run_ner.py 21.7 KB
Newer Older
1
#!/usr/bin/env python
2
# coding=utf-8
3
# Copyright 2020 The HuggingFace Team All rights reserved.
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
16
17
18
"""
Fine-tuning the library models for token classification.
"""
Sylvain Gugger's avatar
Sylvain Gugger committed
19
20
# You can also adapt this script on your own token classification task and datasets. Pointers for this are left as
# comments.
21

22
23
import logging
import os
24
import sys
Julien Chaumond's avatar
Julien Chaumond committed
25
from dataclasses import dataclass, field
26
from typing import Optional
27
28

import numpy as np
29
from datasets import ClassLabel, load_dataset, load_metric
Aymeric Augustin's avatar
Aymeric Augustin committed
30

31
import transformers
Aymeric Augustin's avatar
Aymeric Augustin committed
32
from transformers import (
33
34
35
    AutoConfig,
    AutoModelForTokenClassification,
    AutoTokenizer,
36
    DataCollatorForTokenClassification,
Julien Chaumond's avatar
Julien Chaumond committed
37
    HfArgumentParser,
38
    PreTrainedTokenizerFast,
Julien Chaumond's avatar
Julien Chaumond committed
39
40
41
    Trainer,
    TrainingArguments,
    set_seed,
Aymeric Augustin's avatar
Aymeric Augustin committed
42
)
43
from transformers.trainer_utils import get_last_checkpoint
44
from transformers.utils import check_min_version
Aymeric Augustin's avatar
Aymeric Augustin committed
45
46


47
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
Lysandre's avatar
Lysandre committed
48
check_min_version("4.7.0.dev0")
49

50
51
52
logger = logging.getLogger(__name__)


Julien Chaumond's avatar
Julien Chaumond committed
53
54
55
56
57
@dataclass
class ModelArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
    """
58

Julien Chaumond's avatar
Julien Chaumond committed
59
60
    model_name_or_path: str = field(
        metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
61
    )
Julien Chaumond's avatar
Julien Chaumond committed
62
63
    config_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
64
    )
Julien Chaumond's avatar
Julien Chaumond committed
65
66
    tokenizer_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
67
    )
Julien Chaumond's avatar
Julien Chaumond committed
68
    cache_dir: Optional[str] = field(
69
70
        default=None,
        metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
71
    )
72
73
74
75
76
77
78
79
80
81
82
    model_revision: str = field(
        default="main",
        metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
    )
    use_auth_token: bool = field(
        default=False,
        metadata={
            "help": "Will use the token generated when running `transformers-cli login` (necessary to use this script "
            "with private models)."
        },
    )
83
84


Julien Chaumond's avatar
Julien Chaumond committed
85
86
87
88
89
@dataclass
class DataTrainingArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.
    """
90

