run_ner.py 25.6 KB
Newer Older
1
#!/usr/bin/env python
2
# coding=utf-8
3
# Copyright 2020 The HuggingFace Team All rights reserved.
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
16
17
18
"""
Fine-tuning the library models for token classification.
"""
Sylvain Gugger's avatar
Sylvain Gugger committed
19
20
# You can also adapt this script on your own token classification task and datasets. Pointers for this are left as
# comments.
21

22
23
import logging
import os
24
import sys
Julien Chaumond's avatar
Julien Chaumond committed
25
from dataclasses import dataclass, field
26
from typing import Optional
27

28
import datasets
29
import numpy as np
30
from datasets import ClassLabel, load_dataset, load_metric
Aymeric Augustin's avatar
Aymeric Augustin committed
31

32
import transformers
Aymeric Augustin's avatar
Aymeric Augustin committed
33
from transformers import (
34
35
36
    AutoConfig,
    AutoModelForTokenClassification,
    AutoTokenizer,
37
    DataCollatorForTokenClassification,
Julien Chaumond's avatar
Julien Chaumond committed
38
    HfArgumentParser,
39
    PretrainedConfig,
40
    PreTrainedTokenizerFast,
Julien Chaumond's avatar
Julien Chaumond committed
41
42
43
    Trainer,
    TrainingArguments,
    set_seed,
Aymeric Augustin's avatar
Aymeric Augustin committed
44
)
45
from transformers.trainer_utils import get_last_checkpoint
46
from transformers.utils import check_min_version
47
from transformers.utils.versions import require_version
Aymeric Augustin's avatar
Aymeric Augustin committed
48
49


50
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
Lysandre Debut's avatar
Lysandre Debut committed
51
check_min_version("4.20.0.dev0")
Sylvain Gugger's avatar
Sylvain Gugger committed
52

53
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/token-classification/requirements.txt")
54

55
56
57
logger = logging.getLogger(__name__)


Julien Chaumond's avatar
Julien Chaumond committed
58
59
60
61
62
@dataclass
class ModelArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
    """
63

Julien Chaumond's avatar
Julien Chaumond committed
64
65
    model_name_or_path: str = field(
        metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
66
    )
Julien Chaumond's avatar
Julien Chaumond committed
67
68
    config_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
69
    )
Julien Chaumond's avatar
Julien Chaumond committed
70
71
    tokenizer_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
72
    )
Julien Chaumond's avatar
Julien Chaumond committed
73
    cache_dir: Optional[str] = field(
74
75
        default=None,
        metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
76
    )
77
78
79
80
81
82
83
    model_revision: str = field(
        default="main",
        metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
    )
    use_auth_token: bool = field(
        default=False,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
84
85
86
87
            "help": (
                "Will use the token generated when running `transformers-cli login` (necessary to use this script "
                "with private models)."
            )
88
89
        },
    )
90
91
92
93
    ignore_mismatched_sizes: bool = field(
        default=False,
        metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."},
    )
94
95


Julien Chaumond's avatar
Julien Chaumond committed
96
97
98
99
100
@dataclass
class DataTrainingArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.
    """
101

