"library/git@developer.sourcefind.cn:orangecat/ollama.git" did not exist on "6a19724d5f48b593a2519293b8485d528796ef7c"
utils.py 214 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# coding=utf-8
# Copyright 2020 The Google AI Language Team Authors, Facebook AI Research authors and The HuggingFace Inc. team.
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

17
import copy
18
19
20
import inspect
import warnings
from dataclasses import dataclass
21
from typing import TYPE_CHECKING, Any, Callable, Dict, List, Optional, Tuple, Union
22
23
24
25
26

import torch
import torch.distributed as dist
from torch import nn

27
28
29
30
31
32
33
34
35
from ..cache_utils import (
    Cache,
    DynamicCache,
    HQQQuantizedCache,
    QuantizedCacheConfig,
    QuantoQuantizedCache,
    SlidingWindowCache,
    StaticCache,
)
36
from ..integrations.deepspeed import is_deepspeed_zero3_enabled
37
38
39
40
41
42
43
44
from ..modeling_outputs import CausalLMOutputWithPast, Seq2SeqLMOutput
from ..models.auto import (
    MODEL_FOR_CAUSAL_IMAGE_MODELING_MAPPING,
    MODEL_FOR_CAUSAL_LM_MAPPING,
    MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
    MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING,
    MODEL_FOR_VISION_2_SEQ_MAPPING,
)
Ahmed Moubtahij's avatar
Ahmed Moubtahij committed
45
from ..tokenization_utils import ExtensionsTrie
46
47
48
49
50
51
52
53
from ..utils import (
    ModelOutput,
    is_accelerate_available,
    is_hqq_available,
    is_quanto_available,
    is_torchdynamo_compiling,
    logging,
)
54
from .beam_constraints import DisjunctiveConstraint, PhrasalConstraint
55
from .beam_search import BeamScorer, BeamSearchScorer, ConstrainedBeamSearchScorer
56
57
58
from .candidate_generator import (
    AssistedCandidateGenerator,
    CandidateGenerator,
59
    PromptLookupCandidateGenerator,
60
61
62
63
    _crop_past_key_values,
    _prepare_attention_mask,
    _prepare_token_type_ids,
)
64
from .configuration_utils import GenerationConfig, GenerationMode
65
66
from .logits_process import (
    EncoderNoRepeatNGramLogitsProcessor,
Karim Foda's avatar
Karim Foda committed
67
    EncoderRepetitionPenaltyLogitsProcessor,
68
69
    EpsilonLogitsWarper,
    EtaLogitsWarper,
70
71
72
73
74
75
76
77
78
    ExponentialDecayLengthPenalty,
    ForcedBOSTokenLogitsProcessor,
    ForcedEOSTokenLogitsProcessor,
    ForceTokensLogitsProcessor,
    HammingDiversityLogitsProcessor,
    InfNanRemoveLogitsProcessor,
    LogitNormalization,
    LogitsProcessorList,
    MinLengthLogitsProcessor,
79
    MinNewTokensLengthLogitsProcessor,
80
    MinPLogitsWarper,
81
82
83
84
    NoBadWordsLogitsProcessor,
    NoRepeatNGramLogitsProcessor,
    PrefixConstrainedLogitsProcessor,
    RepetitionPenaltyLogitsProcessor,
85
    SequenceBiasLogitsProcessor,
86
87
88
89
90
91
    SuppressTokensAtBeginLogitsProcessor,
    SuppressTokensLogitsProcessor,
    TemperatureLogitsWarper,
    TopKLogitsWarper,
    TopPLogitsWarper,
    TypicalLogitsWarper,
92
    UnbatchedClassifierFreeGuidanceLogitsProcessor,
93
    WatermarkLogitsProcessor,
94
95
)
from .stopping_criteria import (
96
    EosTokenCriteria,
97
98
99
100
    MaxLengthCriteria,
    MaxTimeCriteria,
    StoppingCriteria,
    StoppingCriteriaList,
101
    StopStringCriteria,
102
103
104
)


105
if TYPE_CHECKING:
106
    from ..modeling_utils import PreTrainedModel
107
    from ..tokenization_utils_base import PreTrainedTokenizerBase
108
109
    from .streamers import BaseStreamer

110
111
logger = logging.get_logger(__name__)

Marc Sun's avatar
Marc Sun committed
112
113
114
if is_accelerate_available():
    from accelerate.hooks import AlignDevicesHook, add_hook_to_module

115
NEED_SETUP_CACHE_CLASSES_MAPPING = {"static": StaticCache, "sliding_window": SlidingWindowCache}
116
QUANT_BACKEND_CLASSES_MAPPING = {"quanto": QuantoQuantizedCache, "HQQ": HQQQuantizedCache}
117

118
119

@dataclass
120
class GenerateDecoderOnlyOutput(ModelOutput):
121
    """
122
    Outputs of decoder-only generation models, when using non-beam methods.
123
124
125
126
127
128
129
130
131

    Args:
        sequences (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
            The generated sequences. The second dimension (sequence_length) is either equal to `max_length` or shorter
            if all batches finished early due to the `eos_token_id`.
        scores (`tuple(torch.FloatTensor)` *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`):
            Processed prediction scores of the language modeling head (scores for each vocabulary token before SoftMax)
            at each generation step. Tuple of `torch.FloatTensor` with up to `max_new_tokens` elements (one element for
            each generated token), with each tensor of shape `(batch_size, config.vocab_size)`.
132
133
134
135
        logits (`tuple(torch.FloatTensor)` *optional*, returned when `output_logits=True` is passed or when `config.output_logits=True`):
            Unprocessed prediction scores of the language modeling head (scores for each vocabulary token before SoftMax)
            at each generation step. Tuple of `torch.FloatTensor` with up to `max_new_tokens` elements (one element for
            each generated token), with each tensor of shape `(batch_size, config.vocab_size)`.
136
137
138
139
140
141
        attentions (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`):
            Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
            `torch.FloatTensor` of shape `(batch_size, num_heads, generated_length, sequence_length)`.
        hidden_states (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
            `torch.FloatTensor` of shape `(batch_size, generated_length, hidden_size)`.
142
143
144
145
146
147
148
        past_key_values (`tuple(tuple(torch.FloatTensor)))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
            NOTE: some models have a different `past_key_values` format, confirm with the model's documentation.
            Usually a Tuple (one element for each layer of the decoder) of tuples (two elements, key tensor and value
            tensor). The first Tuple is of length `config.n_layers`, with each tuple having 2 tensors of shape
            `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and optionally if
            `config.is_encoder_decoder=True` 2 additional tensors of shape `(batch_size, num_heads,
            encoder_sequence_length, embed_size_per_head)`.
149
150
151
152
    """

    sequences: torch.LongTensor = None
    scores: Optional[Tuple[torch.FloatTensor]] = None
153
    logits: Optional[Tuple[torch.FloatTensor]] = None
154
155
    attentions: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
    hidden_states: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
156
    past_key_values: Optional[Tuple[Tuple[Tuple[torch.FloatTensor]]]] = None
157
158
159


@dataclass
160
class GenerateEncoderDecoderOutput(ModelOutput):
161
    """
162
    Outputs of encoder-decoder generation models, when using non-beam methods.
163
164

    Args:
165
        sequences (`torch.LongTensor` of shape `(batch_size*num_return_sequences, sequence_length)`):
166
167
168
169
170
171
            The generated sequences. The second dimension (sequence_length) is either equal to `max_length` or shorter
            if all batches finished early due to the `eos_token_id`.
        scores (`tuple(torch.FloatTensor)` *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`):
            Processed prediction scores of the language modeling head (scores for each vocabulary token before SoftMax)
            at each generation step. Tuple of `torch.FloatTensor` with up to `max_new_tokens` elements (one element for
            each generated token), with each tensor of shape `(batch_size, config.vocab_size)`.
172
173
174
175
        logits (`tuple(torch.FloatTensor)` *optional*, returned when `output_logits=True` is passed or when `config.output_logits=True`):
            Unprocessed prediction scores of the language modeling head (scores for each vocabulary token before SoftMax)
            at each generation step. Tuple of `torch.FloatTensor` with up to `max_new_tokens` elements (one element for
            each generated token), with each tensor of shape `(batch_size, config.vocab_size)`.
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
        encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`):
            Tuple of `torch.FloatTensor` (one for each layer of the decoder) of shape `(batch_size, num_heads,
            sequence_length, sequence_length)`.
        encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
            shape `(batch_size, sequence_length, hidden_size)`.
        decoder_attentions (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`):
            Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
            `torch.FloatTensor` of shape `(batch_size, num_heads, generated_length, sequence_length)`.
        cross_attentions (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`):
            Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
            `torch.FloatTensor` of shape `(batch_size, num_heads, generated_length, sequence_length)`.
        decoder_hidden_states (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
            `torch.FloatTensor` of shape `(batch_size, generated_length, hidden_size)`.
191
192
193
194
195
196
197
        past_key_values (`tuple(tuple(torch.FloatTensor)))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
            NOTE: some models have a different `past_key_values` format, confirm with the model's documentation.
            Usually a Tuple (one element for each layer of the decoder) of tuples (two elements, key tensor and value
            tensor). The first Tuple is of length `config.n_layers`, with each tuple having 2 tensors of shape
            `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and optionally if
            `config.is_encoder_decoder=True` 2 additional tensors of shape `(batch_size, num_heads,
            encoder_sequence_length, embed_size_per_head)`.
198
199
200
201
    """

    sequences: torch.LongTensor = None
    scores: Optional[Tuple[torch.FloatTensor]] = None
202
    logits: Optional[Tuple[torch.FloatTensor]] = None
203
204
205
206
207
    encoder_attentions: Optional[Tuple[torch.FloatTensor]] = None
    encoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
    decoder_attentions: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
    cross_attentions: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
    decoder_hidden_states: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
208
    past_key_values: Optional[Tuple[Tuple[Tuple[torch.FloatTensor]]]] = None
209
210
211


@dataclass
212
class GenerateBeamDecoderOnlyOutput(ModelOutput):
213
    """
214
    Outputs of decoder-only generation models, when using beam methods.
215
216
217
218
219
220
221
222
223
224
225

    Args:
        sequences (`torch.LongTensor` of shape `(batch_size*num_return_sequences, sequence_length)`):
            The generated sequences. The second dimension (sequence_length) is either equal to `max_length` or shorter
            if all batches finished early due to the `eos_token_id`.
        sequences_scores (`torch.FloatTensor` of shape `(batch_size*num_return_sequences)`, *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`):
            Final beam scores of the generated `sequences`.
        scores (`tuple(torch.FloatTensor)` *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`):
            Beam transition scores for each vocabulary token at each generation step. Beam transition scores consisting
            of log probabilities of tokens conditioned on log softmax of previously generated tokens in this beam.
            Tuple of `torch.FloatTensor` with up to `max_new_tokens` elements (one element for each generated token),
226
            with each tensor of shape `(batch_size*num_beams, config.vocab_size)`.
227
228
229
230
        logits (`tuple(torch.FloatTensor)` *optional*, returned when `output_logits=True` is passed or when `config.output_logits=True`):
            Unprocessed prediction scores of the language modeling head (scores for each vocabulary token before SoftMax)
            at each generation step. Tuple of `torch.FloatTensor` with up to `max_new_tokens` elements (one element for
            each generated token), with each tensor of shape `(batch_size, config.vocab_size)`.
231
        beam_indices (`torch.LongTensor`, *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`):
232
            Beam indices of generated token id at each generation step. `torch.LongTensor` of shape
233
            `(batch_size*num_return_sequences, sequence_length)`.
234
235
236
237
238
239
        attentions (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`):
            Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
            `torch.FloatTensor` of shape `(batch_size*num_beams, num_heads, generated_length, sequence_length)`.
        hidden_states (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
            `torch.FloatTensor` of shape `(batch_size*num_beams*num_return_sequences, generated_length, hidden_size)`.
240
241
242
243
244
245
246
        past_key_values (`tuple(tuple(torch.FloatTensor)))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
            NOTE: some models have a different `past_key_values` format, confirm with the model's documentation.
            Usually a Tuple (one element for each layer of the decoder) of tuples (two elements, key tensor and value
            tensor). The first Tuple is of length `config.n_layers`, with each tuple having 2 tensors of shape
            `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and optionally if
            `config.is_encoder_decoder=True` 2 additional tensors of shape `(batch_size, num_heads,
            encoder_sequence_length, embed_size_per_head)`.
247
248
249
250
251
    """

    sequences: torch.LongTensor = None
    sequences_scores: Optional[torch.FloatTensor] = None
    scores: Optional[Tuple[torch.FloatTensor]] = None
252
    logits: Optional[Tuple[torch.FloatTensor]] = None
253
254
255
    beam_indices: Optional[torch.LongTensor] = None
    attentions: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
    hidden_states: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
256
    past_key_values: Optional[Tuple[Tuple[Tuple[torch.FloatTensor]]]] = None
257
258
259


@dataclass
260
class GenerateBeamEncoderDecoderOutput(ModelOutput):
261
    """
262
    Outputs of encoder-decoder generation models, when using beam methods.
263
264
265
266
267
268
269
270
271
272
273
274

    Args:
        sequences (`torch.LongTensor` of shape `(batch_size*num_return_sequences, sequence_length)`):
            The generated sequences. The second dimension (sequence_length) is either equal to `max_length` or shorter
            if all batches finished early due to the `eos_token_id`.
        sequences_scores (`torch.FloatTensor` of shape `(batch_size*num_return_sequences)`, *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`):
            Final beam scores of the generated `sequences`.
        scores (`tuple(torch.FloatTensor)` *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`):
            Beam transition scores for each vocabulary token at each generation step. Beam transition scores consisting
            of log probabilities of tokens conditioned on log softmax of previously generated tokens in this beam.
            Tuple of `torch.FloatTensor` with up to `max_new_tokens` elements (one element for each generated token),
            with each tensor of shape `(batch_size*num_beams, config.vocab_size)`.
275
276
277
278
        logits (`tuple(torch.FloatTensor)` *optional*, returned when `output_logits=True` is passed or when `config.output_logits=True`):
            Unprocessed prediction scores of the language modeling head (scores for each vocabulary token before SoftMax)
            at each generation step. Tuple of `torch.FloatTensor` with up to `max_new_tokens` elements (one element for
            each generated token), with each tensor of shape `(batch_size, config.vocab_size)`.
279
        beam_indices (`torch.LongTensor`, *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`):
280
            Beam indices of generated token id at each generation step. `torch.LongTensor` of shape
281
            `(batch_size*num_return_sequences, sequence_length)`.
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
        encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`):
            Tuple of `torch.FloatTensor` (one for each layer of the decoder) of shape `(batch_size, num_heads,
            sequence_length, sequence_length)`.
        encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
            shape `(batch_size*num_beams*num_return_sequences, sequence_length, hidden_size)`.
        decoder_attentions (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`):
            Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
            `torch.FloatTensor` of shape `(batch_size*num_beams*num_return_sequences, num_heads, generated_length,
            sequence_length)`.
        cross_attentions (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`):
            Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
            `torch.FloatTensor` of shape `(batch_size, num_heads, generated_length, sequence_length)`.
        decoder_hidden_states (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
            `torch.FloatTensor` of shape `(batch_size*num_beams*num_return_sequences, generated_length, hidden_size)`.
298
299
300
301
302
303
304
        past_key_values (`tuple(tuple(torch.FloatTensor)))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
            NOTE: some models have a different `past_key_values` format, confirm with the model's documentation.
            Usually a Tuple (one element for each layer of the decoder) of tuples (two elements, key tensor and value
            tensor). The first Tuple is of length `config.n_layers`, with each tuple having 2 tensors of shape
            `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and optionally if
            `config.is_encoder_decoder=True` 2 additional tensors of shape `(batch_size, num_heads,
            encoder_sequence_length, embed_size_per_head)`.
305
306
307
308
309
    """

    sequences: torch.LongTensor = None
    sequences_scores: Optional[torch.FloatTensor] = None
    scores: Optional[Tuple[torch.FloatTensor]] = None
310
    logits: Optional[Tuple[torch.FloatTensor]] = None
311
312
313
314
315
316
    beam_indices: Optional[torch.LongTensor] = None
    encoder_attentions: Optional[Tuple[torch.FloatTensor]] = None
    encoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
    decoder_attentions: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
    cross_attentions: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
    decoder_hidden_states: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
317
    past_key_values: Optional[Tuple[Tuple[Tuple[torch.FloatTensor]]]] = None
318
319


320
321
322
323
# Equivalent classes (kept for retrocompatibility purposes)
GreedySearchDecoderOnlyOutput = GenerateDecoderOnlyOutput
ContrastiveSearchDecoderOnlyOutput = GenerateDecoderOnlyOutput
SampleDecoderOnlyOutput = GenerateDecoderOnlyOutput
324

325
326
327
ContrastiveSearchEncoderDecoderOutput = GenerateEncoderDecoderOutput
GreedySearchEncoderDecoderOutput = GenerateEncoderDecoderOutput
SampleEncoderDecoderOutput = GenerateEncoderDecoderOutput
328

329
330
BeamSearchDecoderOnlyOutput = GenerateBeamDecoderOnlyOutput
BeamSampleDecoderOnlyOutput = GenerateBeamDecoderOnlyOutput
331

332
333
BeamSearchEncoderDecoderOutput = GenerateBeamEncoderDecoderOutput
BeamSampleEncoderDecoderOutput = GenerateBeamEncoderDecoderOutput
334

335
336
337
338
339
GreedySearchOutput = Union[GreedySearchEncoderDecoderOutput, GreedySearchDecoderOnlyOutput]
SampleOutput = Union[SampleEncoderDecoderOutput, SampleDecoderOnlyOutput]
BeamSearchOutput = Union[BeamSearchEncoderDecoderOutput, BeamSearchDecoderOnlyOutput]
BeamSampleOutput = Union[BeamSampleEncoderDecoderOutput, BeamSampleDecoderOnlyOutput]
ContrastiveSearchOutput = Union[ContrastiveSearchEncoderDecoderOutput, ContrastiveSearchDecoderOnlyOutput]
340

341
342
343
344
# Typing shortcuts
GenerateNonBeamOutput = Union[GenerateDecoderOnlyOutput, GenerateEncoderDecoderOutput]
GenerateBeamOutput = Union[GenerateBeamDecoderOnlyOutput, GenerateBeamEncoderDecoderOutput]
GenerateOutput = Union[GenerateNonBeamOutput, GenerateBeamOutput]
345
346
347
348
349
350
351


class GenerationMixin:
    """
    A class containing all functions for auto-regressive text generation, to be used as a mixin in [`PreTrainedModel`].

    The class exposes [`~generation.GenerationMixin.generate`], which can be used for:
352
353
354
355
356
357
358
359
360
361
        - *greedy decoding* if `num_beams=1` and `do_sample=False`
        - *contrastive search* if `penalty_alpha>0` and `top_k>1`
        - *multinomial sampling* if `num_beams=1` and `do_sample=True`
        - *beam-search decoding* if `num_beams>1` and `do_sample=False`
        - *beam-search multinomial sampling* if `num_beams>1` and `do_sample=True`
        - *diverse beam-search decoding* if `num_beams>1` and `num_beam_groups>1`
        - *constrained beam-search decoding* if `constraints!=None` or `force_words_ids!=None`
        - *assisted decoding* if `assistant_model` or `prompt_lookup_num_tokens` is passed to `.generate()`

    To learn more about decoding strategies refer to the [text generation strategies guide](../generation_strategies).
362
363
    """

364
365
    def prepare_inputs_for_generation(self, *args, **kwargs):
        raise NotImplementedError(
366
            "A model class needs to define a `prepare_inputs_for_generation` method in order to use `.generate()`."
367
368
        )

369
370
371
    def _prepare_model_inputs(
        self,
        inputs: Optional[torch.Tensor] = None,
372
        bos_token_id: Optional[torch.Tensor] = None,
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
        model_kwargs: Optional[Dict[str, torch.Tensor]] = None,
    ) -> Tuple[torch.Tensor, Optional[str], Dict[str, torch.Tensor]]:
        """
        This function extracts the model-specific `inputs` for generation.
        """
        # 1. retrieve all kwargs that are non-None or non-model input related.
        # some encoder-decoder models have different names for model and encoder
        if (
            self.config.is_encoder_decoder
            and hasattr(self, "encoder")
            and self.encoder.main_input_name != self.main_input_name
        ):
            input_name = self.encoder.main_input_name
        else:
            input_name = self.main_input_name

        model_kwargs = {k: v for k, v in model_kwargs.items() if v is not None or k != input_name}

        # 2. check whether model_input_name is passed as kwarg
        # if yes and `inputs` is None use kwarg inputs
        inputs_kwarg = model_kwargs.pop(input_name, None)
        if inputs_kwarg is not None and inputs is not None:
            raise ValueError(
396
                f"`inputs`: {inputs}` were passed alongside {input_name} which is not allowed. "
397
398
399
400
401
                f"Make sure to either pass {inputs} or {input_name}=..."
            )
        elif inputs_kwarg is not None:
            inputs = inputs_kwarg

402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
        # 3. In the presence of `inputs_embeds` for text models:
        # - decoder-only models should complain if the user attempts to pass `inputs_embeds`, but the model
        # doesn't have its forwarding implemented. `inputs_embeds` is kept in `model_kwargs` and can coexist with
        # input_ids (`inputs_embeds` will be used in the 1st generation step, as opposed to `input_ids`)
        # - encoder-decoder models should complain if the user attempts to pass `inputs_embeds` and `input_ids`, and
        # pull the former to inputs. It will be used in place of `input_ids` to get the encoder hidden states.
        if input_name == "input_ids" and "inputs_embeds" in model_kwargs:
            if not self.config.is_encoder_decoder:
                has_inputs_embeds_forwarding = "inputs_embeds" in set(
                    inspect.signature(self.prepare_inputs_for_generation).parameters.keys()
                )
                if not has_inputs_embeds_forwarding:
                    raise ValueError(
                        f"You passed `inputs_embeds` to `.generate()`, but the model class {self.__class__.__name__} "
                        "doesn't have its forwarding implemented. See the GPT2 implementation for an example "
                        "(https://github.com/huggingface/transformers/pull/21405), and feel free to open a PR with it!"
                    )
419
420
421
                # In this case, `input_ids` is moved to the `model_kwargs`, so a few automations (like the creation of
                # the attention mask) can rely on the actual model input.
                model_kwargs["input_ids"] = self._maybe_initialize_input_ids_for_generation(
422
                    inputs, bos_token_id, model_kwargs=model_kwargs
423
                )
424
425
426
            else:
                if inputs is not None:
                    raise ValueError("You passed `inputs_embeds` and `input_ids` to `.generate()`. Please pick one.")
427
            inputs, input_name = model_kwargs["inputs_embeds"], "inputs_embeds"
428
429

        # 4. if `inputs` is still None, try to create `input_ids` from BOS token
430
        inputs = self._maybe_initialize_input_ids_for_generation(inputs, bos_token_id, model_kwargs)
431
432
        return inputs, input_name, model_kwargs

433
434
435
    def _maybe_initialize_input_ids_for_generation(
        self,
        inputs: Optional[torch.Tensor] = None,
436
        bos_token_id: Optional[torch.Tensor] = None,
437
        model_kwargs: Optional[Dict[str, torch.Tensor]] = None,
438
    ) -> torch.LongTensor:
439
440
441
442
        """Initializes input ids for generation, if necessary."""
        if inputs is not None:
            return inputs

443
        encoder_outputs = model_kwargs.get("encoder_outputs")
444
445
446
447
448
        if self.config.is_encoder_decoder and encoder_outputs is not None:
            # make dummy input_ids with value -100, as a sanity check ensuring that they won't be used for encoding
            shape = encoder_outputs.last_hidden_state.size()[:-1]
            return torch.ones(shape, dtype=torch.long, device=self.device) * -100

449
450
451
452
453
454
455
        # If there is some tensor in `model_kwargs`, we can infer the batch size from it. This is helpful with
        # soft-prompting or in multimodal implementations built on top of decoder-only language models.
        batch_size = 1
        for value in model_kwargs.values():
            if isinstance(value, torch.Tensor):
                batch_size = value.shape[0]
                break
456
457
458

        if "inputs_embeds" in model_kwargs:
            return torch.ones((batch_size, 0), dtype=torch.long, device=self.device)
459
460
461
462

        if bos_token_id is None:
            raise ValueError("`bos_token_id` has to be defined when no `input_ids` are provided.")