91
92
93
94
95
96
    task_name: Optional[str] = field(default="ner", metadata={"help": "The name of the task (ner, pos...)."})
    dataset_name: Optional[str] = field(
        default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
    )
    dataset_config_name: Optional[str] = field(
        default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
97
    )
98
99
100
101
    train_file: Optional[str] = field(
        default=None, metadata={"help": "The input training data file (a csv or JSON file)."}
    )
    validation_file: Optional[str] = field(
102
        default=None,
103
        metadata={"help": "An optional input evaluation data file to evaluate on (a csv or JSON file)."},
104
    )
105
106
107
    test_file: Optional[str] = field(
        default=None,
        metadata={"help": "An optional input test data file to predict on (a csv or JSON file)."},
108
    )
109
110
111
112
113
114
    text_column_name: Optional[str] = field(
        default=None, metadata={"help": "The column name of text to input in the file (a csv or JSON file)."}
    )
    label_column_name: Optional[str] = field(
        default=None, metadata={"help": "The column name of label to input in the file (a csv or JSON file)."}
    )
Julien Chaumond's avatar
Julien Chaumond committed
115
116
    overwrite_cache: bool = field(
        default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
117
    )
118
119
120
121
122
123
124
125
126
127
128
129
    preprocessing_num_workers: Optional[int] = field(
        default=None,
        metadata={"help": "The number of processes to use for the preprocessing."},
    )
    pad_to_max_length: bool = field(
        default=False,
        metadata={
            "help": "Whether to pad all samples to model maximum sentence length. "
            "If False, will pad the samples dynamically when batching to the maximum length in the batch. More "
            "efficient on GPU but very bad for TPU."
        },
    )
130
131
132
133
134
135
136
    max_train_samples: Optional[int] = field(
        default=None,
        metadata={
            "help": "For debugging purposes or quicker training, truncate the number of training examples to this "
            "value if set."
        },
    )
137
    max_eval_samples: Optional[int] = field(
138
139
        default=None,
        metadata={
140
            "help": "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
141
142
143
            "value if set."
        },
    )
144
    max_predict_samples: Optional[int] = field(
145
146
        default=None,
        metadata={
147
            "help": "For debugging purposes or quicker training, truncate the number of prediction examples to this "
148
149
150
            "value if set."
        },
    )
151
152
153
154
155
156
157
    label_all_tokens: bool = field(
        default=False,
        metadata={
            "help": "Whether to put the label for one word on all tokens of generated by that word or just on the "
            "one (in which case the other tokens will have a padding index)."
        },
    )
158
159
160
161
    return_entity_level_metrics: bool = field(
        default=False,
        metadata={"help": "Whether to return all the entity levels during evaluation or just the overall ones."},
    )
162
163
164
165
166
167
168
169
170
171
172
173

    def __post_init__(self):
        if self.dataset_name is None and self.train_file is None and self.validation_file is None:
            raise ValueError("Need either a dataset name or a training/validation file.")
        else:
            if self.train_file is not None:
                extension = self.train_file.split(".")[-1]
                assert extension in ["csv", "json"], "`train_file` should be a csv or a json file."
            if self.validation_file is not None:
                extension = self.validation_file.split(".")[-1]
                assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file."
        self.task_name = self.task_name.lower()
174

Julien Chaumond's avatar
Julien Chaumond committed
175
176
177
178
179
180
181

def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
182
183
184
185
186
187
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses()
188
189

    # Setup logging
190
191
192
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
193
        handlers=[logging.StreamHandler(sys.stdout)],
194
    )
195
    logger.setLevel(logging.INFO if training_args.should_log else logging.WARN)
196
197

    # Log on each process the small summary:
198
    logger.warning(
199
200
        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
        + f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
201
    )
202
    # Set the verbosity to info of the Transformers logger (on main process only):
203
    if training_args.should_log:
204
        transformers.utils.logging.set_verbosity_info()
205
206
        transformers.utils.logging.enable_default_handler()
        transformers.utils.logging.enable_explicit_format()
207
    logger.info(f"Training/evaluation parameters {training_args}")
208

209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
    # Detecting last checkpoint.
    last_checkpoint = None
    if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
        last_checkpoint = get_last_checkpoint(training_args.output_dir)
        if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
            raise ValueError(
                f"Output directory ({training_args.output_dir}) already exists and is not empty. "
                "Use --overwrite_output_dir to overcome."
            )
        elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
            logger.info(
                f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
                "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
            )

224
    # Set seed before initializing model.
Julien Chaumond's avatar
Julien Chaumond committed
225
    set_seed(training_args.seed)
226

227
228
229
230
231
232
233
234
235
236
237
    # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
    # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
    # (the dataset will be downloaded automatically from the datasets Hub).
    #
    # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
    # 'text' is found. You can easily tweak this behavior (see below).
    #
    # In distributed training, the load_dataset function guarantee that only one local process can concurrently
    # download the dataset.
    if data_args.dataset_name is not None:
        # Downloading and loading a dataset from the hub.
238
        datasets = load_dataset(data_args.dataset_name, data_args.dataset_config_name, cache_dir=model_args.cache_dir)
239
240
241
242
243
244
245
246
247
    else:
        data_files = {}
        if data_args.train_file is not None:
            data_files["train"] = data_args.train_file
        if data_args.validation_file is not None:
            data_files["validation"] = data_args.validation_file
        if data_args.test_file is not None:
            data_files["test"] = data_args.test_file
        extension = data_args.train_file.split(".")[-1]
248
        datasets = load_dataset(extension, data_files=data_files, cache_dir=model_args.cache_dir)
249
250
251
252
253
    # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
    # https://huggingface.co/docs/datasets/loading_datasets.html.