102
103
104
105
106
107
    task_name: Optional[str] = field(default="ner", metadata={"help": "The name of the task (ner, pos...)."})
    dataset_name: Optional[str] = field(
        default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
    )
    dataset_config_name: Optional[str] = field(
        default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
108
    )
109
110
111
112
    train_file: Optional[str] = field(
        default=None, metadata={"help": "The input training data file (a csv or JSON file)."}
    )
    validation_file: Optional[str] = field(
113
        default=None,
114
        metadata={"help": "An optional input evaluation data file to evaluate on (a csv or JSON file)."},
115
    )
116
117
118
    test_file: Optional[str] = field(
        default=None,
        metadata={"help": "An optional input test data file to predict on (a csv or JSON file)."},
119
    )
120
121
122
123
124
125
    text_column_name: Optional[str] = field(
        default=None, metadata={"help": "The column name of text to input in the file (a csv or JSON file)."}
    )
    label_column_name: Optional[str] = field(
        default=None, metadata={"help": "The column name of label to input in the file (a csv or JSON file)."}
    )
Julien Chaumond's avatar
Julien Chaumond committed
126
127
    overwrite_cache: bool = field(
        default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
128
    )
129
130
131
132
    preprocessing_num_workers: Optional[int] = field(
        default=None,
        metadata={"help": "The number of processes to use for the preprocessing."},
    )
133
134
135
    max_seq_length: int = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
136
137
138
139
            "help": (
                "The maximum total input sequence length after tokenization. If set, sequences longer "
                "than this will be truncated, sequences shorter will be padded."
            )
140
141
        },
    )
142
143
144
    pad_to_max_length: bool = field(
        default=False,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
145
146
147
148
149
            "help": (
                "Whether to pad all samples to model maximum sentence length. "
                "If False, will pad the samples dynamically when batching to the maximum length in the batch. More "
                "efficient on GPU but very bad for TPU."
            )
150
151
        },
    )
152
153
154
    max_train_samples: Optional[int] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
155
156
157
158
            "help": (
                "For debugging purposes or quicker training, truncate the number of training examples to this "
                "value if set."
            )
159
160
        },
    )
161
    max_eval_samples: Optional[int] = field(
162
163
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
164
165
166
167
            "help": (
                "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
                "value if set."
            )
168
169
        },
    )
170
    max_predict_samples: Optional[int] = field(
171
172
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
173
174
175
176
            "help": (
                "For debugging purposes or quicker training, truncate the number of prediction examples to this "
                "value if set."
            )
177
178
        },
    )
179
180
181
    label_all_tokens: bool = field(
        default=False,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
182
183
184
185
            "help": (
                "Whether to put the label for one word on all tokens of generated by that word or just on the "
                "one (in which case the other tokens will have a padding index)."
            )
186
187
        },
    )
188
189
190
191
    return_entity_level_metrics: bool = field(
        default=False,
        metadata={"help": "Whether to return all the entity levels during evaluation or just the overall ones."},
    )
192
193
194
195
196
197
198
199
200
201
202
203

    def __post_init__(self):
        if self.dataset_name is None and self.train_file is None and self.validation_file is None:
            raise ValueError("Need either a dataset name or a training/validation file.")
        else:
            if self.train_file is not None:
                extension = self.train_file.split(".")[-1]
                assert extension in ["csv", "json"], "`train_file` should be a csv or a json file."
            if self.validation_file is not None:
                extension = self.validation_file.split(".")[-1]
                assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file."
        self.task_name = self.task_name.lower()
204

Julien Chaumond's avatar
Julien Chaumond committed
205
206
207
208
209
210
211

def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
212
213
214
215
216
217
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses()
218
219

    # Setup logging
220
    logging.basicConfig(
221
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
222
        datefmt="%m/%d/%Y %H:%M:%S",
223
        handlers=[logging.StreamHandler(sys.stdout)],
224
    )
225
226
227
228
229
230
231

    log_level = training_args.get_process_log_level()
    logger.setLevel(log_level)
    datasets.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.enable_default_handler()
    transformers.utils.logging.enable_explicit_format()
232
233

    # Log on each process the small summary:
234
    logger.warning(
235
236
        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
        + f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
237
    )
238
    logger.info(f"Training/evaluation parameters {training_args}")
239

240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
    # Detecting last checkpoint.
    last_checkpoint = None
    if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
        last_checkpoint = get_last_checkpoint(training_args.output_dir)
        if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
            raise ValueError(
                f"Output directory ({training_args.output_dir}) already exists and is not empty. "
                "Use --overwrite_output_dir to overcome."
            )
        elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
            logger.info(
                f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
                "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
            )

255
    # Set seed before initializing model.
Julien Chaumond's avatar
Julien Chaumond committed
256
    set_seed(training_args.seed)
257