463
        return torch.ones((batch_size, 1), dtype=torch.long, device=self.device) * bos_token_id
464
465
466
467

    def _prepare_attention_mask_for_generation(
        self,
        inputs: torch.Tensor,
468
469
        pad_token_id: Optional[torch.Tensor],
        eos_token_id: Optional[torch.Tensor],
470
    ) -> torch.LongTensor:
471
472
473
474
475
        # No information for attention mask inference -> return default attention mask
        default_attention_mask = torch.ones(inputs.shape[:2], dtype=torch.long, device=inputs.device)
        if pad_token_id is None:
            return default_attention_mask

476
        is_input_ids = len(inputs.shape) == 2 and inputs.dtype in [torch.int, torch.long]
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
        if not is_input_ids:
            return default_attention_mask

        # Otherwise we have may have information -> try to infer the attention mask
        if inputs.device.type == "mps":
            # mps does not support torch.isin (https://github.com/pytorch/pytorch/issues/77764)
            raise ValueError(
                "Can't infer missing attention mask on `mps` device. Please provide an `attention_mask` or use a different device."
            )

        is_pad_token_in_inputs = (pad_token_id is not None) and (
            torch.isin(elements=inputs, test_elements=pad_token_id).any()
        )
        is_pad_token_not_equal_to_eos_token_id = (eos_token_id is None) or ~(
            torch.isin(elements=eos_token_id, test_elements=pad_token_id).any()
        )
        can_infer_attention_mask = is_pad_token_in_inputs * is_pad_token_not_equal_to_eos_token_id
        attention_mask_from_padding = inputs.ne(pad_token_id).long()
495

496
497
498
499
        attention_mask = (
            attention_mask_from_padding * can_infer_attention_mask + default_attention_mask * ~can_infer_attention_mask
        )
        return attention_mask
500
501

    def _prepare_encoder_decoder_kwargs_for_generation(
502
503
504
505
506
        self,
        inputs_tensor: torch.Tensor,
        model_kwargs,
        model_input_name: Optional[str],
        generation_config: GenerationConfig,
507
508
509
    ) -> Dict[str, Any]:
        # 1. get encoder
        encoder = self.get_encoder()
510
511
        # Compatibility with Accelerate big model inference: we need the encoder to outputs stuff on the same device
        # as the inputs.
Marc Sun's avatar
Marc Sun committed
512
513
514
515
516
        if hasattr(self, "hf_device_map"):
            if hasattr(encoder, "_hf_hook"):
                encoder._hf_hook.io_same_device = True
            else:
                add_hook_to_module(encoder, AlignDevicesHook(io_same_device=True))
517

518
        # 2. Prepare encoder args and encoder kwargs from model kwargs and generation config.
519
520
521
522
523
524
        irrelevant_prefix = ["decoder_", "cross_attn", "use_cache"]
        encoder_kwargs = {
            argument: value
            for argument, value in model_kwargs.items()
            if not any(argument.startswith(p) for p in irrelevant_prefix)
        }
525
526
527
528
529
530
        encoder_signature = set(inspect.signature(encoder.forward).parameters)
        encoder_accepts_wildcard = "kwargs" in encoder_signature or "model_kwargs" in encoder_signature
        if not encoder_accepts_wildcard:
            encoder_kwargs = {
                argument: value for argument, value in encoder_kwargs.items() if argument in encoder_signature
            }
531
532
        encoder_kwargs["output_attentions"] = generation_config.output_attentions
        encoder_kwargs["output_hidden_states"] = generation_config.output_hidden_states
533
534
535
536
537
538
539
540
541
542
543
544

        # 3. make sure that encoder returns `ModelOutput`
        model_input_name = model_input_name if model_input_name is not None else self.main_input_name
        encoder_kwargs["return_dict"] = True
        encoder_kwargs[model_input_name] = inputs_tensor
        model_kwargs["encoder_outputs"]: ModelOutput = encoder(**encoder_kwargs)

        return model_kwargs

    def _prepare_decoder_input_ids_for_generation(
        self,
        batch_size: int,
545
546
        model_input_name: str,
        model_kwargs: Dict[str, torch.Tensor],
547
        decoder_start_token_id: torch.Tensor,
548
        device: torch.device = None,
549
550
551
552
    ) -> Tuple[torch.LongTensor, Dict[str, torch.Tensor]]:
        """Prepares `decoder_input_ids` for generation with encoder-decoder models"""
        # 1. Check whether the user has defined `decoder_input_ids` manually. To facilitate in terms of input naming,
        # we also allow the user to pass it under `input_ids`, if the encoder does not use it as the main input.
553
        if model_kwargs is not None and "decoder_input_ids" in model_kwargs:
554
555
556
            decoder_input_ids = model_kwargs.pop("decoder_input_ids")
        elif "input_ids" in model_kwargs and model_input_name != "input_ids":
            decoder_input_ids = model_kwargs.pop("input_ids")
557
        else:
558
559
            decoder_input_ids = None

560
        # 2. `decoder_start_token_id` must have shape (batch_size, 1)
561
562
        if device is None:
            device = self.device
563
564
        if decoder_start_token_id.ndim == 1:
            if decoder_start_token_id.shape[0] != batch_size:
565
                raise ValueError(
566
                    f"`decoder_start_token_id` expected to have length {batch_size} but got {decoder_start_token_id.shape[0]}"
567
                )
568
            decoder_start_token_id = decoder_start_token_id.view(-1, 1)
569
        else:
570
            decoder_start_token_id = (
571
572
                torch.ones((batch_size, 1), dtype=torch.long, device=device) * decoder_start_token_id
            )
573

574
        # 3. Encoder-decoder models expect the `decoder_input_ids` to start with a special token. Let's ensure that.
575
576
        # no user input -> use decoder_start_token_id as decoder_input_ids
        if decoder_input_ids is None:
577
            decoder_input_ids = decoder_start_token_id
578
579
580
581
582
583
        # exception: Donut checkpoints have task-specific decoder starts and don't expect a BOS token. Note that the
        # original checkpoints can't be detected through `self.__class__.__name__.lower()`, needing custom logic.
        # See: https://github.com/huggingface/transformers/pull/31470
        elif "donut" in self.__class__.__name__.lower() or (
            self.config.model_type == "vision-encoder-decoder" and "donut" in self.config.encoder.model_type.lower()
        ):
584
            pass
585
586
        elif self.config.model_type in ["whisper"]:
            pass
587
588
        # user input but doesn't start with decoder_start_token_id -> prepend decoder_start_token_id (and adjust
        # decoder_attention_mask if provided)
589
590
        elif (decoder_input_ids[:, 0] != decoder_start_token_id[:, 0]).all().item():
            decoder_input_ids = torch.cat([decoder_start_token_id, decoder_input_ids], dim=-1)
591
592
593
594
595
596
597
598
599
            if "decoder_attention_mask" in model_kwargs:
                decoder_attention_mask = model_kwargs["decoder_attention_mask"]
                decoder_attention_mask = torch.cat(
                    (torch.ones_like(decoder_attention_mask)[:, :1], decoder_attention_mask),
                    dim=-1,
                )
                model_kwargs["decoder_attention_mask"] = decoder_attention_mask

        return decoder_input_ids, model_kwargs
600
601
602
603
604
605
606
607
608

    @staticmethod
    def _expand_inputs_for_generation(
        expand_size: int = 1,
        is_encoder_decoder: bool = False,
        input_ids: Optional[torch.LongTensor] = None,
        **model_kwargs,
    ) -> Tuple[torch.LongTensor, Dict[str, Any]]:
        """Expands tensors from [batch_size, ...] to [batch_size * expand_size, ...]"""
609
610
611

        def _expand_dict_for_generation(dict_to_expand):
            for key in dict_to_expand:
tomeras91's avatar
tomeras91 committed
612
613
614
615
616
                if (
                    key != "cache_position"
                    and dict_to_expand[key] is not None
                    and isinstance(dict_to_expand[key], torch.Tensor)
                ):
617
618
619
                    dict_to_expand[key] = dict_to_expand[key].repeat_interleave(expand_size, dim=0)
            return dict_to_expand

620
621
622
        if input_ids is not None:
            input_ids = input_ids.repeat_interleave(expand_size, dim=0)

623
        model_kwargs = _expand_dict_for_generation(model_kwargs)
624
625

        if is_encoder_decoder:
626
            if model_kwargs.get("encoder_outputs") is None:
627
                raise ValueError("If `is_encoder_decoder` is True, make sure that `encoder_outputs` is defined.")
628
            model_kwargs["encoder_outputs"] = _expand_dict_for_generation(model_kwargs["encoder_outputs"])
629
630
631

        return input_ids, model_kwargs

632
    def _extract_past_from_model_output(self, outputs: ModelOutput, standardize_cache_format: bool = False):
633
        past_key_values = None
634
        cache_name = "past_key_values"
635
        if "past_key_values" in outputs:
636
            past_key_values = outputs.past_key_values
637
        elif "mems" in outputs:
638
            past_key_values = outputs.mems
639
        elif "past_buckets_states" in outputs:
640
            past_key_values = outputs.past_buckets_states
641
642
643
        elif "cache_params" in outputs:
            past_key_values = outputs.cache_params
            cache_name = "cache_params"
644
645
646
647

        # Bloom fix: standardizes the cache format when requested
        if standardize_cache_format and hasattr(self, "_convert_to_standard_cache"):
            batch_size = outputs.logits.shape[0]
648
            past_key_values = self._convert_to_standard_cache(past_key_values, batch_size=batch_size)
649
        return cache_name, past_key_values
650
651

    def _update_model_kwargs_for_generation(
652
653
654
655
656
        self,
        outputs: ModelOutput,
        model_kwargs: Dict[str, Any],
        is_encoder_decoder: bool = False,
        standardize_cache_format: bool = False,
657
        num_new_tokens: int = 1,
658
    ) -> Dict[str, Any]:
659
660
        # update past_key_values keeping its naming used in model code
        cache_name, cache = self._extract_past_from_model_output(
661
662
            outputs, standardize_cache_format=standardize_cache_format
        )
663
        model_kwargs[cache_name] = cache
Sylvain Gugger's avatar
Sylvain Gugger committed
664
665
        if getattr(outputs, "state", None) is not None:
            model_kwargs["state"] = outputs.state
666
667
668
669
670
671
672

        # update token_type_ids with last value
        if "token_type_ids" in model_kwargs:
            token_type_ids = model_kwargs["token_type_ids"]
            model_kwargs["token_type_ids"] = torch.cat([token_type_ids, token_type_ids[:, -1].unsqueeze(-1)], dim=-1)

        if not is_encoder_decoder:
673
            # update attention mask
674
675
676
677
678
            if "attention_mask" in model_kwargs:
                attention_mask = model_kwargs["attention_mask"]
                model_kwargs["attention_mask"] = torch.cat(
                    [attention_mask, attention_mask.new_ones((attention_mask.shape[0], 1))], dim=-1
                )
679
680
681
682
683
684
685
686
        else:
            # update decoder attention mask
            if "decoder_attention_mask" in model_kwargs:
                decoder_attention_mask = model_kwargs["decoder_attention_mask"]
                model_kwargs["decoder_attention_mask"] = torch.cat(
                    [decoder_attention_mask, decoder_attention_mask.new_ones((decoder_attention_mask.shape[0], 1))],
                    dim=-1,
                )
687

688
689
690
691
692
        if (
            model_kwargs.get("use_cache", True)
            and "cache_position" in model_kwargs
            and model_kwargs["cache_position"] is not None
        ):
693
            model_kwargs["cache_position"] = model_kwargs["cache_position"][-1:] + num_new_tokens
694

695
696
        return model_kwargs

697
    def _reorder_cache(self, past_key_values, beam_idx):
698
699
700
701
702
        raise NotImplementedError(
            f"Make sure that a `_reorder_cache` function is correctly implemented in {self.__class__.__module__} to"
            f" enable beam search for {self.__class__}"
        )

703
704
705
706
707
708
709
710
711
712
713
714
    def _get_candidate_generator(
        self,
        generation_config: GenerationConfig,
        input_ids: torch.LongTensor,
        inputs_tensor: torch.Tensor,
        assistant_model: "PreTrainedModel",
        logits_processor: LogitsProcessorList,
        model_kwargs: Dict,
    ) -> CandidateGenerator:
        """
        Returns the candidate generator to be used in `assisted_generation`
        """
715
716
717
        if generation_config.prompt_lookup_num_tokens is not None:
            candidate_generator = PromptLookupCandidateGenerator(
                num_output_tokens=generation_config.prompt_lookup_num_tokens,
718
                max_matching_ngram_size=generation_config.max_matching_ngram_size,
719
                max_length=generation_config.max_length,
720
721
722
723
724
725
726
727
            )
        else:
            candidate_generator = AssistedCandidateGenerator(
                input_ids=input_ids,
                assistant_model=assistant_model,
                generation_config=generation_config,
                model_kwargs=model_kwargs,
                inputs_tensor=inputs_tensor,
728
                logits_processor=logits_processor,
729
            )
730
731
        return candidate_generator

732
733
    def _get_logits_warper(
        self,
734
        generation_config: GenerationConfig,
735
        device: str,
736
737
738
739
740
741
742
743
744
    ) -> LogitsProcessorList:
        """
        This class returns a [`LogitsProcessorList`] list object that contains all relevant [`LogitsWarper`] instances
        used for multinomial sampling.
        """

        # instantiate warpers list
        warpers = LogitsProcessorList()

745
746
747
748
749
        # In beam methods, we need to keep at least one non-eos token to explore continuations that might have a
        # better score (i.e. keep len(list(generation_config.eos_token_id)) + 1)
        if generation_config.num_beams > 1:
            if isinstance(generation_config.eos_token_id, list):
                min_tokens_to_keep = len(generation_config.eos_token_id) + 1
750
751
            elif isinstance(generation_config.eos_token_id, torch.Tensor):
                min_tokens_to_keep = generation_config.eos_token_id.shape[0] + 1
752
753
754
755
756
            else:
                min_tokens_to_keep = 2
        else:
            min_tokens_to_keep = 1

757
758
        # the following idea is largely copied from this PR: https://github.com/huggingface/transformers/pull/5420/files
        # all samplers can be found in `generation_utils_samplers.py`
759
760
761
        if generation_config.temperature is not None and generation_config.temperature != 1.0:
            warpers.append(TemperatureLogitsWarper(generation_config.temperature))
        if generation_config.top_k is not None and generation_config.top_k != 0:
762
763
764
            warpers.append(TopKLogitsWarper(top_k=generation_config.top_k, min_tokens_to_keep=min_tokens_to_keep))
        if generation_config.top_p is not None and generation_config.top_p < 1.0:
            warpers.append(TopPLogitsWarper(top_p=generation_config.top_p, min_tokens_to_keep=min_tokens_to_keep))
765
766
767
        if generation_config.min_p is not None:
            # Applied after temperature scaling (see https://github.com/ggerganov/llama.cpp/pull/3841#issuecomment-2073826084)
            warpers.append(MinPLogitsWarper(min_p=generation_config.min_p, min_tokens_to_keep=min_tokens_to_keep))
768
        if generation_config.typical_p is not None and generation_config.typical_p < 1.0:
769
            warpers.append(
770
                TypicalLogitsWarper(mass=generation_config.typical_p, min_tokens_to_keep=min_tokens_to_keep)
771
            )
772
        if generation_config.epsilon_cutoff is not None and 0.0 < generation_config.epsilon_cutoff < 1.0:
773
            warpers.append(
774
                EpsilonLogitsWarper(epsilon=generation_config.epsilon_cutoff, min_tokens_to_keep=min_tokens_to_keep)
775
            )
776
        if generation_config.eta_cutoff is not None and 0.0 < generation_config.eta_cutoff < 1.0:
777
            warpers.append(
778
779
780
                EtaLogitsWarper(
                    epsilon=generation_config.eta_cutoff, min_tokens_to_keep=min_tokens_to_keep, device=device
                )
781
            )
782
        # `LogitNormalization` should always be the last logit processor, when present
783
        if generation_config.renormalize_logits is True:
784
785
786
787
788
            warpers.append(LogitNormalization())
        return warpers

    def _get_logits_processor(
        self,
789
        generation_config: GenerationConfig,
790
791
792
793
        input_ids_seq_length: int,
        encoder_input_ids: torch.LongTensor,
        prefix_allowed_tokens_fn: Callable[[int, torch.Tensor], List[int]],
        logits_processor: Optional[LogitsProcessorList],
794
        device: str = None,
795
796
797
        model_kwargs: Optional[Dict[str, Any]] = None,
        negative_prompt_ids: Optional[torch.Tensor] = None,
        negative_prompt_attention_mask: Optional[torch.Tensor] = None,
798
799
800
801
802
803
    ) -> LogitsProcessorList:
        """
        This class returns a [`LogitsProcessorList`] list object that contains all relevant [`LogitsProcessor`]
        instances used to modify the scores of the language model head.
        """
        # instantiate processors list
804
        processors = LogitsProcessorList()
805

806
        if generation_config.guidance_scale is not None and generation_config.guidance_scale != 1:
807
808
809
810
811
812
813
814
815
            processors.append(
                UnbatchedClassifierFreeGuidanceLogitsProcessor(
                    generation_config.guidance_scale,
                    self,
                    unconditional_ids=negative_prompt_ids,
                    unconditional_attention_mask=negative_prompt_attention_mask,
                    use_cache=model_kwargs["use_cache"],
                )
            )
816
817
818
        if generation_config.sequence_bias is not None:
            processors.append(SequenceBiasLogitsProcessor(sequence_bias=generation_config.sequence_bias))

819
        if generation_config.diversity_penalty is not None and generation_config.diversity_penalty > 0.0:
820
821
            processors.append(
                HammingDiversityLogitsProcessor(
822
823
824
                    diversity_penalty=generation_config.diversity_penalty,
                    num_beams=generation_config.num_beams,
                    num_beam_groups=generation_config.num_beam_groups,
825
826
                )
            )
Karim Foda's avatar
Karim Foda committed
827
828
829
830
831
832
        if (
            generation_config.encoder_repetition_penalty is not None
            and generation_config.encoder_repetition_penalty != 1.0
        ):
            processors.append(
                EncoderRepetitionPenaltyLogitsProcessor(
833
834
                    penalty=generation_config.encoder_repetition_penalty,
                    encoder_input_ids=encoder_input_ids,
Karim Foda's avatar
Karim Foda committed
835
836
                )
            )
837
838
839
840
841
842
843
844
        if generation_config.repetition_penalty is not None and generation_config.repetition_penalty != 1.0:
            processors.append(RepetitionPenaltyLogitsProcessor(penalty=generation_config.repetition_penalty))
        if generation_config.no_repeat_ngram_size is not None and generation_config.no_repeat_ngram_size > 0:
            processors.append(NoRepeatNGramLogitsProcessor(generation_config.no_repeat_ngram_size))
        if (
            generation_config.encoder_no_repeat_ngram_size is not None
            and generation_config.encoder_no_repeat_ngram_size > 0
        ):
845
            processors.append(
846
847
848
849
                EncoderNoRepeatNGramLogitsProcessor(
                    generation_config.encoder_no_repeat_ngram_size,
                    encoder_input_ids,
                )
850
            )
851
852
        if generation_config.bad_words_ids is not None:
            processors.append(
853
854
855
856
                NoBadWordsLogitsProcessor(
                    generation_config.bad_words_ids,
                    generation_config.eos_token_id,
                )
857
858
859
860
861
862
            )
        if (
            generation_config.min_length is not None
            and generation_config.eos_token_id is not None
            and generation_config.min_length > 0
        ):
863
864
865
866
867
868
869
            processors.append(
                MinLengthLogitsProcessor(
                    generation_config.min_length,
                    generation_config.eos_token_id,
                    device=device,
                )
            )
870
871
872
873
874
875
876
        if (
            generation_config.min_new_tokens is not None
            and generation_config.eos_token_id is not None
            and generation_config.min_new_tokens > 0
        ):
            processors.append(
                MinNewTokensLengthLogitsProcessor(
877
878
879
880
                    input_ids_seq_length,
                    generation_config.min_new_tokens,
                    generation_config.eos_token_id,
                    device=device,
881
882
                )
            )
883
        if prefix_allowed_tokens_fn is not None:
884
885
            processors.append(
                PrefixConstrainedLogitsProcessor(
886
887
                    prefix_allowed_tokens_fn,
                    generation_config.num_beams // generation_config.num_beam_groups,
888
889
890
                )
            )
        if generation_config.forced_bos_token_id is not None:
891
892
893
894
895
            processors.append(
                ForcedBOSTokenLogitsProcessor(
                    generation_config.forced_bos_token_id,
                )
            )
896
897
        if generation_config.forced_eos_token_id is not None:
            processors.append(
898
899
900
901
902
                ForcedEOSTokenLogitsProcessor(
                    generation_config.max_length,
                    generation_config.forced_eos_token_id,
                    device=device,
                )
903
904
            )
        if generation_config.remove_invalid_values is True:
905
            processors.append(InfNanRemoveLogitsProcessor())
906
        if generation_config.exponential_decay_length_penalty is not None:
907
            processors.append(
908
909
910
                ExponentialDecayLengthPenalty(
                    generation_config.exponential_decay_length_penalty,
                    generation_config.eos_token_id,
911
                    input_ids_seq_length,
912
                )
913
            )
914
        if generation_config.suppress_tokens is not None:
915
916
917
918
919
920
            processors.append(
                SuppressTokensLogitsProcessor(
                    generation_config.suppress_tokens,
                    device=device,
                )
            )
921
        if generation_config.begin_suppress_tokens is not None:
922
            begin_index = input_ids_seq_length
923
924
925
926
927
928
929
930
931
            begin_index = (
                begin_index
                if (input_ids_seq_length > 1 or generation_config.forced_bos_token_id is None)
                else begin_index + 1
            )
            if generation_config.forced_decoder_ids is not None:
                # generation starts after the last token that is forced
                begin_index += generation_config.forced_decoder_ids[-1][0]
            processors.append(
932
933
934
935
936
                SuppressTokensAtBeginLogitsProcessor(
                    generation_config.begin_suppress_tokens,
                    begin_index,
                    device=device,
                )
937
938
            )
        if generation_config.forced_decoder_ids is not None:
939
940
941
942
943
944
            # TODO(Sanchit): deprecate in v4.40 by removing this logic
            warnings.warn(
                "You have explicitly specified `forced_decoder_ids`. This functionality has been deprecated and will throw an error in v4.40. Please remove the `forced_decoder_ids` argument in favour of `input_ids` or `decoder_input_ids` respectively.",
                FutureWarning,
            )
            processors.append(ForceTokensLogitsProcessor(generation_config.forced_decoder_ids, _has_warned=True))
945
946
947
948
949
950
951
952
953
954
955
956
        if generation_config.watermarking_config is not None:
            processors.append(
                WatermarkLogitsProcessor(
                    vocab_size=self.config.vocab_size,
                    device=device,
                    greenlist_ratio=generation_config.watermarking_config.greenlist_ratio,
                    bias=generation_config.watermarking_config.bias,
                    hashing_key=generation_config.watermarking_config.hashing_key,
                    seeding_scheme=generation_config.watermarking_config.seeding_scheme,
                    context_width=generation_config.watermarking_config.context_width,
                )
            )
957
958
        processors = self._merge_criteria_processor_list(processors, logits_processor)
        # `LogitNormalization` should always be the last logit processor, when present
959
        if generation_config.renormalize_logits is True:
960
961
962
963
            processors.append(LogitNormalization())
        return processors

    def _get_stopping_criteria(
964
965
966
967
968
        self,
        generation_config: GenerationConfig,
        stopping_criteria: Optional[StoppingCriteriaList],
        tokenizer: Optional["PreTrainedTokenizerBase"] = None,
        **kwargs,
969
970
    ) -> StoppingCriteriaList:
        criteria = StoppingCriteriaList()
971
        if generation_config.max_length is not None:
972
973
974
975
976
977
978
            max_position_embeddings = getattr(self.config, "max_position_embeddings", None)
            criteria.append(
                MaxLengthCriteria(
                    max_length=generation_config.max_length,
                    max_position_embeddings=max_position_embeddings,
                )
            )
979
980
        if generation_config.max_time is not None:
            criteria.append(MaxTimeCriteria(max_time=generation_config.max_time))
981
982
983
984
985
986
987
988
        if generation_config.stop_strings is not None:
            if tokenizer is None:
                raise ValueError(
                    "There are one or more stop strings, either in the arguments to `generate` or in the "
                    "model's generation config, but we could not locate a tokenizer. When generating with "
                    "stop strings, you must pass the model's tokenizer to the `tokenizer` argument of `generate`."
                )
            criteria.append(StopStringCriteria(stop_strings=generation_config.stop_strings, tokenizer=tokenizer))
989
990
        if generation_config.eos_token_id is not None:
            criteria.append(EosTokenCriteria(eos_token_id=generation_config.eos_token_id))
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
        criteria = self._merge_criteria_processor_list(criteria, stopping_criteria)
        return criteria

    def _merge_criteria_processor_list(
        self,
        default_list: Union[LogitsProcessorList, StoppingCriteriaList],
        custom_list: Union[LogitsProcessorList, StoppingCriteriaList],
    ) -> Union[LogitsProcessorList, StoppingCriteriaList]:
        if len(custom_list) == 0:
            return default_list
        for default in default_list:
            for custom in custom_list:
                if type(custom) is type(default):
                    object_type = "stopping criteria" if isinstance(custom, StoppingCriteria) else "logits processor"
                    raise ValueError(
                        f"A custom {object_type} of type {type(custom)} with values {custom} has been passed to"
1007
                        f" `.generate()`, but it has already been created with the values {default}. {default} has been"
1008
1009
                        " created by passing the corresponding arguments to generate or by the model's config default"
                        f" values. If you just want to change the default values of {object_type} consider passing"
1010
                        f" them as arguments to `.generate()` instead of using a custom {object_type}."
1011
1012
1013
1014
                    )
        default_list.extend(custom_list)
        return default_list

1015
    def compute_transition_scores(
1016
1017
1018
        self,
        sequences: torch.Tensor,
        scores: Tuple[torch.Tensor],
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
        beam_indices: Optional[torch.Tensor] = None,
        normalize_logits: bool = False,
    ) -> torch.Tensor:
        """
        Computes the transition scores of sequences given the generation scores (and beam indices, if beam search was
        used). This is a convenient method to quicky obtain the scores of the selected tokens at generation time.

