a training/validation file.")
        else:
            if self.train_file is not None:
                extension = self.train_file.split(".")[-1]
                assert extension in ["csv", "json"], "`train_file` should be a csv or a json file."
            if self.validation_file is not None:
                extension = self.validation_file.split(".")[-1]
                assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file."
        self.task_name = self.task_name.lower()
222

Julien Chaumond's avatar
Julien Chaumond committed
223
224
225
226
227
228
229

def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
230
231
232
233
234
235
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses()
236

237
    if model_args.use_auth_token is not None:
238
239
240
241
        warnings.warn(
            "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead.",
            FutureWarning,
        )
242
243
244
245
        if model_args.token is not None:
            raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
        model_args.token = model_args.use_auth_token

246
247
248
249
    # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
    # information sent is the one passed as arguments along with your Python/PyTorch versions.
    send_example_telemetry("run_ner", model_args, data_args)

250
    # Setup logging
251
    logging.basicConfig(
252
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
253
        datefmt="%m/%d/%Y %H:%M:%S",
254
        handlers=[logging.StreamHandler(sys.stdout)],
255
    )
256

257
258
259
260
    if training_args.should_log:
        # The default of training_args.log_level is passive, so we set log level at info here to have that default.
        transformers.utils.logging.set_verbosity_info()

261
262
263
264
265
266
    log_level = training_args.get_process_log_level()
    logger.setLevel(log_level)
    datasets.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.enable_default_handler()
    transformers.utils.logging.enable_explicit_format()
267
268

    # Log on each process the small summary:
269
    logger.warning(
270
        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, "
271
        + f"distributed training: {training_args.parallel_mode.value == 'distributed'}, 16-bits training: {training_args.fp16}"
272
    )
273
    logger.info(f"Training/evaluation parameters {training_args}")
274

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
    # Detecting last checkpoint.
    last_checkpoint = None
    if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
        last_checkpoint = get_last_checkpoint(training_args.output_dir)
        if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
            raise ValueError(
                f"Output directory ({training_args.output_dir}) already exists and is not empty. "
                "Use --overwrite_output_dir to overcome."
            )
        elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
            logger.info(
                f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
                "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
            )

290
    # Set seed before initializing model.
Julien Chaumond's avatar
Julien Chaumond committed
291
    set_seed(training_args.seed)
292

293
294
295
296
297
298
299
300
301
302
303
    # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
    # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
    # (the dataset will be downloaded automatically from the datasets Hub).
    #
    # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
    # 'text' is found. You can easily tweak this behavior (see below).
    #
    # In distributed training, the load_dataset function guarantee that only one local process can concurrently
    # download the dataset.
    if data_args.dataset_name is not None:
        # Downloading and loading a dataset from the hub.
304
        raw_datasets = load_dataset(
305
306
307
            data_args.dataset_name,
            data_args.dataset_config_name,
            cache_dir=model_args.cache_dir,
308
            token=model_args.token,
309
        )
310
311
312
313
    else:
        data_files = {}
        if data_args.train_file is not None:
            data_files["train"] = data_args.train_file
314
            extension = data_args.train_file.split(".")[-1]
315
316
        if data_args.validation_file is not None:
            data_files["validation"] = data_args.validation_file
317
            extension = data_args.validation_file.split(".")[-1]
318
319
        if data_args.test_file is not None:
            data_files["test"] = data_args.test_file
320
            extension = data_args.test_file.split(".")[-1]
321
        raw_datasets = load_dataset(extension, data_files=data_files, cache_dir=model_args.cache_dir)
322
    # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
323
    # https://huggingface.co/docs/datasets/loading_datasets.
324
325

    if training_args.do_train:
326
327
        column_names = raw_datasets["train"].column_names
        features = raw_datasets["train"].features
328
    else:
329
330
        column_names = raw_datasets["validation"].column_names
        features = raw_datasets["validation"].features
331
332
333
334
335
336
337
338
339
340
341
342
343
344

    if data_args.text_column_name is not None:
        text_column_name = data_args.text_column_name
    elif "tokens" in column_names:
        text_column_name = "tokens"
    else:
        text_column_name = column_names[0]

    if data_args.label_column_name is not None:
        label_column_name = data_args.label_column_name
    elif f"{data_args.task_name}_tags" in column_names:
        label_column_name = f"{data_args.task_name}_tags"
    else:
        label_column_name = column_names[1]
345

Sylvain Gugger's avatar
Sylvain Gugger committed
346
347
    # In the event the labels are not a `Sequence[ClassLabel]`, we will need to go through the dataset to get the
    # unique labels.
348
349
350
351
352
353
354
355
    def get_label_list(labels):
        unique_labels = set()
        for label in labels:
            unique_labels = unique_labels | set(label)
        label_list = list(unique_labels)
        label_list.sort()
        return label_list

