utils.py 214 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# coding=utf-8
# Copyright 2020 The Google AI Language Team Authors, Facebook AI Research authors and The HuggingFace Inc. team.
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

17
import copy
18
19
20
import inspect
import warnings
from dataclasses import dataclass
21
from typing import TYPE_CHECKING, Any, Callable, Dict, List, Optional, Tuple, Union
22
23
24
25
26

import torch
import torch.distributed as dist
from torch import nn

27
28
29
30
31
32
33
34
35
from ..cache_utils import (
    Cache,
    DynamicCache,
    HQQQuantizedCache,
    QuantizedCacheConfig,
    QuantoQuantizedCache,
    SlidingWindowCache,
    StaticCache,
)
36
from ..integrations.deepspeed import is_deepspeed_zero3_enabled
37
38
39
40
41
42
43
44
from ..modeling_outputs import CausalLMOutputWithPast, Seq2SeqLMOutput
from ..models.auto import (
    MODEL_FOR_CAUSAL_IMAGE_MODELING_MAPPING,
    MODEL_FOR_CAUSAL_LM_MAPPING,
    MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
    MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING,
    MODEL_FOR_VISION_2_SEQ_MAPPING,
)
Ahmed Moubtahij's avatar
Ahmed Moubtahij committed
45
from ..tokenization_utils import ExtensionsTrie
46
47
48
49
50
51
52
53
from ..utils import (
    ModelOutput,
    is_accelerate_available,
    is_hqq_available,
    is_quanto_available,
    is_torchdynamo_compiling,
    logging,
)
54
from .beam_constraints import DisjunctiveConstraint, PhrasalConstraint
55
from .beam_search import BeamScorer, BeamSearchScorer, ConstrainedBeamSearchScorer
56
57
58
from .candidate_generator import (
    AssistedCandidateGenerator,
    CandidateGenerator,
59
    PromptLookupCandidateGenerator,
60
61
62
63
    _crop_past_key_values,
    _prepare_attention_mask,
    _prepare_token_type_ids,
)
64
from .configuration_utils import GenerationConfig, GenerationMode
65
66
from .logits_process import (
    EncoderNoRepeatNGramLogitsProcessor,
Karim Foda's avatar
Karim Foda committed
67
    EncoderRepetitionPenaltyLogitsProcessor,
68
69
    EpsilonLogitsWarper,
    EtaLogitsWarper,
70
71
72
73
74
75
76
77
78
    ExponentialDecayLengthPenalty,
    ForcedBOSTokenLogitsProcessor,
    ForcedEOSTokenLogitsProcessor,
    ForceTokensLogitsProcessor,
    HammingDiversityLogitsProcessor,
    InfNanRemoveLogitsProcessor,
    LogitNormalization,
    LogitsProcessorList,
    MinLengthLogitsProcessor,
79
    MinNewTokensLengthLogitsProcessor,
80
    MinPLogitsWarper,
81
82
83
84
    NoBadWordsLogitsProcessor,
    NoRepeatNGramLogitsProcessor,
    PrefixConstrainedLogitsProcessor,
    RepetitionPenaltyLogitsProcessor,
85
    SequenceBiasLogitsProcessor,
86
87
88
89
90
91
    SuppressTokensAtBeginLogitsProcessor,
    SuppressTokensLogitsProcessor,
    TemperatureLogitsWarper,
    TopKLogitsWarper,
    TopPLogitsWarper,
    TypicalLogitsWarper,
92
    UnbatchedClassifierFreeGuidanceLogitsProcessor,
93
    WatermarkLogitsProcessor,
94
95
)
from .stopping_criteria import (
96
    EosTokenCriteria,
97
98
99
100
    MaxLengthCriteria,
    MaxTimeCriteria,
    StoppingCriteria,
    StoppingCriteriaList,
101
    StopStringCriteria,
102
103
104
)


105
if TYPE_CHECKING:
106
    from ..modeling_utils import PreTrainedModel
107
    from ..tokenization_utils_base import PreTrainedTokenizerBase
108
109
    from .streamers import BaseStreamer

110
111
logger = logging.get_logger(__name__)

Marc Sun's avatar
Marc Sun committed
112
113
114
if is_accelerate_available():
    from accelerate.hooks import AlignDevicesHook, add_hook_to_module

115
NEED_SETUP_CACHE_CLASSES_MAPPING = {"static": StaticCache, "sliding_window": SlidingWindowCache}
116
QUANT_BACKEND_CLASSES_MAPPING = {"quanto": QuantoQuantizedCache, "HQQ": HQQQuantizedCache}
117

118
119

@dataclass
120
class GenerateDecoderOnlyOutput(ModelOutput):
121
    """
122
    Outputs of decoder-only generation models, when using non-beam methods.
123
124
125
126
127
128
129
130
131

    Args:
        sequences (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
            The generated sequences. The second dimension (sequence_length) is either equal to `max_length` or shorter
            if all batches finished early due to the `eos_token_id`.
        scores (`tuple(torch.FloatTensor)` *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`):
            Processed prediction scores of the language modeling head (scores for each vocabulary token before SoftMax)
            at each generation step. Tuple of `torch.FloatTensor` with up to `max_new_tokens` elements (one element for
            each generated token), with each tensor of shape `(batch_size, config.vocab_size)`.
132
133
134
135
        logits (`tuple(torch.FloatTensor)` *optional*, returned when `output_logits=True` is passed or when `config.output_logits=True`):
            Unprocessed prediction scores of the language modeling head (scores for each vocabulary token before SoftMax)
            at each generation step. Tuple of `torch.FloatTensor` with up to `max_new_tokens` elements (one element for
            each generated token), with each tensor of shape `(batch_size, config.vocab_size)`.
136
137
138
139
140
141
        attentions (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`):
            Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
            `torch.FloatTensor` of shape `(batch_size, num_heads, generated_length, sequence_length)`.
        hidden_states (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
            `torch.FloatTensor` of shape `(batch_size, generated_length, hidden_size)`.
142
143
144
145
146
147
148
        past_key_values (`tuple(tuple(torch.FloatTensor)))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
            NOTE: some models have a different `past_key_values` format, confirm with the model's documentation.
            Usually a Tuple (one element for each layer of the decoder) of tuples (two elements, key tensor and value
            tensor). The first Tuple is of length `config.n_layers`, with each tuple having 2 tensors of shape
            `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and optionally if
            `config.is_encoder_decoder=True` 2 additional tensors of shape `(batch_size, num_heads,
            encoder_sequence_length, embed_size_per_head)`.
149
150
151
152
    """

    sequences: torch.LongTensor = None
    scores: Optional[Tuple[torch.FloatTensor]] = None
153
    logits: Optional[Tuple[torch.FloatTensor]] = None
154
155
    attentions: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
    hidden_states: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
156
    past_key_values: Optional[Tuple[Tuple[Tuple[torch.FloatTensor]]]] = None
157
158
159


@dataclass
160
class GenerateEncoderDecoderOutput(ModelOutput):
161
    """
162
    Outputs of encoder-decoder generation models, when using non-beam methods.
163
164

    Args:
165
        sequences (`torch.LongTensor` of shape `(batch_size*num_return_sequences, sequence_length)`):
166
167
168
169
170
171
            The generated sequences. The second dimension (sequence_length) is either equal to `max_length` or shorter
            if all batches finished early due to the `eos_token_id`.
        scores (`tuple(torch.FloatTensor)` *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`):
            Processed prediction scores of the language modeling head (scores for each vocabulary token before SoftMax)
            at each generation step. Tuple of `torch.FloatTensor` with up to `max_new_tokens` elements (one element for
            each generated token), with each tensor of shape `(batch_size, config.vocab_size)`.
172
173
174
175
        logits (`tuple(torch.FloatTensor)` *optional*, returned when `output_logits=True` is passed or when `config.output_logits=True`):
            Unprocessed prediction scores of the language modeling head (scores for each vocabulary token before SoftMax)
            at each generation step. Tuple of `torch.FloatTensor` with up to `max_new_tokens` elements (one element for
            each generated token), with each tensor of shape `(batch_size, config.vocab_size)`.
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
        encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`):
            Tuple of `torch.FloatTensor` (one for each layer of the decoder) of shape `(batch_size, num_heads,
            sequence_length, sequence_length)`.
        encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
            shape `(batch_size, sequence_length, hidden_size)`.
        decoder_attentions (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`):
            Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
            `torch.FloatTensor` of shape `(batch_size, num_heads, generated_length, sequence_length)`.
        cross_attentions (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`):
            Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
            `torch.FloatTensor` of shape `(batch_size, num_heads, generated_length, sequence_length)`.
        decoder_hidden_states (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
            `torch.FloatTensor` of shape `(batch_size, generated_length, hidden_size)`.
191
192
193
194
195
196
197
        past_key_values (`tuple(tuple(torch.FloatTensor)))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
            NOTE: some models have a different `past_key_values` format, confirm with the model's documentation.
            Usually a Tuple (one element for each layer of the decoder) of tuples (two elements, key tensor and value
            tensor). The first Tuple is of length `config.n_layers`, with each tuple having 2 tensors of shape
            `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and optionally if
            `config.is_encoder_decoder=True` 2 additional tensors of shape `(batch_size, num_heads,
            encoder_sequence_length, embed_size_per_head)`.
198
199
200
201
    """

    sequences: torch.LongTensor = None
    scores: Optional[Tuple[torch.FloatTensor]] = None
202
    logits: Optional[Tuple[torch.FloatTensor]] = None
203
204
205
206
207
    encoder_attentions: Optional[Tuple[torch.FloatTensor]] = None
    encoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
    decoder_attentions: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
    cross_attentions: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
    decoder_hidden_states: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
208
    past_key_values: Optional[Tuple[Tuple[Tuple[torch.FloatTensor]]]] = None
209
210
211


@dataclass
212
class GenerateBeamDecoderOnlyOutput(ModelOutput):
213
    """
214
    Outputs of decoder-only generation models, when using beam methods.
215
216
217
218
219
220
221
222
223
224
225

    Args:
        sequences (`torch.LongTensor` of shape `(batch_size*num_return_sequences, sequence_length)`):
            The generated sequences. The second dimension (sequence_length) is either equal to `max_length` or shorter
            if all batches finished early due to the `eos_token_id`.
        sequences_scores (`torch.FloatTensor` of shape `(batch_size*num_return_sequences)`, *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`):
            Final beam scores of the generated `sequences`.
        scores (`tuple(torch.FloatTensor)` *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`):
            Beam transition scores for each vocabulary token at each generation step. Beam transition scores consisting
            of log probabilities of tokens conditioned on log softmax of previously generated tokens in this beam.
            Tuple of `torch.FloatTensor` with up to `max_new_tokens` elements (one element for each generated token),
226
            with each tensor of shape `(batch_size*num_beams, config.vocab_size)`.
227
228
229
230
        logits (`tuple(torch.FloatTensor)` *optional*, returned when `output_logits=True` is passed or when `config.output_logits=True`):
            Unprocessed prediction scores of the language modeling head (scores for each vocabulary token before SoftMax)
            at each generation step. Tuple of `torch.FloatTensor` with up to `max_new_tokens` elements (one element for
            each generated token), with each tensor of shape `(batch_size, config.vocab_size)`.
231
        beam_indices (`torch.LongTensor`, *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`):
232
            Beam indices of generated token id at each generation step. `torch.LongTensor` of shape
233
            `(batch_size*num_return_sequences, sequence_length)`.
234
235
236
237
238
239
        attentions (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`):
            Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
            `torch.FloatTensor` of shape `(batch_size*num_beams, num_heads, generated_length, sequence_length)`.
        hidden_states (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
            `torch.FloatTensor` of shape `(batch_size*num_beams*num_return_sequences, generated_length, hidden_size)`.
240
241
242
243
244
245
246
        past_key_values (`tuple(tuple(torch.FloatTensor)))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
            NOTE: some models have a different `past_key_values` format, confirm with the model's documentation.
            Usually a Tuple (one element for each layer of the decoder) of tuples (two elements, key tensor and value
            tensor). The first Tuple is of length `config.n_layers`, with each tuple having 2 tensors of shape
            `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and optionally if
            `config.is_encoder_decoder=True` 2 additional tensors of shape `(batch_size, num_heads,
            encoder_sequence_length, embed_size_per_head)`.
247
248
249
250
251
    """

    sequences: torch.LongTensor = None
    sequences_scores: Optional[torch.FloatTensor] = None
    scores: Optional[Tuple[torch.FloatTensor]] = None
252
    logits: Optional[Tuple[torch.FloatTensor]] = None
253
254
255
    beam_indices: Optional[torch.LongTensor] = None
    attentions: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
    hidden_states: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
256
    past_key_values: Optional[Tuple[Tuple[Tuple[torch.FloatTensor]]]] = None
257
258
259


@dataclass
260
class GenerateBeamEncoderDecoderOutput(ModelOutput):
261
    """
262
    Outputs of encoder-decoder generation models, when using beam methods.
263
264
265
266
267
268
269
270
271
272
273
274

    Args:
        sequences (`torch.LongTensor` of shape `(batch_size*num_return_sequences, sequence_length)`):
            The generated sequences. The second dimension (sequence_length) is either equal to `max_length` or shorter
            if all batches finished early due to the `eos_token_id`.
        sequences_scores (`torch.FloatTensor` of shape `(batch_size*num_return_sequences)`, *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`):
            Final beam scores of the generated `sequences`.
        scores (`tuple(torch.FloatTensor)` *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`):
            Beam transition scores for each vocabulary token at each generation step. Beam transition scores consisting
            of log probabilities of tokens conditioned on log softmax of previously generated tokens in this beam.
            Tuple of `torch.FloatTensor` with up to `max_new_tokens` elements (one element for each generated token),
            with each tensor of shape `(batch_size*num_beams, config.vocab_size)`.
275
276
277
278
        logits (`tuple(torch.FloatTensor)` *optional*, returned when `output_logits=True` is passed or when `config.output_logits=True`):
            Unprocessed prediction scores of the language modeling head (scores for each vocabulary token before SoftMax)
            at each generation step. Tuple of `torch.FloatTensor` with up to `max_new_tokens` elements (one element for
            each generated token), with each tensor of shape `(batch_size, config.vocab_size)`.
279
        beam_indices (`torch.LongTensor`, *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`):
280
            Beam indices of generated token id at each generation step. `torch.LongTensor` of shape
281
            `(batch_size*num_return_sequences, sequence_length)`.
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
        encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`):
            Tuple of `torch.FloatTensor` (one for each layer of the decoder) of shape `(batch_size, num_heads,
            sequence_length, sequence_length)`.
        encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
            shape `(batch_size*num_beams*num_return_sequences, sequence_length, hidden_size)`.
        decoder_attentions (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`):
            Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
            `torch.FloatTensor` of shape `(batch_size*num_beams*num_return_sequences, num_heads, generated_length,
            sequence_length)`.
        cross_attentions (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`):
            Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
            `torch.FloatTensor` of shape `(batch_size, num_heads, generated_length, sequence_length)`.
        decoder_hidden_states (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
            `torch.FloatTensor` of shape `(batch_size*num_beams*num_return_sequences, generated_length, hidden_size)`.
298
299
300
301
302
303
304
        past_key_values (`tuple(tuple(torch.FloatTensor)))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
            NOTE: some models have a different `past_key_values` format, confirm with the model's documentation.
            Usually a Tuple (one element for each layer of the decoder) of tuples (two elements, key tensor and value
            tensor). The first Tuple is of length `config.n_layers`, with each tuple having 2 tensors of shape
            `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and optionally if
            `config.is_encoder_decoder=True` 2 additional tensors of shape `(batch_size, num_heads,
            encoder_sequence_length, embed_size_per_head)`.
305
306
307
308
309
    """

    sequences: torch.LongTensor = None
    sequences_scores: Optional[torch.FloatTensor] = None
    scores: Optional[Tuple[torch.FloatTensor]] = None
310
    logits: Optional[Tuple[torch.FloatTensor]] = None
311
312
313
314
315
316
    beam_indices: Optional[torch.LongTensor] = None
    encoder_attentions: Optional[Tuple[torch.FloatTensor]] = None
    encoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
    decoder_attentions: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
    cross_attentions: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
    decoder_hidden_states: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
317
    past_key_values: Optional[Tuple[Tuple[Tuple[torch.FloatTensor]]]] = None
318
319