        Parameters:
            sequences (`torch.LongTensor`):
                The generated sequences. The second dimension (sequence_length) is either equal to `max_length` or
                shorter if all batches finished early due to the `eos_token_id`.
            scores (`tuple(torch.FloatTensor)`):
                Transition scores for each vocabulary token at each generation step. Beam transition scores consisting
1032
1033
1034
                of log probabilities of tokens conditioned on log softmax of previously generated tokens in this beam.
                Tuple of `torch.FloatTensor` with up to `max_new_tokens` elements (one element for each generated token),
                with each tensor of shape `(batch_size*num_beams, config.vocab_size)`.
1035
            beam_indices (`torch.LongTensor`, *optional*):
1036
                Beam indices of generated token id at each generation step. `torch.LongTensor` of shape
1037
                `(batch_size*num_return_sequences, sequence_length)`. Only required if a `num_beams>1` at
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
                generate-time.
            normalize_logits (`bool`, *optional*, defaults to `False`):
                Whether to normalize the logits (which, for legacy reasons, may be unnormalized).

        Return:
            `torch.Tensor`: A `torch.Tensor` of shape `(batch_size*num_return_sequences, sequence_length)` containing
                the transition scores (logits)

        Examples:

        ```python
        >>> from transformers import GPT2Tokenizer, AutoModelForCausalLM
        >>> import numpy as np

        >>> tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
1053
        >>> model = AutoModelForCausalLM.from_pretrained("openai-community/gpt2")
1054
1055
1056
1057
1058
1059
1060
1061
        >>> tokenizer.pad_token_id = tokenizer.eos_token_id
        >>> inputs = tokenizer(["Today is"], return_tensors="pt")

        >>> # Example 1: Print the scores for each token generated with Greedy Search
        >>> outputs = model.generate(**inputs, max_new_tokens=5, return_dict_in_generate=True, output_scores=True)
        >>> transition_scores = model.compute_transition_scores(
        ...     outputs.sequences, outputs.scores, normalize_logits=True
        ... )
1062
1063
1064
        >>> # input_length is the length of the input prompt for decoder-only models, like the GPT family, and 1 for
        >>> # encoder-decoder models, like BART or T5.
        >>> input_length = 1 if model.config.is_encoder_decoder else inputs.input_ids.shape[1]
1065
1066
        >>> generated_tokens = outputs.sequences[:, input_length:]
        >>> for tok, score in zip(generated_tokens[0], transition_scores[0]):
1067
        ...     # | token | token string | log probability | probability
1068
1069
1070
1071
1072
1073
        ...     print(f"| {tok:5d} | {tokenizer.decode(tok):8s} | {score.numpy():.3f} | {np.exp(score.numpy()):.2%}")
        |   262 |  the     | -1.414 | 24.33%
        |  1110 |  day     | -2.609 | 7.36%
        |   618 |  when    | -2.010 | 13.40%
        |   356 |  we      | -1.859 | 15.58%
        |   460 |  can     | -2.508 | 8.14%
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087

        >>> # Example 2: Reconstruct the sequence scores from Beam Search
        >>> outputs = model.generate(
        ...     **inputs,
        ...     max_new_tokens=5,
        ...     num_beams=4,
        ...     num_return_sequences=4,
        ...     return_dict_in_generate=True,
        ...     output_scores=True,
        ... )
        >>> transition_scores = model.compute_transition_scores(
        ...     outputs.sequences, outputs.scores, outputs.beam_indices, normalize_logits=False
        ... )
        >>> # If you sum the generated tokens' scores and apply the length penalty, you'll get the sequence scores.
1088
        >>> # Tip 1: recomputing the scores is only guaranteed to match with `normalize_logits=False`. Depending on the
1089
        >>> # use case, you might want to recompute it with `normalize_logits=True`.
1090
1091
        >>> # Tip 2: the output length does NOT include the input length
        >>> output_length = np.sum(transition_scores.numpy() < 0, axis=1)
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
        >>> length_penalty = model.generation_config.length_penalty
        >>> reconstructed_scores = transition_scores.sum(axis=1) / (output_length**length_penalty)
        >>> print(np.allclose(outputs.sequences_scores, reconstructed_scores))
        True
        ```"""
        # 1. In absence of `beam_indices`, we can assume that we come from e.g. greedy search, which is equivalent
        # to a beam search approach were the first (and only) beam is always selected
        if beam_indices is None:
            beam_indices = torch.arange(scores[0].shape[0]).view(-1, 1).to(sequences.device)
            beam_indices = beam_indices.expand(-1, len(scores))

        # 2. reshape scores as [batch_size*vocab_size, # generation steps] with # generation steps being
1104
1105
1106
        # seq_len - input_length
        scores = torch.stack(scores).reshape(len(scores), -1).transpose(0, 1)

1107
1108
1109
1110
1111
1112
1113
        # 3. Optionally normalize the logits (across the vocab dimension)
        if normalize_logits:
            scores = scores.reshape(-1, self.config.vocab_size, scores.shape[-1])
            scores = torch.nn.functional.log_softmax(scores, dim=1)
            scores = scores.reshape(-1, scores.shape[-1])

        # 4. cut beam_indices to longest beam length
1114
1115
        beam_indices_mask = beam_indices < 0
        max_beam_length = (1 - beam_indices_mask.long()).sum(-1).max()
1116
        beam_indices = beam_indices.clone()[:, :max_beam_length]
1117
1118
        beam_indices_mask = beam_indices_mask[:, :max_beam_length]

1119
        # 5. Set indices of beams that finished early to 0; such indices will be masked correctly afterwards
1120
1121
        beam_indices[beam_indices_mask] = 0

1122
        # 6. multiply beam_indices with vocab size to gather correctly from scores
1123
1124
        beam_sequence_indices = beam_indices * self.config.vocab_size

1125
        # 7. Define which indices contributed to scores
1126
1127
1128
        cut_idx = sequences.shape[-1] - max_beam_length
        indices = sequences[:, cut_idx:] + beam_sequence_indices

1129
        # 8. Compute scores
1130
1131
        transition_scores = scores.gather(0, indices)

1132
        # 9. Mask out transition_scores of beams that stopped early
1133
1134
1135
1136
1137
1138
1139
1140
1141
        transition_scores[beam_indices_mask] = 0

        return transition_scores

    def _validate_model_class(self):
        """
        Confirms that the model class is compatible with generation. If not, raises an exception that points to the
        right class to use.
        """
1142
        if not self.can_generate():
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
            generate_compatible_mappings = [
                MODEL_FOR_CAUSAL_LM_MAPPING,
                MODEL_FOR_CAUSAL_IMAGE_MODELING_MAPPING,
                MODEL_FOR_VISION_2_SEQ_MAPPING,
                MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
                MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING,
            ]
            generate_compatible_classes = set()
            for model_mapping in generate_compatible_mappings:
                supported_models = model_mapping.get(type(self.config), default=None)
                if supported_models is not None:
                    generate_compatible_classes.add(supported_models.__name__)
            exception_message = (
                f"The current model class ({self.__class__.__name__}) is not compatible with `.generate()`, as "
                "it doesn't have a language model head."
            )
            if generate_compatible_classes:
                exception_message += f" Please use one of the following classes instead: {generate_compatible_classes}"
            raise TypeError(exception_message)

1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
    def _validate_assistant(self, assistant_model):
        if assistant_model is None:
            return

        if self.config.is_encoder_decoder and not assistant_model.config.is_encoder_decoder:
            attributes_to_check = ["encoder_attention_heads", "encoder_ffn_dim", "encoder_layers"]
            attributes_to_check = [attr for attr in dir(assistant_model.config) if attr in attributes_to_check]
            are_equal = all(
                getattr(self.config, attr) == getattr(assistant_model.config, attr) for attr in attributes_to_check
            )
            if not are_equal:
                raise ValueError(
                    "The main model and the assistant don't have compatible encoder-dependent input shapes. "
                    "Ensure you load the assistant with the correct encoder-decoder class, e.g. `AutoModelForSpeechSeq2Seq` for Whisper."
                )

        if not self.config.vocab_size == assistant_model.config.vocab_size:
            raise ValueError("Make sure the main and assistant model use the same tokenizer")

1182
1183
    def _validate_model_kwargs(self, model_kwargs: Dict[str, Any]):
        """Validates model kwargs for generation. Generate argument typos will also be caught here."""
1184
1185
1186
1187
1188
1189
1190
        # If a `Cache` instance is passed, checks whether the model is compatible with it
        if isinstance(model_kwargs.get("past_key_values", None), Cache) and not self._supports_cache_class:
            raise ValueError(
                f"{self.__class__.__name__} does not support an instance of `Cache` as `past_key_values`. Please "
                "check the model documentation for supported cache formats."
            )

1191
1192
1193
1194
1195
1196
1197
        # Excludes arguments that are handled before calling any model function
        if self.config.is_encoder_decoder:
            for key in ["decoder_input_ids"]:
                model_kwargs.pop(key, None)

        unused_model_args = []
        model_args = set(inspect.signature(self.prepare_inputs_for_generation).parameters)
1198
1199
1200
        # `kwargs`/`model_kwargs` is often used to handle optional forward pass inputs like `attention_mask`. If
        # `prepare_inputs_for_generation` doesn't accept them, then a stricter check can be made ;)
        if "kwargs" in model_args or "model_kwargs" in model_args:
1201
            model_args |= set(inspect.signature(self.forward).parameters)
1202
1203
1204
1205
1206
1207
1208

        # Encoder-Decoder models may also need Encoder arguments from `model_kwargs`
        if self.config.is_encoder_decoder:
            base_model = getattr(self, self.base_model_prefix, None)

            # allow encoder kwargs
            encoder = getattr(self, "encoder", None)
1209
1210
1211
1212
1213
            # `MusicgenForConditionalGeneration` has `text_encoder` and `audio_encoder`.
            # Also, it has `base_model_prefix = "encoder_decoder"` but there is no `self.encoder_decoder`
            # TODO: A better way to handle this.
            if encoder is None and base_model is not None:
                encoder = getattr(base_model, "encoder", None)
1214

1215
1216
1217
            if encoder is not None:
                encoder_model_args = set(inspect.signature(encoder.forward).parameters)
                model_args |= encoder_model_args
1218
1219
1220

            # allow decoder kwargs
            decoder = getattr(self, "decoder", None)
1221
1222
            if decoder is None and base_model is not None:
                decoder = getattr(base_model, "decoder", None)
1223

1224
1225
1226
            if decoder is not None:
                decoder_model_args = set(inspect.signature(decoder.forward).parameters)
                model_args |= {f"decoder_{x}" for x in decoder_model_args}
1227

1228
1229
1230
1231
            # allow assistant_encoder_outputs to be passed if we're doing assisted generating
            if "assistant_encoder_outputs" in model_kwargs:
                model_args |= {"assistant_encoder_outputs"}

1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
        for key, value in model_kwargs.items():
            if value is not None and key not in model_args:
                unused_model_args.append(key)

        if unused_model_args:
            raise ValueError(
                f"The following `model_kwargs` are not used by the model: {unused_model_args} (note: typos in the"
                " generate arguments will also show up in this list)"
            )

1242
1243
1244
1245
    def _validate_generated_length(self, generation_config, input_ids_length, has_default_max_length):
        """Performs validation related to the resulting generated length"""

        # 1. Max length warnings related to poor parameterization
1246
        if has_default_max_length and generation_config.max_new_tokens is None and generation_config.max_length == 20:
1247
1248
            # 20 is the default max_length of the generation config
            warnings.warn(
1249
                f"Using the model-agnostic default `max_length` (={generation_config.max_length}) to control the "
1250
1251
1252
1253
1254
1255
                "generation length. We recommend setting `max_new_tokens` to control the maximum length of the "
                "generation.",
                UserWarning,
            )
        if input_ids_length >= generation_config.max_length:
            input_ids_string = "decoder_input_ids" if self.config.is_encoder_decoder else "input_ids"
1256
            raise ValueError(
1257
1258
                f"Input length of {input_ids_string} is {input_ids_length}, but `max_length` is set to"
                f" {generation_config.max_length}. This can lead to unexpected behavior. You should consider"
1259
                " increasing `max_length` or, better yet, setting `max_new_tokens`."
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
            )

        # 2. Min length warnings due to unfeasible parameter combinations
        min_length_error_suffix = (
            " Generation will stop at the defined maximum length. You should decrease the minimum length and/or "
            "increase the maximum length."
        )
        if has_default_max_length:
            min_length_error_suffix += (
                f" Note that `max_length` is set to {generation_config.max_length}, its default value."
            )
        if generation_config.min_length is not None and generation_config.min_length > generation_config.max_length:
            warnings.warn(
                f"Unfeasible length constraints: `min_length` ({generation_config.min_length}) is larger than"
                f" the maximum possible length ({generation_config.max_length})." + min_length_error_suffix,
                UserWarning,
            )
        if generation_config.min_new_tokens is not None:
            min_length = generation_config.min_new_tokens + input_ids_length
            if min_length > generation_config.max_length:
                warnings.warn(
                    f"Unfeasible length constraints: `min_new_tokens` ({generation_config.min_new_tokens}), when "
                    f"added to the prompt length ({input_ids_length}), is larger than"
                    f" the maximum possible length ({generation_config.max_length})." + min_length_error_suffix,
                    UserWarning,
                )

1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
    def _prepare_generated_length(
        self,
        generation_config,
        has_default_max_length,
        has_default_min_length,
        model_input_name,
        input_ids_length,
        inputs_tensor,
    ):
        """Prepared max and min length in generaion configs to avoid clashes between similar attributes"""

        if generation_config.max_new_tokens is not None:
            if not has_default_max_length and generation_config.max_length is not None:
                logger.warning(
                    f"Both `max_new_tokens` (={generation_config.max_new_tokens}) and `max_length`(="
                    f"{generation_config.max_length}) seem to have been set. `max_new_tokens` will take precedence. "
                    "Please refer to the documentation for more information. "
                    "(https://huggingface.co/docs/transformers/main/en/main_classes/text_generation)"
                )
            generation_config.max_length = generation_config.max_new_tokens + input_ids_length

        # if both `inputs_embeds` and `input_ids` are passed, we do not correct the length
        # otherwise we need total length [inputs-embeds-len + new-tokens-len] to not go beyond indicated `max_length``
        elif (
            model_input_name == "inputs_embeds"
            and input_ids_length != inputs_tensor.shape[1]
            and not self.config.is_encoder_decoder
        ):
            generation_config.max_length -= inputs_tensor.shape[1]

        # same for min length
        if generation_config.min_new_tokens is not None:
            if not has_default_min_length:
                logger.warning(
                    f"Both `min_new_tokens` (={generation_config.min_new_tokens}) and `min_length`(="
                    f"{generation_config.min_length}) seem to have been set. `min_new_tokens` will take precedence. "
                    "Please refer to the documentation for more information. "
                    "(https://huggingface.co/docs/transformers/main/en/main_classes/text_generation)"
                )
            generation_config.min_length = generation_config.min_new_tokens + input_ids_length

        elif (
            model_input_name == "inputs_embeds"
            and input_ids_length != inputs_tensor.shape[1]
            and not self.config.is_encoder_decoder
        ):
            generation_config.min_length = max(generation_config.min_length - inputs_tensor.shape[1], 0)

        return generation_config

1337
    def _prepare_generation_config(
1338
        self, generation_config: Optional[GenerationConfig], **kwargs: Dict
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
    ) -> Tuple[GenerationConfig, Dict]:
        """
        Prepares the base generation config, then applies any generation configuration options from kwargs.
        """
        # TODO joao: when we can detect `fullgraph=True` in `torch.compile` (https://github.com/pytorch/pytorch/pull/120400)
        # replace `is_torchdynamo_compiling` by the corresponding check. As it is, we are being too restrictive with
        # the parameterization in `fullgraph=False` so as to enable `fullgraph=True`.

        # priority: `generation_config` argument > `model.generation_config` (the default generation config)
        if generation_config is None:
            # legacy: users may modify the model configuration to control generation. To trigger this legacy behavior,
            # three conditions must be met
            # 1) the generation config must have been created from the model config (`_from_model_config` field);
            # 2) the generation config must have seen no modification since its creation (the hash is the same);
            # 3) the user must have set generation parameters in the model config.
            # NOTE: `torch.compile` can't compile `hash`, this legacy support is disabled with compilation.
            if (
                not is_torchdynamo_compiling()
                and self.generation_config._from_model_config
                and self.generation_config._original_object_hash == hash(self.generation_config)
                and self.config._has_non_default_generation_parameters()
            ):
                new_generation_config = GenerationConfig.from_model_config(self.config)
                if new_generation_config != self.generation_config:
                    warnings.warn(
                        "You have modified the pretrained model configuration to control generation. This is a"
                        " deprecated strategy to control generation and will be removed soon, in a future version."
                        " Please use and modify the model generation configuration (see"
                        " https://huggingface.co/docs/transformers/generation_strategies#default-text-generation-configuration )"
                    )
                    self.generation_config = new_generation_config
            generation_config = self.generation_config

        # `torch.compile` can't compile `copy.deepcopy`, arguments in `kwargs` that are part of `generation_config`
        # will mutate the object with `.update`. As such, passing these arguments through `kwargs` is disabled.
        if is_torchdynamo_compiling():
            model_kwargs = kwargs
            generate_attributes_in_kwargs = [
                key for key, value in kwargs.items() if getattr(generation_config, key, None) != value
            ]
            if len(generate_attributes_in_kwargs) > 0:
                raise ValueError(
                    "`torch.compile` exception: all generation configuration attributes must be passed within a "
                    f"`generation_config` instance passed to `generate` (found: {generate_attributes_in_kwargs})."
                )
        else:
            generation_config = copy.deepcopy(generation_config)
            model_kwargs = generation_config.update(**kwargs)

        return generation_config, model_kwargs

1390
1391
    def _get_initial_cache_position(self, input_ids, model_kwargs):
        """Calculates `cache_position` for the pre-fill stage based on `input_ids` and optionally past length"""
1392
1393
1394
1395
        if not model_kwargs.get("use_cache", True):
            model_kwargs["cache_position"] = None
            return model_kwargs

1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
        past_length = 0
        if "past_key_values" in model_kwargs:
            if isinstance(model_kwargs["past_key_values"], Cache):
                past_length = model_kwargs["past_key_values"].get_seq_length()
            else:
                past_length = model_kwargs["past_key_values"][0][0].shape[2]
        if "inputs_embeds" in model_kwargs:
            cur_len = model_kwargs["inputs_embeds"].shape[1]
        else:
            cur_len = input_ids.shape[-1]
        model_kwargs["cache_position"] = torch.arange(past_length, cur_len, device=input_ids.device)
        return model_kwargs

1409
    def _get_cache(self, cache_implementation: str, max_batch_size: int, max_cache_len: int) -> Cache:
1410
        """
1411
        Sets a cache for `generate`, that will persist across calls. A new cache will only be initialized a
1412
1413
        new `generate` call requires a larger cache.

1414
        Returns the resulting cache object.
1415
        """
1416
        cache_cls: Cache = NEED_SETUP_CACHE_CLASSES_MAPPING[cache_implementation]
1417
1418
1419
        if cache_implementation == "sliding_window":
            max_cache_len = min(self.config.sliding_window, max_cache_len)

1420
1421
1422
        need_new_cache = (
            not hasattr(self, "_cache")
            or (not isinstance(self._cache, cache_cls))
1423
1424
            or self._cache.max_batch_size != max_batch_size
            or self._cache.max_cache_len < max_cache_len
1425
        )
1426
1427

        if need_new_cache:
1428
1429
1430
1431
            if hasattr(self.config, "_pre_quantization_dtype"):
                cache_dtype = self.config._pre_quantization_dtype
            else:
                cache_dtype = self.dtype
1432
            self._cache = cache_cls(
1433
1434
1435
1436
1437
1438
1439
                config=self.config,
                max_batch_size=max_batch_size,
                max_cache_len=max_cache_len,
                device=self.device,
                dtype=cache_dtype,
            )
        else:
1440
1441
            self._cache.reset()
        return self._cache
1442

1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
    def _supports_default_dynamic_cache(self) -> bool:
        """
        Return `True` if current model can use a `DynamicCache` instance when initializing the `past_key_values`.
        This is mostly the same as `_supports_cache_class` attribute, but add exception for `Jamba` model which
        uses its own `HybridMambaAttentionDynamicCache` and do not need to initialize the Cache in advance in
        order to save memory (because no back and forth `to_legacy_cache` and `from_legacy_cache` will be performed
        for `HybridMambaAttentionDynamicCache`).
        """
        return self._supports_cache_class and "jamba" not in self.__class__.__name__.lower()

1453
    def _prepare_special_tokens(
1454
1455
1456
1457
        self,
        generation_config: GenerationConfig,
        kwargs_has_attention_mask: Optional[bool] = None,
        device: Optional[Union[torch.device, str]] = None,
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
    ):
        """
        Prepares the special tokens for generation, overwriting the generation config with their processed versions
        converted to tensor.

        Note that `generation_config` is changed in place and stops being serializable after this method is called.
        That is no problem if called within `generate` (`generation_config` is a local copy that doesn't leave the
        function). However, if called outside `generate`, consider creating a copy of `generation_config` first.
        """

1468
1469
        # Convert special tokens to tensors (if they exist either in kwargs or in self.config)
        def _tensor_or_none(token_kwargs, token_self, device=None):
1470
1471
1472
            if device is None:
                device = self.device

1473
            token = token_kwargs if token_kwargs is not None else token_self
1474
1475
            if token is None or isinstance(token, torch.Tensor):
                return token
1476
            return torch.tensor(token, device=device, dtype=torch.long)
1477

1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
        bos_token_id = _tensor_or_none(
            generation_config.bos_token_id, self.generation_config.bos_token_id, device=device
        )
        eos_token_id = _tensor_or_none(
            generation_config.eos_token_id, self.generation_config.eos_token_id, device=device
        )
        pad_token_id = _tensor_or_none(
            generation_config.pad_token_id, self.generation_config.pad_token_id, device=device
        )
        decoder_start_token_id = _tensor_or_none(
            generation_config.decoder_start_token_id, self.generation_config.decoder_start_token_id, device=device
        )
1490

1491
1492
1493
        # for BC we also try to get `decoder_start_token_id` or `bos_token_id` (#30892)
        if self.config.is_encoder_decoder:
            decoder_start_token_id = decoder_start_token_id if decoder_start_token_id is not None else bos_token_id
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508

        # We can have more than one eos token. Always treat it as a 1D tensor (when it exists).
        if eos_token_id is not None and eos_token_id.ndim == 0:
            eos_token_id = eos_token_id.unsqueeze(0)

        # Set pad token if unset (and there are conditions to do so)
        if pad_token_id is None and eos_token_id is not None:
            if kwargs_has_attention_mask is not None and not kwargs_has_attention_mask:
                logger.warning(
                    "The attention mask and the pad token id were not set. As a consequence, you may observe "
                    "unexpected behavior. Please pass your input's `attention_mask` to obtain reliable results."
                )
            pad_token_id = eos_token_id[0]
            logger.warning(f"Setting `pad_token_id` to `eos_token_id`:{pad_token_id} for open-end generation.")

