run_ner.py 25.4 KB
Newer Older
1
#!/usr/bin/env python
2
# coding=utf-8
3
# Copyright 2020 The HuggingFace Team All rights reserved.
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
16
17
18
"""
Fine-tuning the library models for token classification.
"""
Sylvain Gugger's avatar
Sylvain Gugger committed
19
20
# You can also adapt this script on your own token classification task and datasets. Pointers for this are left as
# comments.
21

22
23
import logging
import os
24
import sys
Julien Chaumond's avatar
Julien Chaumond committed
25
from dataclasses import dataclass, field
26
from typing import Optional
27

28
import datasets
29
import numpy as np
30
from datasets import ClassLabel, load_dataset, load_metric
Aymeric Augustin's avatar
Aymeric Augustin committed
31

32
import transformers
Aymeric Augustin's avatar
Aymeric Augustin committed
33
from transformers import (
34
35
36
    AutoConfig,
    AutoModelForTokenClassification,
    AutoTokenizer,
37
    DataCollatorForTokenClassification,
Julien Chaumond's avatar
Julien Chaumond committed
38
    HfArgumentParser,
39
    PretrainedConfig,
40
    PreTrainedTokenizerFast,
Julien Chaumond's avatar
Julien Chaumond committed
41
42
43
    Trainer,
    TrainingArguments,
    set_seed,
Aymeric Augustin's avatar
Aymeric Augustin committed
44
)
45
from transformers.trainer_utils import get_last_checkpoint
46
from transformers.utils import check_min_version
47
from transformers.utils.versions import require_version
Aymeric Augustin's avatar
Aymeric Augustin committed
48
49


50
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
Lysandre Debut's avatar
Lysandre Debut committed
51
check_min_version("4.20.0.dev0")
Sylvain Gugger's avatar
Sylvain Gugger committed
52

53
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/token-classification/requirements.txt")
54

55
56
57
logger = logging.getLogger(__name__)


Julien Chaumond's avatar
Julien Chaumond committed
58
59
60
61
62
@dataclass
class ModelArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
    """
63

Julien Chaumond's avatar
Julien Chaumond committed
64
65
    model_name_or_path: str = field(
        metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
66
    )
Julien Chaumond's avatar
Julien Chaumond committed
67
68
    config_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
69
    )
Julien Chaumond's avatar
Julien Chaumond committed
70
71
    tokenizer_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
72
    )
Julien Chaumond's avatar
Julien Chaumond committed
73
    cache_dir: Optional[str] = field(
74
75
        default=None,
        metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
76
    )
77
78
79
80
81
82
83
    model_revision: str = field(
        default="main",
        metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
    )
    use_auth_token: bool = field(
        default=False,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
84
85
86
87
            "help": (
                "Will use the token generated when running `transformers-cli login` (necessary to use this script "
                "with private models)."
            )
88
89
        },
    )
90
91


Julien Chaumond's avatar
Julien Chaumond committed
92
93
94
95
96
@dataclass
class DataTrainingArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.
    """
97