320
321
322
323
# Equivalent classes (kept for retrocompatibility purposes)
GreedySearchDecoderOnlyOutput = GenerateDecoderOnlyOutput
ContrastiveSearchDecoderOnlyOutput = GenerateDecoderOnlyOutput
SampleDecoderOnlyOutput = GenerateDecoderOnlyOutput
324

325
326
327
ContrastiveSearchEncoderDecoderOutput = GenerateEncoderDecoderOutput
GreedySearchEncoderDecoderOutput = GenerateEncoderDecoderOutput
SampleEncoderDecoderOutput = GenerateEncoderDecoderOutput
328

329
330
BeamSearchDecoderOnlyOutput = GenerateBeamDecoderOnlyOutput
BeamSampleDecoderOnlyOutput = GenerateBeamDecoderOnlyOutput
331

332
333
BeamSearchEncoderDecoderOutput = GenerateBeamEncoderDecoderOutput
BeamSampleEncoderDecoderOutput = GenerateBeamEncoderDecoderOutput
334

335
336
337
338
339
GreedySearchOutput = Union[GreedySearchEncoderDecoderOutput, GreedySearchDecoderOnlyOutput]
SampleOutput = Union[SampleEncoderDecoderOutput, SampleDecoderOnlyOutput]
BeamSearchOutput = Union[BeamSearchEncoderDecoderOutput, BeamSearchDecoderOnlyOutput]
BeamSampleOutput = Union[BeamSampleEncoderDecoderOutput, BeamSampleDecoderOnlyOutput]
ContrastiveSearchOutput = Union[ContrastiveSearchEncoderDecoderOutput, ContrastiveSearchDecoderOnlyOutput]
340

341
342
343
344
# Typing shortcuts
GenerateNonBeamOutput = Union[GenerateDecoderOnlyOutput, GenerateEncoderDecoderOutput]
GenerateBeamOutput = Union[GenerateBeamDecoderOnlyOutput, GenerateBeamEncoderDecoderOutput]
GenerateOutput = Union[GenerateNonBeamOutput, GenerateBeamOutput]
345
346
347
348
349
350
351


class GenerationMixin:
    """
    A class containing all functions for auto-regressive text generation, to be used as a mixin in [`PreTrainedModel`].

    The class exposes [`~generation.GenerationMixin.generate`], which can be used for:
352
353
354
355
356
357
358
359
360
361
        - *greedy decoding* if `num_beams=1` and `do_sample=False`
        - *contrastive search* if `penalty_alpha>0` and `top_k>1`
        - *multinomial sampling* if `num_beams=1` and `do_sample=True`
        - *beam-search decoding* if `num_beams>1` and `do_sample=False`
        - *beam-search multinomial sampling* if `num_beams>1` and `do_sample=True`
        - *diverse beam-search decoding* if `num_beams>1` and `num_beam_groups>1`
        - *constrained beam-search decoding* if `constraints!=None` or `force_words_ids!=None`
        - *assisted decoding* if `assistant_model` or `prompt_lookup_num_tokens` is passed to `.generate()`

    To learn more about decoding strategies refer to the [text generation strategies guide](../generation_strategies).
362
363
    """

364
365
    def prepare_inputs_for_generation(self, *args, **kwargs):
        raise NotImplementedError(
366
            "A model class needs to define a `prepare_inputs_for_generation` method in order to use `.generate()`."
367
368
        )

369
370
371
    def _prepare_model_inputs(
        self,
        inputs: Optional[torch.Tensor] = None,
372
        bos_token_id: Optional[torch.Tensor] = None,
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
        model_kwargs: Optional[Dict[str, torch.Tensor]] = None,
    ) -> Tuple[torch.Tensor, Optional[str], Dict[str, torch.Tensor]]:
        """
        This function extracts the model-specific `inputs` for generation.
        """
        # 1. retrieve all kwargs that are non-None or non-model input related.
        # some encoder-decoder models have different names for model and encoder
        if (
            self.config.is_encoder_decoder
            and hasattr(self, "encoder")
            and self.encoder.main_input_name != self.main_input_name
        ):
            input_name = self.encoder.main_input_name
        else:
            input_name = self.main_input_name

        model_kwargs = {k: v for k, v in model_kwargs.items() if v is not None or k != input_name}

        # 2. check whether model_input_name is passed as kwarg
        # if yes and `inputs` is None use kwarg inputs
        inputs_kwarg = model_kwargs.pop(input_name, None)
        if inputs_kwarg is not None and inputs is not None:
            raise ValueError(
396
                f"`inputs`: {inputs}` were passed alongside {input_name} which is not allowed. "
397
398
399
400
401
                f"Make sure to either pass {inputs} or {input_name}=..."
            )
        elif inputs_kwarg is not None:
            inputs = inputs_kwarg

402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
        # 3. In the presence of `inputs_embeds` for text models:
        # - decoder-only models should complain if the user attempts to pass `inputs_embeds`, but the model
        # doesn't have its forwarding implemented. `inputs_embeds` is kept in `model_kwargs` and can coexist with
        # input_ids (`inputs_embeds` will be used in the 1st generation step, as opposed to `input_ids`)
        # - encoder-decoder models should complain if the user attempts to pass `inputs_embeds` and `input_ids`, and
        # pull the former to inputs. It will be used in place of `input_ids` to get the encoder hidden states.
        if input_name == "input_ids" and "inputs_embeds" in model_kwargs:
            if not self.config.is_encoder_decoder:
                has_inputs_embeds_forwarding = "inputs_embeds" in set(
                    inspect.signature(self.prepare_inputs_for_generation).parameters.keys()
                )
                if not has_inputs_embeds_forwarding:
                    raise ValueError(
                        f"You passed `inputs_embeds` to `.generate()`, but the model class {self.__class__.__name__} "
                        "doesn't have its forwarding implemented. See the GPT2 implementation for an example "
                        "(https://github.com/huggingface/transformers/pull/21405), and feel free to open a PR with it!"
                    )
419
420
421
                # In this case, `input_ids` is moved to the `model_kwargs`, so a few automations (like the creation of
                # the attention mask) can rely on the actual model input.
                model_kwargs["input_ids"] = self._maybe_initialize_input_ids_for_generation(
422
                    inputs, bos_token_id, model_kwargs=model_kwargs
423
                )
424
425
426
            else:
                if inputs is not None:
                    raise ValueError("You passed `inputs_embeds` and `input_ids` to `.generate()`. Please pick one.")
427
            inputs, input_name = model_kwargs["inputs_embeds"], "inputs_embeds"
428
429

        # 4. if `inputs` is still None, try to create `input_ids` from BOS token
430
        inputs = self._maybe_initialize_input_ids_for_generation(inputs, bos_token_id, model_kwargs)
431
432
        return inputs, input_name, model_kwargs

433
434
435
    def _maybe_initialize_input_ids_for_generation(
        self,
        inputs: Optional[torch.Tensor] = None,
436
        bos_token_id: Optional[torch.Tensor] = None,
437
        model_kwargs: Optional[Dict[str, torch.Tensor]] = None,
438
    ) -> torch.LongTensor:
439
440
441
442
        """Initializes input ids for generation, if necessary."""
        if inputs is not None:
            return inputs

443
        encoder_outputs = model_kwargs.get("encoder_outputs")
444
445
446
447
448
        if self.config.is_encoder_decoder and encoder_outputs is not None:
            # make dummy input_ids with value -100, as a sanity check ensuring that they won't be used for encoding
            shape = encoder_outputs.last_hidden_state.size()[:-1]
            return torch.ones(shape, dtype=torch.long, device=self.device) * -100

449
450
451
452
453
454
455
        # If there is some tensor in `model_kwargs`, we can infer the batch size from it. This is helpful with
        # soft-prompting or in multimodal implementations built on top of decoder-only language models.
        batch_size = 1
        for value in model_kwargs.values():
            if isinstance(value, torch.Tensor):
                batch_size = value.shape[0]
                break
456
457
458

        if "inputs_embeds" in model_kwargs:
            return torch.ones((batch_size, 0), dtype=torch.long, device=self.device)
459
460
461
462

        if bos_token_id is None:
            raise ValueError("`bos_token_id` has to be defined when no `input_ids` are provided.")

463
        return torch.ones((batch_size, 1), dtype=torch.long, device=self.device) * bos_token_id
464
465
466
467

    def _prepare_attention_mask_for_generation(
        self,
        inputs: torch.Tensor,
468
469
        pad_token_id: Optional[torch.Tensor],
        eos_token_id: Optional[torch.Tensor],
470
    ) -> torch.LongTensor:
471
472
473
474
475
        # No information for attention mask inference -> return default attention mask
        default_attention_mask = torch.ones(inputs.shape[:2], dtype=torch.long, device=inputs.device)
        if pad_token_id is None:
            return default_attention_mask

476
        is_input_ids = len(inputs.shape) == 2 and inputs.dtype in [torch.int, torch.long]
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
        if not is_input_ids:
            return default_attention_mask

        # Otherwise we have may have information -> try to infer the attention mask
        if inputs.device.type == "mps":
            # mps does not support torch.isin (https://github.com/pytorch/pytorch/issues/77764)
            raise ValueError(
                "Can't infer missing attention mask on `mps` device. Please provide an `attention_mask` or use a different device."
            )

        is_pad_token_in_inputs = (pad_token_id is not None) and (
            torch.isin(elements=inputs, test_elements=pad_token_id).any()
        )
        is_pad_token_not_equal_to_eos_token_id = (eos_token_id is None) or ~(
            torch.isin(elements=eos_token_id, test_elements=pad_token_id).any()
        )
        can_infer_attention_mask = is_pad_token_in_inputs * is_pad_token_not_equal_to_eos_token_id
        attention_mask_from_padding = inputs.ne(pad_token_id).long()
495

496
497
498
499
        attention_mask = (
            attention_mask_from_padding * can_infer_attention_mask + default_attention_mask * ~can_infer_attention_mask
        )
        return attention_mask
500
501

    def _prepare_encoder_decoder_kwargs_for_generation(
502
503
504
505
506
        self,
        inputs_tensor: torch.Tensor,
        model_kwargs,
        model_input_name: Optional[str],
        generation_config: GenerationConfig,
507
508
509
    ) -> Dict[str, Any]:
        # 1. get encoder
        encoder = self.get_encoder()
510
511
        # Compatibility with Accelerate big model inference: we need the encoder to outputs stuff on the same device
        # as the inputs.
Marc Sun's avatar
Marc Sun committed
512
513
514
515
516
        if hasattr(self, "hf_device_map"):
            if hasattr(encoder, "_hf_hook"):
                encoder._hf_hook.io_same_device = True
            else:
                add_hook_to_module(encoder, AlignDevicesHook(io_same_device=True))
517

518
        # 2. Prepare encoder args and encoder kwargs from model kwargs and generation config.
519
520
521
522
523
524
        irrelevant_prefix = ["decoder_", "cross_attn", "use_cache"]
        encoder_kwargs = {
            argument: value
            for argument, value in model_kwargs.items()
            if not any(argument.startswith(p) for p in irrelevant_prefix)
        }
525
526
527
528
529
530
        encoder_signature = set(inspect.signature(encoder.forward).parameters)
        encoder_accepts_wildcard = "kwargs" in encoder_signature or "model_kwargs" in encoder_signature
        if not encoder_accepts_wildcard:
            encoder_kwargs = {
                argument: value for argument, value in encoder_kwargs.items() if argument in encoder_signature
            }
531
532
        encoder_kwargs["output_attentions"] = generation_config.output_attentions
        encoder_kwargs["output_hidden_states"] = generation_config.output_hidden_states
533
534
535
536
537
538
539
540
541
542
543
544

        # 3. make sure that encoder returns `ModelOutput`
        model_input_name = model_input_name if model_input_name is not None else self.main_input_name
        encoder_kwargs["return_dict"] = True
        encoder_kwargs[model_input_name] = inputs_tensor
        model_kwargs["encoder_outputs"]: ModelOutput = encoder(**encoder_kwargs)

        return model_kwargs

    def _prepare_decoder_input_ids_for_generation(
        self,
        batch_size: int,
545
546
        model_input_name: str,
        model_kwargs: Dict[str, torch.Tensor],
547
        decoder_start_token_id: torch.Tensor,
548
        device: torch.device = None,
549
550
551
552
    ) -> Tuple[torch.LongTensor, Dict[str, torch.Tensor]]:
        """Prepares `decoder_input_ids` for generation with encoder-decoder models"""
        # 1. Check whether the user has defined `decoder_input_ids` manually. To facilitate in terms of input naming,
        # we also allow the user to pass it under `input_ids`, if the encoder does not use it as the main input.
553
        if model_kwargs is not None and "decoder_input_ids" in model_kwargs:
554
555
556
            decoder_input_ids = model_kwargs.pop("decoder_input_ids")
        elif "input_ids" in model_kwargs and model_input_name != "input_ids":
            decoder_input_ids = model_kwargs.pop("input_ids")
557
        else:
558
559
            decoder_input_ids = None

560
        # 2. `decoder_start_token_id` must have shape (batch_size, 1)
561
562
        if device is None:
            device = self.device
563
564
        if decoder_start_token_id.ndim == 1:
            if decoder_start_token_id.shape[0] != batch_size:
565
                raise ValueError(
566
                    f"`decoder_start_token_id` expected to have length {batch_size} but got {decoder_start_token_id.shape[0]}"
567
                )
568
            decoder_start_token_id = decoder_start_token_id.view(-1, 1)
569
        else:
570
            decoder_start_token_id = (
571
572
                torch.ones((batch_size, 1), dtype=torch.long, device=device) * decoder_start_token_id
            )
573