1509
1510
1511
1512
1513
1514
1515
1516
1517
        # we can't infer attn mask if pad token is set to be eos token in model's generation config
        if eos_token_id is not None and torch.isin(elements=eos_token_id, test_elements=pad_token_id).any():
            if kwargs_has_attention_mask is not None and not kwargs_has_attention_mask:
                logger.warning_once(
                    "The attention mask is not set and cannot be inferred from input because pad token is same as eos token."
                    "As a consequence, you may observe unexpected behavior. Please pass your input's `attention_mask` "
                    "to obtain reliable results."
                )

1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
        # Sanity checks/warnings
        if self.config.is_encoder_decoder and decoder_start_token_id is None:
            raise ValueError(
                "`decoder_start_token_id` or `bos_token_id` has to be defined for encoder-decoder generation."
            )
        if eos_token_id is not None and (torch.is_floating_point(eos_token_id) or (eos_token_id < 0).any()):
            logger.warning(
                f"`eos_token_id` should consist of positive integers, but is {eos_token_id}. Your generation will not "
                "stop until the maximum length is reached. Depending on other flags, it may even crash."
            )

        # Update generation config with the updated special tokens tensors
        generation_config.bos_token_id = bos_token_id
        generation_config.eos_token_id = eos_token_id
        generation_config.pad_token_id = pad_token_id
        generation_config.decoder_start_token_id = decoder_start_token_id

1535
1536
1537
1538
    @torch.no_grad()
    def generate(
        self,
        inputs: Optional[torch.Tensor] = None,
1539
        generation_config: Optional[GenerationConfig] = None,
1540
1541
        logits_processor: Optional[LogitsProcessorList] = None,
        stopping_criteria: Optional[StoppingCriteriaList] = None,
1542
        prefix_allowed_tokens_fn: Optional[Callable[[int, torch.Tensor], List[int]]] = None,
1543
        synced_gpus: Optional[bool] = None,
1544
        assistant_model: Optional["PreTrainedModel"] = None,
1545
        streamer: Optional["BaseStreamer"] = None,
1546
1547
        negative_prompt_ids: Optional[torch.Tensor] = None,
        negative_prompt_attention_mask: Optional[torch.Tensor] = None,
1548
        **kwargs,
1549
1550
1551
    ) -> Union[GenerateOutput, torch.LongTensor]:
        r"""

1552
        Generates sequences of token ids for models with a language modeling head.
1553
1554
1555

        <Tip warning={true}>

1556
1557
        Most generation-controlling parameters are set in `generation_config` which, if not passed, will be set to the
        model's default generation configuration. You can override any `generation_config` by passing the corresponding
1558
        parameters to generate(), e.g. `.generate(inputs, num_beams=4, do_sample=True)`.
1559

1560
        For an overview of generation strategies and code examples, check out the [following
1561
        guide](../generation_strategies).
1562

1563
        </Tip>
1564
1565
1566
1567
1568

        Parameters:
            inputs (`torch.Tensor` of varying shape depending on the modality, *optional*):
                The sequence used as a prompt for the generation or as model inputs to the encoder. If `None` the
                method initializes it with `bos_token_id` and a batch size of 1. For decoder-only models `inputs`
1569
                should be in the format of `input_ids`. For encoder-decoder models *inputs* can represent any of
1570
                `input_ids`, `input_values`, `input_features`, or `pixel_values`.
1571
            generation_config ([`~generation.GenerationConfig`], *optional*):
1572
1573
                The generation configuration to be used as base parametrization for the generation call. `**kwargs`
                passed to generate matching the attributes of `generation_config` will override them. If
1574
                `generation_config` is not provided, the default will be used, which has the following loading
1575
1576
1577
1578
1579
1580
1581
1582
                priority: 1) from the `generation_config.json` model file, if it exists; 2) from the model
                configuration. Please note that unspecified parameters will inherit [`~generation.GenerationConfig`]'s
                default values, whose documentation should be checked to parameterize generation.
            logits_processor (`LogitsProcessorList`, *optional*):
                Custom logits processors that complement the default logits processors built from arguments and
                generation config. If a logit processor is passed that is already created with the arguments or a
                generation config an error is thrown. This feature is intended for advanced users.
            stopping_criteria (`StoppingCriteriaList`, *optional*):
1583
                Custom stopping criteria that complements the default stopping criteria built from arguments and a
1584
                generation config. If a stopping criteria is passed that is already created with the arguments or a
1585
1586
1587
                generation config an error is thrown. If your stopping criteria depends on the `scores` input, make
                sure you pass `return_dict_in_generate=True, output_scores=True` to `generate`. This feature is
                intended for advanced users.
1588
1589
1590
1591
1592
1593
1594
            prefix_allowed_tokens_fn (`Callable[[int, torch.Tensor], List[int]]`, *optional*):
                If provided, this function constraints the beam search to allowed tokens only at each step. If not
                provided no constraint is applied. This function takes 2 arguments: the batch ID `batch_id` and
                `input_ids`. It has to return a list with the allowed tokens for the next generation step conditioned
                on the batch ID `batch_id` and the previously generated tokens `inputs_ids`. This argument is useful
                for constrained generation conditioned on the prefix, as described in [Autoregressive Entity
                Retrieval](https://arxiv.org/abs/2010.00904).
1595
1596
1597
1598
            synced_gpus (`bool`, *optional*):
                Whether to continue running the while loop until max_length. Unless overridden this flag will be set to
                `True` under DeepSpeed ZeRO Stage 3 multiple GPUs environment to avoid hanging if one GPU finished
                generating before other GPUs. Otherwise it'll be set to `False`.
1599
1600
1601
1602
1603
            assistant_model (`PreTrainedModel`, *optional*):
                An assistant model that can be used to accelerate generation. The assistant model must have the exact
                same tokenizer. The acceleration is achieved when forecasting candidate tokens with the assistent model
                is much faster than running generation with the model you're calling generate from. As such, the
                assistant model should be much smaller.
1604
1605
1606
            streamer (`BaseStreamer`, *optional*):
                Streamer object that will be used to stream the generated sequences. Generated tokens are passed
                through `streamer.put(token_ids)` and the streamer is responsible for any further processing.
1607
1608
1609
1610
1611
            negative_prompt_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
                The negative prompt needed for some processors such as CFG. The batch size must match the input batch
                size. This is an experimental feature, subject to breaking API changes in future versions.
            negative_prompt_attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
                Attention_mask for `negative_prompt_ids`.
1612
            kwargs (`Dict[str, Any]`, *optional*):
1613
                Ad hoc parametrization of `generation_config` and/or additional model-specific kwargs that will be
1614
1615
                forwarded to the `forward` function of the model. If the model is an encoder-decoder model, encoder
                specific kwargs should not be prefixed and decoder specific kwargs should be prefixed with *decoder_*.
1616
1617
1618

        Return:
            [`~utils.ModelOutput`] or `torch.LongTensor`: A [`~utils.ModelOutput`] (if `return_dict_in_generate=True`
1619
            or when `config.return_dict_in_generate=True`) or a `torch.LongTensor`.
1620
1621
1622
1623

                If the model is *not* an encoder-decoder model (`model.config.is_encoder_decoder=False`), the possible
                [`~utils.ModelOutput`] types are:

1624
1625
                    - [`~generation.GenerateDecoderOnlyOutput`],
                    - [`~generation.GenerateBeamDecoderOnlyOutput`]
1626
1627
1628
1629

                If the model is an encoder-decoder model (`model.config.is_encoder_decoder=True`), the possible
                [`~utils.ModelOutput`] types are:

1630
1631
                    - [`~generation.GenerateEncoderDecoderOutput`],
                    - [`~generation.GenerateBeamEncoderDecoderOutput`]
1632
        """
1633
1634
        # 1. Handle `generation_config` and kwargs that might update it, and validate the `.generate()` call
        self._validate_model_class()
1635
        tokenizer = kwargs.pop("tokenizer", None)  # Pull this out first, we only use it for stopping criteria
1636
1637
        generation_config, model_kwargs = self._prepare_generation_config(generation_config, **kwargs)
        self._validate_model_kwargs(model_kwargs.copy())
1638
        self._validate_assistant(assistant_model)
1639

1640
        # 2. Set generation parameters if not already defined
1641
        if synced_gpus is None:
1642
            if is_deepspeed_zero3_enabled() and dist.get_world_size() > 1:
1643
1644
1645
                synced_gpus = True
            else:
                synced_gpus = False
1646

1647
1648
1649
        logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList()
        stopping_criteria = stopping_criteria if stopping_criteria is not None else StoppingCriteriaList()

1650
1651
1652
        accepts_attention_mask = "attention_mask" in set(inspect.signature(self.forward).parameters.keys())
        requires_attention_mask = "encoder_outputs" not in model_kwargs
        kwargs_has_attention_mask = model_kwargs.get("attention_mask", None) is not None
1653

1654
1655
1656
1657
        # 3. Define model inputs
        inputs_tensor, model_input_name, model_kwargs = self._prepare_model_inputs(
            inputs, generation_config.bos_token_id, model_kwargs
        )
1658
1659
        batch_size = inputs_tensor.shape[0]

1660
1661
1662
        device = inputs_tensor.device
        self._prepare_special_tokens(generation_config, kwargs_has_attention_mask, device=device)

1663
1664
        # decoder-only models must use left-padding for batched generation.
        if not self.config.is_encoder_decoder and not is_torchdynamo_compiling():
1665
1666
            # If `input_ids` was given, check if the last id in any sequence is `pad_token_id`
            # Note: If using, `inputs_embeds` this check does not work, because we want to be more hands-off.
1667
1668
            if (
                generation_config.pad_token_id is not None
1669
                and batch_size > 1
1670
                and len(inputs_tensor.shape) == 2
1671
1672
                and torch.sum(inputs_tensor[:, -1] == generation_config.pad_token_id) > 0
            ):
1673
1674
1675
1676
1677
                logger.warning(
                    "A decoder-only architecture is being used, but right-padding was detected! For correct "
                    "generation results, please set `padding_side='left'` when initializing the tokenizer."
                )

1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
        # 4. Define other model kwargs
        # decoder-only models with inputs_embeds forwarding must use caching (otherwise we can't detect whether we are
        # generating the first new token or not, and we only want to use the embeddings for the first new token)
        if not self.config.is_encoder_decoder and model_input_name == "inputs_embeds":
            model_kwargs["use_cache"] = True
        else:
            model_kwargs["use_cache"] = generation_config.use_cache

        if not kwargs_has_attention_mask and requires_attention_mask and accepts_attention_mask:
            model_kwargs["attention_mask"] = self._prepare_attention_mask_for_generation(
                inputs_tensor, generation_config.pad_token_id, generation_config.eos_token_id
            )

1691
        if self.config.is_encoder_decoder and "encoder_outputs" not in model_kwargs:
1692
            # if model is encoder decoder encoder_outputs are created and added to `model_kwargs`
1693
            model_kwargs = self._prepare_encoder_decoder_kwargs_for_generation(
1694
                inputs_tensor, model_kwargs, model_input_name, generation_config
1695
1696
            )

1697
        # 5. Prepare `input_ids` which will be used for auto-regressive generation
1698
        if self.config.is_encoder_decoder:
1699
1700
1701
1702
            input_ids, model_kwargs = self._prepare_decoder_input_ids_for_generation(
                batch_size=batch_size,
                model_input_name=model_input_name,
                model_kwargs=model_kwargs,
1703
                decoder_start_token_id=generation_config.decoder_start_token_id,
1704
1705
1706
                device=inputs_tensor.device,
            )
        else:
1707
            input_ids = inputs_tensor if model_input_name == "input_ids" else model_kwargs.pop("input_ids")
1708

Ahmed Moubtahij's avatar
Ahmed Moubtahij committed
1709
1710
1711
        if generation_config.token_healing:
            input_ids = self.heal_tokens(input_ids, tokenizer)

1712
1713
1714
        if streamer is not None:
            streamer.put(input_ids.cpu())

1715
        # 6. Prepare `max_length` depending on other stopping criteria.
1716
        input_ids_length = input_ids.shape[-1]
1717
        has_default_max_length = kwargs.get("max_length") is None and generation_config.max_length is not None
1718
1719
1720
1721
1722
1723
1724
1725
1726
        has_default_min_length = kwargs.get("min_length") is None and generation_config.min_length is not None
        generation_config = self._prepare_generated_length(
            generation_config=generation_config,
            has_default_max_length=has_default_max_length,
            has_default_min_length=has_default_min_length,
            model_input_name=model_input_name,
            inputs_tensor=inputs_tensor,
            input_ids_length=input_ids_length,
        )
1727

1728
        use_dynamic_cache_by_default = False
1729
1730
1731
1732
1733
        if generation_config.cache_implementation is not None and model_kwargs.get("past_key_values") is not None:
            raise ValueError(
                "Passing both `cache_implementation` (used to initialize certain caches) and `past_key_values` (a "
                "Cache object) is unsupported. Please use only one of the two."
            )
1734
1735
1736
1737
1738
1739
1740
1741
1742
        elif generation_config.cache_implementation is not None:
            if generation_config.cache_implementation in NEED_SETUP_CACHE_CLASSES_MAPPING:
                if generation_config.cache_implementation == "static" and not self._supports_static_cache:
                    raise ValueError(
                        "This model does not support `cache_implementation='static'`. Please check the following "
                        "issue: https://github.com/huggingface/transformers/issues/28981"
                    )
                model_kwargs["past_key_values"] = self._get_cache(
                    generation_config.cache_implementation, batch_size, generation_config.max_length
1743
                )
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
            elif generation_config.cache_implementation == "quantized":
                if not self._supports_quantized_cache:
                    raise ValueError(
                        "This model does not support the quantized cache. If you want your model to support quantized "
                        "cache, please open an issue."
                    )

                cache_config = (
                    generation_config.cache_config
                    if generation_config.cache_config is not None
                    else QuantizedCacheConfig()
1755
                )
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
                cache_class = QUANT_BACKEND_CLASSES_MAPPING[cache_config.backend]

                if cache_config.backend == "quanto" and not is_quanto_available():
                    raise ImportError(
                        "You need to install `quanto` in order to use KV cache quantization with quanto backend. "
                        "Please install it via  with `pip install quanto`"
                    )
                elif cache_config.backend == "HQQ" and not is_hqq_available():
                    raise ImportError(
                        "You need to install `HQQ` in order to use KV cache quantization with HQQ backend. "
                        "Please install it via  with `pip install hqq`"
                    )

                model_kwargs["past_key_values"] = cache_class(cache_config)
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
        # Use DynamicCache() instance by default. This will avoid back and forth from legacy format that
        # keeps copying the cache thus using much more memory
        elif generation_config.cache_implementation is None and self._supports_default_dynamic_cache():
            past = model_kwargs.get("past_key_values", None)
            if past is None:
                model_kwargs["past_key_values"] = DynamicCache()
                use_dynamic_cache_by_default = True
            elif isinstance(past, tuple):
                model_kwargs["past_key_values"] = DynamicCache.from_legacy_cache(past)
                use_dynamic_cache_by_default = True
1780

1781
        self._validate_generated_length(generation_config, input_ids_length, has_default_max_length)
1782

1783
        # 7. determine generation mode
1784
        generation_mode = generation_config.get_generation_mode(assistant_model)
1785

1786
1787
1788
1789
1790
        if streamer is not None and (generation_config.num_beams > 1):
            raise ValueError(
                "`streamer` cannot be used with beam search (yet!). Make sure that `num_beams` is set to 1."
            )

1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
        if self.device.type != input_ids.device.type:
            warnings.warn(
                "You are calling .generate() with the `input_ids` being on a device type different"
                f" than your model's device. `input_ids` is on {input_ids.device.type}, whereas the model"
                f" is on {self.device.type}. You may experience unexpected behaviors or slower generation."
                " Please make sure that you have put `input_ids` to the"
                f" correct device by calling for example input_ids = input_ids.to('{self.device.type}') before"
                " running `.generate()`.",
                UserWarning,
            )

1802
        # 8. prepare distribution pre_processing samplers
1803
        prepared_logits_processor = self._get_logits_processor(
1804
            generation_config=generation_config,
1805
            input_ids_seq_length=input_ids_length,
1806
1807
1808
            encoder_input_ids=inputs_tensor,
            prefix_allowed_tokens_fn=prefix_allowed_tokens_fn,
            logits_processor=logits_processor,
1809
            device=inputs_tensor.device,
1810
1811
1812
            model_kwargs=model_kwargs,
            negative_prompt_ids=negative_prompt_ids,
            negative_prompt_attention_mask=negative_prompt_attention_mask,
1813
1814
        )

1815
        # 9. prepare stopping criteria
1816
        prepared_stopping_criteria = self._get_stopping_criteria(
1817
            generation_config=generation_config, stopping_criteria=stopping_criteria, tokenizer=tokenizer, **kwargs
1818
        )
1819

1820
        # 10. go into different generation modes
1821
        if generation_mode == GenerationMode.ASSISTED_GENERATION:
1822
1823
            if generation_config.num_return_sequences > 1:
                raise ValueError(
1824
                    "num_return_sequences has to be 1 when doing assisted generate, "
1825
1826
1827
                    f"but is {generation_config.num_return_sequences}."
                )
            if batch_size > 1:
1828
                raise ValueError("assisted generate is only supported for batch_size = 1")
1829
            if not model_kwargs["use_cache"]:
1830
                raise ValueError("assisted generate requires `use_cache=True`")
1831
1832
            if generation_config.cache_implementation == "static":
                raise ValueError("assisted generate is not supported with `static_cache`")
1833

1834
1835
1836
1837
1838
1839
1840
1841
            # 11. Get the candidate generator, given the parameterization
            candidate_generator = self._get_candidate_generator(
                generation_config=generation_config,
                input_ids=input_ids,
                inputs_tensor=inputs_tensor,
                assistant_model=assistant_model,
                logits_processor=logits_processor,
                model_kwargs=model_kwargs,
1842
1843
            )

1844
1845
            # 12. prepare logits warper (if `do_sample` is `True`)
            prepared_logits_warper = (
1846
1847
1848
1849
1850
1851
                self._get_logits_warper(
                    generation_config,
                    device=input_ids.device,
                )
                if generation_config.do_sample
                else None
1852
1853
1854
            )

            # 13. run assisted generate
1855
            result = self._assisted_decoding(
1856
                input_ids,
1857
                candidate_generator=candidate_generator,
1858
                logits_processor=prepared_logits_processor,
1859
                logits_warper=prepared_logits_warper,
1860
                stopping_criteria=prepared_stopping_criteria,
1861
                generation_config=generation_config,
1862
1863
1864
1865
                synced_gpus=synced_gpus,
                streamer=streamer,
                **model_kwargs,
            )
1866

1867
        elif generation_mode == GenerationMode.CONTRASTIVE_SEARCH:
1868
1869
            if not model_kwargs["use_cache"]:
                raise ValueError("Contrastive search requires `use_cache=True`")
1870

1871
            result = self._contrastive_search(
1872
                input_ids,
1873
1874
                logits_processor=prepared_logits_processor,
                stopping_criteria=prepared_stopping_criteria,
1875
                generation_config=generation_config,
1876
                synced_gpus=synced_gpus,
1877
                streamer=streamer,
1878
1879
1880
                **model_kwargs,
            )

1881
        elif generation_mode in (GenerationMode.SAMPLE, GenerationMode.GREEDY_SEARCH):
1882
            # 11. prepare logits warper
1883
            prepared_logits_warper = (
1884
1885
1886
                self._get_logits_warper(generation_config, device=input_ids.device)
                if generation_config.do_sample
                else None
1887
            )
1888

1889
            # 12. expand input_ids with `num_return_sequences` additional sequences per batch
1890
1891
            input_ids, model_kwargs = self._expand_inputs_for_generation(
                input_ids=input_ids,
1892
                expand_size=generation_config.num_return_sequences,
1893
1894
1895
1896
                is_encoder_decoder=self.config.is_encoder_decoder,
                **model_kwargs,
            )

1897
            # 13. run sample (it degenerates to greedy search when `generation_config.do_sample=False`)
1898
            result = self._sample(
1899
                input_ids,
1900
                logits_processor=prepared_logits_processor,
1901
                logits_warper=prepared_logits_warper,
1902
                stopping_criteria=prepared_stopping_criteria,
1903
                generation_config=generation_config,
1904
                synced_gpus=synced_gpus,
1905
                streamer=streamer,
1906
1907
1908
                **model_kwargs,
            )

1909
        elif generation_mode in (GenerationMode.BEAM_SAMPLE, GenerationMode.BEAM_SEARCH):
1910
            # 11. prepare logits warper
1911
            prepared_logits_warper = (
1912
1913
1914
                self._get_logits_warper(generation_config, device=input_ids.device)
                if generation_config.do_sample
                else None
1915
            )
1916

1917
            # 12. prepare beam search scorer
1918
            beam_scorer = BeamSearchScorer(
1919
                batch_size=batch_size,
1920
                num_beams=generation_config.num_beams,
1921
                device=inputs_tensor.device,
1922
1923
                length_penalty=generation_config.length_penalty,
                do_early_stopping=generation_config.early_stopping,
1924
                num_beam_hyps_to_keep=generation_config.num_return_sequences,
1925
                max_length=generation_config.max_length,
1926
1927
            )

1928
            # 13. interleave input_ids with `num_beams` additional sequences per batch
1929
1930
            input_ids, model_kwargs = self._expand_inputs_for_generation(
                input_ids=input_ids,
1931
                expand_size=generation_config.num_beams,
1932
1933
1934
1935
                is_encoder_decoder=self.config.is_encoder_decoder,
                **model_kwargs,
            )

1936
            # 14. run beam sample
1937
            result = self._beam_search(
1938
1939
                input_ids,
                beam_scorer,
1940
                logits_processor=prepared_logits_processor,
1941
                logits_warper=prepared_logits_warper,
1942
                stopping_criteria=prepared_stopping_criteria,
1943
                generation_config=generation_config,
1944
1945
1946
1947
                synced_gpus=synced_gpus,
                **model_kwargs,
            )

1948
        elif generation_mode == GenerationMode.GROUP_BEAM_SEARCH:
1949
            # 11. prepare beam search scorer
1950
1951
            beam_scorer = BeamSearchScorer(
                batch_size=batch_size,
1952
                num_beams=generation_config.num_beams,
1953
                device=inputs_tensor.device,
1954
1955
1956
1957
                length_penalty=generation_config.length_penalty,
                do_early_stopping=generation_config.early_stopping,
                num_beam_hyps_to_keep=generation_config.num_return_sequences,
                num_beam_groups=generation_config.num_beam_groups,
1958
                max_length=generation_config.max_length,
1959
            )
1960
            # 12. interleave input_ids with `num_beams` additional sequences per batch
1961
1962
            input_ids, model_kwargs = self._expand_inputs_for_generation(
                input_ids=input_ids,
1963
                expand_size=generation_config.num_beams,
1964
1965
1966
                is_encoder_decoder=self.config.is_encoder_decoder,
                **model_kwargs,
            )
1967
            # 13. run beam search
1968
            result = self._group_beam_search(
1969
1970
                input_ids,
                beam_scorer,
1971
1972
                logits_processor=prepared_logits_processor,
                stopping_criteria=prepared_stopping_criteria,
1973
                generation_config=generation_config,
1974
1975
1976
1977
                synced_gpus=synced_gpus,
                **model_kwargs,
            )

1978
        elif generation_mode == GenerationMode.CONSTRAINED_BEAM_SEARCH:
1979
            final_constraints = []
1980
1981
            if generation_config.constraints is not None:
                final_constraints = generation_config.constraints
1982

1983
            if generation_config.force_words_ids is not None:
1984
1985
1986

                def typeerror():
                    raise ValueError(
1987
                        "`force_words_ids` has to either be a `List[List[List[int]]]` or `List[List[int]]` "
1988
                        f"of positive integers, but is {generation_config.force_words_ids}."
1989
1990
                    )

1991
1992
1993
1994
                if (
                    not isinstance(generation_config.force_words_ids, list)
                    or len(generation_config.force_words_ids) == 0
                ):
1995
1996
                    typeerror()

1997
                for word_ids in generation_config.force_words_ids:
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
                    if isinstance(word_ids[0], list):
                        if not isinstance(word_ids, list) or len(word_ids) == 0:
                            typeerror()
                        if any(not isinstance(token_ids, list) for token_ids in word_ids):
                            typeerror()
                        if any(
                            any((not isinstance(token_id, int) or token_id < 0) for token_id in token_ids)
                            for token_ids in word_ids
                        ):
                            typeerror()

                        constraint = DisjunctiveConstraint(word_ids)
                    else:
                        if not isinstance(word_ids, list) or len(word_ids) == 0:
                            typeerror()
                        if any((not isinstance(token_id, int) or token_id < 0) for token_id in word_ids):
                            typeerror()

                        constraint = PhrasalConstraint(word_ids)
                    final_constraints.append(constraint)