98
99
100
101
102
103
    task_name: Optional[str] = field(default="ner", metadata={"help": "The name of the task (ner, pos...)."})
    dataset_name: Optional[str] = field(
        default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
    )
    dataset_config_name: Optional[str] = field(
        default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
104
    )
105
106
107
108
    train_file: Optional[str] = field(
        default=None, metadata={"help": "The input training data file (a csv or JSON file)."}
    )
    validation_file: Optional[str] = field(
109
        default=None,
110
        metadata={"help": "An optional input evaluation data file to evaluate on (a csv or JSON file)."},
111
    )
112
113
114
    test_file: Optional[str] = field(
        default=None,
        metadata={"help": "An optional input test data file to predict on (a csv or JSON file)."},
115
    )
116
117
118
119
120
121
    text_column_name: Optional[str] = field(
        default=None, metadata={"help": "The column name of text to input in the file (a csv or JSON file)."}
    )
    label_column_name: Optional[str] = field(
        default=None, metadata={"help": "The column name of label to input in the file (a csv or JSON file)."}
    )
Julien Chaumond's avatar
Julien Chaumond committed
122
123
    overwrite_cache: bool = field(
        default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
124
    )
125
126
127
128
    preprocessing_num_workers: Optional[int] = field(
        default=None,
        metadata={"help": "The number of processes to use for the preprocessing."},
    )
129
130
131
    max_seq_length: int = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
132
133
134
135
            "help": (
                "The maximum total input sequence length after tokenization. If set, sequences longer "
                "than this will be truncated, sequences shorter will be padded."
            )
136
137
        },
    )
138
139
140
    pad_to_max_length: bool = field(
        default=False,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
141
142
143
144
145
            "help": (
                "Whether to pad all samples to model maximum sentence length. "
                "If False, will pad the samples dynamically when batching to the maximum length in the batch. More "
                "efficient on GPU but very bad for TPU."
            )
146
147
        },
    )
148
149
150
    max_train_samples: Optional[int] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
151
152
153
154
            "help": (
                "For debugging purposes or quicker training, truncate the number of training examples to this "
                "value if set."
            )
155
156
        },
    )
157
    max_eval_samples: Optional[int] = field(
158
159
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
160
161
162
163
            "help": (
                "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
                "value if set."
            )
164
165
        },
    )
166
    max_predict_samples: Optional[int] = field(
167
168
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
169
170
171
172
            "help": (
                "For debugging purposes or quicker training, truncate the number of prediction examples to this "
                "value if set."
            )
173
174
        },
    )
175
176
177
    label_all_tokens: bool = field(
        default=False,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
178
179
180
181
            "help": (
                "Whether to put the label for one word on all tokens of generated by that word or just on the "
                "one (in which case the other tokens will have a padding index)."
            )
182
183
        },
    )
184
185
186
187
    return_entity_level_metrics: bool = field(
        default=False,
        metadata={"help": "Whether to return all the entity levels during evaluation or just the overall ones."},
    )
188
189
190
191
192
193
194
195
196
197
198
199

    def __post_init__(self):
        if self.dataset_name is None and self.train_file is None and self.validation_file is None:
            raise ValueError("Need either a dataset name or a training/validation file.")
        else:
            if self.train_file is not None:
                extension = self.train_file.split(".")[-1]
                assert extension in ["csv", "json"], "`train_file` should be a csv or a json file."
            if self.validation_file is not None:
                extension = self.validation_file.split(".")[-1]
                assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file."
        self.task_name = self.task_name.lower()
200

Julien Chaumond's avatar
Julien Chaumond committed
201
202
203
204
205
206
207

def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
208
209
210
211
212
213
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses()
214
215

    # Setup logging
216
    logging.basicConfig(
217
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
218
        datefmt="%m/%d/%Y %H:%M:%S",
219
        handlers=[logging.StreamHandler(sys.stdout)],
220
    )
221
222
223
224
225
226
227

    log_level = training_args.get_process_log_level()
    logger.setLevel(log_level)
    datasets.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.enable_default_handler()
    transformers.utils.logging.enable_explicit_format()
228
229

    # Log on each process the small summary:
230
    logger.warning(
231
232
        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
        + f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
233
    )
234
    logger.info(f"Training/evaluation parameters {training_args}")
235

236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
    # Detecting last checkpoint.
    last_checkpoint = None
    if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
        last_checkpoint = get_last_checkpoint(training_args.output_dir)
        if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
            raise ValueError(
                f"Output directory ({training_args.output_dir}) already exists and is not empty. "
                "Use --overwrite_output_dir to overcome."
            )
        elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
            logger.info(
                f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
                "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
            )

251
    # Set seed before initializing model.
Julien Chaumond's avatar
Julien Chaumond committed
252
    set_seed(training_args.seed)
253