574
        # 3. Encoder-decoder models expect the `decoder_input_ids` to start with a special token. Let's ensure that.
575
576
        # no user input -> use decoder_start_token_id as decoder_input_ids
        if decoder_input_ids is None:
577
            decoder_input_ids = decoder_start_token_id
578
579
580
        # exception: Donut checkpoints have task-specific decoder starts and don't expect a BOS token
        elif self.config.model_type == "vision-encoder-decoder" and "donut" in self.name_or_path.lower():
            pass
581
582
        elif self.config.model_type in ["whisper"]:
            pass
583
584
        # user input but doesn't start with decoder_start_token_id -> prepend decoder_start_token_id (and adjust
        # decoder_attention_mask if provided)
585
586
        elif (decoder_input_ids[:, 0] != decoder_start_token_id[:, 0]).all().item():
            decoder_input_ids = torch.cat([decoder_start_token_id, decoder_input_ids], dim=-1)
587
588
589
590
591
592
593
594
595
            if "decoder_attention_mask" in model_kwargs:
                decoder_attention_mask = model_kwargs["decoder_attention_mask"]
                decoder_attention_mask = torch.cat(
                    (torch.ones_like(decoder_attention_mask)[:, :1], decoder_attention_mask),
                    dim=-1,
                )
                model_kwargs["decoder_attention_mask"] = decoder_attention_mask

        return decoder_input_ids, model_kwargs
596
597
598
599
600
601
602
603
604

    @staticmethod
    def _expand_inputs_for_generation(
        expand_size: int = 1,
        is_encoder_decoder: bool = False,
        input_ids: Optional[torch.LongTensor] = None,
        **model_kwargs,
    ) -> Tuple[torch.LongTensor, Dict[str, Any]]:
        """Expands tensors from [batch_size, ...] to [batch_size * expand_size, ...]"""
605
606
607

        def _expand_dict_for_generation(dict_to_expand):
            for key in dict_to_expand:
tomeras91's avatar
tomeras91 committed
608
609
610
611
612
                if (
                    key != "cache_position"
                    and dict_to_expand[key] is not None
                    and isinstance(dict_to_expand[key], torch.Tensor)
                ):
613
614
615
                    dict_to_expand[key] = dict_to_expand[key].repeat_interleave(expand_size, dim=0)
            return dict_to_expand

616
617
618
        if input_ids is not None:
            input_ids = input_ids.repeat_interleave(expand_size, dim=0)

619
        model_kwargs = _expand_dict_for_generation(model_kwargs)
620
621

        if is_encoder_decoder:
622
            if model_kwargs.get("encoder_outputs") is None:
623
                raise ValueError("If `is_encoder_decoder` is True, make sure that `encoder_outputs` is defined.")
624
            model_kwargs["encoder_outputs"] = _expand_dict_for_generation(model_kwargs["encoder_outputs"])
625
626
627

        return input_ids, model_kwargs

628
    def _extract_past_from_model_output(self, outputs: ModelOutput, standardize_cache_format: bool = False):
629
        past_key_values = None
630
        cache_name = "past_key_values"
631
        if "past_key_values" in outputs:
632
            past_key_values = outputs.past_key_values
633
        elif "mems" in outputs:
634
            past_key_values = outputs.mems
635
        elif "past_buckets_states" in outputs:
636
            past_key_values = outputs.past_buckets_states
637
638
639
        elif "cache_params" in outputs:
            past_key_values = outputs.cache_params
            cache_name = "cache_params"
640
641
642
643

        # Bloom fix: standardizes the cache format when requested
        if standardize_cache_format and hasattr(self, "_convert_to_standard_cache"):
            batch_size = outputs.logits.shape[0]
644
            past_key_values = self._convert_to_standard_cache(past_key_values, batch_size=batch_size)
645
        return cache_name, past_key_values
646
647

    def _update_model_kwargs_for_generation(
648
649
650
651
652
        self,
        outputs: ModelOutput,
        model_kwargs: Dict[str, Any],
        is_encoder_decoder: bool = False,
        standardize_cache_format: bool = False,
653
        num_new_tokens: int = 1,
654
    ) -> Dict[str, Any]:
655
656
        # update past_key_values keeping its naming used in model code
        cache_name, cache = self._extract_past_from_model_output(
657
658
            outputs, standardize_cache_format=standardize_cache_format
        )
659
        model_kwargs[cache_name] = cache
Sylvain Gugger's avatar
Sylvain Gugger committed
660
661
        if getattr(outputs, "state", None) is not None:
            model_kwargs["state"] = outputs.state
662
663
664
665
666
667
668

        # update token_type_ids with last value
        if "token_type_ids" in model_kwargs:
            token_type_ids = model_kwargs["token_type_ids"]
            model_kwargs["token_type_ids"] = torch.cat([token_type_ids, token_type_ids[:, -1].unsqueeze(-1)], dim=-1)

        if not is_encoder_decoder:
669
            # update attention mask
670
671
672
673
674
            if "attention_mask" in model_kwargs:
                attention_mask = model_kwargs["attention_mask"]
                model_kwargs["attention_mask"] = torch.cat(
                    [attention_mask, attention_mask.new_ones((attention_mask.shape[0], 1))], dim=-1
                )
675
676
677
678
679
680
681
682
        else:
            # update decoder attention mask
            if "decoder_attention_mask" in model_kwargs:
                decoder_attention_mask = model_kwargs["decoder_attention_mask"]
                model_kwargs["decoder_attention_mask"] = torch.cat(
                    [decoder_attention_mask, decoder_attention_mask.new_ones((decoder_attention_mask.shape[0], 1))],
                    dim=-1,
                )
683

684
685
686
687
688
        if (
            model_kwargs.get("use_cache", True)
            and "cache_position" in model_kwargs
            and model_kwargs["cache_position"] is not None
        ):
689
            model_kwargs["cache_position"] = model_kwargs["cache_position"][-1:] + num_new_tokens
690

691
692
        return model_kwargs

693
    def _reorder_cache(self, past_key_values, beam_idx):
694
695
696
697
698
        raise NotImplementedError(
            f"Make sure that a `_reorder_cache` function is correctly implemented in {self.__class__.__module__} to"
            f" enable beam search for {self.__class__}"
        )

699
700
701
702
703
704
705
706
707
708
709
710
    def _get_candidate_generator(
        self,
        generation_config: GenerationConfig,
        input_ids: torch.LongTensor,
        inputs_tensor: torch.Tensor,
        assistant_model: "PreTrainedModel",
        logits_processor: LogitsProcessorList,
        model_kwargs: Dict,
    ) -> CandidateGenerator:
        """
        Returns the candidate generator to be used in `assisted_generation`
        """
711
712
713
        if generation_config.prompt_lookup_num_tokens is not None:
            candidate_generator = PromptLookupCandidateGenerator(
                num_output_tokens=generation_config.prompt_lookup_num_tokens,
714
                max_matching_ngram_size=generation_config.max_matching_ngram_size,
715
                max_length=generation_config.max_length,
716
717
718
719
720
721
722
723
            )
        else:
            candidate_generator = AssistedCandidateGenerator(
                input_ids=input_ids,
                assistant_model=assistant_model,
                generation_config=generation_config,
                model_kwargs=model_kwargs,
                inputs_tensor=inputs_tensor,
724
                logits_processor=logits_processor,
725
            )
726
727
        return candidate_generator

728
729
    def _get_logits_warper(
        self,
730
        generation_config: GenerationConfig,
731
        device: str,
732
733
734
735
736
737
738
739
740
    ) -> LogitsProcessorList:
        """
        This class returns a [`LogitsProcessorList`] list object that contains all relevant [`LogitsWarper`] instances
        used for multinomial sampling.
        """

        # instantiate warpers list
        warpers = LogitsProcessorList()

741
742
743
744
745
        # In beam methods, we need to keep at least one non-eos token to explore continuations that might have a
        # better score (i.e. keep len(list(generation_config.eos_token_id)) + 1)
        if generation_config.num_beams > 1:
            if isinstance(generation_config.eos_token_id, list):
                min_tokens_to_keep = len(generation_config.eos_token_id) + 1
746
747
            elif isinstance(generation_config.eos_token_id, torch.Tensor):
                min_tokens_to_keep = generation_config.eos_token_id.shape[0] + 1
748
749
750
751
752
            else:
                min_tokens_to_keep = 2
        else:
            min_tokens_to_keep = 1

753
754
        # the following idea is largely copied from this PR: https://github.com/huggingface/transformers/pull/5420/files
        # all samplers can be found in `generation_utils_samplers.py`
755
756
757
        if generation_config.temperature is not None and generation_config.temperature != 1.0:
            warpers.append(TemperatureLogitsWarper(generation_config.temperature))
        if generation_config.top_k is not None and generation_config.top_k != 0:
758
759
760
            warpers.append(TopKLogitsWarper(top_k=generation_config.top_k, min_tokens_to_keep=min_tokens_to_keep))
        if generation_config.top_p is not None and generation_config.top_p < 1.0:
            warpers.append(TopPLogitsWarper(top_p=generation_config.top_p, min_tokens_to_keep=min_tokens_to_keep))
761
762
763
        if generation_config.min_p is not None:
            # Applied after temperature scaling (see https://github.com/ggerganov/llama.cpp/pull/3841#issuecomment-2073826084)
            warpers.append(MinPLogitsWarper(min_p=generation_config.min_p, min_tokens_to_keep=min_tokens_to_keep))
764
        if generation_config.typical_p is not None and generation_config.typical_p < 1.0:
765
            warpers.append(
766
                TypicalLogitsWarper(mass=generation_config.typical_p, min_tokens_to_keep=min_tokens_to_keep)
767
            )
768
        if generation_config.epsilon_cutoff is not None and 0.0 < generation_config.epsilon_cutoff < 1.0:
769
            warpers.append(
770
                EpsilonLogitsWarper(epsilon=generation_config.epsilon_cutoff, min_tokens_to_keep=min_tokens_to_keep)
771
            )
772
        if generation_config.eta_cutoff is not None and 0.0 < generation_config.eta_cutoff < 1.0:
773
            warpers.append(
774
775
776
                EtaLogitsWarper(
                    epsilon=generation_config.eta_cutoff, min_tokens_to_keep=min_tokens_to_keep, device=device
                )
777
            )
778
        # `LogitNormalization` should always be the last logit processor, when present
779
        if generation_config.renormalize_logits is True:
780
781
782
783
784
            warpers.append(LogitNormalization())
        return warpers

    def _get_logits_processor(
        self,
785
        generation_config: GenerationConfig,
786
787
788
789
        input_ids_seq_length: int,
        encoder_input_ids: torch.LongTensor,
        prefix_allowed_tokens_fn: Callable[[int, torch.Tensor], List[int]],
        logits_processor: Optional[LogitsProcessorList],
790
        device: str = None,
791
792
793
        model_kwargs: Optional[Dict[str, Any]] = None,
        negative_prompt_ids: Optional[torch.Tensor] = None,
        negative_prompt_attention_mask: Optional[torch.Tensor] = None,
794
795
796
797
798
799
    ) -> LogitsProcessorList:
        """
        This class returns a [`LogitsProcessorList`] list object that contains all relevant [`LogitsProcessor`]
        instances used to modify the scores of the language model head.
        """
        # instantiate processors list
800
        processors = LogitsProcessorList()
801

802
        if generation_config.guidance_scale is not None and generation_config.guidance_scale != 1:
803
804
805
806
807
808
809
810
811
            processors.append(
                UnbatchedClassifierFreeGuidanceLogitsProcessor(
                    generation_config.guidance_scale,
                    self,
                    unconditional_ids=negative_prompt_ids,
                    unconditional_attention_mask=negative_prompt_attention_mask,
                    use_cache=model_kwargs["use_cache"],
                )
            )
812
813
814
        if generation_config.sequence_bias is not None:
            processors.append(SequenceBiasLogitsProcessor(sequence_bias=generation_config.sequence_bias))

815
        if generation_config.diversity_penalty is not None and generation_config.diversity_penalty > 0.0:
816
817
            processors.append(
                HammingDiversityLogitsProcessor(
818
819
820
                    diversity_penalty=generation_config.diversity_penalty,
                    num_beams=generation_config.num_beams,
                    num_beam_groups=generation_config.num_beam_groups,
821
822
                )
            )
Karim Foda's avatar
Karim Foda committed
823
824
825
826
827
828
        if (
            generation_config.encoder_repetition_penalty is not None
            and generation_config.encoder_repetition_penalty != 1.0
        ):
            processors.append(
                EncoderRepetitionPenaltyLogitsProcessor(
829
830
                    penalty=generation_config.encoder_repetition_penalty,
                    encoder_input_ids=encoder_input_ids,
Karim Foda's avatar
Karim Foda committed
831
832
                )
            )
833
834
835
836
837
838
839
840
        if generation_config.repetition_penalty is not None and generation_config.repetition_penalty != 1.0:
            processors.append(RepetitionPenaltyLogitsProcessor(penalty=generation_config.repetition_penalty))
        if generation_config.no_repeat_ngram_size is not None and generation_config.no_repeat_ngram_size > 0:
            processors.append(NoRepeatNGramLogitsProcessor(generation_config.no_repeat_ngram_size))
        if (
            generation_config.encoder_no_repeat_ngram_size is not None
            and generation_config.encoder_no_repeat_ngram_size > 0
        ):
841
            processors.append(
842
843
844
845
                EncoderNoRepeatNGramLogitsProcessor(
                    generation_config.encoder_no_repeat_ngram_size,
                    encoder_input_ids,
                )
846
            )
847
848
        if generation_config.bad_words_ids is not None:
            processors.append(
849
850
851
852
                NoBadWordsLogitsProcessor(
                    generation_config.bad_words_ids,
                    generation_config.eos_token_id,
                )
853
854
855
856
857
858
            )
        if (
            generation_config.min_length is not None
            and generation_config.eos_token_id is not None
            and generation_config.min_length > 0
        ):
859
860
861
862
863
864
865
            processors.append(
                MinLengthLogitsProcessor(
                    generation_config.min_length,
                    generation_config.eos_token_id,
                    device=device,
                )
            )
866
867
868
869
870
871
872
        if (
            generation_config.min_new_tokens is not None
            and generation_config.eos_token_id is not None
            and generation_config.min_new_tokens > 0
        ):
            processors.append(
                MinNewTokensLengthLogitsProcessor(
873
874
875
876
                    input_ids_seq_length,
                    generation_config.min_new_tokens,
                    generation_config.eos_token_id,
                    device=device,
877
878
                )
            )
879
        if prefix_allowed_tokens_fn is not None:
880
881
            processors.append(
                PrefixConstrainedLogitsProcessor(
882
883
                    prefix_allowed_tokens_fn,
                    generation_config.num_beams // generation_config.num_beam_groups,
884
885
886
                )
            )
        if generation_config.forced_bos_token_id is not None:
887
888
889
890
891
            processors.append(
                ForcedBOSTokenLogitsProcessor(
                    generation_config.forced_bos_token_id,
                )
            )
892
893
        if generation_config.forced_eos_token_id is not None:
            processors.append(
894
895
896
897
898
                ForcedEOSTokenLogitsProcessor(
                    generation_config.max_length,
                    generation_config.forced_eos_token_id,
                    device=device,
                )
899
900
            )
        if generation_config.remove_invalid_values is True:
901
            processors.append(InfNanRemoveLogitsProcessor())
902
        if generation_config.exponential_decay_length_penalty is not None:
903
            processors.append(
904
905
906
                ExponentialDecayLengthPenalty(
                    generation_config.exponential_decay_length_penalty,
                    generation_config.eos_token_id,
907
                    input_ids_seq_length,
908
                )
909
            )
910
        if generation_config.suppress_tokens is not None:
911
912
913
914
915
916
            processors.append(
                SuppressTokensLogitsProcessor(
                    generation_config.suppress_tokens,
                    device=device,
                )
            )
917
        if generation_config.begin_suppress_tokens is not None:
918
            begin_index = input_ids_seq_length
919
920
921
922
923
924
925
926
927
            begin_index = (
                begin_index
                if (input_ids_seq_length > 1 or generation_config.forced_bos_token_id is None)
                else begin_index + 1
            )
            if generation_config.forced_decoder_ids is not None:
                # generation starts after the last token that is forced
                begin_index += generation_config.forced_decoder_ids[-1][0]
            processors.append(
928
929
930
931
932
                SuppressTokensAtBeginLogitsProcessor(
                    generation_config.begin_suppress_tokens,
                    begin_index,
                    device=device,
                )
933
934
            )
        if generation_config.forced_decoder_ids is not None:
935
936
937
938
939
940
            # TODO(Sanchit): deprecate in v4.40 by removing this logic
            warnings.warn(
                "You have explicitly specified `forced_decoder_ids`. This functionality has been deprecated and will throw an error in v4.40. Please remove the `forced_decoder_ids` argument in favour of `input_ids` or `decoder_input_ids` respectively.",
                FutureWarning,
            )
            processors.append(ForceTokensLogitsProcessor(generation_config.forced_decoder_ids, _has_warned=True))
941
942
943
944
945
946
947
948
949
950
951
952
        if generation_config.watermarking_config is not None:
            processors.append(
                WatermarkLogitsProcessor(
                    vocab_size=self.config.vocab_size,
                    device=device,
                    greenlist_ratio=generation_config.watermarking_config.greenlist_ratio,
                    bias=generation_config.watermarking_config.bias,
                    hashing_key=generation_config.watermarking_config.hashing_key,
                    seeding_scheme=generation_config.watermarking_config.seeding_scheme,
                    context_width=generation_config.watermarking_config.context_width,
                )
            )
953
954
        processors = self._merge_criteria_processor_list(processors, logits_processor)
        # `LogitNormalization` should always be the last logit processor, when present
955
        if generation_config.renormalize_logits is True:
956
957
958
959
            processors.append(LogitNormalization())
        return processors