258
259
260
261
262
263
264
265
266
267
268
    # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
    # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
    # (the dataset will be downloaded automatically from the datasets Hub).
    #
    # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
    # 'text' is found. You can easily tweak this behavior (see below).
    #
    # In distributed training, the load_dataset function guarantee that only one local process can concurrently
    # download the dataset.
    if data_args.dataset_name is not None:
        # Downloading and loading a dataset from the hub.
269
        raw_datasets = load_dataset(
270
271
272
273
            data_args.dataset_name,
            data_args.dataset_config_name,
            cache_dir=model_args.cache_dir,
            use_auth_token=True if model_args.use_auth_token else None,
274
        )
275
276
277
278
279
280
281
282
283
    else:
        data_files = {}
        if data_args.train_file is not None:
            data_files["train"] = data_args.train_file
        if data_args.validation_file is not None:
            data_files["validation"] = data_args.validation_file
        if data_args.test_file is not None:
            data_files["test"] = data_args.test_file
        extension = data_args.train_file.split(".")[-1]
284
        raw_datasets = load_dataset(extension, data_files=data_files, cache_dir=model_args.cache_dir)
285
286
287
288
    # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
    # https://huggingface.co/docs/datasets/loading_datasets.html.

    if training_args.do_train:
289
290
        column_names = raw_datasets["train"].column_names
        features = raw_datasets["train"].features
291
    else:
292
293
        column_names = raw_datasets["validation"].column_names
        features = raw_datasets["validation"].features
294
295
296
297
298
299
300
301
302
303
304
305
306
307

    if data_args.text_column_name is not None:
        text_column_name = data_args.text_column_name
    elif "tokens" in column_names:
        text_column_name = "tokens"
    else:
        text_column_name = column_names[0]

    if data_args.label_column_name is not None:
        label_column_name = data_args.label_column_name
    elif f"{data_args.task_name}_tags" in column_names:
        label_column_name = f"{data_args.task_name}_tags"
    else:
        label_column_name = column_names[1]
308

Sylvain Gugger's avatar
Sylvain Gugger committed
309
310
    # In the event the labels are not a `Sequence[ClassLabel]`, we will need to go through the dataset to get the
    # unique labels.
311
312
313
314
315
316
317
318
    def get_label_list(labels):
        unique_labels = set()
        for label in labels:
            unique_labels = unique_labels | set(label)
        label_list = list(unique_labels)
        label_list.sort()
        return label_list

319
320
321
322
    # If the labels are of type ClassLabel, they are already integers and we have the map stored somewhere.
    # Otherwise, we have to get the list of labels manually.
    labels_are_int = isinstance(features[label_column_name].feature, ClassLabel)
    if labels_are_int:
Sylvain Gugger's avatar
Sylvain Gugger committed
323
        label_list = features[label_column_name].feature.names
324
        label_to_id = {i: i for i in range(len(label_list))}
Sylvain Gugger's avatar
Sylvain Gugger committed
325
    else:
326
        label_list = get_label_list(raw_datasets["train"][label_column_name])
327
        label_to_id = {l: i for i, l in enumerate(label_list)}
328

329
    num_labels = len(label_list)
330

331
    # Load pretrained model and tokenizer
Julien Chaumond's avatar
Julien Chaumond committed
332
333
334
335
    #
    # Distributed training:
    # The .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.
336
    config = AutoConfig.from_pretrained(
Julien Chaumond's avatar
Julien Chaumond committed
337
        model_args.config_name if model_args.config_name else model_args.model_name_or_path,
338
        num_labels=num_labels,
339
        finetuning_task=data_args.task_name,
Julien Chaumond's avatar
Julien Chaumond committed
340
        cache_dir=model_args.cache_dir,
341
342
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
343
    )
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363

    tokenizer_name_or_path = model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path
    if config.model_type in {"gpt2", "roberta"}:
        tokenizer = AutoTokenizer.from_pretrained(
            tokenizer_name_or_path,
            cache_dir=model_args.cache_dir,
            use_fast=True,
            revision=model_args.model_revision,
            use_auth_token=True if model_args.use_auth_token else None,
            add_prefix_space=True,
        )
    else:
        tokenizer = AutoTokenizer.from_pretrained(
            tokenizer_name_or_path,
            cache_dir=model_args.cache_dir,
            use_fast=True,
            revision=model_args.model_revision,
            use_auth_token=True if model_args.use_auth_token else None,
        )