2019
            # 11. prepare beam search scorer
2020
2021
2022
            constrained_beam_scorer = ConstrainedBeamSearchScorer(
                constraints=final_constraints,
                batch_size=batch_size,
2023
                num_beams=generation_config.num_beams,
2024
                device=inputs_tensor.device,
2025
2026
2027
                length_penalty=generation_config.length_penalty,
                do_early_stopping=generation_config.early_stopping,
                num_beam_hyps_to_keep=generation_config.num_return_sequences,
2028
                max_length=generation_config.max_length,
2029
            )
2030
            # 12. interleave input_ids with `num_beams` additional sequences per batch
2031
2032
            input_ids, model_kwargs = self._expand_inputs_for_generation(
                input_ids=input_ids,
2033
                expand_size=generation_config.num_beams,
2034
2035
2036
                is_encoder_decoder=self.config.is_encoder_decoder,
                **model_kwargs,
            )
2037
            # 13. run beam search
2038
            result = self._constrained_beam_search(
2039
2040
                input_ids,
                constrained_beam_scorer=constrained_beam_scorer,
2041
2042
                logits_processor=prepared_logits_processor,
                stopping_criteria=prepared_stopping_criteria,
2043
                generation_config=generation_config,
2044
2045
2046
2047
                synced_gpus=synced_gpus,
                **model_kwargs,
            )

2048
2049
2050
2051
2052
        # Convert to legacy cache if needed
        if use_dynamic_cache_by_default and generation_config.return_legacy_cache:
            if isinstance(result, ModelOutput) and hasattr(result, "past_key_values"):
                if isinstance(result.past_key_values, DynamicCache):
                    result.past_key_values = result.past_key_values.to_legacy_cache()
2053
2054
        return result

2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
    def _has_unfinished_sequences(self, this_peer_finished: bool, synced_gpus: bool, device: torch.device) -> bool:
        """
        Returns whether there are still unfinished sequences in the device. The existence of unfinished sequences is
        fed through `this_peer_finished`. ZeRO stage 3-friendly.
        """
        if synced_gpus:
            # Under synced_gpus the `forward` call must continue until all gpus complete their sequence.
            # The following logic allows an early break if all peers finished generating their sequence
            this_peer_finished_flag = torch.tensor(0.0 if this_peer_finished else 1.0).to(device)
            # send 0.0 if we finished, 1.0 otherwise
            dist.all_reduce(this_peer_finished_flag, op=dist.ReduceOp.SUM)
            # did all peers finish? the reduced sum will be 0.0 then
            if this_peer_finished_flag.item() == 0.0:
                return False
        elif this_peer_finished:
            return False
        return True

Ahmed Moubtahij's avatar
Ahmed Moubtahij committed
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
    def heal_tokens(
        self, input_ids: torch.LongTensor, tokenizer: Optional["PreTrainedTokenizerBase"] = None
    ) -> torch.LongTensor:
        r"""
        Generates sequences of token ids for models with a language modeling head.
        Parameters:
            input_ids (`torch.LongTensor`): The sequence used as a prompt for the generation.
            tokenizer (`PreTrainedTokenizerBase`, *optional*): The tokenizer used to decode the input ids.
        Return:
            `torch.LongTensor` where each sequence has its tail token replaced with its appropriate extension.
        """
        if tokenizer is None:
            raise ValueError(
                " When generating with token healing, you must pass the model's tokenizer to the `tokenizer` "
                "argument of `generate`."
            )

        bos_token_id, pad_token_id = tokenizer.bos_token_id, tokenizer.pad_token_id
        vocab_trie = ExtensionsTrie(tokenizer.get_vocab())
        generation_config = GenerationConfig(max_new_tokens=1, pad_token_id=pad_token_id)

        # assumption: leading/trailing whitespace is not meaningful, so the prompts are
        # stripped before re-tokenizing to desensitize generation to whitespace artefacts
        prompts = [p.strip() for p in tokenizer.batch_decode(input_ids, skip_special_tokens=True)]
        input_ids = tokenizer(
            prompts,
            return_tensors="pt",
            padding=True,
        ).input_ids.to(input_ids.device)

        # replace bos with pad to not condition healing on it
        input_ids = torch.where(input_ids == bos_token_id, pad_token_id, input_ids)

        tail_ids = input_ids[:, -1].tolist()
        space_tok = tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids(" "))[0]
        # tail tokens are used for a prefix search, thus, whitespaces are replaced with
        # their tokenization (e.g. 'Ġ') to enable search for tokens prefixed with a whitespace
        tail_toks = (tokenizer.decode(t).replace(" ", space_tok) for t in tail_ids)

        for batch_idx, (tail_id, tail_tok) in enumerate(zip(tail_ids, tail_toks)):
            batch_ids = input_ids[batch_idx]
            if torch.all(batch_ids == pad_token_id).item():
                continue  # skip empty sequences (all pad ids)

            # apply bias for alternatives (extensions) to the tail token
            seq_bias = {(alt_tok,): 10.0 for alt_tok in vocab_trie.values(prefix=tail_tok)}
            if len(seq_bias) == 1:
                continue  # skip if there are no token alternatives to heal with

            # slightly favor original token to limit aggressive healing e.g. 'http' -> 'https'
            seq_bias[(tail_id,)] += 1.0
            generation_config.update(sequence_bias=seq_bias)

            trimmed_ids = batch_ids[:-1]
            # if the prompt is a single (non-pad) token, regenerate from bos
            if len(batch_ids[batch_ids != pad_token_id]) == 1:
                trimmed_ids[-1] = bos_token_id

            input_ids[batch_idx] = self.generate(trimmed_ids.unsqueeze(0), generation_config=generation_config)

        return input_ids

    def contrastive_search(self, *args, **kwargs):
        logger.warning_once(
            "Calling `contrastive_search` directly is deprecated and will be removed in v4.41. Use `generate` or a "
            "custom generation loop instead.",
        )
        return self._contrastive_search(*args, **kwargs)

2142
    @torch.no_grad()
2143
    def _contrastive_search(
2144
2145
        self,
        input_ids: torch.LongTensor,
2146
2147
2148
2149
2150
        logits_processor: LogitsProcessorList,
        stopping_criteria: StoppingCriteriaList,
        generation_config: GenerationConfig,
        synced_gpus: bool,
        streamer: Optional["BaseStreamer"],
2151
        **model_kwargs,
2152
    ) -> Union[GenerateNonBeamOutput, torch.LongTensor]:
2153
2154
2155
2156
2157
2158
2159
        r"""
        Generates sequences of token ids for models with a language modeling head using **contrastive search** and can
        be used for text-decoder, text-to-text, speech-to-text, and vision-to-text models.

        Parameters:
            input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
                The sequence used as a prompt for the generation.
2160
            logits_processor (`LogitsProcessorList`):
2161
2162
                An instance of [`LogitsProcessorList`]. List of instances of class derived from [`LogitsProcessor`]
                used to modify the prediction scores of the language modeling head applied at each generation step.
2163
            stopping_criteria (`StoppingCriteriaList`):
2164
2165
                An instance of [`StoppingCriteriaList`]. List of instances of class derived from [`StoppingCriteria`]
                used to tell if the generation loop should stop.
2166
2167
2168
            generation_config ([`~generation.GenerationConfig`]):
                The generation configuration to be used as parametrization of the decoding method.
            synced_gpus (`bool`):
2169
                Whether to continue running the while loop until max_length (needed for ZeRO stage 3)
2170
2171
2172
            streamer (`BaseStreamer`, *optional*):
                Streamer object that will be used to stream the generated sequences. Generated tokens are passed
                through `streamer.put(token_ids)` and the streamer is responsible for any further processing.
2173
2174
2175
2176
2177
            model_kwargs:
                Additional model specific keyword arguments will be forwarded to the `forward` function of the model.
                If model is an encoder-decoder model the kwargs should include `encoder_outputs`.

        Return:
2178
            [`~generation.GenerateDecoderOnlyOutput`], [`~generation.GenerateEncoderDecoderOutput`]
2179
            or `torch.LongTensor`: A `torch.LongTensor` containing the generated tokens (default behaviour) or a
2180
2181
            [`~generation.GenerateDecoderOnlyOutput`] if `model.config.is_encoder_decoder=False` and
            `return_dict_in_generate=True` or a [`~generation.GenerateEncoderDecoderOutput`] if
2182
            `model.config.is_encoder_decoder=True`.
2183
        """
2184
        # init values
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
        has_eos_stopping_criteria = any(hasattr(criteria, "eos_token_id") for criteria in stopping_criteria)
        top_k = generation_config.top_k
        penalty_alpha = generation_config.penalty_alpha
        pad_token_id = generation_config.pad_token_id
        output_attentions = generation_config.output_attentions
        output_hidden_states = generation_config.output_hidden_states
        output_scores = generation_config.output_scores
        output_logits = generation_config.output_logits
        return_dict_in_generate = generation_config.return_dict_in_generate
        sequential = generation_config.low_memory
2195
2196

        # init attention / hidden states / scores tuples
2197
        raw_logits = () if (return_dict_in_generate and output_logits) else None
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
        scores = () if (return_dict_in_generate and output_scores) else None
        decoder_attentions = () if (return_dict_in_generate and output_attentions) else None
        cross_attentions = () if (return_dict_in_generate and output_attentions) else None
        decoder_hidden_states = () if (return_dict_in_generate and output_hidden_states) else None

        # if model is an encoder-decoder, retrieve encoder attention weights and hidden states
        if return_dict_in_generate and self.config.is_encoder_decoder:
            encoder_attentions = model_kwargs["encoder_outputs"].get("attentions") if output_attentions else None
            encoder_hidden_states = (
                model_kwargs["encoder_outputs"].get("hidden_states") if output_hidden_states else None
            )

        # keep track of which sequences are already finished
2211
        batch_size = input_ids.shape[0]
2212
        unfinished_sequences = torch.ones(batch_size, dtype=torch.long, device=input_ids.device)
2213
        model_kwargs = self._get_initial_cache_position(input_ids, model_kwargs)
2214

2215
        this_peer_finished = False
2216

2217
        while self._has_unfinished_sequences(this_peer_finished, synced_gpus, device=input_ids.device):
2218
2219
            # if the first step in the loop, encode all the prefix and obtain: (1) past_key_values;
            # (2) last_hidden_states; (3) logit_for_next_step; (4) update model kwargs for the next step
2220
2221
2222
2223
            if model_kwargs.get("past_key_values") is None or (
                isinstance(model_kwargs["past_key_values"], Cache)
                and model_kwargs["past_key_values"].get_seq_length() == 0
            ):
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
                # prepare inputs
                model_kwargs["use_cache"] = True
                model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)

                # encode the given prefix and prepare model inputs; encoder-decoder model process the prefix and save
                # the `encoder_outputs`
                outputs = self(
                    **model_inputs, return_dict=True, output_hidden_states=True, output_attentions=output_attentions
                )

                # last decoder hidden states will be used to compute the degeneration penalty (cosine similarity with
                # previous tokens)
                if self.config.is_encoder_decoder:
                    last_hidden_states = outputs.decoder_hidden_states[-1]
                else:
                    last_hidden_states = outputs.hidden_states[-1]
2240

2241
                # next logit for contrastive search to select top-k candidate tokens
2242
2243
2244
                # Clone is needed to avoid keeping a hanging ref to outputs.logits which may be very large for this first iteration
                # (the clone itself is always small)
                logit_for_next_step = outputs.logits[:, -1, :].clone()
2245
2246

                model_kwargs = self._update_model_kwargs_for_generation(
2247
2248
2249
2250
                    outputs,
                    model_kwargs,
                    is_encoder_decoder=self.config.is_encoder_decoder,
                    standardize_cache_format=True,
2251
                )
2252

2253
2254
2255
2256
2257
                if not sequential:
                    # Expands model inputs top_k times, for batched forward passes (akin to beam search).
                    _, model_kwargs = self._expand_inputs_for_generation(
                        expand_size=top_k, is_encoder_decoder=self.config.is_encoder_decoder, **model_kwargs
                    )
2258

2259
2260
                past_key_values = model_kwargs.get("past_key_values")
                if past_key_values is None:
2261
2262
2263
2264
                    raise ValueError(
                        f"{self.__class__.__name__} does not support caching and therefore **can't** be used "
                        "for contrastive search."
                    )
2265
2266
2267
2268
                elif (
                    not isinstance(past_key_values[0], (tuple, torch.Tensor))
                    or past_key_values[0][0].shape[0] != batch_size
                ):
2269
2270
2271
2272
2273
2274
2275
2276
                    raise ValueError(
                        f"{self.__class__.__name__} does not have a standard cache format and therefore **can't** be "
                        "used for contrastive search without further modifications."
                    )

            # contrastive_search main logic start:
            # contrastive search decoding consists of two steps: (1) candidate tokens recall; (2) candidate re-rank by
            # degeneration penalty
2277
2278
2279
            processed_logit_for_next_step = logits_processor(input_ids, logit_for_next_step)
            next_probs = nn.functional.softmax(processed_logit_for_next_step, dim=-1)

2280
2281
2282
2283
            top_k_probs, top_k_ids = torch.topk(next_probs, dim=-1, k=top_k)

            # Store scores, attentions and hidden_states when required
            if return_dict_in_generate:
2284
2285
                if output_logits:
                    raw_logits += (logit_for_next_step,)
2286
                if output_scores:
2287
                    scores += (processed_logit_for_next_step,)
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
                if output_attentions:
                    decoder_attentions += (
                        (outputs.decoder_attentions,) if self.config.is_encoder_decoder else (outputs.attentions,)
                    )
                    if self.config.is_encoder_decoder:
                        cross_attentions += (outputs.cross_attentions,)

                if output_hidden_states:
                    decoder_hidden_states += (
                        (outputs.decoder_hidden_states,)
                        if self.config.is_encoder_decoder
                        else (outputs.hidden_states,)
                    )

2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
            # This is needed to properly delete outputs.logits which may be very large for this first iteration
            # Otherwise a reference to outputs.logits is kept all along until after the next call to self.forward()
            del outputs

            if not sequential:
                # Replicates the new past_key_values to match the `top_k` candidates
                past = model_kwargs["past_key_values"]
                # If it is a static cache, modify it in-place layer after layer to save memory
                if isinstance(past, DynamicCache):
                    past.batch_repeat_interleave(top_k)
                else:
                    new_key_values = []
                    for layer in past:
                        items = []
                        # item is either the key or the value matrix
                        for item in layer:
                            items.append(item.repeat_interleave(top_k, dim=0))
                        new_key_values.append(tuple(items))

                    past = tuple(new_key_values)

                model_kwargs["past_key_values"] = past
2324

2325
            if sequential:
2326
                all_outputs = []
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
                for i in range(top_k):
                    # compute the candidate tokens by the language model and collect their hidden_states
                    next_model_inputs = self.prepare_inputs_for_generation(top_k_ids[:, i].view(-1, 1), **model_kwargs)

                    outputs = self(
                        **next_model_inputs,
                        return_dict=True,
                        output_hidden_states=True,
                        output_attentions=output_attentions,
                    )
2337
2338
2339
2340
2341
2342
                    if isinstance(outputs["past_key_values"], DynamicCache):
                        # Remove past K-V from output since we don't need to stack later
                        outputs["past_key_values"] = None
                        # Remove last token from past K-V since we don't want to append it at this point
                        model_kwargs["past_key_values"].crop(-1)

2343
2344
                    all_outputs.append(outputs)
                outputs = stack_model_outputs(all_outputs)
2345
2346

            else:
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
                # compute the candidate tokens by the language model and collect their hidden_states
                # assembles top_k_ids into batch of size k
                next_model_inputs = self.prepare_inputs_for_generation(top_k_ids.view(-1, 1), **model_kwargs)

                outputs = self(
                    **next_model_inputs,
                    return_dict=True,
                    output_hidden_states=True,
                    output_attentions=output_attentions,
                )
2357
2358
2359
2360
2361

            # This is essential to avoid having a last reference to the big past K-V and double the necesary memory
            # in the next loop
            del next_model_inputs

2362
2363
2364
2365
2366
2367
2368
            # name is different for encoder-decoder and decoder-only models
            if self.config.is_encoder_decoder:
                next_hidden = outputs.decoder_hidden_states[-1]
                full_hidden_states = outputs.decoder_hidden_states
            else:
                next_hidden = outputs.hidden_states[-1]
                full_hidden_states = outputs.hidden_states
2369

2370
            logits = outputs.logits[:, -1, :]
2371
2372
2373
            context_hidden = last_hidden_states.repeat_interleave(top_k, dim=0)

            # compute the degeneration penalty and re-rank the candidates based on the degeneration penalty and the
2374
2375
            # model confidence. Keeping `selected_idx` on CPU enables multi-device contrastive search and doesn't
            # introduce (noticeable) slowdowns on single-device runs.
2376
            selected_idx = _ranking_fast(context_hidden, next_hidden, top_k_probs, penalty_alpha, top_k)
2377
            selected_idx = selected_idx.to("cpu")
2378

2379
2380
2381
            # This will be used instead of the previous inneficient torch.stack(torch.split())
            augmented_idx = torch.tensor([x + i * top_k for i, x in enumerate(selected_idx)])

2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
            # prepare for the next step: (1) next token_id; (2) past_key_values; (3) last_hidden_states for computing
            # the degeneration penalty; (4) logits for selecting next top-k candidates; (5) selected tokens scores
            # (model confidence minus degeneration penalty); (6) decoder hidden_states
            next_tokens = top_k_ids[range(len(top_k_ids)), selected_idx]
            next_hidden = torch.stack(torch.split(next_hidden.squeeze(dim=1), top_k))
            next_hidden = next_hidden[range(batch_size), selected_idx, :]
            last_hidden_states = torch.cat([last_hidden_states, next_hidden.unsqueeze(1)], dim=1)

            next_decoder_hidden_states = ()
            for layer in full_hidden_states:
                layer = torch.stack(torch.split(layer, top_k))[range(batch_size), selected_idx, :]
                next_decoder_hidden_states += (layer,)

2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
            # generate past_key_values cache of only the selected token
            if sequential:
                next_model_input = self.prepare_inputs_for_generation(
                    top_k_ids[:, selected_idx].view(-1, 1), **model_kwargs
                )

                selected_outputs = self(
                    **next_model_input,
                    return_dict=True,
                    output_hidden_states=False,
                    output_attentions=False,
                )
                next_past_key_values = selected_outputs["past_key_values"]

            else:
2410
                _, next_past_key_values = self._extract_past_from_model_output(outputs, standardize_cache_format=True)
2411
2412
2413
                # Do it in-place layer per layer to save memory
                if isinstance(next_past_key_values, DynamicCache):
                    next_past_key_values.batch_select_indices(augmented_idx)
tomeras91's avatar
tomeras91 committed
2414
                else:
2415
2416
2417
2418
2419
2420
2421
2422
2423
                    new_key_values = []
                    for layer in next_past_key_values:
                        items = []
                        # item is either the key or the value matrix
                        for item in layer:
                            items.append(item[augmented_idx, ...])
                        new_key_values.append(tuple(items))

                    next_past_key_values = tuple(new_key_values)
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460

            logit_for_next_step = torch.stack(torch.split(logits, top_k))[range(batch_size), selected_idx, :]

            # Rebuilds the relevant parts of the model output for the selected token, for use in the next iteration
            if self.config.is_encoder_decoder:
                next_step_cross_attentions = ()
                next_step_decoder_attentions = ()
                if output_attentions:
                    for layer in outputs.cross_attentions:
                        layer = torch.stack(torch.split(layer, top_k, dim=0))[range(batch_size), selected_idx, ...]
                        next_step_cross_attentions += (layer,)
                    for layer in outputs.decoder_attentions:
                        layer = torch.stack(torch.split(layer, top_k, dim=0))[range(batch_size), selected_idx, ...]
                        next_step_decoder_attentions += (layer,)
                outputs = Seq2SeqLMOutput(
                    past_key_values=next_past_key_values,
                    decoder_hidden_states=next_decoder_hidden_states,
                    decoder_attentions=next_step_decoder_attentions or None,
                    cross_attentions=next_step_cross_attentions or None,
                )
            else:
                next_step_attentions = ()
                if output_attentions:
                    for layer in outputs.attentions:
                        layer = torch.stack(torch.split(layer, top_k, dim=0))[range(batch_size), selected_idx, ...]
                        next_step_attentions += (layer,)
                outputs = CausalLMOutputWithPast(
                    past_key_values=next_past_key_values,
                    hidden_states=next_decoder_hidden_states,
                    attentions=next_step_attentions or None,
                )
            # contrastive_search main logic end

            if synced_gpus and this_peer_finished:
                continue  # don't waste resources running the code we don't need

            # finished sentences should have their next token be a padding token
2461
            if has_eos_stopping_criteria:
2462
2463
2464
2465
                next_tokens = next_tokens * unfinished_sequences + pad_token_id * (1 - unfinished_sequences)

            # update generated ids, model inputs, and length for next step
            input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1)
2466
2467
            if streamer is not None:
                streamer.put(next_tokens.cpu())
2468
            model_kwargs = self._update_model_kwargs_for_generation(
2469
2470
2471
                outputs,
                model_kwargs,
                is_encoder_decoder=self.config.is_encoder_decoder,
2472
2473
            )

2474
2475
            # stop when each sentence is finished
            unfinished_sequences = unfinished_sequences & ~stopping_criteria(input_ids, scores)
2476
            this_peer_finished = unfinished_sequences.max() == 0
2477

2478
2479
2480
        if streamer is not None:
            streamer.end()

2481
        if return_dict_in_generate:
2482
2483
2484
            # Contrastive search works by forward looking at the next token, so we need to exclude it from
            # `past_key_values` to be consistent with the other decoding methods
            if model_kwargs.get("past_key_values") is not None:
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
                if isinstance(model_kwargs["past_key_values"], DynamicCache):
                    model_kwargs["past_key_values"].crop(-1)
                else:
                    past_key_values = []
                    for layer in model_kwargs["past_key_values"]:
                        layer_past_key_values = []
                        for item in layer:
                            layer_past_key_values.append(item[..., :-1, :])
                        past_key_values.append(tuple(layer_past_key_values))
                    model_kwargs["past_key_values"] = tuple(past_key_values)
2495

2496
            if self.config.is_encoder_decoder:
2497
                return GenerateEncoderDecoderOutput(
2498
2499
                    sequences=input_ids,
                    scores=scores,
2500
                    logits=raw_logits,
2501
2502
2503
2504
2505
                    encoder_attentions=encoder_attentions,
                    encoder_hidden_states=encoder_hidden_states,
                    decoder_attentions=decoder_attentions,
                    cross_attentions=cross_attentions,
                    decoder_hidden_states=decoder_hidden_states,
2506
                    past_key_values=model_kwargs.get("past_key_values"),
2507
2508
                )
            else:
2509
                return GenerateDecoderOnlyOutput(
2510
2511
                    sequences=input_ids,
                    scores=scores,
2512
                    logits=raw_logits,
2513
2514
                    attentions=decoder_attentions,
                    hidden_states=decoder_hidden_states,
2515
                    past_key_values=model_kwargs.get("past_key_values"),
2516
2517
2518
2519
                )
        else:
            return input_ids

2520
    def _greedy_search(
2521
2522
        self,
        input_ids: torch.LongTensor,
2523
2524
2525
2526
2527
        logits_processor: LogitsProcessorList,
        stopping_criteria: StoppingCriteriaList,
        generation_config: GenerationConfig,
        synced_gpus: bool,
        streamer: Optional["BaseStreamer"],
2528
        **model_kwargs,
2529
    ) -> Union[GenerateNonBeamOutput, torch.LongTensor]:
2530
        r"""
2531
        Deprecated. Use `._sample()` instead, passing the same arguments.
2532
        """
2533

2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
        logger.warning_once(
            "Calling `._greedy_search()` directly is deprecated and will be removed in v4.42. Use `._sample()` "
            "instead, passing the same arguments."
        )
        return self._sample(
            input_ids=input_ids,
            logits_processor=logits_processor,
            stopping_criteria=stopping_criteria,
            generation_config=generation_config,
            synced_gpus=synced_gpus,
            streamer=streamer,
            **model_kwargs,
        )
2547

2548
    def _sample(
2549
2550
        self,
        input_ids: torch.LongTensor,
2551
2552
2553
2554
2555
        logits_processor: LogitsProcessorList,
        stopping_criteria: StoppingCriteriaList,
        generation_config: GenerationConfig,
        synced_gpus: bool,
        streamer: Optional["BaseStreamer"],
2556
        logits_warper: Optional[LogitsProcessorList] = None,
2557
        **model_kwargs,
2558
    ) -> Union[GenerateNonBeamOutput, torch.LongTensor]:
2559
2560
2561
2562
2563
2564
2565
        r"""
        Generates sequences of token ids for models with a language modeling head using **multinomial sampling** and
        can be used for text-decoder, text-to-text, speech-to-text, and vision-to-text models.