    if training_args.do_train:
        column_names = datasets["train"].column_names
Sylvain Gugger's avatar
Sylvain Gugger committed
254
        features = datasets["train"].features
255
256
    else:
        column_names = datasets["validation"].column_names
Sylvain Gugger's avatar
Sylvain Gugger committed
257
        features = datasets["validation"].features
258
259
260
261
262
263
264
265
266
267
268
269
270
271

    if data_args.text_column_name is not None:
        text_column_name = data_args.text_column_name
    elif "tokens" in column_names:
        text_column_name = "tokens"
    else:
        text_column_name = column_names[0]

    if data_args.label_column_name is not None:
        label_column_name = data_args.label_column_name
    elif f"{data_args.task_name}_tags" in column_names:
        label_column_name = f"{data_args.task_name}_tags"
    else:
        label_column_name = column_names[1]
272

Sylvain Gugger's avatar
Sylvain Gugger committed
273
274
    # In the event the labels are not a `Sequence[ClassLabel]`, we will need to go through the dataset to get the
    # unique labels.
275
276
277
278
279
280
281
282
    def get_label_list(labels):
        unique_labels = set()
        for label in labels:
            unique_labels = unique_labels | set(label)
        label_list = list(unique_labels)
        label_list.sort()
        return label_list

Sylvain Gugger's avatar
Sylvain Gugger committed
283
284
285
286
287
288
289
    if isinstance(features[label_column_name].feature, ClassLabel):
        label_list = features[label_column_name].feature.names
        # No need to convert the labels since they are already ints.
        label_to_id = {i: i for i in range(len(label_list))}
    else:
        label_list = get_label_list(datasets["train"][label_column_name])
        label_to_id = {l: i for i, l in enumerate(label_list)}
290
    num_labels = len(label_list)
291
292

    # Load pretrained model and tokenizer
Julien Chaumond's avatar
Julien Chaumond committed
293
294
295
296
    #
    # Distributed training:
    # The .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.
297
    config = AutoConfig.from_pretrained(
Julien Chaumond's avatar
Julien Chaumond committed
298
        model_args.config_name if model_args.config_name else model_args.model_name_or_path,
299
        num_labels=num_labels,
300
301
        label2id=label_to_id,
        id2label={i: l for l, i in label_to_id.items()},
302
        finetuning_task=data_args.task_name,
Julien Chaumond's avatar
Julien Chaumond committed
303
        cache_dir=model_args.cache_dir,
304
305
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
306
    )
307
    tokenizer = AutoTokenizer.from_pretrained(
Julien Chaumond's avatar
Julien Chaumond committed
308
309
        model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
310
        use_fast=True,
311
312
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
313
    )
314
    model = AutoModelForTokenClassification.from_pretrained(
Julien Chaumond's avatar
Julien Chaumond committed
315
316
        model_args.model_name_or_path,
        from_tf=bool(".ckpt" in model_args.model_name_or_path),
317
        config=config,
Julien Chaumond's avatar
Julien Chaumond committed
318
        cache_dir=model_args.cache_dir,
319
320
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
321
    )
322

323
324
325
326
    # Tokenizer check: this script requires a fast tokenizer.
    if not isinstance(tokenizer, PreTrainedTokenizerFast):
        raise ValueError(
            "This example script only works for models that have a fast tokenizer. Checkout the big table of models "
327
            "at https://huggingface.co/transformers/index.html#supported-frameworks to find the model types that meet this "
328
329
330
            "requirement"
        )

331
332
333
334
335
336
337
338
339
340
341
342
    # Preprocessing the dataset
    # Padding strategy
    padding = "max_length" if data_args.pad_to_max_length else False