    def _get_stopping_criteria(
960
961
962
963
964
        self,
        generation_config: GenerationConfig,
        stopping_criteria: Optional[StoppingCriteriaList],
        tokenizer: Optional["PreTrainedTokenizerBase"] = None,
        **kwargs,
965
966
    ) -> StoppingCriteriaList:
        criteria = StoppingCriteriaList()
967
        if generation_config.max_length is not None:
968
969
970
971
972
973
974
            max_position_embeddings = getattr(self.config, "max_position_embeddings", None)
            criteria.append(
                MaxLengthCriteria(
                    max_length=generation_config.max_length,
                    max_position_embeddings=max_position_embeddings,
                )
            )
975
976
        if generation_config.max_time is not None:
            criteria.append(MaxTimeCriteria(max_time=generation_config.max_time))
977
978
979
980
981
982
983
984
        if generation_config.stop_strings is not None:
            if tokenizer is None:
                raise ValueError(
                    "There are one or more stop strings, either in the arguments to `generate` or in the "
                    "model's generation config, but we could not locate a tokenizer. When generating with "
                    "stop strings, you must pass the model's tokenizer to the `tokenizer` argument of `generate`."
                )
            criteria.append(StopStringCriteria(stop_strings=generation_config.stop_strings, tokenizer=tokenizer))
985
986
        if generation_config.eos_token_id is not None:
            criteria.append(EosTokenCriteria(eos_token_id=generation_config.eos_token_id))
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
        criteria = self._merge_criteria_processor_list(criteria, stopping_criteria)
        return criteria

    def _merge_criteria_processor_list(
        self,
        default_list: Union[LogitsProcessorList, StoppingCriteriaList],
        custom_list: Union[LogitsProcessorList, StoppingCriteriaList],
    ) -> Union[LogitsProcessorList, StoppingCriteriaList]:
        if len(custom_list) == 0:
            return default_list
        for default in default_list:
            for custom in custom_list:
                if type(custom) is type(default):
                    object_type = "stopping criteria" if isinstance(custom, StoppingCriteria) else "logits processor"
                    raise ValueError(
                        f"A custom {object_type} of type {type(custom)} with values {custom} has been passed to"
1003
                        f" `.generate()`, but it has already been created with the values {default}. {default} has been"
1004
1005
                        " created by passing the corresponding arguments to generate or by the model's config default"
                        f" values. If you just want to change the default values of {object_type} consider passing"
1006
                        f" them as arguments to `.generate()` instead of using a custom {object_type}."
1007
1008
1009
1010
                    )
        default_list.extend(custom_list)
        return default_list

1011
    def compute_transition_scores(
1012
1013
1014
        self,
        sequences: torch.Tensor,
        scores: Tuple[torch.Tensor],
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
        beam_indices: Optional[torch.Tensor] = None,
        normalize_logits: bool = False,
    ) -> torch.Tensor:
        """
        Computes the transition scores of sequences given the generation scores (and beam indices, if beam search was
        used). This is a convenient method to quicky obtain the scores of the selected tokens at generation time.

        Parameters:
            sequences (`torch.LongTensor`):
                The generated sequences. The second dimension (sequence_length) is either equal to `max_length` or
                shorter if all batches finished early due to the `eos_token_id`.
            scores (`tuple(torch.FloatTensor)`):
                Transition scores for each vocabulary token at each generation step. Beam transition scores consisting
1028
1029
1030
                of log probabilities of tokens conditioned on log softmax of previously generated tokens in this beam.
                Tuple of `torch.FloatTensor` with up to `max_new_tokens` elements (one element for each generated token),
                with each tensor of shape `(batch_size*num_beams, config.vocab_size)`.
1031
            beam_indices (`torch.LongTensor`, *optional*):
1032
                Beam indices of generated token id at each generation step. `torch.LongTensor` of shape
1033
                `(batch_size*num_return_sequences, sequence_length)`. Only required if a `num_beams>1` at
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
                generate-time.
            normalize_logits (`bool`, *optional*, defaults to `False`):
                Whether to normalize the logits (which, for legacy reasons, may be unnormalized).

        Return:
            `torch.Tensor`: A `torch.Tensor` of shape `(batch_size*num_return_sequences, sequence_length)` containing
                the transition scores (logits)

        Examples:

        ```python
        >>> from transformers import GPT2Tokenizer, AutoModelForCausalLM
        >>> import numpy as np

        >>> tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
1049
        >>> model = AutoModelForCausalLM.from_pretrained("openai-community/gpt2")
1050
1051
1052
1053
1054
1055
1056
1057
        >>> tokenizer.pad_token_id = tokenizer.eos_token_id
        >>> inputs = tokenizer(["Today is"], return_tensors="pt")

        >>> # Example 1: Print the scores for each token generated with Greedy Search
        >>> outputs = model.generate(**inputs, max_new_tokens=5, return_dict_in_generate=True, output_scores=True)
        >>> transition_scores = model.compute_transition_scores(
        ...     outputs.sequences, outputs.scores, normalize_logits=True
        ... )
1058
1059
1060
        >>> # input_length is the length of the input prompt for decoder-only models, like the GPT family, and 1 for
        >>> # encoder-decoder models, like BART or T5.
        >>> input_length = 1 if model.config.is_encoder_decoder else inputs.input_ids.shape[1]
1061
1062
        >>> generated_tokens = outputs.sequences[:, input_length:]
        >>> for tok, score in zip(generated_tokens[0], transition_scores[0]):
1063
        ...     # | token | token string | log probability | probability
1064
1065
1066
1067
1068
1069
        ...     print(f"| {tok:5d} | {tokenizer.decode(tok):8s} | {score.numpy():.3f} | {np.exp(score.numpy()):.2%}")
        |   262 |  the     | -1.414 | 24.33%
        |  1110 |  day     | -2.609 | 7.36%
        |   618 |  when    | -2.010 | 13.40%
        |   356 |  we      | -1.859 | 15.58%
        |   460 |  can     | -2.508 | 8.14%
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083

        >>> # Example 2: Reconstruct the sequence scores from Beam Search
        >>> outputs = model.generate(
        ...     **inputs,
        ...     max_new_tokens=5,
        ...     num_beams=4,
        ...     num_return_sequences=4,
        ...     return_dict_in_generate=True,
        ...     output_scores=True,
        ... )
        >>> transition_scores = model.compute_transition_scores(
        ...     outputs.sequences, outputs.scores, outputs.beam_indices, normalize_logits=False
        ... )
        >>> # If you sum the generated tokens' scores and apply the length penalty, you'll get the sequence scores.
1084
        >>> # Tip 1: recomputing the scores is only guaranteed to match with `normalize_logits=False`. Depending on the
1085
        >>> # use case, you might want to recompute it with `normalize_logits=True`.
1086
1087
        >>> # Tip 2: the output length does NOT include the input length
        >>> output_length = np.sum(transition_scores.numpy() < 0, axis=1)
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
        >>> length_penalty = model.generation_config.length_penalty
        >>> reconstructed_scores = transition_scores.sum(axis=1) / (output_length**length_penalty)
        >>> print(np.allclose(outputs.sequences_scores, reconstructed_scores))
        True
        ```"""
        # 1. In absence of `beam_indices`, we can assume that we come from e.g. greedy search, which is equivalent
        # to a beam search approach were the first (and only) beam is always selected
        if beam_indices is None:
            beam_indices = torch.arange(scores[0].shape[0]).view(-1, 1).to(sequences.device)
            beam_indices = beam_indices.expand(-1, len(scores))

        # 2. reshape scores as [batch_size*vocab_size, # generation steps] with # generation steps being
1100
1101
1102
        # seq_len - input_length
        scores = torch.stack(scores).reshape(len(scores), -1).transpose(0, 1)

1103
1104
1105
1106
1107
1108
1109
        # 3. Optionally normalize the logits (across the vocab dimension)
        if normalize_logits:
            scores = scores.reshape(-1, self.config.vocab_size, scores.shape[-1])
            scores = torch.nn.functional.log_softmax(scores, dim=1)
            scores = scores.reshape(-1, scores.shape[-1])

        # 4. cut beam_indices to longest beam length
1110
1111
        beam_indices_mask = beam_indices < 0
        max_beam_length = (1 - beam_indices_mask.long()).sum(-1).max()
1112
        beam_indices = beam_indices.clone()[:, :max_beam_length]
1113
1114
        beam_indices_mask = beam_indices_mask[:, :max_beam_length]

1115
        # 5. Set indices of beams that finished early to 0; such indices will be masked correctly afterwards
1116
1117
        beam_indices[beam_indices_mask] = 0

1118
        # 6. multiply beam_indices with vocab size to gather correctly from scores
1119
1120
        beam_sequence_indices = beam_indices * self.config.vocab_size

1121
        # 7. Define which indices contributed to scores
1122
1123
1124
        cut_idx = sequences.shape[-1] - max_beam_length
        indices = sequences[:, cut_idx:] + beam_sequence_indices

1125
        # 8. Compute scores
1126
1127
        transition_scores = scores.gather(0, indices)

1128
        # 9. Mask out transition_scores of beams that stopped early
1129
1130
1131
1132
1133
1134
1135
1136
1137
        transition_scores[beam_indices_mask] = 0

        return transition_scores

    def _validate_model_class(self):
        """
        Confirms that the model class is compatible with generation. If not, raises an exception that points to the
        right class to use.
        """
1138
        if not self.can_generate():
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
            generate_compatible_mappings = [
                MODEL_FOR_CAUSAL_LM_MAPPING,
                MODEL_FOR_CAUSAL_IMAGE_MODELING_MAPPING,
                MODEL_FOR_VISION_2_SEQ_MAPPING,
                MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
                MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING,
            ]
            generate_compatible_classes = set()
            for model_mapping in generate_compatible_mappings:
                supported_models = model_mapping.get(type(self.config), default=None)
                if supported_models is not None:
                    generate_compatible_classes.add(supported_models.__name__)
            exception_message = (
                f"The current model class ({self.__class__.__name__}) is not compatible with `.generate()`, as "
                "it doesn't have a language model head."
            )
            if generate_compatible_classes:
                exception_message += f" Please use one of the following classes instead: {generate_compatible_classes}"
            raise TypeError(exception_message)

1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
    def _validate_assistant(self, assistant_model):
        if assistant_model is None:
            return

        if self.config.is_encoder_decoder and not assistant_model.config.is_encoder_decoder:
            attributes_to_check = ["encoder_attention_heads", "encoder_ffn_dim", "encoder_layers"]
            attributes_to_check = [attr for attr in dir(assistant_model.config) if attr in attributes_to_check]
            are_equal = all(
                getattr(self.config, attr) == getattr(assistant_model.config, attr) for attr in attributes_to_check
            )
            if not are_equal:
                raise ValueError(
                    "The main model and the assistant don't have compatible encoder-dependent input shapes. "
                    "Ensure you load the assistant with the correct encoder-decoder class, e.g. `AutoModelForSpeechSeq2Seq` for Whisper."
                )

        if not self.config.vocab_size == assistant_model.config.vocab_size:
            raise ValueError("Make sure the main and assistant model use the same tokenizer")

1178
1179
    def _validate_model_kwargs(self, model_kwargs: Dict[str, Any]):
        """Validates model kwargs for generation. Generate argument typos will also be caught here."""
1180
1181
1182
1183
1184
1185
1186
        # If a `Cache` instance is passed, checks whether the model is compatible with it
        if isinstance(model_kwargs.get("past_key_values", None), Cache) and not self._supports_cache_class:
            raise ValueError(
                f"{self.__class__.__name__} does not support an instance of `Cache` as `past_key_values`. Please "
                "check the model documentation for supported cache formats."
            )

1187
1188
1189
1190
1191
1192
1193
        # Excludes arguments that are handled before calling any model function
        if self.config.is_encoder_decoder:
            for key in ["decoder_input_ids"]:
                model_kwargs.pop(key, None)

        unused_model_args = []
        model_args = set(inspect.signature(self.prepare_inputs_for_generation).parameters)
1194
1195
1196
        # `kwargs`/`model_kwargs` is often used to handle optional forward pass inputs like `attention_mask`. If
        # `prepare_inputs_for_generation` doesn't accept them, then a stricter check can be made ;)
        if "kwargs" in model_args or "model_kwargs" in model_args:
1197
            model_args |= set(inspect.signature(self.forward).parameters)
1198
1199
1200
1201
1202
1203
1204

        # Encoder-Decoder models may also need Encoder arguments from `model_kwargs`
        if self.config.is_encoder_decoder:
            base_model = getattr(self, self.base_model_prefix, None)

            # allow encoder kwargs
            encoder = getattr(self, "encoder", None)
1205
1206
1207
1208
1209
            # `MusicgenForConditionalGeneration` has `text_encoder` and `audio_encoder`.
            # Also, it has `base_model_prefix = "encoder_decoder"` but there is no `self.encoder_decoder`
            # TODO: A better way to handle this.
            if encoder is None and base_model is not None:
                encoder = getattr(base_model, "encoder", None)
1210

1211
1212
1213
            if encoder is not None:
                encoder_model_args = set(inspect.signature(encoder.forward).parameters)
                model_args |= encoder_model_args
1214
1215
1216

            # allow decoder kwargs
            decoder = getattr(self, "decoder", None)
1217
1218
            if decoder is None and base_model is not None:
                decoder = getattr(base_model, "decoder", None)
1219

1220
1221
1222
            if decoder is not None:
                decoder_model_args = set(inspect.signature(decoder.forward).parameters)
                model_args |= {f"decoder_{x}" for x in decoder_model_args}
1223

1224
1225
1226
1227
            # allow assistant_encoder_outputs to be passed if we're doing assisted generating
            if "assistant_encoder_outputs" in model_kwargs:
                model_args |= {"assistant_encoder_outputs"}

1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
        for key, value in model_kwargs.items():
            if value is not None and key not in model_args:
                unused_model_args.append(key)

        if unused_model_args:
            raise ValueError(
                f"The following `model_kwargs` are not used by the model: {unused_model_args} (note: typos in the"
                " generate arguments will also show up in this list)"
            )