        Parameters:
            input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
                The sequence used as a prompt for the generation.
2566
            logits_processor (`LogitsProcessorList`):
2567
2568
                An instance of [`LogitsProcessorList`]. List of instances of class derived from [`LogitsProcessor`]
                used to modify the prediction scores of the language modeling head applied at each generation step.
2569
            stopping_criteria (`StoppingCriteriaList`):
2570
2571
                An instance of [`StoppingCriteriaList`]. List of instances of class derived from [`StoppingCriteria`]
                used to tell if the generation loop should stop.
2572
2573
2574
            generation_config ([`~generation.GenerationConfig`]):
                The generation configuration to be used as parametrization of the decoding method.
            synced_gpus (`bool`):
2575
                Whether to continue running the while loop until max_length (needed for ZeRO stage 3)
2576
2577
2578
            streamer (`BaseStreamer`, *optional*):
                Streamer object that will be used to stream the generated sequences. Generated tokens are passed
                through `streamer.put(token_ids)` and the streamer is responsible for any further processing.
2579
2580
2581
2582
2583
            logits_warper (`LogitsProcessorList`, *optional*):
                An instance of [`LogitsProcessorList`]. List of instances of class derived from [`LogitsWarper`] used
                to warp the prediction score distribution of the language modeling head applied before multinomial
                sampling at each generation step. Only required with sampling strategies (i.e. `do_sample` is set in
                `generation_config`)
2584
2585
2586
2587
2588
            model_kwargs:
                Additional model specific kwargs will be forwarded to the `forward` function of the model. If model is
                an encoder-decoder model the kwargs should include `encoder_outputs`.

        Return:
2589
            [`~generation.GenerateDecoderOnlyOutput`], [`~generation.GenerateEncoderDecoderOutput`] or `torch.LongTensor`:
2590
            A `torch.LongTensor` containing the generated tokens (default behaviour) or a
2591
2592
            [`~generation.GenerateDecoderOnlyOutput`] if `model.config.is_encoder_decoder=False` and
            `return_dict_in_generate=True` or a [`~generation.GenerateEncoderDecoderOutput`] if
2593
            `model.config.is_encoder_decoder=True`.
2594
        """
2595
        # init values
2596
2597
2598
2599
2600
2601
2602
        pad_token_id = generation_config.pad_token_id
        output_attentions = generation_config.output_attentions
        output_hidden_states = generation_config.output_hidden_states
        output_scores = generation_config.output_scores
        output_logits = generation_config.output_logits
        return_dict_in_generate = generation_config.return_dict_in_generate
        has_eos_stopping_criteria = any(hasattr(criteria, "eos_token_id") for criteria in stopping_criteria)
2603
2604
2605
2606
2607
2608
        do_sample = generation_config.do_sample
        if do_sample is True and not isinstance(logits_warper, LogitsProcessorList):
            raise ValueError(
                "`do_sample` is set to `True`, `logits_warper` must be a `LogitsProcessorList` instance (it is "
                f"{logits_warper})."
            )
2609
2610
2611

        # init attention / hidden states / scores tuples
        scores = () if (return_dict_in_generate and output_scores) else None
2612
        raw_logits = () if (return_dict_in_generate and output_logits) else None
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
        decoder_attentions = () if (return_dict_in_generate and output_attentions) else None
        cross_attentions = () if (return_dict_in_generate and output_attentions) else None
        decoder_hidden_states = () if (return_dict_in_generate and output_hidden_states) else None

        # if model is an encoder-decoder, retrieve encoder attention weights and hidden states
        if return_dict_in_generate and self.config.is_encoder_decoder:
            encoder_attentions = model_kwargs["encoder_outputs"].get("attentions") if output_attentions else None
            encoder_hidden_states = (
                model_kwargs["encoder_outputs"].get("hidden_states") if output_hidden_states else None
            )

        # keep track of which sequences are already finished
2625
        batch_size = input_ids.shape[0]
2626
        this_peer_finished = False
2627
        unfinished_sequences = torch.ones(batch_size, dtype=torch.long, device=input_ids.device)
2628
        model_kwargs = self._get_initial_cache_position(input_ids, model_kwargs)
2629

2630
        while self._has_unfinished_sequences(this_peer_finished, synced_gpus, device=input_ids.device):
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
            # prepare model inputs
            model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)

            # forward pass to get next token
            outputs = self(
                **model_inputs,
                return_dict=True,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
            )

            if synced_gpus and this_peer_finished:
                continue  # don't waste resources running the code we don't need

2645
2646
2647
            # Clone is needed to avoid keeping a hanging ref to outputs.logits which may be very large for first iteration
            # (the clone itself is always small)
            next_token_logits = outputs.logits[:, -1, :].clone()
2648
2649
2650

            # pre-process distribution
            next_token_scores = logits_processor(input_ids, next_token_logits)
2651
2652
            if do_sample:
                next_token_scores = logits_warper(input_ids, next_token_scores)
2653
2654
2655
2656
2657

            # Store scores, attentions and hidden_states when required
            if return_dict_in_generate:
                if output_scores:
                    scores += (next_token_scores,)
2658
2659
                if output_logits:
                    raw_logits += (next_token_logits,)
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
                if output_attentions:
                    decoder_attentions += (
                        (outputs.decoder_attentions,) if self.config.is_encoder_decoder else (outputs.attentions,)
                    )
                    if self.config.is_encoder_decoder:
                        cross_attentions += (outputs.cross_attentions,)

                if output_hidden_states:
                    decoder_hidden_states += (
                        (outputs.decoder_hidden_states,)
                        if self.config.is_encoder_decoder
                        else (outputs.hidden_states,)
                    )

2674
2675
2676
2677
2678
2679
            # token selection
            if do_sample:
                probs = nn.functional.softmax(next_token_scores, dim=-1)
                next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1)
            else:
                next_tokens = torch.argmax(next_token_scores, dim=-1)
2680
2681

            # finished sentences should have their next token be a padding token
2682
            if has_eos_stopping_criteria:
2683
2684
2685
2686
                next_tokens = next_tokens * unfinished_sequences + pad_token_id * (1 - unfinished_sequences)

            # update generated ids, model inputs, and length for next step
            input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1)
2687
2688
            if streamer is not None:
                streamer.put(next_tokens.cpu())
2689
            model_kwargs = self._update_model_kwargs_for_generation(
2690
2691
2692
                outputs,
                model_kwargs,
                is_encoder_decoder=self.config.is_encoder_decoder,
2693
2694
            )

2695
            unfinished_sequences = unfinished_sequences & ~stopping_criteria(input_ids, scores)
2696
            this_peer_finished = unfinished_sequences.max() == 0
2697

2698
2699
2700
2701
            # This is needed to properly delete outputs.logits which may be very large for first iteration
            # Otherwise a reference to outputs is kept which keeps the logits alive in the next iteration
            del outputs

2702
2703
2704
        if streamer is not None:
            streamer.end()

2705
2706
        if return_dict_in_generate:
            if self.config.is_encoder_decoder:
2707
                return GenerateEncoderDecoderOutput(
2708
2709
                    sequences=input_ids,
                    scores=scores,
2710
                    logits=raw_logits,
2711
2712
2713
2714
2715
                    encoder_attentions=encoder_attentions,
                    encoder_hidden_states=encoder_hidden_states,
                    decoder_attentions=decoder_attentions,
                    cross_attentions=cross_attentions,
                    decoder_hidden_states=decoder_hidden_states,
2716
                    past_key_values=model_kwargs.get("past_key_values"),
2717
2718
                )
            else:
2719
                return GenerateDecoderOnlyOutput(
2720
2721
                    sequences=input_ids,
                    scores=scores,
2722
                    logits=raw_logits,
2723
2724
                    attentions=decoder_attentions,
                    hidden_states=decoder_hidden_states,
2725
                    past_key_values=model_kwargs.get("past_key_values"),
2726
2727
2728
2729
                )
        else:
            return input_ids

2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
    def _temporary_reorder_cache(self, past_key_values, beam_idx):
        """
        Temporary function to handle the different types of cache reordering processes while we roll out `Cache`.

        TODO: standardize cache formats and make all models compatible with `Cache`. It would remove the need
        for this function, with `Cache.reorder_cache` being the sole remaining code path
        """
        model_class = self.__class__.__name__.lower()
        # Exception 1: code path for models using the legacy cache format
        if isinstance(past_key_values, (tuple, list)):
            past_key_values = self._reorder_cache(past_key_values, beam_idx)
        # Exception 2: models with different cache formats. These are limited to `DynamicCache` until their
        # cache format is standardized, to avoid adding complexity to the codebase.
        elif "bloom" in model_class or "gptbigcode" in model_class:
            if not isinstance(past_key_values, DynamicCache):
                raise ValueError(
                    f"Using an unsupported cache format with {model_class}. Currently, it only supports the "
                    "legacy tuple format or `DynamicCache`"
                )
            past_key_values = self._reorder_cache(past_key_values, beam_idx)
            past_key_values = DynamicCache.from_legacy_cache(past_key_values)
        # Standard code path: use the `Cache.reorder_cache`
        else:
            past_key_values.reorder_cache(beam_idx)
        return past_key_values

2756
    # TODO (joao, v4.42): remove default for `logits_warper`
2757
    def _beam_search(
2758
2759
2760
        self,
        input_ids: torch.LongTensor,
        beam_scorer: BeamScorer,
2761
2762
2763
2764
        logits_processor: LogitsProcessorList,
        stopping_criteria: StoppingCriteriaList,
        generation_config: GenerationConfig,
        synced_gpus: bool,
2765
        logits_warper: Optional[LogitsProcessorList] = None,
2766
        **model_kwargs,
2767
    ) -> Union[GenerateBeamOutput, torch.LongTensor]:
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
        r"""
        Generates sequences of token ids for models with a language modeling head using **beam search decoding** and
        can be used for text-decoder, text-to-text, speech-to-text, and vision-to-text models.

        Parameters:
            input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
                The sequence used as a prompt for the generation.
            beam_scorer (`BeamScorer`):
                An derived instance of [`BeamScorer`] that defines how beam hypotheses are constructed, stored and
                sorted during generation. For more information, the documentation of [`BeamScorer`] should be read.
2778
            logits_processor (`LogitsProcessorList`):
2779
2780
                An instance of [`LogitsProcessorList`]. List of instances of class derived from [`LogitsProcessor`]
                used to modify the prediction scores of the language modeling head applied at each generation step.
2781
            stopping_criteria (`StoppingCriteriaList`:
2782
2783
                An instance of [`StoppingCriteriaList`]. List of instances of class derived from [`StoppingCriteria`]
                used to tell if the generation loop should stop.
2784
2785
2786
            generation_config ([`~generation.GenerationConfig`]):
                The generation configuration to be used as parametrization of the decoding method.
            synced_gpus (`bool`):
2787
                Whether to continue running the while loop until max_length (needed for ZeRO stage 3)
2788
2789
2790
2791
2792
            logits_warper (`LogitsProcessorList`, *optional*):
                An instance of [`LogitsProcessorList`]. List of instances of class derived from [`LogitsWarper`] used
                to warp the prediction score distribution of the language modeling head applied before multinomial
                sampling at each generation step. Only required with sampling strategies (i.e. `do_sample` is set in
                `generation_config`)
2793
2794
2795
2796
2797
            model_kwargs:
                Additional model specific kwargs will be forwarded to the `forward` function of the model. If model is
                an encoder-decoder model the kwargs should include `encoder_outputs`.

        Return:
2798
            [`generation.GenerateBeamDecoderOnlyOutput`], [`~generation.GenerateBeamEncoderDecoderOutput`] or
2799
            `torch.LongTensor`: A `torch.LongTensor` containing the generated tokens (default behaviour) or a
2800
2801
            [`~generation.GenerateBeamDecoderOnlyOutput`] if `model.config.is_encoder_decoder=False` and
            `return_dict_in_generate=True` or a [`~generation.GenerateBeamEncoderDecoderOutput`] if
2802
            `model.config.is_encoder_decoder=True`.
2803
        """
2804
        # init values
2805
2806
2807
2808
2809
2810
2811
2812
        pad_token_id = generation_config.pad_token_id
        eos_token_id = generation_config.eos_token_id
        output_attentions = generation_config.output_attentions
        output_hidden_states = generation_config.output_hidden_states
        output_scores = generation_config.output_scores
        output_logits = generation_config.output_logits
        return_dict_in_generate = generation_config.return_dict_in_generate
        sequential = generation_config.low_memory
2813
2814
2815
2816
2817
2818
        do_sample = generation_config.do_sample
        if do_sample is True and not isinstance(logits_warper, LogitsProcessorList):
            raise ValueError(
                "`do_sample` is set to `True`, `logits_warper` must be a `LogitsProcessorList` instance (it is "
                f"{logits_warper})."
            )
2819

2820
2821
2822
2823
        batch_size = len(beam_scorer._beam_hyps)
        num_beams = beam_scorer.num_beams

        batch_beam_size, cur_len = input_ids.shape
2824
        model_kwargs = self._get_initial_cache_position(input_ids, model_kwargs)
2825
2826
2827
2828
2829
2830
2831
2832

        if num_beams * batch_size != batch_beam_size:
            raise ValueError(
                f"Batch dimension of `input_ids` should be {num_beams * batch_size}, but is {batch_beam_size}."
            )

        # init attention / hidden states / scores tuples
        scores = () if (return_dict_in_generate and output_scores) else None
2833
        raw_logits = () if (return_dict_in_generate and output_logits) else None
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
        beam_indices = (
            tuple(() for _ in range(batch_beam_size)) if (return_dict_in_generate and output_scores) else None
        )
        decoder_attentions = () if (return_dict_in_generate and output_attentions) else None
        cross_attentions = () if (return_dict_in_generate and output_attentions) else None
        decoder_hidden_states = () if (return_dict_in_generate and output_hidden_states) else None

        # if model is an encoder-decoder, retrieve encoder attention weights and hidden states
        if return_dict_in_generate and self.config.is_encoder_decoder:
            encoder_attentions = model_kwargs["encoder_outputs"].get("attentions") if output_attentions else None
            encoder_hidden_states = (
                model_kwargs["encoder_outputs"].get("hidden_states") if output_hidden_states else None
            )

        # initialise score of first beam with 0 and the rest with -1e9. This makes sure that only tokens
        # of the first beam are considered to avoid sampling the exact same tokens across all beams.
        beam_scores = torch.zeros((batch_size, num_beams), dtype=torch.float, device=input_ids.device)
        beam_scores[:, 1:] = -1e9
        beam_scores = beam_scores.view((batch_size * num_beams,))

2854
        this_peer_finished = False
2855
2856

        decoder_prompt_len = input_ids.shape[-1]  # record the prompt length of decoder
2857

2858
        while self._has_unfinished_sequences(this_peer_finished, synced_gpus, device=input_ids.device):
2859
2860
            model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)

2861
2862
2863
2864
            # if sequential is True, split the input to batches of batch_size and run sequentially
            if sequential:
                if any(
                    model_name in self.__class__.__name__.lower()
2865
2866
2867
2868
2869
2870
2871
2872
2873
                    for model_name in [
                        "fsmt",
                        "reformer",
                        "bloom",
                        "ctrl",
                        "gpt_bigcode",
                        "transo_xl",
                        "xlnet",
                        "cpm",
tomeras91's avatar
tomeras91 committed
2874
                        "jamba",
2875
                    ]
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
                ):
                    raise RuntimeError(
                        f"Currently generation for {self.__class__.__name__} is not supported "
                        f"for `low_memory beam_search`. Please open an issue on GitHub if you need this feature."
                    )

                inputs_per_sub_batches = _split_model_inputs(
                    model_inputs, split_size=batch_size, full_batch_size=batch_beam_size
                )
                outputs_per_sub_batch = [
                    self(
                        **inputs_per_sub_batch,
                        return_dict=True,
                        output_attentions=output_attentions,
                        output_hidden_states=output_hidden_states,
                    )
                    for inputs_per_sub_batch in inputs_per_sub_batches
                ]

                outputs = stack_model_outputs(outputs_per_sub_batch)

            else:  # Unchanged original behavior
                outputs = self(
                    **model_inputs,
                    return_dict=True,
                    output_attentions=output_attentions,
                    output_hidden_states=output_hidden_states,
                )
2904
2905
2906
2907
2908

            if synced_gpus and this_peer_finished:
                cur_len = cur_len + 1
                continue  # don't waste resources running the code we don't need

2909
2910
2911
            # Clone is needed to avoid keeping a hanging ref to outputs.logits which may be very large for first iteration
            # (the clone itself is always small)
            next_token_logits = outputs.logits[:, -1, :].clone()
2912
2913
2914
2915
2916
            next_token_scores = nn.functional.log_softmax(
                next_token_logits, dim=-1
            )  # (batch_size * num_beams, vocab_size)

            next_token_scores_processed = logits_processor(input_ids, next_token_scores)
2917
2918
            if do_sample:
                next_token_scores_processed = logits_warper(input_ids, next_token_scores_processed)
2919
2920
2921
            next_token_scores = next_token_scores_processed + beam_scores[:, None].expand_as(
                next_token_scores_processed
            )
2922
2923
2924
2925
2926

            # Store scores, attentions and hidden_states when required
            if return_dict_in_generate:
                if output_scores:
                    scores += (next_token_scores_processed,)
2927
2928
                if output_logits:
                    raw_logits += (next_token_logits,)
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
                if output_attentions:
                    decoder_attentions += (
                        (outputs.decoder_attentions,) if self.config.is_encoder_decoder else (outputs.attentions,)
                    )
                    if self.config.is_encoder_decoder:
                        cross_attentions += (outputs.cross_attentions,)
                if output_hidden_states:
                    decoder_hidden_states += (
                        (outputs.decoder_hidden_states,)
                        if self.config.is_encoder_decoder
                        else (outputs.hidden_states,)
                    )

            # reshape for beam search
            vocab_size = next_token_scores.shape[-1]
            next_token_scores = next_token_scores.view(batch_size, num_beams * vocab_size)

2946
2947
            # Beam token selection: pick 1 + eos_token_id.shape[0] next tokens for each beam so we have at least 1
            # non eos token per beam.
2948
            n_eos_tokens = eos_token_id.shape[0] if eos_token_id is not None else 0
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
            n_tokens_to_keep = max(2, 1 + n_eos_tokens) * num_beams
            if do_sample:
                probs = nn.functional.softmax(next_token_scores, dim=-1)
                next_tokens = torch.multinomial(probs, num_samples=n_tokens_to_keep)
                next_token_scores = torch.gather(next_token_scores, -1, next_tokens)
                next_token_scores, _indices = torch.sort(next_token_scores, descending=True, dim=1)
                next_tokens = torch.gather(next_tokens, -1, _indices)
            else:
                next_token_scores, next_tokens = torch.topk(
                    next_token_scores, n_tokens_to_keep, dim=1, largest=True, sorted=True
                )
2960

2961
            next_indices = torch.div(next_tokens, vocab_size, rounding_mode="floor")
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
            next_tokens = next_tokens % vocab_size

            # stateless
            beam_outputs = beam_scorer.process(
                input_ids,
                next_token_scores,
                next_tokens,
                next_indices,
                pad_token_id=pad_token_id,
                eos_token_id=eos_token_id,
                beam_indices=beam_indices,
2973
                decoder_prompt_len=decoder_prompt_len,
2974
2975
2976
2977
2978
2979
2980
2981
2982
            )

            beam_scores = beam_outputs["next_beam_scores"]
            beam_next_tokens = beam_outputs["next_beam_tokens"]
            beam_idx = beam_outputs["next_beam_indices"]

            input_ids = torch.cat([input_ids[beam_idx, :], beam_next_tokens.unsqueeze(-1)], dim=-1)

            model_kwargs = self._update_model_kwargs_for_generation(
2983
2984
2985
                outputs,
                model_kwargs,
                is_encoder_decoder=self.config.is_encoder_decoder,
2986
            )
2987
2988
2989
2990
2991
2992
2993

            # This is needed to properly delete outputs.logits which may be very large for first iteration
            # Otherwise a reference to outputs is kept which keeps the logits alive in the next iteration
            # IMPORTANT: Note that this should appear BEFORE the call to _reorder_cache() to save the maximum memory
            # (that way the memory peak does not include outputs.logits)
            del outputs

2994
            if model_kwargs.get("past_key_values", None) is not None:
2995
2996
2997
                model_kwargs["past_key_values"] = self._temporary_reorder_cache(
                    model_kwargs["past_key_values"], beam_idx
                )
2998
2999
3000
3001
3002
3003
3004

            if return_dict_in_generate and output_scores:
                beam_indices = tuple((beam_indices[beam_idx[i]] + (beam_idx[i],) for i in range(len(beam_indices))))

            # increase cur_len
            cur_len = cur_len + 1

3005
            if beam_scorer.is_done or all(stopping_criteria(input_ids, scores)):
3006
                this_peer_finished = True
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016

        sequence_outputs = beam_scorer.finalize(
            input_ids,
            beam_scores,
            next_tokens,
            next_indices,
            pad_token_id=pad_token_id,
            eos_token_id=eos_token_id,
            max_length=stopping_criteria.max_length,
            beam_indices=beam_indices,
3017
            decoder_prompt_len=decoder_prompt_len,
3018
3019
3020
3021
3022
3023
3024
        )

        if return_dict_in_generate:
            if not output_scores:
                sequence_outputs["sequence_scores"] = None

            if self.config.is_encoder_decoder:
3025
                return GenerateBeamEncoderDecoderOutput(
3026
3027
3028
                    sequences=sequence_outputs["sequences"],
                    sequences_scores=sequence_outputs["sequence_scores"],
                    scores=scores,
3029
                    logits=raw_logits,
3030
3031
3032
3033
3034
3035
                    beam_indices=sequence_outputs["beam_indices"],
                    encoder_attentions=encoder_attentions,
                    encoder_hidden_states=encoder_hidden_states,
                    decoder_attentions=decoder_attentions,
                    cross_attentions=cross_attentions,
                    decoder_hidden_states=decoder_hidden_states,
3036
                    past_key_values=model_kwargs.get("past_key_values"),
3037
3038
                )
            else:
3039
                return GenerateBeamDecoderOnlyOutput(
3040
3041
3042
                    sequences=sequence_outputs["sequences"],
                    sequences_scores=sequence_outputs["sequence_scores"],
                    scores=scores,
3043
                    logits=raw_logits,
3044
3045
3046
                    beam_indices=sequence_outputs["beam_indices"],
                    attentions=decoder_attentions,
                    hidden_states=decoder_hidden_states,
3047
                    past_key_values=model_kwargs.get("past_key_values"),
3048
3049
3050
3051
                )
        else:
            return sequence_outputs["sequences"]

3052
    def _beam_sample(
3053
3054
3055
        self,
        input_ids: torch.LongTensor,
        beam_scorer: BeamScorer,
3056
3057
3058
3059
3060
        logits_processor: LogitsProcessorList,
        stopping_criteria: StoppingCriteriaList,
        logits_warper: LogitsProcessorList,
        generation_config: GenerationConfig,
        synced_gpus: bool,
3061
        **model_kwargs,
3062
    ) -> Union[GenerateBeamOutput, torch.LongTensor]:
3063
        r"""
3064
        Deprecated. Use `._beam_search()` instead, passing the same arguments.
3065
        """
3066

3067
3068
3069
        logger.warning_once(
            "Calling `._beam_sample()` directly is deprecated and will be removed in v4.42. Use `._beam_search()` "
            "instead, passing the same arguments."
3070
        )
3071
3072
3073
3074
3075
3076
3077
3078
3079
        return self._beam_search(
            input_ids=input_ids,
            beam_scorer=beam_scorer,
            logits_processor=logits_processor,
            stopping_criteria=stopping_criteria,
            logits_warper=logits_warper,
            generation_config=generation_config,
            synced_gpus=synced_gpus,
            **model_kwargs,
3080
3081
        )

3082
    def _group_beam_search(
3083
3084
3085
        self,
        input_ids: torch.LongTensor,
        beam_scorer: BeamScorer,
3086
3087
3088
3089
        logits_processor: LogitsProcessorList,
        stopping_criteria: StoppingCriteriaList,
        generation_config: GenerationConfig,
        synced_gpus: bool,
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
        **model_kwargs,
    ):
        r"""
        Generates sequences of token ids for models with a language modeling head using **diverse beam search
        decoding** and can be used for text-decoder, text-to-text, speech-to-text, and vision-to-text models.