254
255
256
257
258
259
260
261
262
263
264
    # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
    # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
    # (the dataset will be downloaded automatically from the datasets Hub).
    #
    # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
    # 'text' is found. You can easily tweak this behavior (see below).
    #
    # In distributed training, the load_dataset function guarantee that only one local process can concurrently
    # download the dataset.
    if data_args.dataset_name is not None:
        # Downloading and loading a dataset from the hub.
265
        raw_datasets = load_dataset(
266
267
268
269
            data_args.dataset_name,
            data_args.dataset_config_name,
            cache_dir=model_args.cache_dir,
            use_auth_token=True if model_args.use_auth_token else None,
270
        )
271
272
273
274
275
276
277
278
279
    else:
        data_files = {}
        if data_args.train_file is not None:
            data_files["train"] = data_args.train_file
        if data_args.validation_file is not None:
            data_files["validation"] = data_args.validation_file
        if data_args.test_file is not None:
            data_files["test"] = data_args.test_file
        extension = data_args.train_file.split(".")[-1]
280
        raw_datasets = load_dataset(extension, data_files=data_files, cache_dir=model_args.cache_dir)
281
282
283
284
    # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
    # https://huggingface.co/docs/datasets/loading_datasets.html.

    if training_args.do_train:
285
286
        column_names = raw_datasets["train"].column_names
        features = raw_datasets["train"].features
287
    else:
288
289
        column_names = raw_datasets["validation"].column_names
        features = raw_datasets["validation"].features
290
291
292
293
294
295
296
297
298
299
300
301
302
303

    if data_args.text_column_name is not None:
        text_column_name = data_args.text_column_name
    elif "tokens" in column_names:
        text_column_name = "tokens"
    else:
        text_column_name = column_names[0]

    if data_args.label_column_name is not None:
        label_column_name = data_args.label_column_name
    elif f"{data_args.task_name}_tags" in column_names:
        label_column_name = f"{data_args.task_name}_tags"
    else:
        label_column_name = column_names[1]
304

Sylvain Gugger's avatar
Sylvain Gugger committed
305
306
    # In the event the labels are not a `Sequence[ClassLabel]`, we will need to go through the dataset to get the
    # unique labels.
307
308
309
310
311
312
313
314
    def get_label_list(labels):
        unique_labels = set()
        for label in labels:
            unique_labels = unique_labels | set(label)
        label_list = list(unique_labels)
        label_list.sort()
        return label_list

315
316
317
318
    # If the labels are of type ClassLabel, they are already integers and we have the map stored somewhere.
    # Otherwise, we have to get the list of labels manually.
    labels_are_int = isinstance(features[label_column_name].feature, ClassLabel)
    if labels_are_int:
Sylvain Gugger's avatar
Sylvain Gugger committed
319
        label_list = features[label_column_name].feature.names
320
        label_to_id = {i: i for i in range(len(label_list))}
Sylvain Gugger's avatar
Sylvain Gugger committed
321
    else:
322
        label_list = get_label_list(raw_datasets["train"][label_column_name])
323
        label_to_id = {l: i for i, l in enumerate(label_list)}
324

325
    num_labels = len(label_list)
326

327
    # Load pretrained model and tokenizer
Julien Chaumond's avatar
Julien Chaumond committed
328
329
330
331
    #
    # Distributed training:
    # The .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.
332
    config = AutoConfig.from_pretrained(
Julien Chaumond's avatar
Julien Chaumond committed
333
        model_args.config_name if model_args.config_name else model_args.model_name_or_path,
334
        num_labels=num_labels,
335
        finetuning_task=data_args.task_name,
Julien Chaumond's avatar
Julien Chaumond committed
336
        cache_dir=model_args.cache_dir,
337
338
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
339
    )
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359

    tokenizer_name_or_path = model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path
    if config.model_type in {"gpt2", "roberta"}:
        tokenizer = AutoTokenizer.from_pretrained(
            tokenizer_name_or_path,
            cache_dir=model_args.cache_dir,
            use_fast=True,
            revision=model_args.model_revision,
            use_auth_token=True if model_args.use_auth_token else None,
            add_prefix_space=True,
        )
    else:
        tokenizer = AutoTokenizer.from_pretrained(
            tokenizer_name_or_path,
            cache_dir=model_args.cache_dir,
            use_fast=True,
            revision=model_args.model_revision,
            use_auth_token=True if model_args.use_auth_token else None,
        )