    # Tokenize all texts and align the labels with them.
    def tokenize_and_align_labels(examples):
        tokenized_inputs = tokenizer(
            examples[text_column_name],
            padding=padding,
            truncation=True,
            # We use this argument because the texts in our dataset are lists of words (with a label for each word).
            is_split_into_words=True,
Julien Chaumond's avatar
Julien Chaumond committed
343
        )
344
        labels = []
345
346
347
        for i, label in enumerate(examples[label_column_name]):
            word_ids = tokenized_inputs.word_ids(batch_index=i)
            previous_word_idx = None
348
            label_ids = []
349
350
351
352
            for word_idx in word_ids:
                # Special tokens have a word id that is None. We set the label to -100 so they are automatically
                # ignored in the loss function.
                if word_idx is None:
353
                    label_ids.append(-100)
354
355
356
                # We set the label for the first token of each word.
                elif word_idx != previous_word_idx:
                    label_ids.append(label_to_id[label[word_idx]])
357
358
359
                # For the other tokens in a word, we set the label to either the current label or -100, depending on
                # the label_all_tokens flag.
                else:
360
361
                    label_ids.append(label_to_id[label[word_idx]] if data_args.label_all_tokens else -100)
                previous_word_idx = word_idx
362
363
364
365
366

            labels.append(label_ids)
        tokenized_inputs["labels"] = labels
        return tokenized_inputs

367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
    if training_args.do_train:
        if "train" not in datasets:
            raise ValueError("--do_train requires a train dataset")
        train_dataset = datasets["train"]
        if data_args.max_train_samples is not None:
            train_dataset = train_dataset.select(range(data_args.max_train_samples))
        train_dataset = train_dataset.map(
            tokenize_and_align_labels,
            batched=True,
            num_proc=data_args.preprocessing_num_workers,
            load_from_cache_file=not data_args.overwrite_cache,
        )

    if training_args.do_eval:
        if "validation" not in datasets:
            raise ValueError("--do_eval requires a validation dataset")
        eval_dataset = datasets["validation"]
384
385
        if data_args.max_eval_samples is not None:
            eval_dataset = eval_dataset.select(range(data_args.max_eval_samples))
386
387
388
389
390
391
392
393
394
395
        eval_dataset = eval_dataset.map(
            tokenize_and_align_labels,
            batched=True,
            num_proc=data_args.preprocessing_num_workers,
            load_from_cache_file=not data_args.overwrite_cache,
        )

    if training_args.do_predict:
        if "test" not in datasets:
            raise ValueError("--do_predict requires a test dataset")
396
397
398
399
        predict_dataset = datasets["test"]
        if data_args.max_predict_samples is not None:
            predict_dataset = predict_dataset.select(range(data_args.max_predict_samples))
        predict_dataset = predict_dataset.map(
400
401
402
403
404
            tokenize_and_align_labels,
            batched=True,
            num_proc=data_args.preprocessing_num_workers,
            load_from_cache_file=not data_args.overwrite_cache,
        )
Julien Chaumond's avatar
Julien Chaumond committed
405

406
    # Data collator
407
    data_collator = DataCollatorForTokenClassification(tokenizer, pad_to_multiple_of=8 if training_args.fp16 else None)
Julien Chaumond's avatar
Julien Chaumond committed
408

409
    # Metrics
410
411
    metric = load_metric("seqeval")

412
413
414
    def compute_metrics(p):
        predictions, labels = p
        predictions = np.argmax(predictions, axis=2)
Julien Chaumond's avatar
Julien Chaumond committed
415

416
417
418
419
420
421
422
423
424
        # Remove ignored index (special tokens)
        true_predictions = [
            [label_list[p] for (p, l) in zip(prediction, label) if l != -100]
            for prediction, label in zip(predictions, labels)
        ]
        true_labels = [
            [label_list[l] for (p, l) in zip(prediction, label) if l != -100]
            for prediction, label in zip(predictions, labels)
        ]
Julien Chaumond's avatar
Julien Chaumond committed
425

426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
        results = metric.compute(predictions=true_predictions, references=true_labels)
        if data_args.return_entity_level_metrics:
            # Unpack nested dictionaries
            final_results = {}
            for key, value in results.items():
                if isinstance(value, dict):
                    for n, v in value.items():
                        final_results[f"{key}_{n}"] = v
                else:
                    final_results[key] = value
            return final_results
        else:
            return {
                "precision": results["overall_precision"],
                "recall": results["overall_recall"],
                "f1": results["overall_f1"],
                "accuracy": results["overall_accuracy"],
            }
Julien Chaumond's avatar
Julien Chaumond committed
444
445
446
447
448