        Parameters:
            input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
                The sequence used as a prompt for the generation.
            beam_scorer (`BeamScorer`):
                An derived instance of [`BeamScorer`] that defines how beam hypotheses are constructed, stored and
                sorted during generation. For more information, the documentation of [`BeamScorer`] should be read.
3102
            logits_processor (`LogitsProcessorList`):
3103
3104
                An instance of [`LogitsProcessorList`]. List of instances of class derived from [`LogitsProcessor`]
                used to modify the prediction scores of the language modeling head applied at each generation step.
3105
            stopping_criteria (`StoppingCriteriaList`):
3106
3107
                An instance of [`StoppingCriteriaList`]. List of instances of class derived from [`StoppingCriteria`]
                used to tell if the generation loop should stop.
3108
3109
3110
            generation_config ([`~generation.GenerationConfig`]):
                The generation configuration to be used as parametrization of the decoding method.
            synced_gpus (`bool`):
3111
3112
3113
3114
3115
3116
                Whether to continue running the while loop until max_length (needed for ZeRO stage 3)
            model_kwargs:
                Additional model specific kwargs that will be forwarded to the `forward` function of the model. If
                model is an encoder-decoder model the kwargs should include `encoder_outputs`.

        Return:
3117
            [`~generation.GenerateBeamDecoderOnlyOutput`], [`~generation.GenerateBeamEncoderDecoderOutput`] or
3118
            `torch.LongTensor`: A `torch.LongTensor` containing the generated tokens (default behaviour) or a
3119
3120
3121
            [`~generation.GenerateBeamDecoderOnlyOutput`] if `model.config.is_encoder_decoder=False` and
            `return_dict_in_generate=True` or a [`~generation.GenerateBeamEncoderDecoderOutput`] if
            `model.config.is_encoder_decoder=True`.
3122
        """
3123
        # init values
3124
3125
3126
3127
3128
3129
3130
        pad_token_id = generation_config.pad_token_id
        eos_token_id = generation_config.eos_token_id
        output_attentions = generation_config.output_attentions
        output_hidden_states = generation_config.output_hidden_states
        output_scores = generation_config.output_scores
        output_logits = generation_config.output_logits
        return_dict_in_generate = generation_config.return_dict_in_generate
3131

3132
3133
3134
        num_beams = beam_scorer.num_beams
        num_beam_groups = beam_scorer.num_beam_groups
        num_sub_beams = num_beams // num_beam_groups
3135
        batch_size = len(beam_scorer._beam_hyps) // num_beam_groups
3136
3137
3138
        device = input_ids.device

        batch_beam_size, cur_len = input_ids.shape
3139
        model_kwargs = self._get_initial_cache_position(input_ids, model_kwargs)
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152

        if return_dict_in_generate and output_scores:
            beam_indices = [tuple(() for _ in range(num_sub_beams * batch_size)) for _ in range(num_beam_groups)]
        else:
            beam_indices = None

        if num_beams * batch_size != batch_beam_size:
            raise ValueError(
                f"Batch dimension of `input_ids` should be {num_beams * batch_size}, but is {batch_beam_size}."
            )

        # init attention / hidden states / scores tuples
        scores = () if (return_dict_in_generate and output_scores) else None
3153
        raw_logits = () if (return_dict_in_generate and output_logits) else None
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
        decoder_attentions = () if (return_dict_in_generate and output_attentions) else None
        cross_attentions = () if (return_dict_in_generate and output_attentions) else None
        decoder_hidden_states = () if (return_dict_in_generate and output_hidden_states) else None

        # if model is an encoder-decoder, retrieve encoder attention weights and hidden states
        if return_dict_in_generate and self.config.is_encoder_decoder:
            encoder_attentions = model_kwargs["encoder_outputs"].get("attentions") if output_attentions else None
            encoder_hidden_states = (
                model_kwargs["encoder_outputs"].get("hidden_states") if output_hidden_states else None
            )

        # initialise score of first beam of each group with 0 and the rest with -1e9. This ensures that the beams in
        # the same group don't produce same tokens everytime.
        beam_scores = torch.full((batch_size, num_beams), -1e9, dtype=torch.float, device=device)
        beam_scores[:, ::num_sub_beams] = 0
        beam_scores = beam_scores.view((batch_size * num_beams,))

3171
        this_peer_finished = False
3172
3173

        decoder_prompt_len = input_ids.shape[-1]  # record the prompt length of decoder
3174
        while self._has_unfinished_sequences(this_peer_finished, synced_gpus, device=input_ids.device):
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
            # predicted tokens in cur_len step
            current_tokens = torch.zeros(batch_size * num_beams, dtype=input_ids.dtype, device=device)

            # indices which will form the beams in the next time step
            reordering_indices = torch.zeros(batch_size * num_beams, dtype=torch.long, device=device)

            # do one decoder step on all beams of all sentences in batch
            model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)
            outputs = self(
                **model_inputs,
                return_dict=True,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
            )

            if synced_gpus and this_peer_finished:
                cur_len = cur_len + 1
                continue  # don't waste resources running the code we don't need

            if output_scores:
                processed_score = torch.zeros_like(outputs.logits[:, -1, :])
3196
            if output_logits:
3197
3198
3199
                # Clone is needed to avoid keeping a hanging ref to outputs.logits which may be very large for first iteration
                # (the clone itself is always small)
                raw_logit_score = outputs.logits[:, -1, :].clone()
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215

            for beam_group_idx in range(num_beam_groups):
                group_start_idx = beam_group_idx * num_sub_beams
                group_end_idx = min(group_start_idx + num_sub_beams, num_beams)
                group_size = group_end_idx - group_start_idx

                # indices of beams of current group among all sentences in batch
                batch_group_indices = []

                for batch_idx in range(batch_size):
                    batch_group_indices.extend(
                        [batch_idx * num_beams + idx for idx in range(group_start_idx, group_end_idx)]
                    )
                group_input_ids = input_ids[batch_group_indices]

                # select outputs of beams of current group only
3216
                # No need to clone() the logits here as they will not retain outputs.logits at the end of the loop
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
                next_token_logits = outputs.logits[batch_group_indices, -1, :]

                next_token_scores = nn.functional.log_softmax(
                    next_token_logits, dim=-1
                )  # (batch_size * group_size, vocab_size)
                vocab_size = next_token_scores.shape[-1]

                next_token_scores_processed = logits_processor(
                    group_input_ids, next_token_scores, current_tokens=current_tokens, beam_group_idx=beam_group_idx
                )
                next_token_scores = next_token_scores_processed + beam_scores[batch_group_indices].unsqueeze(-1)
                next_token_scores = next_token_scores.expand_as(next_token_scores_processed)

                if output_scores:
                    processed_score[batch_group_indices] = next_token_scores_processed

                # reshape for beam search
                next_token_scores = next_token_scores.view(batch_size, group_size * vocab_size)

3236
                # Sample 1 + len(eos_token_id) next tokens for each beam so we have at least 1 non eos token per beam.
3237
                n_eos_tokens = eos_token_id.shape[0] if eos_token_id is not None else 0
3238
                next_token_scores, next_tokens = torch.topk(
3239
                    next_token_scores, max(2, 1 + n_eos_tokens) * group_size, dim=1, largest=True, sorted=True
3240
3241
                )

3242
                next_indices = torch.div(next_tokens, vocab_size, rounding_mode="floor")
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
                next_tokens = next_tokens % vocab_size

                # stateless
                process_beam_indices = sum(beam_indices, ()) if beam_indices is not None else None
                beam_outputs = beam_scorer.process(
                    group_input_ids,
                    next_token_scores,
                    next_tokens,
                    next_indices,
                    pad_token_id=pad_token_id,
                    eos_token_id=eos_token_id,
                    beam_indices=process_beam_indices,
3255
                    group_index=beam_group_idx,
3256
                    decoder_prompt_len=decoder_prompt_len,
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
                )
                beam_scores[batch_group_indices] = beam_outputs["next_beam_scores"]
                beam_next_tokens = beam_outputs["next_beam_tokens"]
                beam_idx = beam_outputs["next_beam_indices"]

                if return_dict_in_generate and output_scores:
                    beam_indices[beam_group_idx] = tuple(
                        beam_indices[beam_group_idx][beam_idx[i]] + (beam_idx[i],) for i in range(len(beam_indices[0]))
                    )

                input_ids[batch_group_indices] = group_input_ids[beam_idx]
                group_input_ids = torch.cat([group_input_ids[beam_idx, :], beam_next_tokens.unsqueeze(-1)], dim=-1)
                current_tokens[batch_group_indices] = group_input_ids[:, -1]

                # (beam_idx // group_size) -> batch_idx
                # (beam_idx % group_size) -> offset of idx inside the group
                reordering_indices[batch_group_indices] = (
3274
3275
3276
                    num_beams * torch.div(beam_idx, group_size, rounding_mode="floor")
                    + group_start_idx
                    + (beam_idx % group_size)
3277
3278
3279
3280
3281
3282
                )

            # Store scores, attentions and hidden_states when required
            if return_dict_in_generate:
                if output_scores:
                    scores += (processed_score,)
3283
3284
                if output_logits:
                    raw_logits += (raw_logit_score,)
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
                if output_attentions:
                    decoder_attentions += (
                        (outputs.decoder_attentions,) if self.config.is_encoder_decoder else (outputs.attentions,)
                    )
                    if self.config.is_encoder_decoder:
                        cross_attentions += (outputs.cross_attentions,)

                if output_hidden_states:
                    decoder_hidden_states += (
                        (outputs.decoder_hidden_states,)
                        if self.config.is_encoder_decoder
                        else (outputs.hidden_states,)
                    )

            input_ids = torch.cat([input_ids, current_tokens.unsqueeze(-1)], dim=-1)

            model_kwargs = self._update_model_kwargs_for_generation(
3302
3303
3304
                outputs,
                model_kwargs,
                is_encoder_decoder=self.config.is_encoder_decoder,
3305
            )
3306
3307
3308
3309
3310
3311
3312

            # This is needed to properly delete outputs.logits which may be very large for first iteration
            # Otherwise a reference to outputs is kept which keeps the logits alive in the next iteration
            # IMPORTANT: Note that this should appear BEFORE the call to _reorder_cache() to save the maximum memory
            # (that way the memory peak does not include outputs.logits)
            del outputs

3313
            if model_kwargs.get("past_key_values", None) is not None:
3314
                model_kwargs["past_key_values"] = self._temporary_reorder_cache(
3315
3316
                    model_kwargs["past_key_values"], reordering_indices
                )
3317
3318
3319
3320

            # increase cur_len
            cur_len = cur_len + 1

3321
            if beam_scorer.is_done or all(stopping_criteria(input_ids, scores)):
3322
                this_peer_finished = True
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333

        final_beam_indices = sum(beam_indices, ()) if beam_indices is not None else None
        sequence_outputs = beam_scorer.finalize(
            input_ids,
            beam_scores,
            next_tokens,
            next_indices,
            pad_token_id=pad_token_id,
            eos_token_id=eos_token_id,
            max_length=stopping_criteria.max_length,
            beam_indices=final_beam_indices,
3334
            decoder_prompt_len=decoder_prompt_len,
3335
3336
3337
3338
3339
3340
3341
        )

        if return_dict_in_generate:
            if not output_scores:
                sequence_outputs["sequence_scores"] = None

            if self.config.is_encoder_decoder:
3342
                return GenerateBeamEncoderDecoderOutput(
3343
3344
3345
                    sequences=sequence_outputs["sequences"],
                    sequences_scores=sequence_outputs["sequence_scores"],
                    scores=scores,
3346
                    logits=raw_logits,
3347
3348
3349
3350
3351
3352
                    beam_indices=sequence_outputs["beam_indices"],
                    encoder_attentions=encoder_attentions,
                    encoder_hidden_states=encoder_hidden_states,
                    decoder_attentions=decoder_attentions,
                    cross_attentions=cross_attentions,
                    decoder_hidden_states=decoder_hidden_states,
3353
                    past_key_values=model_kwargs.get("past_key_values"),
3354
3355
                )
            else:
3356
                return GenerateBeamDecoderOnlyOutput(
3357
3358
3359
                    sequences=sequence_outputs["sequences"],
                    sequences_scores=sequence_outputs["sequence_scores"],
                    scores=scores,
3360
                    logits=raw_logits,
3361
3362
3363
                    beam_indices=sequence_outputs["beam_indices"],
                    attentions=decoder_attentions,
                    hidden_states=decoder_hidden_states,
3364
                    past_key_values=model_kwargs.get("past_key_values"),
3365
3366
3367
3368
                )
        else:
            return sequence_outputs["sequences"]

3369
    def _constrained_beam_search(
3370
3371
3372
        self,
        input_ids: torch.LongTensor,
        constrained_beam_scorer: ConstrainedBeamSearchScorer,
3373
3374
3375
3376
        logits_processor: LogitsProcessorList,
        stopping_criteria: StoppingCriteriaList,
        generation_config: GenerationConfig,
        synced_gpus: bool,
3377
        **model_kwargs,
3378
    ) -> Union[GenerateBeamOutput, torch.LongTensor]:
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
        r"""
        Generates sequences of token ids for models with a language modeling head using **constrained beam search
        decoding** and can be used for text-decoder, text-to-text, speech-to-text, and vision-to-text models.

        Parameters:
            input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
                The sequence used as a prompt for the generation.
            constrained_beam_scorer (`ConstrainedBeamSearchScorer`):
                A derived instance of [`BeamScorer`] that defines how beam hypotheses are constructed, stored and
                sorted during generation, while satisfying a list of positive constraints. For more information, the
                documentation of [`ConstrainedBeamSearchScorer`] should be read.
3390
            logits_processor (`LogitsProcessorList`):
3391
3392
                An instance of [`LogitsProcessorList`]. List of instances of class derived from [`LogitsProcessor`]
                used to modify the prediction scores of the language modeling head applied at each generation step.
3393
            stopping_criteria (`StoppingCriteriaList`):
3394
3395
                An instance of [`StoppingCriteriaList`]. List of instances of class derived from [`StoppingCriteria`]
                used to tell if the generation loop should stop.
3396
            logits_warper (`LogitsProcessorList`):
3397
3398
3399
                An instance of [`LogitsProcessorList`]. List of instances of class derived from [`LogitsWarper`] used
                to warp the prediction score distribution of the language modeling head applied before multinomial
                sampling at each generation step.
3400
3401
3402
            generation_config ([`~generation.GenerationConfig`]):
                The generation configuration to be used as parametrization of the decoding method.
            synced_gpus (`bool`):
3403
3404
3405
3406
3407
3408
                Whether to continue running the while loop until max_length (needed for ZeRO stage 3)
            model_kwargs:
                Additional model specific kwargs will be forwarded to the `forward` function of the model. If model is
                an encoder-decoder model the kwargs should include `encoder_outputs`.

        Return:
3409
            [`~generation.GenerateBeamDecoderOnlyOutput`], [`~generation.GenerateBeamEncoderDecoderOutput`] or
3410
            `torch.LongTensor`: A `torch.LongTensor` containing the generated tokens (default behaviour) or a
3411
3412
            [`~generation.GenerateBeamDecoderOnlyOutput`] if `model.config.is_encoder_decoder=False` and
            `return_dict_in_generate=True` or a [`~generation.GenerateBeamEncoderDecoderOutput`] if
3413
            `model.config.is_encoder_decoder=True`.
3414
        """
3415
        # init values
3416
3417
3418
3419
3420
3421
3422
        pad_token_id = generation_config.pad_token_id
        eos_token_id = generation_config.eos_token_id
        output_attentions = generation_config.output_attentions
        output_hidden_states = generation_config.output_hidden_states
        output_scores = generation_config.output_scores
        output_logits = generation_config.output_logits
        return_dict_in_generate = generation_config.return_dict_in_generate
3423

3424
3425
3426
3427
        batch_size = len(constrained_beam_scorer._beam_hyps)
        num_beams = constrained_beam_scorer.num_beams

        batch_beam_size, cur_len = input_ids.shape
3428
        model_kwargs = self._get_initial_cache_position(input_ids, model_kwargs)
3429
3430
3431
3432
3433
3434

        if num_beams * batch_size != batch_beam_size:
            raise ValueError(
                f"Batch dimension of `input_ids` should be {num_beams * batch_size}, but is {batch_beam_size}."
            )

3435
3436
        # init attention / hidden states / scores tuples
        scores = () if (return_dict_in_generate and output_scores) else None
3437
        raw_logits = () if (return_dict_in_generate and output_logits) else None
3438
3439
3440
        beam_indices = (
            tuple(() for _ in range(batch_beam_size)) if (return_dict_in_generate and output_scores) else None
        )
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
        decoder_attentions = () if (return_dict_in_generate and output_attentions) else None
        cross_attentions = () if (return_dict_in_generate and output_attentions) else None
        decoder_hidden_states = () if (return_dict_in_generate and output_hidden_states) else None

        # if model is an encoder-decoder, retrieve encoder attention weights and hidden states
        if return_dict_in_generate and self.config.is_encoder_decoder:
            encoder_attentions = model_kwargs["encoder_outputs"].get("attentions") if output_attentions else None
            encoder_hidden_states = (
                model_kwargs["encoder_outputs"].get("hidden_states") if output_hidden_states else None
            )

        # initialise score of first beam with 0 and the rest with -1e9. This makes sure that only tokens
        # of the first beam are considered to avoid sampling the exact same tokens across all beams.
        beam_scores = torch.zeros((batch_size, num_beams), dtype=torch.float, device=input_ids.device)
        beam_scores[:, 1:] = -1e9
        beam_scores = beam_scores.view((batch_size * num_beams,))

3458
        this_peer_finished = False
3459
3460

        decoder_prompt_len = input_ids.shape[-1]  # record the prompt length of decoder
3461
        while self._has_unfinished_sequences(this_peer_finished, synced_gpus, device=input_ids.device):
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
            model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)

            outputs = self(
                **model_inputs,
                return_dict=True,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
            )

            if synced_gpus and this_peer_finished:
                cur_len = cur_len + 1
                continue  # don't waste resources running the code we don't need

3475
3476
3477
            # Clone is needed to avoid keeping a hanging ref to outputs.logits which may be very large for first iteration
            # (the clone itself is always small)
            next_token_logits = outputs.logits[:, -1, :].clone()
3478
3479
3480
3481
3482
3483
            next_token_scores = nn.functional.log_softmax(
                next_token_logits, dim=-1
            )  # (batch_size * num_beams, vocab_size)

            next_token_scores_processed = logits_processor(input_ids, next_token_scores)

3484
3485
3486
            next_token_scores = next_token_scores_processed + beam_scores[:, None].expand_as(
                next_token_scores_processed
            )
3487
3488
3489
3490
3491
3492
3493

            scores_for_all_vocab = next_token_scores.clone()

            # Store scores, attentions and hidden_states when required
            if return_dict_in_generate:
                if output_scores:
                    scores += (next_token_scores,)
3494
3495
                if output_logits:
                    raw_logits += (next_token_logits,)
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
                if output_attentions:
                    decoder_attentions += (
                        (outputs.decoder_attentions,) if self.config.is_encoder_decoder else (outputs.attentions,)
                    )
                    if self.config.is_encoder_decoder:
                        cross_attentions += (outputs.cross_attentions,)

                if output_hidden_states:
                    decoder_hidden_states += (
                        (outputs.decoder_hidden_states,)
                        if self.config.is_encoder_decoder
                        else (outputs.hidden_states,)
                    )

            # reshape for beam search
            vocab_size = next_token_scores.shape[-1]
            next_token_scores = next_token_scores.view(batch_size, num_beams * vocab_size)

3514
            # Sample 1 + len(eos_token_id) next tokens for each beam so we have at least 1 non eos token per beam.
3515
            n_eos_tokens = eos_token_id.shape[0] if eos_token_id is not None else 0
3516
            next_token_scores, next_tokens = torch.topk(
3517
                next_token_scores, max(2, 1 + n_eos_tokens) * num_beams, dim=1, largest=True, sorted=True
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
            )

            next_indices = (next_tokens / vocab_size).long()
            next_tokens = next_tokens % vocab_size

            # stateless
            beam_outputs = constrained_beam_scorer.process(
                input_ids,
                next_token_scores,
                next_tokens,
                next_indices,
                scores_for_all_vocab,
                pad_token_id=pad_token_id,
                eos_token_id=eos_token_id,
3532
                beam_indices=beam_indices,
3533
                decoder_prompt_len=decoder_prompt_len,
3534
3535
3536
3537
3538
3539
3540
            )
            beam_scores = beam_outputs["next_beam_scores"]
            beam_next_tokens = beam_outputs["next_beam_tokens"]
            beam_idx = beam_outputs["next_beam_indices"]

            input_ids = torch.cat([input_ids[beam_idx, :], beam_next_tokens.unsqueeze(-1)], dim=-1)
            model_kwargs = self._update_model_kwargs_for_generation(
3541
3542
3543
                outputs,
                model_kwargs,
                is_encoder_decoder=self.config.is_encoder_decoder,
3544
            )
3545
3546
3547
3548
3549
3550
3551

            # This is needed to properly delete outputs.logits which may be very large for first iteration
            # Otherwise a reference to outputs is kept which keeps the logits alive in the next iteration
            # IMPORTANT: Note that this should appear BEFORE the call to _reorder_cache() to save the maximum memory
            # (that way the memory peak does not include outputs.logits)
            del outputs

3552
            if model_kwargs.get("past_key_values", None) is not None:
3553
3554
3555
                model_kwargs["past_key_values"] = self._temporary_reorder_cache(
                    model_kwargs["past_key_values"], beam_idx
                )
3556

3557
3558
3559
            if return_dict_in_generate and output_scores:
                beam_indices = tuple((beam_indices[beam_idx[i]] + (beam_idx[i],) for i in range(len(beam_indices))))

3560
3561
3562
            # increase cur_len
            cur_len = cur_len + 1

3563
            if constrained_beam_scorer.is_done or all(stopping_criteria(input_ids, scores)):
3564
                this_peer_finished = True
3565
3566
3567
3568
3569
3570
3571
3572
3573

        sequence_outputs = constrained_beam_scorer.finalize(
            input_ids,
            beam_scores,
            next_tokens,
            next_indices,
            pad_token_id=pad_token_id,
            eos_token_id=eos_token_id,
            max_length=stopping_criteria.max_length,
3574
            beam_indices=beam_indices,
3575
            decoder_prompt_len=decoder_prompt_len,
3576
3577
3578
3579
3580
3581
        )

        if return_dict_in_generate:
            if not output_scores:
                sequence_outputs["sequence_scores"] = None
            if self.config.is_encoder_decoder:
3582
                return GenerateBeamEncoderDecoderOutput(
3583
3584
3585
                    sequences=sequence_outputs["sequences"],
                    sequences_scores=sequence_outputs["sequence_scores"],
                    scores=scores,
3586
                    logits=raw_logits,
3587
                    beam_indices=sequence_outputs["beam_indices"],
3588
3589
3590
3591
3592
                    encoder_attentions=encoder_attentions,
                    encoder_hidden_states=encoder_hidden_states,
                    decoder_attentions=decoder_attentions,
                    cross_attentions=cross_attentions,
                    decoder_hidden_states=decoder_hidden_states,
3593
                    past_key_values=model_kwargs.get("past_key_values"),
3594
3595
                )
            else:
3596
                return GenerateBeamDecoderOnlyOutput(
3597
3598
3599
                    sequences=sequence_outputs["sequences"],
                    sequences_scores=sequence_outputs["sequence_scores"],
                    scores=scores,
3600
                    logits=raw_logits,
3601
                    beam_indices=sequence_outputs["beam_indices"],
3602
3603
                    attentions=decoder_attentions,
                    hidden_states=decoder_hidden_states,
3604
                    past_key_values=model_kwargs.get("past_key_values"),
3605
3606
3607
3608
                )
        else:
            return sequence_outputs["sequences"]

3609
    def _assisted_decoding(
3610
3611
        self,
        input_ids: torch.LongTensor,
3612
3613
3614
3615
3616
3617
3618
        candidate_generator: CandidateGenerator,
        logits_processor: LogitsProcessorList,
        logits_warper: LogitsProcessorList,
        stopping_criteria: StoppingCriteriaList,
        generation_config: GenerationConfig,
        synced_gpus: bool,
        streamer: Optional["BaseStreamer"],
3619
        **model_kwargs,
3620
    ) -> Union[GenerateNonBeamOutput, torch.LongTensor]:
3621
        r"""
3622
        Generates sequences of token ids for models with a language modeling head using **greedy decoding** or
3623
3624
3625
        **sample** (depending on `do_sample`), assisted by candidate sequences. Assisted generation is an example of a
        candidate decoding strategy. Can be used for text-decoder, text-to-text, speech-to-text, and vision-to-text
        models.
3626
3627
3628
3629

        Parameters:
            input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
                The sequence used as a prompt for the generation.
3630
            candidate_generator (`CandidateGenerator`):
3631
                A derived instance of [`CandidateGenerator`] that defines how candidate sequences are generated. For
3632
                more information, the documentation of [`CandidateGenerator`] should be read.
3633
            logits_processor (`LogitsProcessorList`):
3634
3635
                An instance of [`LogitsProcessorList`]. List of instances of class derived from [`LogitsProcessor`]
                used to modify the prediction scores of the language modeling head applied at each generation step.
3636
            logits_warper (`LogitsProcessorList`):
3637
3638
                An instance of [`LogitsProcessorList`]. List of instances of class derived from [`LogitsWarper`] used
                to warp the prediction score distribution of the language modeling head applied before multinomial
3639
3640
                sampling at each generation step. Only used if sampling is active.
            stopping_criteria (`StoppingCriteriaList`):
3641
3642
                An instance of [`StoppingCriteriaList`]. List of instances of class derived from [`StoppingCriteria`]
                used to tell if the generation loop should stop.
3643
3644
3645
            generation_config ([`~generation.GenerationConfig`]):
                The generation configuration to be used as parametrization of the decoding method.
            synced_gpus (`bool`):
3646
3647
3648
3649
3650
3651
3652
3653
3654
                Whether to continue running the while loop until max_length (needed for ZeRO stage 3)
            streamer (`BaseStreamer`, *optional*):
                Streamer object that will be used to stream the generated sequences. Generated tokens are passed
                through `streamer.put(token_ids)` and the streamer is responsible for any further processing.
            model_kwargs:
                Additional model specific keyword arguments will be forwarded to the `forward` function of the model.
                If model is an encoder-decoder model the kwargs should include `encoder_outputs`.