364
    model = AutoModelForTokenClassification.from_pretrained(
Julien Chaumond's avatar
Julien Chaumond committed
365
366
        model_args.model_name_or_path,
        from_tf=bool(".ckpt" in model_args.model_name_or_path),
367
        config=config,
Julien Chaumond's avatar
Julien Chaumond committed
368
        cache_dir=model_args.cache_dir,
369
370
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
371
        ignore_mismatched_sizes=model_args.ignore_mismatched_sizes,
372
    )
373

374
375
376
    # Tokenizer check: this script requires a fast tokenizer.
    if not isinstance(tokenizer, PreTrainedTokenizerFast):
        raise ValueError(
Sylvain Gugger's avatar
Sylvain Gugger committed
377
378
379
            "This example script only works for models that have a fast tokenizer. Checkout the big table of models at"
            " https://huggingface.co/transformers/index.html#supported-frameworks to find the model types that meet"
            " this requirement"
380
381
        )

382
    # Model has labels -> use them.
383
    if model.config.label2id != PretrainedConfig(num_labels=num_labels).label2id:
384
385
386
387
388
389
390
391
        if list(sorted(model.config.label2id.keys())) == list(sorted(label_list)):
            # Reorganize `label_list` to match the ordering of the model.
            if labels_are_int:
                label_to_id = {i: int(model.config.label2id[l]) for i, l in enumerate(label_list)}
                label_list = [model.config.id2label[i] for i in range(num_labels)]
            else:
                label_list = [model.config.id2label[i] for i in range(num_labels)]
                label_to_id = {l: i for i, l in enumerate(label_list)}
392
393
394
        else:
            logger.warning(
                "Your model seems to have been trained with labels, but they don't match the dataset: ",
Sylvain Gugger's avatar
Sylvain Gugger committed
395
396
                f"model labels: {list(sorted(model.config.label2id.keys()))}, dataset labels:"
                f" {list(sorted(label_list))}.\nIgnoring the model labels as a result.",
397
398
            )

399
400
401
    # Set the correspondences label/ID inside the model config
    model.config.label2id = {l: i for i, l in enumerate(label_list)}
    model.config.id2label = {i: l for i, l in enumerate(label_list)}
402
403
404
405
406
407
408
409
410

    # Map that sends B-Xxx label to its I-Xxx counterpart
    b_to_i_label = []
    for idx, label in enumerate(label_list):
        if label.startswith("B-") and label.replace("B-", "I-") in label_list:
            b_to_i_label.append(label_list.index(label.replace("B-", "I-")))
        else:
            b_to_i_label.append(idx)

411
412
413
414
415
416
417
418
419
420
    # Preprocessing the dataset
    # Padding strategy
    padding = "max_length" if data_args.pad_to_max_length else False

    # Tokenize all texts and align the labels with them.
    def tokenize_and_align_labels(examples):
        tokenized_inputs = tokenizer(
            examples[text_column_name],
            padding=padding,
            truncation=True,
421
            max_length=data_args.max_seq_length,
422
423
            # We use this argument because the texts in our dataset are lists of words (with a label for each word).
            is_split_into_words=True,
Julien Chaumond's avatar
Julien Chaumond committed
424
        )
425
        labels = []
426
427
428
        for i, label in enumerate(examples[label_column_name]):
            word_ids = tokenized_inputs.word_ids(batch_index=i)
            previous_word_idx = None
429
            label_ids = []
430
431
432
433
            for word_idx in word_ids:
                # Special tokens have a word id that is None. We set the label to -100 so they are automatically
                # ignored in the loss function.
                if word_idx is None:
434
                    label_ids.append(-100)
435
436
437
                # We set the label for the first token of each word.
                elif word_idx != previous_word_idx:
                    label_ids.append(label_to_id[label[word_idx]])
438
439
440
                # For the other tokens in a word, we set the label to either the current label or -100, depending on
                # the label_all_tokens flag.
                else:
441
442
443
444
                    if data_args.label_all_tokens:
                        label_ids.append(b_to_i_label[label_to_id[label[word_idx]]])
                    else:
                        label_ids.append(-100)
445
                previous_word_idx = word_idx
446
447
448
449
450

            labels.append(label_ids)
        tokenized_inputs["labels"] = labels
        return tokenized_inputs