    # Initialize our Trainer
    trainer = Trainer(
        model=model,
        args=training_args,
449
450
        train_dataset=train_dataset if training_args.do_train else None,
        eval_dataset=eval_dataset if training_args.do_eval else None,
451
452
        tokenizer=tokenizer,
        data_collator=data_collator,
Julien Chaumond's avatar
Julien Chaumond committed
453
454
        compute_metrics=compute_metrics,
    )
455
456

    # Training
Julien Chaumond's avatar
Julien Chaumond committed
457
    if training_args.do_train:
458
459
460
461
        checkpoint = None
        if training_args.resume_from_checkpoint is not None:
            checkpoint = training_args.resume_from_checkpoint
        elif last_checkpoint is not None:
462
463
            checkpoint = last_checkpoint
        train_result = trainer.train(resume_from_checkpoint=checkpoint)
464
        metrics = train_result.metrics
465
        trainer.save_model()  # Saves the tokenizer too for easy upload
466

467
468
469
470
471
        max_train_samples = (
            data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
        )
        metrics["train_samples"] = min(max_train_samples, len(train_dataset))

472
473
474
        trainer.log_metrics("train", metrics)
        trainer.save_metrics("train", metrics)
        trainer.save_state()
475

476
    # Evaluation
477
    if training_args.do_eval:
Julien Chaumond's avatar
Julien Chaumond committed
478
479
        logger.info("*** Evaluate ***")

480
481
        metrics = trainer.evaluate()

482
483
        max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset)
        metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))
Julien Chaumond's avatar
Julien Chaumond committed
484

485
486
        trainer.log_metrics("eval", metrics)
        trainer.save_metrics("eval", metrics)
Julien Chaumond's avatar
Julien Chaumond committed
487
488

    # Predict
489
    if training_args.do_predict:
490
491
        logger.info("*** Predict ***")

492
        predictions, labels, metrics = trainer.predict(predict_dataset, metric_key_prefix="predict")
493
        predictions = np.argmax(predictions, axis=2)
Julien Chaumond's avatar
Julien Chaumond committed
494

495
496
497
498
499
        # Remove ignored index (special tokens)
        true_predictions = [
            [label_list[p] for (p, l) in zip(prediction, label) if l != -100]
            for prediction, label in zip(predictions, labels)
        ]
Julien Chaumond's avatar
Julien Chaumond committed
500

501
502
        trainer.log_metrics("predict", metrics)
        trainer.save_metrics("predict", metrics)
Julien Chaumond's avatar
Julien Chaumond committed
503

504
        # Save predictions
505
        output_predictions_file = os.path.join(training_args.output_dir, "predictions.txt")
506
        if trainer.is_world_process_zero():
507
            with open(output_predictions_file, "w") as writer:
508
509
                for prediction in true_predictions:
                    writer.write(" ".join(prediction) + "\n")
510

Sylvain Gugger's avatar
Sylvain Gugger committed
511
    if training_args.push_to_hub:
Sylvain Gugger's avatar
Sylvain Gugger committed
512
513
514
515
516
517
518
519
520
521
        kwargs = {"finetuned_from": model_args.model_name_or_path, "tags": "token-classification"}
        if data_args.dataset_name is not None:
            kwargs["dataset_tags"] = data_args.dataset_name
            if data_args.dataset_config_name is not None:
                kwargs["dataset_args"] = data_args.dataset_config_name
                kwargs["dataset"] = f"{data_args.dataset_name} {data_args.dataset_config_name}"
            else:
                kwargs["dataset"] = data_args.dataset_name

        trainer.push_to_hub(**kwargs)
Sylvain Gugger's avatar
Sylvain Gugger committed
522

523

524
525
526
527
528
def _mp_fn(index):
    # For xla_spawn (TPUs)
    main()


529
530
if __name__ == "__main__":
    main()