1238
1239
1240
1241
    def _validate_generated_length(self, generation_config, input_ids_length, has_default_max_length):
        """Performs validation related to the resulting generated length"""

        # 1. Max length warnings related to poor parameterization
1242
        if has_default_max_length and generation_config.max_new_tokens is None and generation_config.max_length == 20:
1243
1244
            # 20 is the default max_length of the generation config
            warnings.warn(
1245
                f"Using the model-agnostic default `max_length` (={generation_config.max_length}) to control the "
1246
1247
1248
1249
1250
1251
                "generation length. We recommend setting `max_new_tokens` to control the maximum length of the "
                "generation.",
                UserWarning,
            )
        if input_ids_length >= generation_config.max_length:
            input_ids_string = "decoder_input_ids" if self.config.is_encoder_decoder else "input_ids"
1252
            raise ValueError(
1253
1254
                f"Input length of {input_ids_string} is {input_ids_length}, but `max_length` is set to"
                f" {generation_config.max_length}. This can lead to unexpected behavior. You should consider"
1255
                " increasing `max_length` or, better yet, setting `max_new_tokens`."
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
            )

        # 2. Min length warnings due to unfeasible parameter combinations
        min_length_error_suffix = (
            " Generation will stop at the defined maximum length. You should decrease the minimum length and/or "
            "increase the maximum length."
        )
        if has_default_max_length:
            min_length_error_suffix += (
                f" Note that `max_length` is set to {generation_config.max_length}, its default value."
            )
        if generation_config.min_length is not None and generation_config.min_length > generation_config.max_length:
            warnings.warn(
                f"Unfeasible length constraints: `min_length` ({generation_config.min_length}) is larger than"
                f" the maximum possible length ({generation_config.max_length})." + min_length_error_suffix,
                UserWarning,
            )
        if generation_config.min_new_tokens is not None:
            min_length = generation_config.min_new_tokens + input_ids_length
            if min_length > generation_config.max_length:
                warnings.warn(
                    f"Unfeasible length constraints: `min_new_tokens` ({generation_config.min_new_tokens}), when "
                    f"added to the prompt length ({input_ids_length}), is larger than"
                    f" the maximum possible length ({generation_config.max_length})." + min_length_error_suffix,
                    UserWarning,
                )

1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
    def _prepare_generated_length(
        self,
        generation_config,
        has_default_max_length,
        has_default_min_length,
        model_input_name,
        input_ids_length,
        inputs_tensor,
    ):
        """Prepared max and min length in generaion configs to avoid clashes between similar attributes"""

        if generation_config.max_new_tokens is not None:
            if not has_default_max_length and generation_config.max_length is not None:
                logger.warning(
                    f"Both `max_new_tokens` (={generation_config.max_new_tokens}) and `max_length`(="
                    f"{generation_config.max_length}) seem to have been set. `max_new_tokens` will take precedence. "
                    "Please refer to the documentation for more information. "
                    "(https://huggingface.co/docs/transformers/main/en/main_classes/text_generation)"
                )
            generation_config.max_length = generation_config.max_new_tokens + input_ids_length

        # if both `inputs_embeds` and `input_ids` are passed, we do not correct the length
        # otherwise we need total length [inputs-embeds-len + new-tokens-len] to not go beyond indicated `max_length``
        elif (
            model_input_name == "inputs_embeds"
            and input_ids_length != inputs_tensor.shape[1]
            and not self.config.is_encoder_decoder
        ):
            generation_config.max_length -= inputs_tensor.shape[1]

        # same for min length
        if generation_config.min_new_tokens is not None:
            if not has_default_min_length:
                logger.warning(
                    f"Both `min_new_tokens` (={generation_config.min_new_tokens}) and `min_length`(="
                    f"{generation_config.min_length}) seem to have been set. `min_new_tokens` will take precedence. "
                    "Please refer to the documentation for more information. "
                    "(https://huggingface.co/docs/transformers/main/en/main_classes/text_generation)"
                )
            generation_config.min_length = generation_config.min_new_tokens + input_ids_length

        elif (
            model_input_name == "inputs_embeds"
            and input_ids_length != inputs_tensor.shape[1]
            and not self.config.is_encoder_decoder
        ):
            generation_config.min_length = max(generation_config.min_length - inputs_tensor.shape[1], 0)

        return generation_config

1333
    def _prepare_generation_config(
1334
        self, generation_config: Optional[GenerationConfig], **kwargs: Dict
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
    ) -> Tuple[GenerationConfig, Dict]:
        """
        Prepares the base generation config, then applies any generation configuration options from kwargs.
        """
        # TODO joao: when we can detect `fullgraph=True` in `torch.compile` (https://github.com/pytorch/pytorch/pull/120400)
        # replace `is_torchdynamo_compiling` by the corresponding check. As it is, we are being too restrictive with
        # the parameterization in `fullgraph=False` so as to enable `fullgraph=True`.

        # priority: `generation_config` argument > `model.generation_config` (the default generation config)
        if generation_config is None:
            # legacy: users may modify the model configuration to control generation. To trigger this legacy behavior,
            # three conditions must be met
            # 1) the generation config must have been created from the model config (`_from_model_config` field);
            # 2) the generation config must have seen no modification since its creation (the hash is the same);
            # 3) the user must have set generation parameters in the model config.
            # NOTE: `torch.compile` can't compile `hash`, this legacy support is disabled with compilation.
            if (
                not is_torchdynamo_compiling()
                and self.generation_config._from_model_config
                and self.generation_config._original_object_hash == hash(self.generation_config)
                and self.config._has_non_default_generation_parameters()
            ):
                new_generation_config = GenerationConfig.from_model_config(self.config)
                if new_generation_config != self.generation_config:
                    warnings.warn(
                        "You have modified the pretrained model configuration to control generation. This is a"
                        " deprecated strategy to control generation and will be removed soon, in a future version."
                        " Please use and modify the model generation configuration (see"
                        " https://huggingface.co/docs/transformers/generation_strategies#default-text-generation-configuration )"
                    )
                    self.generation_config = new_generation_config
            generation_config = self.generation_config

        # `torch.compile` can't compile `copy.deepcopy`, arguments in `kwargs` that are part of `generation_config`
        # will mutate the object with `.update`. As such, passing these arguments through `kwargs` is disabled.
        if is_torchdynamo_compiling():
            model_kwargs = kwargs
            generate_attributes_in_kwargs = [
                key for key, value in kwargs.items() if getattr(generation_config, key, None) != value
            ]
            if len(generate_attributes_in_kwargs) > 0:
                raise ValueError(
                    "`torch.compile` exception: all generation configuration attributes must be passed within a "
                    f"`generation_config` instance passed to `generate` (found: {generate_attributes_in_kwargs})."
                )
        else:
            generation_config = copy.deepcopy(generation_config)
            model_kwargs = generation_config.update(**kwargs)

        return generation_config, model_kwargs

1386
1387
    def _get_initial_cache_position(self, input_ids, model_kwargs):
        """Calculates `cache_position` for the pre-fill stage based on `input_ids` and optionally past length"""
1388
1389
1390
1391
        if not model_kwargs.get("use_cache", True):
            model_kwargs["cache_position"] = None
            return model_kwargs

1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
        past_length = 0
        if "past_key_values" in model_kwargs:
            if isinstance(model_kwargs["past_key_values"], Cache):
                past_length = model_kwargs["past_key_values"].get_seq_length()
            else:
                past_length = model_kwargs["past_key_values"][0][0].shape[2]
        if "inputs_embeds" in model_kwargs:
            cur_len = model_kwargs["inputs_embeds"].shape[1]
        else:
            cur_len = input_ids.shape[-1]
        model_kwargs["cache_position"] = torch.arange(past_length, cur_len, device=input_ids.device)
        return model_kwargs

1405
    def _get_cache(self, cache_implementation: str, max_batch_size: int, max_cache_len: int) -> Cache:
1406
        """
1407
        Sets a cache for `generate`, that will persist across calls. A new cache will only be initialized a
1408
1409
        new `generate` call requires a larger cache.

1410
        Returns the resulting cache object.
1411
        """
1412
        cache_cls: Cache = NEED_SETUP_CACHE_CLASSES_MAPPING[cache_implementation]
1413
1414
1415
        if cache_implementation == "sliding_window":
            max_cache_len = min(self.config.sliding_window, max_cache_len)

1416
1417
1418
        need_new_cache = (
            not hasattr(self, "_cache")
            or (not isinstance(self._cache, cache_cls))
1419
1420
            or self._cache.max_batch_size != max_batch_size
            or self._cache.max_cache_len < max_cache_len
1421
        )
1422
1423

        if need_new_cache:
1424
1425
1426
1427
            if hasattr(self.config, "_pre_quantization_dtype"):
                cache_dtype = self.config._pre_quantization_dtype
            else:
                cache_dtype = self.dtype
1428
            self._cache = cache_cls(
1429
1430
1431
1432
1433
1434
1435
                config=self.config,
                max_batch_size=max_batch_size,
                max_cache_len=max_cache_len,
                device=self.device,
                dtype=cache_dtype,
            )
        else:
1436
1437
            self._cache.reset()
        return self._cache
1438

1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
    def _get_decoder_start_token_id(
        self, decoder_start_token_id: Union[int, List[int]] = None, bos_token_id: int = None
    ) -> int:
        decoder_start_token_id = (
            decoder_start_token_id
            if decoder_start_token_id is not None
            else self.generation_config.decoder_start_token_id
        )
        bos_token_id = bos_token_id if bos_token_id is not None else self.generation_config.bos_token_id

        if decoder_start_token_id is not None:
            return decoder_start_token_id
        elif bos_token_id is not None:
            return bos_token_id
        else:
            return

1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
    def _supports_default_dynamic_cache(self) -> bool:
        """
        Return `True` if current model can use a `DynamicCache` instance when initializing the `past_key_values`.
        This is mostly the same as `_supports_cache_class` attribute, but add exception for `Jamba` model which
        uses its own `HybridMambaAttentionDynamicCache` and do not need to initialize the Cache in advance in
        order to save memory (because no back and forth `to_legacy_cache` and `from_legacy_cache` will be performed
        for `HybridMambaAttentionDynamicCache`).
        """
        return self._supports_cache_class and "jamba" not in self.__class__.__name__.lower()

1466
    def _prepare_special_tokens(
1467
1468
1469
1470
        self,
        generation_config: GenerationConfig,
        kwargs_has_attention_mask: Optional[bool] = None,
        device: Optional[Union[torch.device, str]] = None,
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
    ):
        """
        Prepares the special tokens for generation, overwriting the generation config with their processed versions
        converted to tensor.

        Note that `generation_config` is changed in place and stops being serializable after this method is called.
        That is no problem if called within `generate` (`generation_config` is a local copy that doesn't leave the
        function). However, if called outside `generate`, consider creating a copy of `generation_config` first.
        """

        # Convert special tokens to tensors (if they exist)
1482
1483
1484
1485
        def _tensor_or_none(token, device=None):
            if device is None:
                device = self.device

1486
1487
            if token is None or isinstance(token, torch.Tensor):
                return token
1488
            return torch.tensor(token, device=device, dtype=torch.long)
1489

1490
1491
1492
1493
1494
1495
        # for BC we also try to get `decoder_start_token_id` from model's generation config (#30892)
        if self.config.is_encoder_decoder:
            generation_config.decoder_start_token_id = self._get_decoder_start_token_id(
                generation_config.decoder_start_token_id, generation_config.bos_token_id
            )

1496
1497
1498
1499
        bos_token_id = _tensor_or_none(generation_config.bos_token_id, device=device)
        eos_token_id = _tensor_or_none(generation_config.eos_token_id, device=device)
        pad_token_id = _tensor_or_none(generation_config.pad_token_id, device=device)
        decoder_start_token_id = _tensor_or_none(generation_config.decoder_start_token_id, device=device)
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531

        # We can have more than one eos token. Always treat it as a 1D tensor (when it exists).
        if eos_token_id is not None and eos_token_id.ndim == 0:
            eos_token_id = eos_token_id.unsqueeze(0)

        # Set pad token if unset (and there are conditions to do so)
        if pad_token_id is None and eos_token_id is not None:
            if kwargs_has_attention_mask is not None and not kwargs_has_attention_mask:
                logger.warning(
                    "The attention mask and the pad token id were not set. As a consequence, you may observe "
                    "unexpected behavior. Please pass your input's `attention_mask` to obtain reliable results."
                )
            pad_token_id = eos_token_id[0]
            logger.warning(f"Setting `pad_token_id` to `eos_token_id`:{pad_token_id} for open-end generation.")

        # Sanity checks/warnings
        if self.config.is_encoder_decoder and decoder_start_token_id is None:
            raise ValueError(
                "`decoder_start_token_id` or `bos_token_id` has to be defined for encoder-decoder generation."
            )
        if eos_token_id is not None and (torch.is_floating_point(eos_token_id) or (eos_token_id < 0).any()):
            logger.warning(
                f"`eos_token_id` should consist of positive integers, but is {eos_token_id}. Your generation will not "
                "stop until the maximum length is reached. Depending on other flags, it may even crash."
            )

        # Update generation config with the updated special tokens tensors
        generation_config.bos_token_id = bos_token_id
        generation_config.eos_token_id = eos_token_id
        generation_config.pad_token_id = pad_token_id
        generation_config.decoder_start_token_id = decoder_start_token_id

1532
1533
1534
1535
    @torch.no_grad()
    def generate(
        self,
        inputs: Optional[torch.Tensor] = None,
1536
        generation_config: Optional[GenerationConfig] = None,
1537
1538
        logits_processor: Optional[LogitsProcessorList] = None,
        stopping_criteria: Optional[StoppingCriteriaList] = None,
1539
        prefix_allowed_tokens_fn: Optional[Callable[[int, torch.Tensor], List[int]]] = None,
1540
        synced_gpus: Optional[bool] = None,
1541
        assistant_model: Optional["PreTrainedModel"] = None,
1542
        streamer: Optional["BaseStreamer"] = None,
1543
1544
        negative_prompt_ids: Optional[torch.Tensor] = None,
        negative_prompt_attention_mask: Optional[torch.Tensor] = None,
1545
        **kwargs,
1546
1547
1548
    ) -> Union[GenerateOutput, torch.LongTensor]:
        r"""

1549
        Generates sequences of token ids for models with a language modeling head.
1550
1551
1552

        <Tip warning={true}>

1553
1554
        Most generation-controlling parameters are set in `generation_config` which, if not passed, will be set to the
        model's default generation configuration. You can override any `generation_config` by passing the corresponding
1555
        parameters to generate(), e.g. `.generate(inputs, num_beams=4, do_sample=True)`.
1556

1557
        For an overview of generation strategies and code examples, check out the [following
1558
        guide](../generation_strategies).
1559

