run_ner.py 27.2 KB
Newer Older
1
#!/usr/bin/env python
2
# coding=utf-8
3
# Copyright 2020 The HuggingFace Team All rights reserved.
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
16
17
18
"""
Fine-tuning the library models for token classification.
"""
Sylvain Gugger's avatar
Sylvain Gugger committed
19
20
# You can also adapt this script on your own token classification task and datasets. Pointers for this are left as
# comments.
21

22
23
import logging
import os
24
import sys
25
import warnings
Julien Chaumond's avatar
Julien Chaumond committed
26
from dataclasses import dataclass, field
27
from typing import Optional
28

29
import datasets
30
import evaluate
31
import numpy as np
32
from datasets import ClassLabel, load_dataset
Aymeric Augustin's avatar
Aymeric Augustin committed
33

34
import transformers
Aymeric Augustin's avatar
Aymeric Augustin committed
35
from transformers import (
36
37
38
    AutoConfig,
    AutoModelForTokenClassification,
    AutoTokenizer,
39
    DataCollatorForTokenClassification,
Julien Chaumond's avatar
Julien Chaumond committed
40
    HfArgumentParser,
41
    PretrainedConfig,
42
    PreTrainedTokenizerFast,
Julien Chaumond's avatar
Julien Chaumond committed
43
44
45
    Trainer,
    TrainingArguments,
    set_seed,
Aymeric Augustin's avatar
Aymeric Augustin committed
46
)
47
from transformers.trainer_utils import get_last_checkpoint
48
from transformers.utils import check_min_version, send_example_telemetry
49
from transformers.utils.versions import require_version
Aymeric Augustin's avatar
Aymeric Augustin committed
50
51


52
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
Lysandre's avatar
Lysandre committed
53
check_min_version("4.35.0.dev0")
Sylvain Gugger's avatar
Sylvain Gugger committed
54

55
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/token-classification/requirements.txt")
56

57
58
59
logger = logging.getLogger(__name__)


Julien Chaumond's avatar
Julien Chaumond committed
60
61
62
63
64
@dataclass
class ModelArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
    """
65

Julien Chaumond's avatar
Julien Chaumond committed
66
67
    model_name_or_path: str = field(
        metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
68
    )
Julien Chaumond's avatar
Julien Chaumond committed
69
70
    config_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
71
    )
Julien Chaumond's avatar
Julien Chaumond committed
72
73
    tokenizer_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
74
    )
Julien Chaumond's avatar
Julien Chaumond committed
75
    cache_dir: Optional[str] = field(
76
77
        default=None,
        metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
78
    )
79
80
81
82
    model_revision: str = field(
        default="main",
        metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
    )
83
84
    token: str = field(
        default=None,
85
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
86
            "help": (
87
88
                "The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
                "generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
Sylvain Gugger's avatar
Sylvain Gugger committed
89
            )
90
91
        },
    )
92
93
94
95
96
97
    use_auth_token: bool = field(
        default=None,
        metadata={
            "help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token`."
        },
    )
98
99
100
101
102
    trust_remote_code: bool = field(
        default=False,
        metadata={
            "help": (
                "Whether or not to allow for custom models defined on the Hub in their own modeling files. This option"
103
                "should only be set to `True` for repositories you trust and in which you have read the code, as it will "
104
105
106
107
                "execute code present on the Hub on your local machine."
            )
        },
    )
108
109
110
111
    ignore_mismatched_sizes: bool = field(
        default=False,
        metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."},
    )
112
113


Julien Chaumond's avatar
Julien Chaumond committed
114
115
116
117
118
@dataclass
class DataTrainingArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.
    """
119