451
    if training_args.do_train:
452
        if "train" not in raw_datasets:
453
            raise ValueError("--do_train requires a train dataset")
454
        train_dataset = raw_datasets["train"]
455
        if data_args.max_train_samples is not None:
456
457
            max_train_samples = min(len(train_dataset), data_args.max_train_samples)
            train_dataset = train_dataset.select(range(max_train_samples))
458
459
460
461
462
463
464
465
        with training_args.main_process_first(desc="train dataset map pre-processing"):
            train_dataset = train_dataset.map(
                tokenize_and_align_labels,
                batched=True,
                num_proc=data_args.preprocessing_num_workers,
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on train dataset",
            )
466
467

    if training_args.do_eval:
468
        if "validation" not in raw_datasets:
469
            raise ValueError("--do_eval requires a validation dataset")
470
        eval_dataset = raw_datasets["validation"]
471
        if data_args.max_eval_samples is not None:
472
473
            max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples)
            eval_dataset = eval_dataset.select(range(max_eval_samples))
474
475
476
477
478
479
480
481
        with training_args.main_process_first(desc="validation dataset map pre-processing"):
            eval_dataset = eval_dataset.map(
                tokenize_and_align_labels,
                batched=True,
                num_proc=data_args.preprocessing_num_workers,
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on validation dataset",
            )
482
483

    if training_args.do_predict:
484
        if "test" not in raw_datasets:
485
            raise ValueError("--do_predict requires a test dataset")
486
        predict_dataset = raw_datasets["test"]
487
        if data_args.max_predict_samples is not None:
488
489
            max_predict_samples = min(len(predict_dataset), data_args.max_predict_samples)
            predict_dataset = predict_dataset.select(range(max_predict_samples))
490
491
492
493
494
495
496
497
        with training_args.main_process_first(desc="prediction dataset map pre-processing"):
            predict_dataset = predict_dataset.map(
                tokenize_and_align_labels,
                batched=True,
                num_proc=data_args.preprocessing_num_workers,
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on prediction dataset",
            )
Julien Chaumond's avatar
Julien Chaumond committed
498

499
    # Data collator
500
    data_collator = DataCollatorForTokenClassification(tokenizer, pad_to_multiple_of=8 if training_args.fp16 else None)
Julien Chaumond's avatar
Julien Chaumond committed
501

502
    # Metrics
503
504
    metric = load_metric("seqeval")

505
506
507
    def compute_metrics(p):
        predictions, labels = p
        predictions = np.argmax(predictions, axis=2)
Julien Chaumond's avatar
Julien Chaumond committed
508

509
510
511
512
513
514
515
516
517
        # Remove ignored index (special tokens)
        true_predictions = [
            [label_list[p] for (p, l) in zip(prediction, label) if l != -100]
            for prediction, label in zip(predictions, labels)
        ]
        true_labels = [
            [label_list[l] for (p, l) in zip(prediction, label) if l != -100]
            for prediction, label in zip(predictions, labels)
        ]
Julien Chaumond's avatar
Julien Chaumond committed
518

519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
        results = metric.compute(predictions=true_predictions, references=true_labels)
        if data_args.return_entity_level_metrics:
            # Unpack nested dictionaries
            final_results = {}
            for key, value in results.items():
                if isinstance(value, dict):
                    for n, v in value.items():
                        final_results[f"{key}_{n}"] = v
                else:
                    final_results[key] = value
            return final_results
        else:
            return {
                "precision": results["overall_precision"],
                "recall": results["overall_recall"],
                "f1": results["overall_f1"],
                "accuracy": results["overall_accuracy"],
            }
Julien Chaumond's avatar
Julien Chaumond committed
537
538
539
540
541