1560
        </Tip>
1561
1562
1563
1564
1565

        Parameters:
            inputs (`torch.Tensor` of varying shape depending on the modality, *optional*):
                The sequence used as a prompt for the generation or as model inputs to the encoder. If `None` the
                method initializes it with `bos_token_id` and a batch size of 1. For decoder-only models `inputs`
1566
                should be in the format of `input_ids`. For encoder-decoder models *inputs* can represent any of
1567
                `input_ids`, `input_values`, `input_features`, or `pixel_values`.
1568
            generation_config ([`~generation.GenerationConfig`], *optional*):
1569
1570
                The generation configuration to be used as base parametrization for the generation call. `**kwargs`
                passed to generate matching the attributes of `generation_config` will override them. If
1571
                `generation_config` is not provided, the default will be used, which has the following loading
1572
1573
1574
1575
1576
1577
1578
1579
                priority: 1) from the `generation_config.json` model file, if it exists; 2) from the model
                configuration. Please note that unspecified parameters will inherit [`~generation.GenerationConfig`]'s
                default values, whose documentation should be checked to parameterize generation.
            logits_processor (`LogitsProcessorList`, *optional*):
                Custom logits processors that complement the default logits processors built from arguments and
                generation config. If a logit processor is passed that is already created with the arguments or a
                generation config an error is thrown. This feature is intended for advanced users.
            stopping_criteria (`StoppingCriteriaList`, *optional*):
1580
                Custom stopping criteria that complements the default stopping criteria built from arguments and a
1581
                generation config. If a stopping criteria is passed that is already created with the arguments or a
1582
1583
1584
                generation config an error is thrown. If your stopping criteria depends on the `scores` input, make
                sure you pass `return_dict_in_generate=True, output_scores=True` to `generate`. This feature is
                intended for advanced users.
1585
1586
1587
1588
1589
1590
1591
            prefix_allowed_tokens_fn (`Callable[[int, torch.Tensor], List[int]]`, *optional*):
                If provided, this function constraints the beam search to allowed tokens only at each step. If not
                provided no constraint is applied. This function takes 2 arguments: the batch ID `batch_id` and
                `input_ids`. It has to return a list with the allowed tokens for the next generation step conditioned
                on the batch ID `batch_id` and the previously generated tokens `inputs_ids`. This argument is useful
                for constrained generation conditioned on the prefix, as described in [Autoregressive Entity
                Retrieval](https://arxiv.org/abs/2010.00904).
1592
1593
1594
1595
            synced_gpus (`bool`, *optional*):
                Whether to continue running the while loop until max_length. Unless overridden this flag will be set to
                `True` under DeepSpeed ZeRO Stage 3 multiple GPUs environment to avoid hanging if one GPU finished
                generating before other GPUs. Otherwise it'll be set to `False`.
1596
1597
1598
1599
1600
            assistant_model (`PreTrainedModel`, *optional*):
                An assistant model that can be used to accelerate generation. The assistant model must have the exact
                same tokenizer. The acceleration is achieved when forecasting candidate tokens with the assistent model
                is much faster than running generation with the model you're calling generate from. As such, the
                assistant model should be much smaller.
1601
1602
1603
            streamer (`BaseStreamer`, *optional*):
                Streamer object that will be used to stream the generated sequences. Generated tokens are passed
                through `streamer.put(token_ids)` and the streamer is responsible for any further processing.
1604
1605
1606
1607
1608
            negative_prompt_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
                The negative prompt needed for some processors such as CFG. The batch size must match the input batch
                size. This is an experimental feature, subject to breaking API changes in future versions.
            negative_prompt_attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
                Attention_mask for `negative_prompt_ids`.
1609
            kwargs (`Dict[str, Any]`, *optional*):
1610
                Ad hoc parametrization of `generation_config` and/or additional model-specific kwargs that will be
1611
1612
                forwarded to the `forward` function of the model. If the model is an encoder-decoder model, encoder
                specific kwargs should not be prefixed and decoder specific kwargs should be prefixed with *decoder_*.
1613
1614
1615

        Return:
            [`~utils.ModelOutput`] or `torch.LongTensor`: A [`~utils.ModelOutput`] (if `return_dict_in_generate=True`
1616
            or when `config.return_dict_in_generate=True`) or a `torch.LongTensor`.
1617
1618
1619
1620

                If the model is *not* an encoder-decoder model (`model.config.is_encoder_decoder=False`), the possible
                [`~utils.ModelOutput`] types are:

1621
1622
                    - [`~generation.GenerateDecoderOnlyOutput`],
                    - [`~generation.GenerateBeamDecoderOnlyOutput`]
1623
1624
1625
1626

                If the model is an encoder-decoder model (`model.config.is_encoder_decoder=True`), the possible
                [`~utils.ModelOutput`] types are:

1627
1628
                    - [`~generation.GenerateEncoderDecoderOutput`],
                    - [`~generation.GenerateBeamEncoderDecoderOutput`]
1629
        """
1630
1631
        # 1. Handle `generation_config` and kwargs that might update it, and validate the `.generate()` call
        self._validate_model_class()
1632
        tokenizer = kwargs.pop("tokenizer", None)  # Pull this out first, we only use it for stopping criteria
1633
1634
        generation_config, model_kwargs = self._prepare_generation_config(generation_config, **kwargs)
        self._validate_model_kwargs(model_kwargs.copy())
1635
        self._validate_assistant(assistant_model)
1636

1637
        # 2. Set generation parameters if not already defined
1638
        if synced_gpus is None:
1639
            if is_deepspeed_zero3_enabled() and dist.get_world_size() > 1:
1640
1641
1642
                synced_gpus = True
            else:
                synced_gpus = False
1643

Ahmed Moubtahij's avatar
Ahmed Moubtahij committed
1644
1645
        tokenizer = kwargs.pop("tokenizer", None)

1646
1647
1648
        logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList()
        stopping_criteria = stopping_criteria if stopping_criteria is not None else StoppingCriteriaList()

1649
1650
1651
        accepts_attention_mask = "attention_mask" in set(inspect.signature(self.forward).parameters.keys())
        requires_attention_mask = "encoder_outputs" not in model_kwargs
        kwargs_has_attention_mask = model_kwargs.get("attention_mask", None) is not None
1652

1653
1654
1655
1656
        # 3. Define model inputs
        inputs_tensor, model_input_name, model_kwargs = self._prepare_model_inputs(
            inputs, generation_config.bos_token_id, model_kwargs
        )
1657
1658
        batch_size = inputs_tensor.shape[0]

1659
1660
1661
        device = inputs_tensor.device
        self._prepare_special_tokens(generation_config, kwargs_has_attention_mask, device=device)

1662
1663
        # decoder-only models must use left-padding for batched generation.
        if not self.config.is_encoder_decoder and not is_torchdynamo_compiling():
1664
1665
            # If `input_ids` was given, check if the last id in any sequence is `pad_token_id`
            # Note: If using, `inputs_embeds` this check does not work, because we want to be more hands-off.
1666
1667
            if (
                generation_config.pad_token_id is not None
1668
                and batch_size > 1
1669
                and len(inputs_tensor.shape) == 2
1670
1671
                and torch.sum(inputs_tensor[:, -1] == generation_config.pad_token_id) > 0
            ):
1672
1673
1674
1675
1676
                logger.warning(
                    "A decoder-only architecture is being used, but right-padding was detected! For correct "
                    "generation results, please set `padding_side='left'` when initializing the tokenizer."
                )

1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
        # 4. Define other model kwargs
        # decoder-only models with inputs_embeds forwarding must use caching (otherwise we can't detect whether we are
        # generating the first new token or not, and we only want to use the embeddings for the first new token)
        if not self.config.is_encoder_decoder and model_input_name == "inputs_embeds":
            model_kwargs["use_cache"] = True
        else:
            model_kwargs["use_cache"] = generation_config.use_cache

        if not kwargs_has_attention_mask and requires_attention_mask and accepts_attention_mask:
            model_kwargs["attention_mask"] = self._prepare_attention_mask_for_generation(
                inputs_tensor, generation_config.pad_token_id, generation_config.eos_token_id
            )

1690
        if self.config.is_encoder_decoder and "encoder_outputs" not in model_kwargs:
1691
            # if model is encoder decoder encoder_outputs are created and added to `model_kwargs`
1692
            model_kwargs = self._prepare_encoder_decoder_kwargs_for_generation(
1693
                inputs_tensor, model_kwargs, model_input_name, generation_config
1694
1695
            )

1696
        # 5. Prepare `input_ids` which will be used for auto-regressive generation
1697
        if self.config.is_encoder_decoder:
1698
1699
1700
1701
            input_ids, model_kwargs = self._prepare_decoder_input_ids_for_generation(
                batch_size=batch_size,
                model_input_name=model_input_name,
                model_kwargs=model_kwargs,
1702
                decoder_start_token_id=generation_config.decoder_start_token_id,
1703
1704
1705
                device=inputs_tensor.device,
            )
        else:
1706
            input_ids = inputs_tensor if model_input_name == "input_ids" else model_kwargs.pop("input_ids")
1707

Ahmed Moubtahij's avatar
Ahmed Moubtahij committed
1708
1709
1710
        if generation_config.token_healing:
            input_ids = self.heal_tokens(input_ids, tokenizer)

1711
1712
1713
        if streamer is not None:
            streamer.put(input_ids.cpu())

1714
        # 6. Prepare `max_length` depending on other stopping criteria.
1715
        input_ids_length = input_ids.shape[-1]
1716
        has_default_max_length = kwargs.get("max_length") is None and generation_config.max_length is not None
1717
1718
1719
1720
1721
1722
1723
1724
1725
        has_default_min_length = kwargs.get("min_length") is None and generation_config.min_length is not None
        generation_config = self._prepare_generated_length(
            generation_config=generation_config,
            has_default_max_length=has_default_max_length,
            has_default_min_length=has_default_min_length,
            model_input_name=model_input_name,
            inputs_tensor=inputs_tensor,
            input_ids_length=input_ids_length,
        )
1726

1727
        use_dynamic_cache_by_default = False
1728
1729
1730
1731
1732
        if generation_config.cache_implementation is not None and model_kwargs.get("past_key_values") is not None:
            raise ValueError(
                "Passing both `cache_implementation` (used to initialize certain caches) and `past_key_values` (a "
                "Cache object) is unsupported. Please use only one of the two."
            )
1733
1734
1735
1736
1737
1738
1739
1740
1741
        elif generation_config.cache_implementation is not None:
            if generation_config.cache_implementation in NEED_SETUP_CACHE_CLASSES_MAPPING:
                if generation_config.cache_implementation == "static" and not self._supports_static_cache:
                    raise ValueError(
                        "This model does not support `cache_implementation='static'`. Please check the following "
                        "issue: https://github.com/huggingface/transformers/issues/28981"
                    )
                model_kwargs["past_key_values"] = self._get_cache(
                    generation_config.cache_implementation, batch_size, generation_config.max_length
1742
                )
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
            elif generation_config.cache_implementation == "quantized":
                if not self._supports_quantized_cache:
                    raise ValueError(
                        "This model does not support the quantized cache. If you want your model to support quantized "
                        "cache, please open an issue."
                    )

                cache_config = (
                    generation_config.cache_config
                    if generation_config.cache_config is not None
                    else QuantizedCacheConfig()
1754
                )
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
                cache_class = QUANT_BACKEND_CLASSES_MAPPING[cache_config.backend]

                if cache_config.backend == "quanto" and not is_quanto_available():
                    raise ImportError(
                        "You need to install `quanto` in order to use KV cache quantization with quanto backend. "
                        "Please install it via  with `pip install quanto`"
                    )
                elif cache_config.backend == "HQQ" and not is_hqq_available():
                    raise ImportError(
                        "You need to install `HQQ` in order to use KV cache quantization with HQQ backend. "
                        "Please install it via  with `pip install hqq`"
                    )

                model_kwargs["past_key_values"] = cache_class(cache_config)
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
        # Use DynamicCache() instance by default. This will avoid back and forth from legacy format that
        # keeps copying the cache thus using much more memory
        elif generation_config.cache_implementation is None and self._supports_default_dynamic_cache():
            past = model_kwargs.get("past_key_values", None)
            if past is None:
                model_kwargs["past_key_values"] = DynamicCache()
                use_dynamic_cache_by_default = True
            elif isinstance(past, tuple):
                model_kwargs["past_key_values"] = DynamicCache.from_legacy_cache(past)
                use_dynamic_cache_by_default = True
1779

1780
        self._validate_generated_length(generation_config, input_ids_length, has_default_max_length)
1781

1782
        # 7. determine generation mode
1783
        generation_mode = generation_config.get_generation_mode(assistant_model)
1784

1785
1786
1787
1788
1789
        if streamer is not None and (generation_config.num_beams > 1):
            raise ValueError(
                "`streamer` cannot be used with beam search (yet!). Make sure that `num_beams` is set to 1."
            )

1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
        if self.device.type != input_ids.device.type:
            warnings.warn(
                "You are calling .generate() with the `input_ids` being on a device type different"
                f" than your model's device. `input_ids` is on {input_ids.device.type}, whereas the model"
                f" is on {self.device.type}. You may experience unexpected behaviors or slower generation."
                " Please make sure that you have put `input_ids` to the"
                f" correct device by calling for example input_ids = input_ids.to('{self.device.type}') before"
                " running `.generate()`.",
                UserWarning,
            )

1801
        # 8. prepare distribution pre_processing samplers
1802
        prepared_logits_processor = self._get_logits_processor(
1803
            generation_config=generation_config,
1804
            input_ids_seq_length=input_ids_length,
1805
1806
1807
            encoder_input_ids=inputs_tensor,
            prefix_allowed_tokens_fn=prefix_allowed_tokens_fn,
            logits_processor=logits_processor,
1808
            device=inputs_tensor.device,
1809
1810
1811
            model_kwargs=model_kwargs,
            negative_prompt_ids=negative_prompt_ids,
            negative_prompt_attention_mask=negative_prompt_attention_mask,
1812
1813
        )

1814
        # 9. prepare stopping criteria
1815
        prepared_stopping_criteria = self._get_stopping_criteria(
1816
            generation_config=generation_config, stopping_criteria=stopping_criteria, tokenizer=tokenizer, **kwargs
1817
        )
1818

1819
        # 10. go into different generation modes
1820
        if generation_mode == GenerationMode.ASSISTED_GENERATION:
1821
1822
            if generation_config.num_return_sequences > 1:
                raise ValueError(
1823
                    "num_return_sequences has to be 1 when doing assisted generate, "
1824
1825
1826
                    f"but is {generation_config.num_return_sequences}."
                )
            if batch_size > 1:
1827
                raise ValueError("assisted generate is only supported for batch_size = 1")
1828
            if not model_kwargs["use_cache"]:
1829
                raise ValueError("assisted generate requires `use_cache=True`")
1830
1831
            if generation_config.cache_implementation == "static":
                raise ValueError("assisted generate is not supported with `static_cache`")
1832

1833
1834
1835
1836
1837
1838
1839
1840
            # 11. Get the candidate generator, given the parameterization
            candidate_generator = self._get_candidate_generator(
                generation_config=generation_config,
                input_ids=input_ids,
                inputs_tensor=inputs_tensor,
                assistant_model=assistant_model,
                logits_processor=logits_processor,
                model_kwargs=model_kwargs,
1841
1842
            )

1843
1844
            # 12. prepare logits warper (if `do_sample` is `True`)
            prepared_logits_warper = (
1845
1846
1847
1848
1849
1850
                self._get_logits_warper(
                    generation_config,
                    device=input_ids.device,
                )
                if generation_config.do_sample
                else None
1851
1852
1853
            )

            # 13. run assisted generate
1854
            result = self._assisted_decoding(
1855
                input_ids,
1856
                candidate_generator=candidate_generator,
1857
                logits_processor=prepared_logits_processor,
1858
                logits_warper=prepared_logits_warper,
1859
                stopping_criteria=prepared_stopping_criteria,
1860
                generation_config=generation_config,
1861
1862
1863
1864
                synced_gpus=synced_gpus,
                streamer=streamer,
                **model_kwargs,
            )
1865