356
357
358
359
    # If the labels are of type ClassLabel, they are already integers and we have the map stored somewhere.
    # Otherwise, we have to get the list of labels manually.
    labels_are_int = isinstance(features[label_column_name].feature, ClassLabel)
    if labels_are_int:
Sylvain Gugger's avatar
Sylvain Gugger committed
360
        label_list = features[label_column_name].feature.names
361
        label_to_id = {i: i for i in range(len(label_list))}
Sylvain Gugger's avatar
Sylvain Gugger committed
362
    else:
363
        label_list = get_label_list(raw_datasets["train"][label_column_name])
364
        label_to_id = {l: i for i, l in enumerate(label_list)}
365

366
    num_labels = len(label_list)
367

368
    # Load pretrained model and tokenizer
Julien Chaumond's avatar
Julien Chaumond committed
369
370
371
372
    #
    # Distributed training:
    # The .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.
373
    config = AutoConfig.from_pretrained(
Julien Chaumond's avatar
Julien Chaumond committed
374
        model_args.config_name if model_args.config_name else model_args.model_name_or_path,
375
        num_labels=num_labels,
376
        finetuning_task=data_args.task_name,
Julien Chaumond's avatar
Julien Chaumond committed
377
        cache_dir=model_args.cache_dir,
378
        revision=model_args.model_revision,
379
        token=model_args.token,
380
        trust_remote_code=model_args.trust_remote_code,
381
    )
382
383

    tokenizer_name_or_path = model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path
384
    if config.model_type in {"bloom", "gpt2", "roberta"}:
385
386
387
388
389
        tokenizer = AutoTokenizer.from_pretrained(
            tokenizer_name_or_path,
            cache_dir=model_args.cache_dir,
            use_fast=True,
            revision=model_args.model_revision,
390
            token=model_args.token,
391
            trust_remote_code=model_args.trust_remote_code,
392
393
394
395
396
397
398
399
            add_prefix_space=True,
        )
    else:
        tokenizer = AutoTokenizer.from_pretrained(
            tokenizer_name_or_path,
            cache_dir=model_args.cache_dir,
            use_fast=True,
            revision=model_args.model_revision,
400
            token=model_args.token,
401
            trust_remote_code=model_args.trust_remote_code,
402
403
        )

404
    model = AutoModelForTokenClassification.from_pretrained(
Julien Chaumond's avatar
Julien Chaumond committed
405
406
        model_args.model_name_or_path,
        from_tf=bool(".ckpt" in model_args.model_name_or_path),
407
        config=config,
Julien Chaumond's avatar
Julien Chaumond committed
408
        cache_dir=model_args.cache_dir,
409
        revision=model_args.model_revision,
410
        token=model_args.token,
411
        trust_remote_code=model_args.trust_remote_code,
412
        ignore_mismatched_sizes=model_args.ignore_mismatched_sizes,
413
    )
414

415
416
417
    # Tokenizer check: this script requires a fast tokenizer.
    if not isinstance(tokenizer, PreTrainedTokenizerFast):
        raise ValueError(
Sylvain Gugger's avatar
Sylvain Gugger committed
418
419
420
            "This example script only works for models that have a fast tokenizer. Checkout the big table of models at"
            " https://huggingface.co/transformers/index.html#supported-frameworks to find the model types that meet"
            " this requirement"
421
422
        )

423
    # Model has labels -> use them.
424
    if model.config.label2id != PretrainedConfig(num_labels=num_labels).label2id:
425
        if sorted(model.config.label2id.keys()) == sorted(label_list):
426
427
428
429
430
431
432
            # Reorganize `label_list` to match the ordering of the model.
            if labels_are_int:
                label_to_id = {i: int(model.config.label2id[l]) for i, l in enumerate(label_list)}
                label_list = [model.config.id2label[i] for i in range(num_labels)]
            else:
                label_list = [model.config.id2label[i] for i in range(num_labels)]
                label_to_id = {l: i for i, l in enumerate(label_list)}
433
434
435
        else:
            logger.warning(
                "Your model seems to have been trained with labels, but they don't match the dataset: ",
436
437
                f"model labels: {sorted(model.config.label2id.keys())}, dataset labels:"
                f" {sorted(label_list)}.\nIgnoring the model labels as a result.",
438
439
            )

440
441
    # Set the correspondences label/ID inside the model config
    model.config.label2id = {l: i for i, l in enumerate(label_list)}
Sylvain's avatar
Sylvain committed
442
    model.config.id2label = dict(enumerate(label_list))
443
444
445
446
447
448
449
450
451