120
121
122
123
124
125
    task_name: Optional[str] = field(default="ner", metadata={"help": "The name of the task (ner, pos...)."})
    dataset_name: Optional[str] = field(
        default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
    )
    dataset_config_name: Optional[str] = field(
        default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
126
    )
127
128
129
130
    train_file: Optional[str] = field(
        default=None, metadata={"help": "The input training data file (a csv or JSON file)."}
    )
    validation_file: Optional[str] = field(
131
        default=None,
132
        metadata={"help": "An optional input evaluation data file to evaluate on (a csv or JSON file)."},
133
    )
134
135
136
    test_file: Optional[str] = field(
        default=None,
        metadata={"help": "An optional input test data file to predict on (a csv or JSON file)."},
137
    )
138
139
140
141
142
143
    text_column_name: Optional[str] = field(
        default=None, metadata={"help": "The column name of text to input in the file (a csv or JSON file)."}
    )
    label_column_name: Optional[str] = field(
        default=None, metadata={"help": "The column name of label to input in the file (a csv or JSON file)."}
    )
Julien Chaumond's avatar
Julien Chaumond committed
144
145
    overwrite_cache: bool = field(
        default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
146
    )
147
148
149
150
    preprocessing_num_workers: Optional[int] = field(
        default=None,
        metadata={"help": "The number of processes to use for the preprocessing."},
    )
151
152
153
    max_seq_length: int = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
154
155
156
157
            "help": (
                "The maximum total input sequence length after tokenization. If set, sequences longer "
                "than this will be truncated, sequences shorter will be padded."
            )
158
159
        },
    )
160
161
162
    pad_to_max_length: bool = field(
        default=False,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
163
164
165
166
167
            "help": (
                "Whether to pad all samples to model maximum sentence length. "
                "If False, will pad the samples dynamically when batching to the maximum length in the batch. More "
                "efficient on GPU but very bad for TPU."
            )
168
169
        },
    )
170
171
172
    max_train_samples: Optional[int] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
173
174
175
176
            "help": (
                "For debugging purposes or quicker training, truncate the number of training examples to this "
                "value if set."
            )
177
178
        },
    )
179
    max_eval_samples: Optional[int] = field(
180
181
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
182
183
184
185
            "help": (
                "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
                "value if set."
            )
186
187
        },
    )
188
    max_predict_samples: Optional[int] = field(
189
190
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
191
192
193
194
            "help": (
                "For debugging purposes or quicker training, truncate the number of prediction examples to this "
                "value if set."
            )
195
196
        },
    )
197
198
199
    label_all_tokens: bool = field(
        default=False,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
200
201
202
203
            "help": (
                "Whether to put the label for one word on all tokens of generated by that word or just on the "
                "one (in which case the other tokens will have a padding index)."
            )
204
205
        },
    )
206
207
208
209
    return_entity_level_metrics: bool = field(
        default=False,
        metadata={"help": "Whether to return all the entity levels during evaluation or just the overall ones."},
    )
210
211
212
213
214
215
216
217
218
219
220
221

    def __post_init__(self):
        if self.dataset_name is None and self.train_file is None and self.validation_file is None:
            raise ValueError("Need either a dataset name or a training/validation file.")
        else:
            if self.train_file is not None:
                extension = self.train_file.split(".")[-1]
                assert extension in ["csv", "json"], "`train_file` should be a csv or a json file."
            if self.validation_file is not None:
                extension = self.validation_file.split(".")[-1]
                assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file."
        self.task_name = self.task_name.lower()
222

Julien Chaumond's avatar
Julien Chaumond committed
223
224
225
226
227
228
229

def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
230
231
232
233
234
235
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses()
236

237
238
239
240
241
242
    if model_args.use_auth_token is not None:
        warnings.warn("The `use_auth_token` argument is deprecated and will be removed in v4.34.", FutureWarning)
        if model_args.token is not None:
            raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
        model_args.token = model_args.use_auth_token

243
244
245
246
    # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
    # information sent is the one passed as arguments along with your Python/PyTorch versions.
    send_example_telemetry("run_ner", model_args, data_args)

247
    # Setup logging
248
    logging.basicConfig(
249
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
250
        datefmt="%m/%d/%Y %H:%M:%S",
251
        handlers=[logging.StreamHandler(sys.stdout)],
252
    )
253

254
255
256
257
    if training_args.should_log:
        # The default of training_args.log_level is passive, so we set log level at info here to have that default.
        transformers.utils.logging.set_verbosity_info()

258
259
260
261
262
263
    log_level = training_args.get_process_log_level()
    logger.setLevel(log_level)
    datasets.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.enable_default_handler()
    transformers.utils.logging.enable_explicit_format()
264
265

    # Log on each process the small summary:
266
    logger.warning(
267
        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
268
        + f"distributed training: {training_args.parallel_mode.value == 'distributed'}, 16-bits training: {training_args.fp16}"
269
    )
270
    logger.info(f"Training/evaluation parameters {training_args}")
271