1866
        elif generation_mode == GenerationMode.CONTRASTIVE_SEARCH:
1867
1868
            if not model_kwargs["use_cache"]:
                raise ValueError("Contrastive search requires `use_cache=True`")
1869

1870
            result = self._contrastive_search(
1871
                input_ids,
1872
1873
                logits_processor=prepared_logits_processor,
                stopping_criteria=prepared_stopping_criteria,
1874
                generation_config=generation_config,
1875
                synced_gpus=synced_gpus,
1876
                streamer=streamer,
1877
1878
1879
                **model_kwargs,
            )

1880
        elif generation_mode in (GenerationMode.SAMPLE, GenerationMode.GREEDY_SEARCH):
1881
            # 11. prepare logits warper
1882
            prepared_logits_warper = (
1883
1884
1885
                self._get_logits_warper(generation_config, device=input_ids.device)
                if generation_config.do_sample
                else None
1886
            )
1887

1888
            # 12. expand input_ids with `num_return_sequences` additional sequences per batch
1889
1890
            input_ids, model_kwargs = self._expand_inputs_for_generation(
                input_ids=input_ids,
1891
                expand_size=generation_config.num_return_sequences,
1892
1893
1894
1895
                is_encoder_decoder=self.config.is_encoder_decoder,
                **model_kwargs,
            )

1896
            # 13. run sample (it degenerates to greedy search when `generation_config.do_sample=False`)
1897
            result = self._sample(
1898
                input_ids,
1899
                logits_processor=prepared_logits_processor,
1900
                logits_warper=prepared_logits_warper,
1901
                stopping_criteria=prepared_stopping_criteria,
1902
                generation_config=generation_config,
1903
                synced_gpus=synced_gpus,
1904
                streamer=streamer,
1905
1906
1907
                **model_kwargs,
            )

1908
        elif generation_mode in (GenerationMode.BEAM_SAMPLE, GenerationMode.BEAM_SEARCH):
1909
            # 11. prepare logits warper
1910
            prepared_logits_warper = (
1911
1912
1913
                self._get_logits_warper(generation_config, device=input_ids.device)
                if generation_config.do_sample
                else None
1914
            )
1915

1916
            # 12. prepare beam search scorer
1917
            beam_scorer = BeamSearchScorer(
1918
                batch_size=batch_size,
1919
                num_beams=generation_config.num_beams,
1920
                device=inputs_tensor.device,
1921
1922
                length_penalty=generation_config.length_penalty,
                do_early_stopping=generation_config.early_stopping,
1923
                num_beam_hyps_to_keep=generation_config.num_return_sequences,
1924
                max_length=generation_config.max_length,
1925
1926
            )

1927
            # 13. interleave input_ids with `num_beams` additional sequences per batch
1928
1929
            input_ids, model_kwargs = self._expand_inputs_for_generation(
                input_ids=input_ids,
1930
                expand_size=generation_config.num_beams,
1931
1932
1933
1934
                is_encoder_decoder=self.config.is_encoder_decoder,
                **model_kwargs,
            )

1935
            # 14. run beam sample
1936
            result = self._beam_search(
1937
1938
                input_ids,
                beam_scorer,
1939
                logits_processor=prepared_logits_processor,
1940
                logits_warper=prepared_logits_warper,
1941
                stopping_criteria=prepared_stopping_criteria,
1942
                generation_config=generation_config,
1943
1944
1945
1946
                synced_gpus=synced_gpus,
                **model_kwargs,
            )

1947
        elif generation_mode == GenerationMode.GROUP_BEAM_SEARCH:
1948
            # 11. prepare beam search scorer
1949
1950
            beam_scorer = BeamSearchScorer(
                batch_size=batch_size,
1951
                num_beams=generation_config.num_beams,
1952
                device=inputs_tensor.device,
1953
1954
1955
1956
                length_penalty=generation_config.length_penalty,
                do_early_stopping=generation_config.early_stopping,
                num_beam_hyps_to_keep=generation_config.num_return_sequences,
                num_beam_groups=generation_config.num_beam_groups,
1957
                max_length=generation_config.max_length,
1958
            )
1959
            # 12. interleave input_ids with `num_beams` additional sequences per batch
1960
1961
            input_ids, model_kwargs = self._expand_inputs_for_generation(
                input_ids=input_ids,
1962
                expand_size=generation_config.num_beams,
1963
1964
1965
                is_encoder_decoder=self.config.is_encoder_decoder,
                **model_kwargs,
            )
1966
            # 13. run beam search
1967
            result = self._group_beam_search(
1968
1969
                input_ids,
                beam_scorer,
1970
1971
                logits_processor=prepared_logits_processor,
                stopping_criteria=prepared_stopping_criteria,
1972
                generation_config=generation_config,
1973
1974
1975
1976
                synced_gpus=synced_gpus,
                **model_kwargs,
            )

1977
        elif generation_mode == GenerationMode.CONSTRAINED_BEAM_SEARCH:
1978
            final_constraints = []
1979
1980
            if generation_config.constraints is not None:
                final_constraints = generation_config.constraints
1981

1982
            if generation_config.force_words_ids is not None:
1983
1984
1985

                def typeerror():
                    raise ValueError(
1986
                        "`force_words_ids` has to either be a `List[List[List[int]]]` or `List[List[int]]` "
1987
                        f"of positive integers, but is {generation_config.force_words_ids}."
1988
1989
                    )

1990
1991
1992
1993
                if (
                    not isinstance(generation_config.force_words_ids, list)
                    or len(generation_config.force_words_ids) == 0
                ):
1994
1995
                    typeerror()

1996
                for word_ids in generation_config.force_words_ids:
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
                    if isinstance(word_ids[0], list):
                        if not isinstance(word_ids, list) or len(word_ids) == 0:
                            typeerror()
                        if any(not isinstance(token_ids, list) for token_ids in word_ids):
                            typeerror()
                        if any(
                            any((not isinstance(token_id, int) or token_id < 0) for token_id in token_ids)
                            for token_ids in word_ids
                        ):
                            typeerror()

                        constraint = DisjunctiveConstraint(word_ids)
                    else:
                        if not isinstance(word_ids, list) or len(word_ids) == 0:
                            typeerror()
                        if any((not isinstance(token_id, int) or token_id < 0) for token_id in word_ids):
                            typeerror()

                        constraint = PhrasalConstraint(word_ids)
                    final_constraints.append(constraint)

2018
            # 11. prepare beam search scorer
2019
2020
2021
            constrained_beam_scorer = ConstrainedBeamSearchScorer(
                constraints=final_constraints,
                batch_size=batch_size,
2022
                num_beams=generation_config.num_beams,
2023
                device=inputs_tensor.device,
2024
2025
2026
                length_penalty=generation_config.length_penalty,
                do_early_stopping=generation_config.early_stopping,
                num_beam_hyps_to_keep=generation_config.num_return_sequences,
2027
                max_length=generation_config.max_length,
2028
            )
2029
            # 12. interleave input_ids with `num_beams` additional sequences per batch
2030
2031
            input_ids, model_kwargs = self._expand_inputs_for_generation(
                input_ids=input_ids,
2032
                expand_size=generation_config.num_beams,
2033
2034
2035
                is_encoder_decoder=self.config.is_encoder_decoder,
                **model_kwargs,
            )
2036
            # 13. run beam search
2037
            result = self._constrained_beam_search(
2038
2039
                input_ids,
                constrained_beam_scorer=constrained_beam_scorer,
2040
2041
                logits_processor=prepared_logits_processor,
                stopping_criteria=prepared_stopping_criteria,
2042
                generation_config=generation_config,
2043
2044
2045
2046
                synced_gpus=synced_gpus,
                **model_kwargs,
            )

2047
2048
2049
2050
2051
        # Convert to legacy cache if needed
        if use_dynamic_cache_by_default and generation_config.return_legacy_cache:
            if isinstance(result, ModelOutput) and hasattr(result, "past_key_values"):
                if isinstance(result.past_key_values, DynamicCache):
                    result.past_key_values = result.past_key_values.to_legacy_cache()
2052
2053
        return result

2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
    def _has_unfinished_sequences(self, this_peer_finished: bool, synced_gpus: bool, device: torch.device) -> bool:
        """
        Returns whether there are still unfinished sequences in the device. The existence of unfinished sequences is
        fed through `this_peer_finished`. ZeRO stage 3-friendly.
        """
        if synced_gpus:
            # Under synced_gpus the `forward` call must continue until all gpus complete their sequence.
            # The following logic allows an early break if all peers finished generating their sequence
            this_peer_finished_flag = torch.tensor(0.0 if this_peer_finished else 1.0).to(device)
            # send 0.0 if we finished, 1.0 otherwise
            dist.all_reduce(this_peer_finished_flag, op=dist.ReduceOp.SUM)
            # did all peers finish? the reduced sum will be 0.0 then
            if this_peer_finished_flag.item() == 0.0:
                return False
        elif this_peer_finished:
            return False
        return True

Ahmed Moubtahij's avatar
Ahmed Moubtahij committed
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
    def heal_tokens(
        self, input_ids: torch.LongTensor, tokenizer: Optional["PreTrainedTokenizerBase"] = None
    ) -> torch.LongTensor:
        r"""
        Generates sequences of token ids for models with a language modeling head.
        Parameters:
            input_ids (`torch.LongTensor`): The sequence used as a prompt for the generation.
            tokenizer (`PreTrainedTokenizerBase`, *optional*): The tokenizer used to decode the input ids.
        Return:
            `torch.LongTensor` where each sequence has its tail token replaced with its appropriate extension.
        """
        if tokenizer is None:
            raise ValueError(
                " When generating with token healing, you must pass the model's tokenizer to the `tokenizer` "
                "argument of `generate`."
            )

        bos_token_id, pad_token_id = tokenizer.bos_token_id, tokenizer.pad_token_id
        vocab_trie = ExtensionsTrie(tokenizer.get_vocab())
        generation_config = GenerationConfig(max_new_tokens=1, pad_token_id=pad_token_id)

        # assumption: leading/trailing whitespace is not meaningful, so the prompts are
        # stripped before re-tokenizing to desensitize generation to whitespace artefacts
        prompts = [p.strip() for p in tokenizer.batch_decode(input_ids, skip_special_tokens=True)]
        input_ids = tokenizer(
            prompts,
            return_tensors="pt",
            padding=True,
        ).input_ids.to(input_ids.device)

        # replace bos with pad to not condition healing on it
        input_ids = torch.where(input_ids == bos_token_id, pad_token_id, input_ids)

        tail_ids = input_ids[:, -1].tolist()
        space_tok = tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids(" "))[0]
        # tail tokens are used for a prefix search, thus, whitespaces are replaced with
        # their tokenization (e.g. 'Ġ') to enable search for tokens prefixed with a whitespace
        tail_toks = (tokenizer.decode(t).replace(" ", space_tok) for t in tail_ids)

        for batch_idx, (tail_id, tail_tok) in enumerate(zip(tail_ids, tail_toks)):
            batch_ids = input_ids[batch_idx]
            if torch.all(batch_ids == pad_token_id).item():
                continue  # skip empty sequences (all pad ids)

            # apply bias for alternatives (extensions) to the tail token
            seq_bias = {(alt_tok,): 10.0 for alt_tok in vocab_trie.values(prefix=tail_tok)}
            if len(seq_bias) == 1:
                continue  # skip if there are no token alternatives to heal with

            # slightly favor original token to limit aggressive healing e.g. 'http' -> 'https'
            seq_bias[(tail_id,)] += 1.0
            generation_config.update(sequence_bias=seq_bias)

            trimmed_ids = batch_ids[:-1]
            # if the prompt is a single (non-pad) token, regenerate from bos
            if len(batch_ids[batch_ids != pad_token_id]) == 1:
                trimmed_ids[-1] = bos_token_id

            input_ids[batch_idx] = self.generate(trimmed_ids.unsqueeze(0), generation_config=generation_config)

        return input_ids

    def contrastive_search(self, *args, **kwargs):
        logger.warning_once(
            "Calling `contrastive_search` directly is deprecated and will be removed in v4.41. Use `generate` or a "
            "custom generation loop instead.",
        )
        return self._contrastive_search(*args, **kwargs)

2141
    @torch.no_grad()
2142
    def _contrastive_search(
2143
2144
        self,
        input_ids: torch.LongTensor,
2145
2146
2147
2148
2149
        logits_processor: LogitsProcessorList,
        stopping_criteria: StoppingCriteriaList,
        generation_config: GenerationConfig,
        synced_gpus: bool,
        streamer: Optional["BaseStreamer"],
2150
        **model_kwargs,
2151
    ) -> Union[GenerateNonBeamOutput, torch.LongTensor]:
2152
2153
2154
2155
2156
2157
2158
        r"""
        Generates sequences of token ids for models with a language modeling head using **contrastive search** and can
        be used for text-decoder, text-to-text, speech-to-text, and vision-to-text models.

        Parameters:
            input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
                The sequence used as a prompt for the generation.
2159
            logits_processor (`LogitsProcessorList`):
2160
2161
                An instance of [`LogitsProcessorList`]. List of instances of class derived from [`LogitsProcessor`]
                used to modify the prediction scores of the language modeling head applied at each generation step.
2162
            stopping_criteria (`StoppingCriteriaList`):
2163
2164
                An instance of [`StoppingCriteriaList`]. List of instances of class derived from [`StoppingCriteria`]
                used to tell if the generation loop should stop.
2165
2166
2167
            generation_config ([`~generation.GenerationConfig`]):
                The generation configuration to be used as parametrization of the decoding method.
            synced_gpus (`bool`):
2168
                Whether to continue running the while loop until max_length (needed for ZeRO stage 3)
2169
2170
2171
            streamer (`BaseStreamer`, *optional*):
                Streamer object that will be used to stream the generated sequences. Generated tokens are passed
                through `streamer.put(token_ids)` and the streamer is responsible for any further processing.
2172
2173
2174
2175
2176
            model_kwargs:
                Additional model specific keyword arguments will be forwarded to the `forward` function of the model.
                If model is an encoder-decoder model the kwargs should include `encoder_outputs`.