        Return:
3655
            [`~generation.GenerateDecoderOnlyOutput`], [`~generation.GenerateEncoderDecoderOutput`] or
3656
            `torch.LongTensor`: A `torch.LongTensor` containing the generated tokens (default behaviour) or a
3657
3658
            [`~generation.GenerateDecoderOnlyOutput`] if `model.config.is_encoder_decoder=False` and
            `return_dict_in_generate=True` or a [`~generation.GenerateEncoderDecoderOutput`] if
3659
            `model.config.is_encoder_decoder=True`.
3660
        """
3661
        # init values
3662
3663
3664
3665
3666
3667
        do_sample = logits_warper is not None
        output_attentions = generation_config.output_attentions
        output_hidden_states = generation_config.output_hidden_states
        output_scores = generation_config.output_scores
        output_logits = generation_config.output_logits
        return_dict_in_generate = generation_config.return_dict_in_generate
3668
3669
3670

        # init attention / hidden states / scores tuples
        scores = () if (return_dict_in_generate and output_scores) else None
3671
        raw_logits = () if (return_dict_in_generate and output_logits) else None
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
        decoder_attentions = () if (return_dict_in_generate and output_attentions) else None
        cross_attentions = () if (return_dict_in_generate and output_attentions) else None
        decoder_hidden_states = () if (return_dict_in_generate and output_hidden_states) else None

        # if model is an encoder-decoder, retrieve encoder attention weights and hidden states
        if return_dict_in_generate and self.config.is_encoder_decoder:
            encoder_attentions = model_kwargs["encoder_outputs"].get("attentions") if output_attentions else None
            encoder_hidden_states = (
                model_kwargs["encoder_outputs"].get("hidden_states") if output_hidden_states else None
            )

        # keep track of which sequences are already finished
3684
        batch_size = input_ids.shape[0]
3685
        unfinished_sequences = torch.ones(batch_size, dtype=torch.long, device=input_ids.device)
3686
        model_kwargs = self._get_initial_cache_position(input_ids, model_kwargs)
3687

3688
3689
3690
3691
3692
3693
3694
        # This is needed if return_dict_in_generate is True
        if isinstance(model_kwargs.get("past_key_values", None), DynamicCache):
            if len(model_kwargs["past_key_values"]) == 0:
                start_from_empty_dynamic_cache = True
        else:
            start_from_empty_dynamic_cache = False

3695
3696
        this_peer_finished = False
        while self._has_unfinished_sequences(this_peer_finished, synced_gpus, device=input_ids.device):
3697
3698
            cur_len = input_ids.shape[-1]

3699
            #  1. Fetch candidate sequences from a `CandidateGenerator`
3700
            candidate_input_ids, candidate_logits = candidate_generator.get_candidates(input_ids)
3701
            candidate_input_ids = candidate_input_ids.to(self.device)
3702
3703
            if candidate_logits is not None:
                candidate_logits = candidate_logits.to(self.device)
3704

3705
            candidate_length = candidate_input_ids.shape[1] - input_ids.shape[1]
3706
            is_done_candidate = stopping_criteria(candidate_input_ids, None)
3707
3708

            # 2. Use the original model to obtain the next token logits given the candidate sequence. We obtain
3709
3710
            # `candidate_length + 1` relevant logits from this process: in the event that all candidates are correct,
            # we use this forward pass to also pick the subsequent logits in the original model.
3711

3712
            # 2.1. Prepare the model inputs
3713
3714
3715
            candidate_kwargs = copy.copy(model_kwargs)
            candidate_kwargs = _prepare_attention_mask(
                candidate_kwargs, candidate_input_ids.shape[1], self.config.is_encoder_decoder
3716
            )
3717
3718
3719
            candidate_kwargs = _prepare_token_type_ids(candidate_kwargs, candidate_input_ids.shape[1])
            if "cache_position" in candidate_kwargs:
                candidate_kwargs["cache_position"] = torch.cat(
3720
                    (
3721
                        candidate_kwargs["cache_position"],
3722
3723
3724
3725
                        torch.arange(cur_len, cur_len + candidate_length, device=input_ids.device, dtype=torch.long),
                    ),
                    dim=0,
                )
3726

3727
            model_inputs = self.prepare_inputs_for_generation(candidate_input_ids, **candidate_kwargs)
tomeras91's avatar
tomeras91 committed
3728
3729
            if "num_logits_to_keep" in model_inputs:
                model_inputs["num_logits_to_keep"] = candidate_length + 1
3730
3731
3732
3733
3734
3735
3736

            # 2.2. Run a forward pass on the candidate sequence
            outputs = self(
                **model_inputs,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
            )
3737

3738
            # 2.3. Process the new logits
3739
            new_logits = outputs.logits[:, -candidate_length - 1 :]  # excludes the input prompt if present
3740
            next_token_logits = new_logits.clone()
3741
            if len(logits_processor) > 0:
3742
                for i in range(candidate_length + 1):
3743
                    new_logits[:, i, :] = logits_processor(candidate_input_ids[:, : cur_len + i], new_logits[:, i, :])
3744
            if do_sample and len(logits_warper) > 0:
3745
                for i in range(candidate_length + 1):
3746
3747
                    new_logits[:, i, :] = logits_warper(candidate_input_ids[:, : cur_len + i], new_logits[:, i, :])

3748
3749
3750
3751
            # 3. Select the accepted tokens. There are two possible cases:
            # Case 1: `do_sample=True` and we have logits for the candidates (originally from speculative decoding)
            # 👉 Apply algorithm 1 from the speculative decoding paper (https://arxiv.org/pdf/2211.17192.pdf).
            if do_sample and candidate_logits is not None:
3752
                valid_tokens, n_matches = _speculative_sampling(
3753
3754
3755
3756
                    candidate_input_ids,
                    candidate_logits,
                    candidate_length,
                    new_logits,
3757
                    is_done_candidate,
3758
3759
3760
3761
3762
                )

            # Case 2: all other cases (originally from assisted generation) 👉 Compare the tokens selected from the
            # original model logits with the candidate tokens. We can keep the candidate tokens until the first
            # mismatch, or until the max length is reached.
3763
            else:
3764
3765
3766
3767
3768
                if do_sample:
                    probs = new_logits.softmax(dim=-1)
                    selected_tokens = torch.multinomial(probs[0, :, :], num_samples=1).squeeze(1)[None, :]
                else:
                    selected_tokens = new_logits.argmax(dim=-1)
3769

3770
                candidate_new_tokens = candidate_input_ids[:, cur_len:]
3771
                n_matches = ((~(candidate_new_tokens == selected_tokens[:, :-1])).cumsum(dim=-1) < 1).sum()
3772

3773
                # Ensure we don't generate beyond max_len or an EOS token
3774
                if is_done_candidate and n_matches == candidate_length:
3775
                    n_matches -= 1
3776
                valid_tokens = selected_tokens[:, : n_matches + 1]
3777
3778

            # 4. Update variables according to the number of matching assistant tokens. Remember: the token generated
3779
3780
3781
            # by the model after the last candidate match is also valid, as it is generated from a correct sequence.
            # Because of this last token, assisted generation search reduces to a normal greedy search/sample if there
            # is no match.
3782

3783
            # 4.1. Get the valid continuation, after the matching tokens
3784
            input_ids = torch.cat((input_ids, valid_tokens), dim=-1)
3785
            if streamer is not None:
3786
3787
                streamer.put(valid_tokens.cpu())
            new_cur_len = input_ids.shape[-1]
3788

3789
            # 4.2. Discard past key values relative to unused assistant tokens
3790
3791
            new_cache_size = new_cur_len - 1
            outputs.past_key_values = _crop_past_key_values(self, outputs.past_key_values, new_cache_size)
3792

3793
            # 5. Update the candidate generation strategy if needed
3794
3795
            candidate_generator.update_candidate_strategy(input_ids, new_logits, n_matches)

3796
3797
3798
3799
3800
3801
3802
3803
            if synced_gpus and this_peer_finished:
                continue  # don't waste resources running the code we don't need

            # Store scores, attentions and hidden_states when required
            # Assistant: modified to append one tuple element per token, as in the other generation methods.
            if return_dict_in_generate:
                if output_scores:
                    scores += tuple(new_logits[:, i, :] for i in range(n_matches + 1))
3804
3805
                if output_logits:
                    raw_logits += (next_token_logits,)
3806

3807
                if "past_key_values" not in model_kwargs or start_from_empty_dynamic_cache:
3808
                    added_len = new_cur_len
3809
3810
                    # set it to false for other iterations
                    start_from_empty_dynamic_cache = False
3811
                else:
3812
                    added_len = n_matches + 1
3813
3814
3815
3816

                if output_attentions:
                    if self.config.is_encoder_decoder:
                        cross_attentions = _split_model_outputs(
3817
                            cross_attentions, outputs.cross_attentions, cur_len, added_len
3818
3819
3820
3821
                        )
                        decoder_attentions = _split_model_outputs(
                            decoder_attentions,
                            outputs.decoder_attentions,
3822
                            cur_len,
3823
                            added_len,
3824
3825
3826
3827
3828
3829
                            is_decoder_attention=True,
                        )
                    else:
                        decoder_attentions = _split_model_outputs(
                            decoder_attentions,
                            outputs.attentions,
3830
                            cur_len,
3831
                            added_len,
3832
3833
3834
3835
3836
                            is_decoder_attention=True,
                        )
                if output_hidden_states:
                    if self.config.is_encoder_decoder:
                        decoder_hidden_states = _split_model_outputs(
3837
                            decoder_hidden_states, outputs.decoder_hidden_states, cur_len, added_len
3838
3839
3840
                        )
                    else:
                        decoder_hidden_states = _split_model_outputs(
3841
                            decoder_hidden_states, outputs.hidden_states, cur_len, added_len
3842
3843
3844
                        )

            model_kwargs = self._update_model_kwargs_for_generation(
3845
3846
3847
                outputs,
                model_kwargs,
                is_encoder_decoder=self.config.is_encoder_decoder,
3848
                num_new_tokens=n_matches + 1,
3849
3850
            )

3851
            unfinished_sequences = unfinished_sequences & ~stopping_criteria(input_ids, scores)
3852
            this_peer_finished = unfinished_sequences.max() == 0
3853

3854
3855
3856
        if streamer is not None:
            streamer.end()

3857
3858
3859
3860
3861
3862
3863
        if (
            hasattr(candidate_generator, "assistant_model")
            and candidate_generator.assistant_model.generation_config.num_assistant_tokens_schedule == "heuristic"
        ):
            candidate_generator.assistant_model.generation_config.num_assistant_tokens = (
                candidate_generator.num_assistant_tokens
            )
3864
3865
        if return_dict_in_generate:
            if self.config.is_encoder_decoder:
3866
                return GenerateEncoderDecoderOutput(
3867
3868
                    sequences=input_ids,
                    scores=scores,
3869
                    logits=raw_logits,
3870
3871
3872
3873
3874
                    encoder_attentions=encoder_attentions,
                    encoder_hidden_states=encoder_hidden_states,
                    decoder_attentions=decoder_attentions,
                    cross_attentions=cross_attentions,
                    decoder_hidden_states=decoder_hidden_states,
3875
                    past_key_values=model_kwargs.get("past_key_values"),
3876
3877
                )
            else:
3878
                return GenerateDecoderOnlyOutput(
3879
3880
                    sequences=input_ids,
                    scores=scores,
3881
                    logits=raw_logits,
3882
3883
                    attentions=decoder_attentions,
                    hidden_states=decoder_hidden_states,
3884
                    past_key_values=model_kwargs.get("past_key_values"),
3885
3886
3887
3888
3889
                )
        else:
            return input_ids


3890
3891
3892
3893
3894
def _speculative_sampling(
    candidate_input_ids,
    candidate_logits,
    candidate_length,
    new_logits,
3895
    is_done_candidate,
3896
3897
3898
):
    """
    Applies sampling as in the speculative decoding paper (https://arxiv.org/pdf/2211.17192.pdf, algorithm 1). Returns
3899
    the selected tokens, as well as the number of candidate matches.
3900
3901
3902

    NOTE: Unless otherwise stated, the variable names match those in the paper.
    """
3903
    new_candidate_input_ids = candidate_input_ids[:, -candidate_length:]
3904
3905
3906
    # Gets the probabilities from the logits. q_i and p_i denote the assistant and model probabilities of the tokens
    # selected by the assistant, respectively.
    q = candidate_logits.softmax(dim=-1)
3907
    q_i = q[:, torch.arange(candidate_length), new_candidate_input_ids].squeeze(0, 1)
3908
    p = new_logits.softmax(dim=-1)
3909
    p_i = p[:, torch.arange(candidate_length), new_candidate_input_ids].squeeze(0, 1)
3910
3911
3912
3913
3914
3915
3916
    probability_ratio = p_i / q_i

    # When probability_ratio > 1 (i.e. q_i(x) < p_i(x), or "assistant probability of the candidate token is smaller
    # than the model probability for the same token"), keep the token. Otherwise reject with p = 1 - probability_ratio
    # (= keep with p = probability_ratio). Keep all the tokens until the first rejection
    r_i = torch.rand_like(probability_ratio)
    is_accepted = r_i <= probability_ratio
3917
    n_matches = ((~is_accepted).cumsum(dim=-1) < 1).sum()  # this is `n` in algorithm 1
3918
3919

    # Ensure we don't generate beyond max_len or an EOS token (not in algorithm 1, but needed for correct behavior)
3920
    if is_done_candidate and n_matches == candidate_length:
3921
3922
        # Output length is assumed to be `n_matches + 1`. Since we won't generate another token with the target model
        # due to acceptance on EOS we fix `n_matches`
3923
        n_matches -= 1
3924
        valid_tokens = new_candidate_input_ids[:, : n_matches + 1]
3925
    else:
3926
        # Next token selection: if there is a rejection, adjust the distribution from the main model before sampling.
3927
        gamma = candidate_logits.shape[1]
3928
3929
3930
3931
3932
3933
3934
3935
        p_n_plus_1 = p[:, n_matches, :]
        if n_matches < gamma:
            q_n_plus_1 = q[:, n_matches, :]
            p_prime = torch.clamp((p_n_plus_1 - q_n_plus_1), min=0)
            p_prime.div_(p_prime.sum())
        else:
            p_prime = p_n_plus_1
        t = torch.multinomial(p_prime, num_samples=1).squeeze(1)[None, :]
3936

3937
3938
3939
3940
3941
        # The selected tokens include the matches (if any) plus the next sampled tokens
        if n_matches > 0:
            valid_tokens = torch.cat((new_candidate_input_ids[:, :n_matches], t), dim=-1)
        else:
            valid_tokens = t
3942
3943

    return valid_tokens, n_matches
3944
3945


3946
def _split_model_outputs(outputs, new_outputs, cur_len, added_len, is_decoder_attention=False):
3947
3948
3949
3950
3951
3952
    """
    Given the (decoder/cross attentions)/(decoder hidden states) for multiple generated tokens, splits it into a tuple
    where each member corresponds to a single generated token.
    """
    # Retrocompatibility: in our generation functions, the first iteration includes the attention/hidden states for the
    # prompt.
3953
    if len(outputs) == 0:
3954
3955
        new_tuple = ()
        for layer in new_outputs:
3956
3957
            last_dim_size = cur_len if is_decoder_attention else layer.shape[-1]
            new_tuple += (layer[..., :cur_len, :last_dim_size],)
3958
        outputs += (new_tuple,)
3959
3960
3961
        # The first iteration contains the prompt + 1 generated token, let's update the length variables accordingly
        cur_len += 1
        added_len -= cur_len
3962

3963
    for i in range(added_len):
3964
3965
        new_tuple = ()
        for layer in new_outputs:
3966
            last_dim_size = cur_len + i if is_decoder_attention else layer.shape[-1]
3967
3968
3969
3970
            new_tuple += (layer[..., i : i + 1, :last_dim_size],)
        outputs += (new_tuple,)
    return outputs

3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992

def _ranking_fast(
    context_hidden: torch.FloatTensor,
    next_hidden: torch.FloatTensor,
    next_top_k_probs: torch.FloatTensor,
    alpha: float,
    beam_width: int,
) -> torch.FloatTensor:
    """
    Reranks the top_k candidates based on a degeneration penalty (cosine similarity with previous tokens), as described
    in the paper "A Contrastive Framework for Neural Text Generation". Returns the index of the best candidate for each
    row in the batch.
    """
    norm_context_hidden = context_hidden / context_hidden.norm(dim=2, keepdim=True)
    norm_next_hidden = next_hidden / next_hidden.norm(dim=2, keepdim=True)
    cosine_matrix = torch.matmul(norm_context_hidden, norm_next_hidden.transpose(1, 2)).squeeze(-1)  # [B*K, S]
    degeneration_penalty, _ = torch.max(cosine_matrix, dim=-1)  # [B*K]
    next_top_k_probs = next_top_k_probs.view(-1)  # [B*K]
    contrastive_score = (1.0 - alpha) * next_top_k_probs - alpha * degeneration_penalty
    contrastive_score = torch.stack(torch.split(contrastive_score, beam_width))  # [B, K]
    _, selected_idx = contrastive_score.max(dim=-1)  # [B]
    return selected_idx
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008


def _split(data, full_batch_size: int, split_size: int = None):
    """
    Takes care of three cases:
    1. data is a tensor: e.g. last_hidden_state, pooler_output etc. split them on the batch_size dim
    2. data is a tuple: e.g. hidden_states, attentions etc. Keep the tuple as it is and split each tensor in it and
       return a list of tuples
    3. data is a tuple of tuples, e.g. past_key_values. Keep the tuple as it is and split each tuple in it and
       return a list of tuples of tuples
    (see documentation of ModelOutput)
    """
    if data is None:
        return [None] * (full_batch_size // split_size)
    if isinstance(data, torch.Tensor):
        return [data[i : i + split_size] for i in range(0, full_batch_size, split_size)]
4009
4010
4011
    # New cache format
    elif isinstance(data, DynamicCache):
        return data.batch_split(full_batch_size, split_size)
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
    elif isinstance(data, tuple):
        # If the elements of the tuple are also tuples (e.g., past_key_values in our earlier example)
        if isinstance(data[0], tuple):
            return [
                tuple(tuple(tensor[i : i + split_size] for tensor in inner_tuple) for inner_tuple in data)
                for i in range(0, full_batch_size, split_size)
            ]

        else:
            return [
                tuple(sub_tensor[i : i + split_size] for sub_tensor in data)
                for i in range(0, full_batch_size, split_size)
            ]
    else:
        raise ValueError(f"Unexpected attribute type: {type(data)}")


def _split_model_inputs(
    model_input: Union[ModelOutput, Dict], split_size: int, full_batch_size: int
) -> List[Union[ModelOutput, Dict]]:
    """
    Split a ModelOutput object (or its subclasses) or Dict into a list of same-class objects based on a specified split
    size. The input object is dict when it was prepared for forward pass and ModelOutput when it was returned from
    previous forward pass.
    """
    # Edge case: if model_input is None, return a list of Nones
    # this happens with Whisper where encoder_outputs is None
    if model_input is None:
        return [model_input] * (full_batch_size // split_size)
    # Infer the class from the object
    model_output_cls = type(model_input)
    if (full_batch_size % split_size) != 0:
        raise ValueError("`full_batch_size` must be divisible by `split_size`")

    if split_size > full_batch_size:
        raise ValueError("`split_size` must be smaller or equal to `full_batch_size`")

    # Helper function to split tensors or tuples of tensors

    # Find all the dataclass fields (e.g., last_hidden_state, pooler_output etc.) and split them
    keys = (
        model_input.__dataclass_fields__.keys() if hasattr(model_input, "__dataclass_fields__") else model_input.keys()
    )
    # We only keep keys that are in the model_input
    keys = [k for k in keys if k in model_input]
    # Here we can have four types of values: tensors, tuples of tensors and booleans, and encoder_outputs which is a
    # ModelOutput object.
    # bool should not be split but replicated for each split
4060
    bool_keys = [k for k in keys if isinstance(model_input[k], bool) or k == "cache_position"]
tomeras91's avatar
tomeras91 committed
4061
    keys_to_ignore = ["cache_position", "encoder_outputs", "num_logits_to_keep"]
4062
    non_bool_keys = [k for k in keys if not isinstance(model_input[k], bool) and k not in keys_to_ignore]
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076

    # we split the tensors and tuples of tensors
    data_split_list = [
        {k: _split(model_input[k], full_batch_size, split_size)[i] for k in non_bool_keys}
        for i in range(full_batch_size // split_size)
    ]
    # bool values are the same and replicated for each split
    bool_data = {k: model_input[k] for k in bool_keys}
    # encoder_outputs is a ModelOutput object and should be split by its own
    if "encoder_outputs" in model_input:
        encoder_outputs_split = _split_model_inputs(model_input["encoder_outputs"], split_size, full_batch_size)
        data_split_list = [
            {**data_split, "encoder_outputs": encoder_outputs_split[i]} for i, data_split in enumerate(data_split_list)
        ]
tomeras91's avatar
tomeras91 committed
4077
4078
4079
4080
4081
    # num_logits_to_keep should be replicated for each split, similar to bool values
    if "num_logits_to_keep" in model_input:
        data_split_list = [
            {**data_split, "num_logits_to_keep": model_input["num_logits_to_keep"]} for data_split in data_split_list
        ]
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114

    # Convert each dictionary in the list to an object of the inferred class
    split_model_inputs: List[Union[ModelOutput, Dict]] = [
        model_output_cls(**data_split, **bool_data) for data_split in data_split_list
    ]

    return split_model_inputs


def stack_model_outputs(model_outputs: List[ModelOutput]) -> ModelOutput:
    """
    Stack a list of ModelOutput objects (or its subclasses) along the batch_size dimension. The function infers the
    specific ModelOutput subclass from the list provided.
    """
    if not model_outputs:
        raise ValueError("Input list is empty.")

    # Infer the class from the first object in the list
    model_output_cls = type(model_outputs[0])

    # Ensure all objects are of the same type
    if not all(isinstance(obj, model_output_cls) for obj in model_outputs):
        raise ValueError("All elements in the list should be of the same type.")

    # Helper function to concat tensors or tuples of tensors
    def _concat(data):
        """
        Reverse of `_split` function above.
        """
        if any(data is None for data in data):
            return None
        if isinstance(data[0], torch.Tensor):
            return torch.cat(data, dim=0)
4115
4116
4117
        # New cache format
        elif isinstance(data[0], DynamicCache):
            return DynamicCache.from_batch_splits(data)
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
        elif isinstance(data[0], tuple):
            # If the elements of the tuple are also tuples (e.g., past_key_values in our earlier example)
            if isinstance(data[0][0], tuple):
                return tuple(
                    tuple(torch.cat([attr[i][j] for attr in data], dim=0) for j in range(len(data[0][0])))
                    for i in range(len(data[0]))
                )
            else:
                return tuple(torch.cat([attr[i] for attr in data], dim=0) for i in range(len(data[0])))
        elif isinstance(data[0], (int, float)):
            # If the elements are integers or floats, return a tensor
            return torch.tensor(data)
        else:
            raise ValueError(f"Unexpected attribute type: {type(data[0])}")

    # Use a dictionary comprehension to gather attributes from all objects and concatenate them
    concatenated_data = {
        k: _concat([getattr(model_output, k) for model_output in model_outputs])
        for k in model_output_cls.__dataclass_fields__.keys()
    }

    # Return a new object of the inferred class with the concatenated attributes
    return model_output_cls(**concatenated_data)