272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
    # Detecting last checkpoint.
    last_checkpoint = None
    if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
        last_checkpoint = get_last_checkpoint(training_args.output_dir)
        if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
            raise ValueError(
                f"Output directory ({training_args.output_dir}) already exists and is not empty. "
                "Use --overwrite_output_dir to overcome."
            )
        elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
            logger.info(
                f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
                "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
            )

287
    # Set seed before initializing model.
Julien Chaumond's avatar
Julien Chaumond committed
288
    set_seed(training_args.seed)
289

290
291
292
293
294
295
296
297
298
299
300
    # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
    # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
    # (the dataset will be downloaded automatically from the datasets Hub).
    #
    # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
    # 'text' is found. You can easily tweak this behavior (see below).
    #
    # In distributed training, the load_dataset function guarantee that only one local process can concurrently
    # download the dataset.
    if data_args.dataset_name is not None:
        # Downloading and loading a dataset from the hub.
301
        raw_datasets = load_dataset(
302
303
304
            data_args.dataset_name,
            data_args.dataset_config_name,
            cache_dir=model_args.cache_dir,
305
            token=model_args.token,
306
        )
307
308
309
310
311
312
313
314
315
    else:
        data_files = {}
        if data_args.train_file is not None:
            data_files["train"] = data_args.train_file
        if data_args.validation_file is not None:
            data_files["validation"] = data_args.validation_file
        if data_args.test_file is not None:
            data_files["test"] = data_args.test_file
        extension = data_args.train_file.split(".")[-1]
316
        raw_datasets = load_dataset(extension, data_files=data_files, cache_dir=model_args.cache_dir)
317
318
319
320
    # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
    # https://huggingface.co/docs/datasets/loading_datasets.html.

    if training_args.do_train:
321
322
        column_names = raw_datasets["train"].column_names
        features = raw_datasets["train"].features
323
    else:
324
325
        column_names = raw_datasets["validation"].column_names
        features = raw_datasets["validation"].features
326
327
328
329
330
331
332
333
334
335
336
337
338
339

    if data_args.text_column_name is not None:
        text_column_name = data_args.text_column_name
    elif "tokens" in column_names:
        text_column_name = "tokens"
    else:
        text_column_name = column_names[0]

    if data_args.label_column_name is not None:
        label_column_name = data_args.label_column_name
    elif f"{data_args.task_name}_tags" in column_names:
        label_column_name = f"{data_args.task_name}_tags"
    else:
        label_column_name = column_names[1]
340

Sylvain Gugger's avatar
Sylvain Gugger committed
341
342
    # In the event the labels are not a `Sequence[ClassLabel]`, we will need to go through the dataset to get the
    # unique labels.
343
344
345
346
347
348
349
350
    def get_label_list(labels):
        unique_labels = set()
        for label in labels:
            unique_labels = unique_labels | set(label)
        label_list = list(unique_labels)
        label_list.sort()
        return label_list

351
352
353
354
    # If the labels are of type ClassLabel, they are already integers and we have the map stored somewhere.
    # Otherwise, we have to get the list of labels manually.
    labels_are_int = isinstance(features[label_column_name].feature, ClassLabel)
    if labels_are_int:
Sylvain Gugger's avatar
Sylvain Gugger committed
355
        label_list = features[label_column_name].feature.names
356
        label_to_id = {i: i for i in range(len(label_list))}
Sylvain Gugger's avatar
Sylvain Gugger committed
357
    else:
358
        label_list = get_label_list(raw_datasets["train"][label_column_name])
359
        label_to_id = {l: i for i, l in enumerate(label_list)}
360