360
    model = AutoModelForTokenClassification.from_pretrained(
Julien Chaumond's avatar
Julien Chaumond committed
361
362
        model_args.model_name_or_path,
        from_tf=bool(".ckpt" in model_args.model_name_or_path),
363
        config=config,
Julien Chaumond's avatar
Julien Chaumond committed
364
        cache_dir=model_args.cache_dir,
365
366
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
367
    )
368

369
370
371
    # Tokenizer check: this script requires a fast tokenizer.
    if not isinstance(tokenizer, PreTrainedTokenizerFast):
        raise ValueError(
Sylvain Gugger's avatar
Sylvain Gugger committed
372
373
374
            "This example script only works for models that have a fast tokenizer. Checkout the big table of models at"
            " https://huggingface.co/transformers/index.html#supported-frameworks to find the model types that meet"
            " this requirement"
375
376
        )

377
    # Model has labels -> use them.
378
    if model.config.label2id != PretrainedConfig(num_labels=num_labels).label2id:
379
380
381
382
383
384
385
386
        if list(sorted(model.config.label2id.keys())) == list(sorted(label_list)):
            # Reorganize `label_list` to match the ordering of the model.
            if labels_are_int:
                label_to_id = {i: int(model.config.label2id[l]) for i, l in enumerate(label_list)}
                label_list = [model.config.id2label[i] for i in range(num_labels)]
            else:
                label_list = [model.config.id2label[i] for i in range(num_labels)]
                label_to_id = {l: i for i, l in enumerate(label_list)}
387
388
389
        else:
            logger.warning(
                "Your model seems to have been trained with labels, but they don't match the dataset: ",
Sylvain Gugger's avatar
Sylvain Gugger committed
390
391
                f"model labels: {list(sorted(model.config.label2id.keys()))}, dataset labels:"
                f" {list(sorted(label_list))}.\nIgnoring the model labels as a result.",
392
393
            )

394
395
396
    # Set the correspondences label/ID inside the model config
    model.config.label2id = {l: i for i, l in enumerate(label_list)}
    model.config.id2label = {i: l for i, l in enumerate(label_list)}
397
398
399
400
401
402
403
404
405

    # Map that sends B-Xxx label to its I-Xxx counterpart
    b_to_i_label = []
    for idx, label in enumerate(label_list):
        if label.startswith("B-") and label.replace("B-", "I-") in label_list:
            b_to_i_label.append(label_list.index(label.replace("B-", "I-")))
        else:
            b_to_i_label.append(idx)

406
407
408
409
410
411
412
413
414
415
    # Preprocessing the dataset
    # Padding strategy
    padding = "max_length" if data_args.pad_to_max_length else False

    # Tokenize all texts and align the labels with them.
    def tokenize_and_align_labels(examples):
        tokenized_inputs = tokenizer(
            examples[text_column_name],
            padding=padding,
            truncation=True,
416
            max_length=data_args.max_seq_length,
417
418
            # We use this argument because the texts in our dataset are lists of words (with a label for each word).
            is_split_into_words=True,
Julien Chaumond's avatar
Julien Chaumond committed
419
        )
420
        labels = []
421
422
423
        for i, label in enumerate(examples[label_column_name]):
            word_ids = tokenized_inputs.word_ids(batch_index=i)
            previous_word_idx = None
424
            label_ids = []
425
426
427
428
            for word_idx in word_ids:
                # Special tokens have a word id that is None. We set the label to -100 so they are automatically
                # ignored in the loss function.
                if word_idx is None:
429
                    label_ids.append(-100)
430
431
432
                # We set the label for the first token of each word.
                elif word_idx != previous_word_idx:
                    label_ids.append(label_to_id[label[word_idx]])
433
434
435
                # For the other tokens in a word, we set the label to either the current label or -100, depending on
                # the label_all_tokens flag.
                else:
436
437
438
439
                    if data_args.label_all_tokens:
                        label_ids.append(b_to_i_label[label_to_id[label[word_idx]]])
                    else:
                        label_ids.append(-100)
440
                previous_word_idx = word_idx
441
442
443
444
445

            labels.append(label_ids)
        tokenized_inputs["labels"] = labels
        return tokenized_inputs