    # Map that sends B-Xxx label to its I-Xxx counterpart
    b_to_i_label = []
    for idx, label in enumerate(label_list):
        if label.startswith("B-") and label.replace("B-", "I-") in label_list:
            b_to_i_label.append(label_list.index(label.replace("B-", "I-")))
        else:
            b_to_i_label.append(idx)

452
453
454
455
456
457
458
459
460
461
    # Preprocessing the dataset
    # Padding strategy
    padding = "max_length" if data_args.pad_to_max_length else False

    # Tokenize all texts and align the labels with them.
    def tokenize_and_align_labels(examples):
        tokenized_inputs = tokenizer(
            examples[text_column_name],
            padding=padding,
            truncation=True,
462
            max_length=data_args.max_seq_length,
463
464
            # We use this argument because the texts in our dataset are lists of words (with a label for each word).
            is_split_into_words=True,
Julien Chaumond's avatar
Julien Chaumond committed
465
        )
466
        labels = []
467
468
469
        for i, label in enumerate(examples[label_column_name]):
            word_ids = tokenized_inputs.word_ids(batch_index=i)
            previous_word_idx = None
470
            label_ids = []
471
472
473
474
            for word_idx in word_ids:
                # Special tokens have a word id that is None. We set the label to -100 so they are automatically
                # ignored in the loss function.
                if word_idx is None:
475
                    label_ids.append(-100)
476
477
478
                # We set the label for the first token of each word.
                elif word_idx != previous_word_idx:
                    label_ids.append(label_to_id[label[word_idx]])
479
480
481
                # For the other tokens in a word, we set the label to either the current label or -100, depending on
                # the label_all_tokens flag.
                else:
482
483
484
485
                    if data_args.label_all_tokens:
                        label_ids.append(b_to_i_label[label_to_id[label[word_idx]]])
                    else:
                        label_ids.append(-100)
486
                previous_word_idx = word_idx
487
488
489
490
491

            labels.append(label_ids)
        tokenized_inputs["labels"] = labels
        return tokenized_inputs

492
    if training_args.do_train:
493
        if "train" not in raw_datasets:
494
            raise ValueError("--do_train requires a train dataset")
495
        train_dataset = raw_datasets["train"]
496
        if data_args.max_train_samples is not None:
497
498
            max_train_samples = min(len(train_dataset), data_args.max_train_samples)
            train_dataset = train_dataset.select(range(max_train_samples))
499
500
501
502
503
504
505
506
        with training_args.main_process_first(desc="train dataset map pre-processing"):
            train_dataset = train_dataset.map(
                tokenize_and_align_labels,
                batched=True,
                num_proc=data_args.preprocessing_num_workers,
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on train dataset",
            )
507
508

    if training_args.do_eval:
509
        if "validation" not in raw_datasets:
510
            raise ValueError("--do_eval requires a validation dataset")
511
        eval_dataset = raw_datasets["validation"]
512
        if data_args.max_eval_samples is not None:
513
514
            max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples)
            eval_dataset = eval_dataset.select(range(max_eval_samples))
515
516
517
518
519
520
521
522
        with training_args.main_process_first(desc="validation dataset map pre-processing"):
            eval_dataset = eval_dataset.map(
                tokenize_and_align_labels,
                batched=True,
                num_proc=data_args.preprocessing_num_workers,
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on validation dataset",
            )
523
524

    if training_args.do_predict:
525
        if "test" not in raw_datasets:
526
            raise ValueError("--do_predict requires a test dataset")
527
        predict_dataset = raw_datasets["test"]
528
        if data_args.max_predict_samples is not None:
529
530
            max_predict_samples = min(len(predict_dataset), data_args.max_predict_samples)
            predict_dataset = predict_dataset.select(range(max_predict_samples))
531
532
533
534
535
536
537
538
        with training_args.main_process_first(desc="prediction dataset map pre-processing"):
            predict_dataset = predict_dataset.map(
                tokenize_and_align_labels,
                batched=True,
                num_proc=data_args.preprocessing_num_workers,
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on prediction dataset",
            )
Julien Chaumond's avatar
Julien Chaumond committed
539

540
    # Data collator
541
    data_collator = DataCollatorForTokenClassification(tokenizer, pad_to_multiple_of=8 if training_args.fp16 else None)
Julien Chaumond's avatar
Julien Chaumond committed
542

543
    # Metrics
544
    metric = evaluate.load("seqeval", cache_dir=model_args.cache_dir)
545

546
547
548
    def compute_metrics(p):
        predictions, labels = p
        predictions = np.argmax(predictions, axis=2)
Julien Chaumond's avatar
Julien Chaumond committed
549