361
    num_labels = len(label_list)
362

363
    # Load pretrained model and tokenizer
Julien Chaumond's avatar
Julien Chaumond committed
364
365
366
367
    #
    # Distributed training:
    # The .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.
368
    config = AutoConfig.from_pretrained(
Julien Chaumond's avatar
Julien Chaumond committed
369
        model_args.config_name if model_args.config_name else model_args.model_name_or_path,
370
        num_labels=num_labels,
371
        finetuning_task=data_args.task_name,
Julien Chaumond's avatar
Julien Chaumond committed
372
        cache_dir=model_args.cache_dir,
373
        revision=model_args.model_revision,
374
        token=model_args.token,
375
        trust_remote_code=model_args.trust_remote_code,
376
    )
377
378

    tokenizer_name_or_path = model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path
379
    if config.model_type in {"bloom", "gpt2", "roberta"}:
380
381
382
383
384
        tokenizer = AutoTokenizer.from_pretrained(
            tokenizer_name_or_path,
            cache_dir=model_args.cache_dir,
            use_fast=True,
            revision=model_args.model_revision,
385
            token=model_args.token,
386
            trust_remote_code=model_args.trust_remote_code,
387
388
389
390
391
392
393
394
            add_prefix_space=True,
        )
    else:
        tokenizer = AutoTokenizer.from_pretrained(
            tokenizer_name_or_path,
            cache_dir=model_args.cache_dir,
            use_fast=True,
            revision=model_args.model_revision,
395
            token=model_args.token,
396
            trust_remote_code=model_args.trust_remote_code,
397
398
        )

399
    model = AutoModelForTokenClassification.from_pretrained(
Julien Chaumond's avatar
Julien Chaumond committed
400
401
        model_args.model_name_or_path,
        from_tf=bool(".ckpt" in model_args.model_name_or_path),
402
        config=config,
Julien Chaumond's avatar
Julien Chaumond committed
403
        cache_dir=model_args.cache_dir,
404
        revision=model_args.model_revision,
405
        token=model_args.token,
406
        trust_remote_code=model_args.trust_remote_code,
407
        ignore_mismatched_sizes=model_args.ignore_mismatched_sizes,
408
    )
409

410
411
412
    # Tokenizer check: this script requires a fast tokenizer.
    if not isinstance(tokenizer, PreTrainedTokenizerFast):
        raise ValueError(
Sylvain Gugger's avatar
Sylvain Gugger committed
413
414
415
            "This example script only works for models that have a fast tokenizer. Checkout the big table of models at"
            " https://huggingface.co/transformers/index.html#supported-frameworks to find the model types that meet"
            " this requirement"
416
417
        )

418
    # Model has labels -> use them.
419
    if model.config.label2id != PretrainedConfig(num_labels=num_labels).label2id:
420
        if sorted(model.config.label2id.keys()) == sorted(label_list):
421
422
423
424
425
426
427
            # Reorganize `label_list` to match the ordering of the model.
            if labels_are_int:
                label_to_id = {i: int(model.config.label2id[l]) for i, l in enumerate(label_list)}
                label_list = [model.config.id2label[i] for i in range(num_labels)]
            else:
                label_list = [model.config.id2label[i] for i in range(num_labels)]
                label_to_id = {l: i for i, l in enumerate(label_list)}
428
429
430
        else:
            logger.warning(
                "Your model seems to have been trained with labels, but they don't match the dataset: ",
431
432
                f"model labels: {sorted(model.config.label2id.keys())}, dataset labels:"
                f" {sorted(label_list)}.\nIgnoring the model labels as a result.",
433
434
            )

435
436
    # Set the correspondences label/ID inside the model config
    model.config.label2id = {l: i for i, l in enumerate(label_list)}
Sylvain's avatar
Sylvain committed
437
    model.config.id2label = dict(enumerate(label_list))
438
439
440
441
442
443
444
445
446

    # Map that sends B-Xxx label to its I-Xxx counterpart
    b_to_i_label = []
    for idx, label in enumerate(label_list):
        if label.startswith("B-") and label.replace("B-", "I-") in label_list:
            b_to_i_label.append(label_list.index(label.replace("B-", "I-")))
        else:
            b_to_i_label.append(idx)

447
448
449
450
451
452
453
454
455
456
    # Preprocessing the dataset
    # Padding strategy
    padding = "max_length" if data_args.pad_to_max_length else False