446
    if training_args.do_train:
447
        if "train" not in raw_datasets:
448
            raise ValueError("--do_train requires a train dataset")
449
        train_dataset = raw_datasets["train"]
450
        if data_args.max_train_samples is not None:
451
452
            max_train_samples = min(len(train_dataset), data_args.max_train_samples)
            train_dataset = train_dataset.select(range(max_train_samples))
453
454
455
456
457
458
459
460
        with training_args.main_process_first(desc="train dataset map pre-processing"):
            train_dataset = train_dataset.map(
                tokenize_and_align_labels,
                batched=True,
                num_proc=data_args.preprocessing_num_workers,
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on train dataset",
            )
461
462

    if training_args.do_eval:
463
        if "validation" not in raw_datasets:
464
            raise ValueError("--do_eval requires a validation dataset")
465
        eval_dataset = raw_datasets["validation"]
466
        if data_args.max_eval_samples is not None:
467
468
            max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples)
            eval_dataset = eval_dataset.select(range(max_eval_samples))
469
470
471
472
473
474
475
476
        with training_args.main_process_first(desc="validation dataset map pre-processing"):
            eval_dataset = eval_dataset.map(
                tokenize_and_align_labels,
                batched=True,
                num_proc=data_args.preprocessing_num_workers,
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on validation dataset",
            )
477
478

    if training_args.do_predict:
479
        if "test" not in raw_datasets:
480
            raise ValueError("--do_predict requires a test dataset")
481
        predict_dataset = raw_datasets["test"]
482
        if data_args.max_predict_samples is not None:
483
484
            max_predict_samples = min(len(predict_dataset), data_args.max_predict_samples)
            predict_dataset = predict_dataset.select(range(max_predict_samples))
485
486
487
488
489
490
491
492
        with training_args.main_process_first(desc="prediction dataset map pre-processing"):
            predict_dataset = predict_dataset.map(
                tokenize_and_align_labels,
                batched=True,
                num_proc=data_args.preprocessing_num_workers,
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on prediction dataset",
            )
Julien Chaumond's avatar
Julien Chaumond committed
493

494
    # Data collator
495
    data_collator = DataCollatorForTokenClassification(tokenizer, pad_to_multiple_of=8 if training_args.fp16 else None)
Julien Chaumond's avatar
Julien Chaumond committed
496

497
    # Metrics
498
499
    metric = load_metric("seqeval")

500
501
502
    def compute_metrics(p):
        predictions, labels = p
        predictions = np.argmax(predictions, axis=2)
Julien Chaumond's avatar
Julien Chaumond committed
503

504
505
506
507
508
509
510
511
512
        # Remove ignored index (special tokens)
        true_predictions = [
            [label_list[p] for (p, l) in zip(prediction, label) if l != -100]
            for prediction, label in zip(predictions, labels)
        ]
        true_labels = [
            [label_list[l] for (p, l) in zip(prediction, label) if l != -100]
            for prediction, label in zip(predictions, labels)
        ]
Julien Chaumond's avatar
Julien Chaumond committed
513

514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
        results = metric.compute(predictions=true_predictions, references=true_labels)
        if data_args.return_entity_level_metrics:
            # Unpack nested dictionaries
            final_results = {}
            for key, value in results.items():
                if isinstance(value, dict):
                    for n, v in value.items():
                        final_results[f"{key}_{n}"] = v
                else:
                    final_results[key] = value
            return final_results
        else:
            return {
                "precision": results["overall_precision"],
                "recall": results["overall_recall"],
                "f1": results["overall_f1"],
                "accuracy": results["overall_accuracy"],
            }
Julien Chaumond's avatar
Julien Chaumond committed
532
533
534
535
536