    # Initialize our Trainer
    trainer = Trainer(
        model=model,
        args=training_args,
542
543
        train_dataset=train_dataset if training_args.do_train else None,
        eval_dataset=eval_dataset if training_args.do_eval else None,
544
545
        tokenizer=tokenizer,
        data_collator=data_collator,
Julien Chaumond's avatar
Julien Chaumond committed
546
547
        compute_metrics=compute_metrics,
    )
548
549

    # Training
Julien Chaumond's avatar
Julien Chaumond committed
550
    if training_args.do_train:
551
552
553
554
        checkpoint = None
        if training_args.resume_from_checkpoint is not None:
            checkpoint = training_args.resume_from_checkpoint
        elif last_checkpoint is not None:
555
556
            checkpoint = last_checkpoint
        train_result = trainer.train(resume_from_checkpoint=checkpoint)
557
        metrics = train_result.metrics
558
        trainer.save_model()  # Saves the tokenizer too for easy upload
559

560
561
562
563
564
        max_train_samples = (
            data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
        )
        metrics["train_samples"] = min(max_train_samples, len(train_dataset))

565
566
567
        trainer.log_metrics("train", metrics)
        trainer.save_metrics("train", metrics)
        trainer.save_state()
568

569
    # Evaluation
570
    if training_args.do_eval:
Julien Chaumond's avatar
Julien Chaumond committed
571
572
        logger.info("*** Evaluate ***")

573
574
        metrics = trainer.evaluate()

575
576
        max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset)
        metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))
Julien Chaumond's avatar
Julien Chaumond committed
577

578
579
        trainer.log_metrics("eval", metrics)
        trainer.save_metrics("eval", metrics)
Julien Chaumond's avatar
Julien Chaumond committed
580
581

    # Predict
582
    if training_args.do_predict:
583
584
        logger.info("*** Predict ***")

585
        predictions, labels, metrics = trainer.predict(predict_dataset, metric_key_prefix="predict")
586
        predictions = np.argmax(predictions, axis=2)
Julien Chaumond's avatar
Julien Chaumond committed
587

588
589
590
591
592
        # Remove ignored index (special tokens)
        true_predictions = [
            [label_list[p] for (p, l) in zip(prediction, label) if l != -100]
            for prediction, label in zip(predictions, labels)
        ]
Julien Chaumond's avatar
Julien Chaumond committed
593

594
595
        trainer.log_metrics("predict", metrics)
        trainer.save_metrics("predict", metrics)
Julien Chaumond's avatar
Julien Chaumond committed
596

597
        # Save predictions
598
        output_predictions_file = os.path.join(training_args.output_dir, "predictions.txt")
599
        if trainer.is_world_process_zero():
600
            with open(output_predictions_file, "w") as writer:
601
602
                for prediction in true_predictions:
                    writer.write(" ".join(prediction) + "\n")
603

604
605
606
607
608
609
610
611
    kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "token-classification"}
    if data_args.dataset_name is not None:
        kwargs["dataset_tags"] = data_args.dataset_name
        if data_args.dataset_config_name is not None:
            kwargs["dataset_args"] = data_args.dataset_config_name
            kwargs["dataset"] = f"{data_args.dataset_name} {data_args.dataset_config_name}"
        else:
            kwargs["dataset"] = data_args.dataset_name
Sylvain Gugger's avatar
Sylvain Gugger committed
612

613
    if training_args.push_to_hub:
Sylvain Gugger's avatar
Sylvain Gugger committed
614
        trainer.push_to_hub(**kwargs)
615
616
    else:
        trainer.create_model_card(**kwargs)
Sylvain Gugger's avatar
Sylvain Gugger committed
617

618

619
620
621
622
623
def _mp_fn(index):
    # For xla_spawn (TPUs)
    main()


624
625
if __name__ == "__main__":
    main()