    # Tokenize all texts and align the labels with them.
    def tokenize_and_align_labels(examples):
        tokenized_inputs = tokenizer(
            examples[text_column_name],
            padding=padding,
            truncation=True,
457
            max_length=data_args.max_seq_length,
458
459
            # We use this argument because the texts in our dataset are lists of words (with a label for each word).
            is_split_into_words=True,
Julien Chaumond's avatar
Julien Chaumond committed
460
        )
461
        labels = []
462
463
464
        for i, label in enumerate(examples[label_column_name]):
            word_ids = tokenized_inputs.word_ids(batch_index=i)
            previous_word_idx = None
465
            label_ids = []
466
467
468
469
            for word_idx in word_ids:
                # Special tokens have a word id that is None. We set the label to -100 so they are automatically
                # ignored in the loss function.
                if word_idx is None:
470
                    label_ids.append(-100)
471
472
473
                # We set the label for the first token of each word.
                elif word_idx != previous_word_idx:
                    label_ids.append(label_to_id[label[word_idx]])
474
475
476
                # For the other tokens in a word, we set the label to either the current label or -100, depending on
                # the label_all_tokens flag.
                else:
477
478
479
480
                    if data_args.label_all_tokens:
                        label_ids.append(b_to_i_label[label_to_id[label[word_idx]]])
                    else:
                        label_ids.append(-100)
481
                previous_word_idx = word_idx
482
483
484
485
486

            labels.append(label_ids)
        tokenized_inputs["labels"] = labels
        return tokenized_inputs

487
    if training_args.do_train:
488
        if "train" not in raw_datasets:
489
            raise ValueError("--do_train requires a train dataset")
490
        train_dataset = raw_datasets["train"]
491
        if data_args.max_train_samples is not None:
492
493
            max_train_samples = min(len(train_dataset), data_args.max_train_samples)
            train_dataset = train_dataset.select(range(max_train_samples))
494
495
496
497
498
499
500
501
        with training_args.main_process_first(desc="train dataset map pre-processing"):
            train_dataset = train_dataset.map(
                tokenize_and_align_labels,
                batched=True,
                num_proc=data_args.preprocessing_num_workers,
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on train dataset",
            )
502
503

    if training_args.do_eval:
504
        if "validation" not in raw_datasets:
505
            raise ValueError("--do_eval requires a validation dataset")
506
        eval_dataset = raw_datasets["validation"]
507
        if data_args.max_eval_samples is not None:
508
509
            max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples)
            eval_dataset = eval_dataset.select(range(max_eval_samples))
510
511
512
513
514
515
516
517
        with training_args.main_process_first(desc="validation dataset map pre-processing"):
            eval_dataset = eval_dataset.map(
                tokenize_and_align_labels,
                batched=True,
                num_proc=data_args.preprocessing_num_workers,
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on validation dataset",
            )
518
519

    if training_args.do_predict:
520
        if "test" not in raw_datasets:
521
            raise ValueError("--do_predict requires a test dataset")
522
        predict_dataset = raw_datasets["test"]
523
        if data_args.max_predict_samples is not None:
524
525
            max_predict_samples = min(len(predict_dataset), data_args.max_predict_samples)
            predict_dataset = predict_dataset.select(range(max_predict_samples))
526
527
528
529
530
531
532
533
        with training_args.main_process_first(desc="prediction dataset map pre-processing"):
            predict_dataset = predict_dataset.map(
                tokenize_and_align_labels,
                batched=True,
                num_proc=data_args.preprocessing_num_workers,
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on prediction dataset",
            )
Julien Chaumond's avatar
Julien Chaumond committed
534

535
    # Data collator
536
    data_collator = DataCollatorForTokenClassification(tokenizer, pad_to_multiple_of=8 if training_args.fp16 else None)
Julien Chaumond's avatar
Julien Chaumond committed
537

538
    # Metrics
539
    metric = evaluate.load("seqeval")
540

541
542
543
    def compute_metrics(p):
        predictions, labels = p
        predictions = np.argmax(predictions, axis=2)
Julien Chaumond's avatar
Julien Chaumond committed
544

545
546
547
548
549
550
551
552
553
        # Remove ignored index (special tokens)
        true_predictions = [
            [label_list[p] for (p, l) in zip(prediction, label) if l != -100]
            for prediction, label in zip(predictions, labels)
        ]
        true_labels = [
            [label_list[l] for (p, l) in zip(prediction, label) if l != -100]
            for prediction, label in zip(predictions, labels)
        ]
Julien Chaumond's avatar
Julien Chaumond committed
554