    # Initialize our Trainer
    trainer = Trainer(
        model=model,
        args=training_args,
537
538
        train_dataset=train_dataset if training_args.do_train else None,
        eval_dataset=eval_dataset if training_args.do_eval else None,
539
540
        tokenizer=tokenizer,
        data_collator=data_collator,
Julien Chaumond's avatar
Julien Chaumond committed
541
542
        compute_metrics=compute_metrics,
    )
543
544

    # Training
Julien Chaumond's avatar
Julien Chaumond committed
545
    if training_args.do_train:
546
547
548
549
        checkpoint = None
        if training_args.resume_from_checkpoint is not None:
            checkpoint = training_args.resume_from_checkpoint
        elif last_checkpoint is not None:
550
551
            checkpoint = last_checkpoint
        train_result = trainer.train(resume_from_checkpoint=checkpoint)
552
        metrics = train_result.metrics
553
        trainer.save_model()  # Saves the tokenizer too for easy upload
554

555
556
557
558
559
        max_train_samples = (
            data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
        )
        metrics["train_samples"] = min(max_train_samples, len(train_dataset))

560
561
562
        trainer.log_metrics("train", metrics)
        trainer.save_metrics("train", metrics)
        trainer.save_state()
563

564
    # Evaluation
565
    if training_args.do_eval:
Julien Chaumond's avatar
Julien Chaumond committed
566
567
        logger.info("*** Evaluate ***")

568
569
        metrics = trainer.evaluate()

570
571
        max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset)
        metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))
Julien Chaumond's avatar
Julien Chaumond committed
572

573
574
        trainer.log_metrics("eval", metrics)
        trainer.save_metrics("eval", metrics)
Julien Chaumond's avatar
Julien Chaumond committed
575
576

    # Predict
577
    if training_args.do_predict:
578
579
        logger.info("*** Predict ***")

580
        predictions, labels, metrics = trainer.predict(predict_dataset, metric_key_prefix="predict")
581
        predictions = np.argmax(predictions, axis=2)
Julien Chaumond's avatar
Julien Chaumond committed
582

583
584
585
586
587
        # Remove ignored index (special tokens)
        true_predictions = [
            [label_list[p] for (p, l) in zip(prediction, label) if l != -100]
            for prediction, label in zip(predictions, labels)
        ]
Julien Chaumond's avatar
Julien Chaumond committed
588

589
590
        trainer.log_metrics("predict", metrics)
        trainer.save_metrics("predict", metrics)
Julien Chaumond's avatar
Julien Chaumond committed
591

592
        # Save predictions
593
        output_predictions_file = os.path.join(training_args.output_dir, "predictions.txt")
594
        if trainer.is_world_process_zero():
595
            with open(output_predictions_file, "w") as writer:
596
597
                for prediction in true_predictions:
                    writer.write(" ".join(prediction) + "\n")
598

599
600
601
602
603
604
605
606
    kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "token-classification"}
    if data_args.dataset_name is not None:
        kwargs["dataset_tags"] = data_args.dataset_name
        if data_args.dataset_config_name is not None:
            kwargs["dataset_args"] = data_args.dataset_config_name
            kwargs["dataset"] = f"{data_args.dataset_name} {data_args.dataset_config_name}"
        else:
            kwargs["dataset"] = data_args.dataset_name
Sylvain Gugger's avatar
Sylvain Gugger committed
607

608
    if training_args.push_to_hub:
Sylvain Gugger's avatar
Sylvain Gugger committed
609
        trainer.push_to_hub(**kwargs)
610
611
    else:
        trainer.create_model_card(**kwargs)
Sylvain Gugger's avatar
Sylvain Gugger committed
612

613

614
615
616
617
618
def _mp_fn(index):
    # For xla_spawn (TPUs)
    main()


619
620
if __name__ == "__main__":
    main()