550
551
552
553
554
555
556
557
558
        # Remove ignored index (special tokens)
        true_predictions = [
            [label_list[p] for (p, l) in zip(prediction, label) if l != -100]
            for prediction, label in zip(predictions, labels)
        ]
        true_labels = [
            [label_list[l] for (p, l) in zip(prediction, label) if l != -100]
            for prediction, label in zip(predictions, labels)
        ]
Julien Chaumond's avatar
Julien Chaumond committed
559

560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
        results = metric.compute(predictions=true_predictions, references=true_labels)
        if data_args.return_entity_level_metrics:
            # Unpack nested dictionaries
            final_results = {}
            for key, value in results.items():
                if isinstance(value, dict):
                    for n, v in value.items():
                        final_results[f"{key}_{n}"] = v
                else:
                    final_results[key] = value
            return final_results
        else:
            return {
                "precision": results["overall_precision"],
                "recall": results["overall_recall"],
                "f1": results["overall_f1"],
                "accuracy": results["overall_accuracy"],
            }
Julien Chaumond's avatar
Julien Chaumond committed
578
579
580
581
582

    # Initialize our Trainer
    trainer = Trainer(
        model=model,
        args=training_args,
583
584
        train_dataset=train_dataset if training_args.do_train else None,
        eval_dataset=eval_dataset if training_args.do_eval else None,
585
586
        tokenizer=tokenizer,
        data_collator=data_collator,
Julien Chaumond's avatar
Julien Chaumond committed
587
588
        compute_metrics=compute_metrics,
    )
589
590

    # Training
Julien Chaumond's avatar
Julien Chaumond committed
591
    if training_args.do_train:
592
593
594
595
        checkpoint = None
        if training_args.resume_from_checkpoint is not None:
            checkpoint = training_args.resume_from_checkpoint
        elif last_checkpoint is not None:
596
597
            checkpoint = last_checkpoint
        train_result = trainer.train(resume_from_checkpoint=checkpoint)
598
        metrics = train_result.metrics
599
        trainer.save_model()  # Saves the tokenizer too for easy upload
600

601
602
603
604
605
        max_train_samples = (
            data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
        )
        metrics["train_samples"] = min(max_train_samples, len(train_dataset))

606
607
608
        trainer.log_metrics("train", metrics)
        trainer.save_metrics("train", metrics)
        trainer.save_state()
609

610
    # Evaluation
611
    if training_args.do_eval:
Julien Chaumond's avatar
Julien Chaumond committed
612
613
        logger.info("*** Evaluate ***")

614
615
        metrics = trainer.evaluate()

616
617
        max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset)
        metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))
Julien Chaumond's avatar
Julien Chaumond committed
618

619
620
        trainer.log_metrics("eval", metrics)
        trainer.save_metrics("eval", metrics)
Julien Chaumond's avatar
Julien Chaumond committed
621
622

    # Predict
623
    if training_args.do_predict:
624
625
        logger.info("*** Predict ***")

626
        predictions, labels, metrics = trainer.predict(predict_dataset, metric_key_prefix="predict")
627
        predictions = np.argmax(predictions, axis=2)
Julien Chaumond's avatar
Julien Chaumond committed
628

629
630
631
632
633
        # Remove ignored index (special tokens)
        true_predictions = [
            [label_list[p] for (p, l) in zip(prediction, label) if l != -100]
            for prediction, label in zip(predictions, labels)
        ]
Julien Chaumond's avatar
Julien Chaumond committed
634

635
636
        trainer.log_metrics("predict", metrics)
        trainer.save_metrics("predict", metrics)
Julien Chaumond's avatar
Julien Chaumond committed
637

638
        # Save predictions
639
        output_predictions_file = os.path.join(training_args.output_dir, "predictions.txt")
640
        if trainer.is_world_process_zero():
641
            with open(output_predictions_file, "w") as writer:
642
643
                for prediction in true_predictions:
                    writer.write(" ".join(prediction) + "\n")
644

645
646
647
648
649
650
651
652
    kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "token-classification"}
    if data_args.dataset_name is not None:
        kwargs["dataset_tags"] = data_args.dataset_name
        if data_args.dataset_config_name is not None:
            kwargs["dataset_args"] = data_args.dataset_config_name
            kwargs["dataset"] = f"{data_args.dataset_name} {data_args.dataset_config_name}"
        else:
            kwargs["dataset"] = data_args.dataset_name
Sylvain Gugger's avatar
Sylvain Gugger committed
653

654
    if training_args.push_to_hub:
Sylvain Gugger's avatar
Sylvain Gugger committed
655
        trainer.push_to_hub(**kwargs)
656
657
    else:
        trainer.create_model_card(**kwargs)
Sylvain Gugger's avatar
Sylvain Gugger committed
658

659

660
661
662
663
664
def _mp_fn(index):
    # For xla_spawn (TPUs)
    main()


665
666
if __name__ == "__main__":
    main()