555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
        results = metric.compute(predictions=true_predictions, references=true_labels)
        if data_args.return_entity_level_metrics:
            # Unpack nested dictionaries
            final_results = {}
            for key, value in results.items():
                if isinstance(value, dict):
                    for n, v in value.items():
                        final_results[f"{key}_{n}"] = v
                else:
                    final_results[key] = value
            return final_results
        else:
            return {
                "precision": results["overall_precision"],
                "recall": results["overall_recall"],
                "f1": results["overall_f1"],
                "accuracy": results["overall_accuracy"],
            }
Julien Chaumond's avatar
Julien Chaumond committed
573
574
575
576
577

    # Initialize our Trainer
    trainer = Trainer(
        model=model,
        args=training_args,
578
579
        train_dataset=train_dataset if training_args.do_train else None,
        eval_dataset=eval_dataset if training_args.do_eval else None,
580
581
        tokenizer=tokenizer,
        data_collator=data_collator,
Julien Chaumond's avatar
Julien Chaumond committed
582
583
        compute_metrics=compute_metrics,
    )
584
585

    # Training
Julien Chaumond's avatar
Julien Chaumond committed
586
    if training_args.do_train:
587
588
589
590
        checkpoint = None
        if training_args.resume_from_checkpoint is not None:
            checkpoint = training_args.resume_from_checkpoint
        elif last_checkpoint is not None:
591
592
            checkpoint = last_checkpoint
        train_result = trainer.train(resume_from_checkpoint=checkpoint)
593
        metrics = train_result.metrics
594
        trainer.save_model()  # Saves the tokenizer too for easy upload
595

596
597
598
599
600
        max_train_samples = (
            data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
        )
        metrics["train_samples"] = min(max_train_samples, len(train_dataset))

601
602
603
        trainer.log_metrics("train", metrics)
        trainer.save_metrics("train", metrics)
        trainer.save_state()
604

605
    # Evaluation
606
    if training_args.do_eval:
Julien Chaumond's avatar
Julien Chaumond committed
607
608
        logger.info("*** Evaluate ***")

609
610
        metrics = trainer.evaluate()

611
612
        max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset)
        metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))
Julien Chaumond's avatar
Julien Chaumond committed
613

614
615
        trainer.log_metrics("eval", metrics)
        trainer.save_metrics("eval", metrics)
Julien Chaumond's avatar
Julien Chaumond committed
616
617

    # Predict
618
    if training_args.do_predict:
619
620
        logger.info("*** Predict ***")

621
        predictions, labels, metrics = trainer.predict(predict_dataset, metric_key_prefix="predict")
622
        predictions = np.argmax(predictions, axis=2)
Julien Chaumond's avatar
Julien Chaumond committed
623

624
625
626
627
628
        # Remove ignored index (special tokens)
        true_predictions = [
            [label_list[p] for (p, l) in zip(prediction, label) if l != -100]
            for prediction, label in zip(predictions, labels)
        ]
Julien Chaumond's avatar
Julien Chaumond committed
629

630
631
        trainer.log_metrics("predict", metrics)
        trainer.save_metrics("predict", metrics)
Julien Chaumond's avatar
Julien Chaumond committed
632

633
        # Save predictions
634
        output_predictions_file = os.path.join(training_args.output_dir, "predictions.txt")
635
        if trainer.is_world_process_zero():
636
            with open(output_predictions_file, "w") as writer:
637
638
                for prediction in true_predictions:
                    writer.write(" ".join(prediction) + "\n")
639

640
641
642
643
644
645
646
647
    kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "token-classification"}
    if data_args.dataset_name is not None:
        kwargs["dataset_tags"] = data_args.dataset_name
        if data_args.dataset_config_name is not None:
            kwargs["dataset_args"] = data_args.dataset_config_name
            kwargs["dataset"] = f"{data_args.dataset_name} {data_args.dataset_config_name}"
        else:
            kwargs["dataset"] = data_args.dataset_name
Sylvain Gugger's avatar
Sylvain Gugger committed
648

649
    if training_args.push_to_hub:
Sylvain Gugger's avatar
Sylvain Gugger committed
650
        trainer.push_to_hub(**kwargs)
651
652
    else:
        trainer.create_model_card(**kwargs)
Sylvain Gugger's avatar
Sylvain Gugger committed
653

654

655
656
657
658
659
def _mp_fn(index):
    # For xla_spawn (TPUs)
    main()


660
661
if __name__ == "__main__":
    main()