        Return:
2177
            [`~generation.GenerateDecoderOnlyOutput`], [`~generation.GenerateEncoderDecoderOutput`]
2178
            or `torch.LongTensor`: A `torch.LongTensor` containing the generated tokens (default behaviour) or a
2179
2180
            [`~generation.GenerateDecoderOnlyOutput`] if `model.config.is_encoder_decoder=False` and
            `return_dict_in_generate=True` or a [`~generation.GenerateEncoderDecoderOutput`] if
2181
            `model.config.is_encoder_decoder=True`.
2182
        """
2183
        # init values
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
        has_eos_stopping_criteria = any(hasattr(criteria, "eos_token_id") for criteria in stopping_criteria)
        top_k = generation_config.top_k
        penalty_alpha = generation_config.penalty_alpha
        pad_token_id = generation_config.pad_token_id
        output_attentions = generation_config.output_attentions
        output_hidden_states = generation_config.output_hidden_states
        output_scores = generation_config.output_scores
        output_logits = generation_config.output_logits
        return_dict_in_generate = generation_config.return_dict_in_generate
        sequential = generation_config.low_memory
2194
2195

        # init attention / hidden states / scores tuples
2196
        raw_logits = () if (return_dict_in_generate and output_logits) else None
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
        scores = () if (return_dict_in_generate and output_scores) else None
        decoder_attentions = () if (return_dict_in_generate and output_attentions) else None
        cross_attentions = () if (return_dict_in_generate and output_attentions) else None
        decoder_hidden_states = () if (return_dict_in_generate and output_hidden_states) else None

        # if model is an encoder-decoder, retrieve encoder attention weights and hidden states
        if return_dict_in_generate and self.config.is_encoder_decoder:
            encoder_attentions = model_kwargs["encoder_outputs"].get("attentions") if output_attentions else None
            encoder_hidden_states = (
                model_kwargs["encoder_outputs"].get("hidden_states") if output_hidden_states else None
            )

        # keep track of which sequences are already finished
2210
        batch_size = input_ids.shape[0]
2211
        unfinished_sequences = torch.ones(batch_size, dtype=torch.long, device=input_ids.device)
2212
        model_kwargs = self._get_initial_cache_position(input_ids, model_kwargs)
2213

2214
        this_peer_finished = False
2215

2216
        while self._has_unfinished_sequences(this_peer_finished, synced_gpus, device=input_ids.device):
2217
2218
            # if the first step in the loop, encode all the prefix and obtain: (1) past_key_values;
            # (2) last_hidden_states; (3) logit_for_next_step; (4) update model kwargs for the next step
2219
2220
2221
2222
            if model_kwargs.get("past_key_values") is None or (
                isinstance(model_kwargs["past_key_values"], Cache)
                and model_kwargs["past_key_values"].get_seq_length() == 0
            ):
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
                # prepare inputs
                model_kwargs["use_cache"] = True
                model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)

                # encode the given prefix and prepare model inputs; encoder-decoder model process the prefix and save
                # the `encoder_outputs`
                outputs = self(
                    **model_inputs, return_dict=True, output_hidden_states=True, output_attentions=output_attentions
                )

                # last decoder hidden states will be used to compute the degeneration penalty (cosine similarity with
                # previous tokens)
                if self.config.is_encoder_decoder:
                    last_hidden_states = outputs.decoder_hidden_states[-1]
                else:
                    last_hidden_states = outputs.hidden_states[-1]
2239

2240
                # next logit for contrastive search to select top-k candidate tokens
2241
2242
2243
                # Clone is needed to avoid keeping a hanging ref to outputs.logits which may be very large for this first iteration
                # (the clone itself is always small)
                logit_for_next_step = outputs.logits[:, -1, :].clone()
2244
2245

                model_kwargs = self._update_model_kwargs_for_generation(
2246
2247
2248
2249
                    outputs,
                    model_kwargs,
                    is_encoder_decoder=self.config.is_encoder_decoder,
                    standardize_cache_format=True,
2250
                )
2251

2252
2253
2254
2255
2256
                if not sequential:
                    # Expands model inputs top_k times, for batched forward passes (akin to beam search).
                    _, model_kwargs = self._expand_inputs_for_generation(
                        expand_size=top_k, is_encoder_decoder=self.config.is_encoder_decoder, **model_kwargs
                    )
2257

2258
2259
                past_key_values = model_kwargs.get("past_key_values")
                if past_key_values is None:
2260
2261
2262
2263
                    raise ValueError(
                        f"{self.__class__.__name__} does not support caching and therefore **can't** be used "
                        "for contrastive search."
                    )
2264
2265
2266
2267
                elif (
                    not isinstance(past_key_values[0], (tuple, torch.Tensor))
                    or past_key_values[0][0].shape[0] != batch_size
                ):
2268
2269
2270
2271
2272
2273
2274
2275
                    raise ValueError(
                        f"{self.__class__.__name__} does not have a standard cache format and therefore **can't** be "
                        "used for contrastive search without further modifications."
                    )

            # contrastive_search main logic start:
            # contrastive search decoding consists of two steps: (1) candidate tokens recall; (2) candidate re-rank by
            # degeneration penalty
2276
2277
2278
            processed_logit_for_next_step = logits_processor(input_ids, logit_for_next_step)
            next_probs = nn.functional.softmax(processed_logit_for_next_step, dim=-1)

2279
2280
2281
2282
            top_k_probs, top_k_ids = torch.topk(next_probs, dim=-1, k=top_k)

            # Store scores, attentions and hidden_states when required
            if return_dict_in_generate:
2283
2284
                if output_logits:
                    raw_logits += (logit_for_next_step,)
2285
                if output_scores:
2286
                    scores += (processed_logit_for_next_step,)
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
                if output_attentions:
                    decoder_attentions += (
                        (outputs.decoder_attentions,) if self.config.is_encoder_decoder else (outputs.attentions,)
                    )
                    if self.config.is_encoder_decoder:
                        cross_attentions += (outputs.cross_attentions,)

                if output_hidden_states:
                    decoder_hidden_states += (
                        (outputs.decoder_hidden_states,)
                        if self.config.is_encoder_decoder
                        else (outputs.hidden_states,)
                    )

2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
            # This is needed to properly delete outputs.logits which may be very large for this first iteration
            # Otherwise a reference to outputs.logits is kept all along until after the next call to self.forward()
            del outputs

            if not sequential:
                # Replicates the new past_key_values to match the `top_k` candidates
                past = model_kwargs["past_key_values"]
                # If it is a static cache, modify it in-place layer after layer to save memory
                if isinstance(past, DynamicCache):
                    past.batch_repeat_interleave(top_k)
                else:
                    new_key_values = []
                    for layer in past:
                        items = []
                        # item is either the key or the value matrix
                        for item in layer:
                            items.append(item.repeat_interleave(top_k, dim=0))
                        new_key_values.append(tuple(items))

                    past = tuple(new_key_values)

                model_kwargs["past_key_values"] = past
2323

2324
            if sequential:
2325
                all_outputs = []
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
                for i in range(top_k):
                    # compute the candidate tokens by the language model and collect their hidden_states
                    next_model_inputs = self.prepare_inputs_for_generation(top_k_ids[:, i].view(-1, 1), **model_kwargs)

                    outputs = self(
                        **next_model_inputs,
                        return_dict=True,
                        output_hidden_states=True,
                        output_attentions=output_attentions,
                    )
2336
2337
2338
2339
2340
2341
                    if isinstance(outputs["past_key_values"], DynamicCache):
                        # Remove past K-V from output since we don't need to stack later
                        outputs["past_key_values"] = None
                        # Remove last token from past K-V since we don't want to append it at this point
                        model_kwargs["past_key_values"].crop(-1)

2342
2343
                    all_outputs.append(outputs)
                outputs = stack_model_outputs(all_outputs)
2344
2345

            else:
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
                # compute the candidate tokens by the language model and collect their hidden_states
                # assembles top_k_ids into batch of size k
                next_model_inputs = self.prepare_inputs_for_generation(top_k_ids.view(-1, 1), **model_kwargs)

                outputs = self(
                    **next_model_inputs,
                    return_dict=True,
                    output_hidden_states=True,
                    output_attentions=output_attentions,
                )
2356
2357
2358
2359
2360

            # This is essential to avoid having a last reference to the big past K-V and double the necesary memory
            # in the next loop
            del next_model_inputs

2361
2362
2363
2364
2365
2366
2367
            # name is different for encoder-decoder and decoder-only models
            if self.config.is_encoder_decoder:
                next_hidden = outputs.decoder_hidden_states[-1]
                full_hidden_states = outputs.decoder_hidden_states
            else:
                next_hidden = outputs.hidden_states[-1]
                full_hidden_states = outputs.hidden_states
2368

2369
            logits = outputs.logits[:, -1, :]
2370
2371
2372
            context_hidden = last_hidden_states.repeat_interleave(top_k, dim=0)

            # compute the degeneration penalty and re-rank the candidates based on the degeneration penalty and the
2373
2374
            # model confidence. Keeping `selected_idx` on CPU enables multi-device contrastive search and doesn't
            # introduce (noticeable) slowdowns on single-device runs.
2375
            selected_idx = _ranking_fast(context_hidden, next_hidden, top_k_probs, penalty_alpha, top_k)
2376
            selected_idx = selected_idx.to("cpu")
2377

2378
2379
2380
            # This will be used instead of the previous inneficient torch.stack(torch.split())
            augmented_idx = torch.tensor([x + i * top_k for i, x in enumerate(selected_idx)])

2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
            # prepare for the next step: (1) next token_id; (2) past_key_values; (3) last_hidden_states for computing
            # the degeneration penalty; (4) logits for selecting next top-k candidates; (5) selected tokens scores
            # (model confidence minus degeneration penalty); (6) decoder hidden_states
            next_tokens = top_k_ids[range(len(top_k_ids)), selected_idx]
            next_hidden = torch.stack(torch.split(next_hidden.squeeze(dim=1), top_k))
            next_hidden = next_hidden[range(batch_size), selected_idx, :]
            last_hidden_states = torch.cat([last_hidden_states, next_hidden.unsqueeze(1)], dim=1)

            next_decoder_hidden_states = ()
            for layer in full_hidden_states:
                layer = torch.stack(torch.split(layer, top_k))[range(batch_size), selected_idx, :]
                next_decoder_hidden_states += (layer,)

2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
            # generate past_key_values cache of only the selected token
            if sequential:
                next_model_input = self.prepare_inputs_for_generation(
                    top_k_ids[:, selected_idx].view(-1, 1), **model_kwargs
                )

                selected_outputs = self(
                    **next_model_input,
                    return_dict=True,
                    output_hidden_states=False,
                    output_attentions=False,
                )
                next_past_key_values = selected_outputs["past_key_values"]

            else:
2409
                _, next_past_key_values = self._extract_past_from_model_output(outputs, standardize_cache_format=True)
2410
2411
2412
                # Do it in-place layer per layer to save memory
                if isinstance(next_past_key_values, DynamicCache):
                    next_past_key_values.batch_select_indices(augmented_idx)
tomeras91's avatar
tomeras91 committed
2413
                else:
2414
2415
2416
2417
2418
2419
2420
2421
2422
                    new_key_values = []
                    for layer in next_past_key_values:
                        items = []
                        # item is either the key or the value matrix
                        for item in layer:
                            items.append(item[augmented_idx, ...])
                        new_key_values.append(tuple(items))

                    next_past_key_values = tuple(new_key_values)
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459

            logit_for_next_step = torch.stack(torch.split(logits, top_k))[range(batch_size), selected_idx, :]

            # Rebuilds the relevant parts of the model output for the selected token, for use in the next iteration
            if self.config.is_encoder_decoder:
                next_step_cross_attentions = ()
                next_step_decoder_attentions = ()
                if output_attentions:
                    for layer in outputs.cross_attentions:
                        layer = torch.stack(torch.split(layer, top_k, dim=0))[range(batch_size), selected_idx, ...]
                        next_step_cross_attentions += (layer,)
                    for layer in outputs.decoder_attentions:
                        layer = torch.stack(torch.split(layer, top_k, dim=0))[range(batch_size), selected_idx, ...]
                        next_step_decoder_attentions += (layer,)
                outputs = Seq2SeqLMOutput(
                    past_key_values=next_past_key_values,
                    decoder_hidden_states=next_decoder_hidden_states,
                    decoder_attentions=next_step_decoder_attentions or None,
                    cross_attentions=next_step_cross_attentions or None,
                )
            else:
                next_step_attentions = ()
                if output_attentions:
                    for layer in outputs.attentions:
                        layer = torch.stack(torch.split(layer, top_k, dim=0))[range(batch_size), selected_idx, ...]
                        next_step_attentions += (layer,)
                outputs = CausalLMOutputWithPast(
                    past_key_values=next_past_key_values,
                    hidden_states=next_decoder_hidden_states,
                    attentions=next_step_attentions or None,
                )
            # contrastive_search main logic end

            if synced_gpus and this_peer_finished:
                continue  # don't waste resources running the code we don't need

            # finished sentences should have their next token be a padding token
2460
            if has_eos_stopping_criteria:
2461
2462
2463
2464
                next_tokens = next_tokens * unfinished_sequences + pad_token_id * (1 - unfinished_sequences)

            # update generated ids, model inputs, and length for next step
            input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1)
2465
2466
            if streamer is not None:
                streamer.put(next_tokens.cpu())
2467
            model_kwargs = self._update_model_kwargs_for_generation(
2468
2469
2470
                outputs,
                model_kwargs,
                is_encoder_decoder=self.config.is_encoder_decoder,
2471
2472
            )

2473
2474
            # stop when each sentence is finished
            unfinished_sequences = unfinished_sequences & ~stopping_criteria(input_ids, scores)
2475
            this_peer_finished = unfinished_sequences.max() == 0
2476

2477
2478
2479
        if streamer is not None:
            streamer.end()

2480
        if return_dict_in_generate:
2481
2482
2483
            # Contrastive search works by forward looking at the next token, so we need to exclude it from
            # `past_key_values` to be consistent with the other decoding methods
            if model_kwargs.get("past_key_values") is not None:
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
                if isinstance(model_kwargs["past_key_values"], DynamicCache):
                    model_kwargs["past_key_values"].crop(-1)
                else:
                    past_key_values = []
                    for layer in model_kwargs["past_key_values"]:
                        layer_past_key_values = []
                        for item in layer:
                            layer_past_key_values.append(item[..., :-1, :])
                        past_key_values.append(tuple(layer_past_key_values))
                    model_kwargs["past_key_values"] = tuple(past_key_values)
2494

2495
            if self.config.is_encoder_decoder:
2496
                return GenerateEncoderDecoderOutput(
2497
2498
                    sequences=input_ids,
                    scores=scores,
2499
                    logits=raw_logits,
2500
2501
2502
2503
2504
                    encoder_attentions=encoder_attentions,
                    encoder_hidden_states=encoder_hidden_states,
                    decoder_attentions=decoder_attentions,
                    cross_attentions=cross_attentions,
                    decoder_hidden_states=decoder_hidden_states,
2505
                    past_key_values=model_kwargs.get("past_key_values"),
2506
2507
                )
            else:
2508
                return GenerateDecoderOnlyOutput(
2509
2510
                    sequences=input_ids,
                    scores=scores,
2511
                    logits=raw_logits,
2512
2513
                    attentions=decoder_attentions,
                    hidden_states=decoder_hidden_states,
2514
                    past_key_values=model_kwargs.get("past_key_values"),
2515
2516
2517
2518
                )
        else:
            return input_ids

2519
    def _greedy_search(
2520
2521
        self,
        input_ids: torch.LongTensor,
2522
2523
2524
2525
2526
        logits_processor: LogitsProcessorList,
        stopping_criteria: StoppingCriteriaList,
        generation_config: GenerationConfig,
        synced_gpus: bool,
        streamer: Optional["BaseStreamer"],
2527
        **model_kwargs,
2528
    ) -> Union[GenerateNonBeamOutput, torch.LongTensor]:
2529
        r"""
2530
        Deprecated. Use `._sample()` instead, passing the same arguments.
2531
        """
2532

2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
        logger.warning_once(
            "Calling `._greedy_search()` directly is deprecated and will be removed in v4.42. Use `._sample()` "
            "instead, passing the same arguments."
        )
        return self._sample(
            input_ids=input_ids,
            logits_processor=logits_processor,
            stopping_criteria=stopping_criteria,
            generation_config=generation_config,
            synced_gpus=synced_gpus,
            streamer=streamer,
            **model_kwargs,
        )
2546

2547
    def _sample(
2548
2549
        self,
        input_ids: torch.LongTensor,
2550
2551
2552
2553
2554
        logits_processor: LogitsProcessorList,
        stopping_criteria: StoppingCriteriaList,
        generation_config: GenerationConfig,
        synced_gpus: bool,
        streamer: Optional["BaseStreamer"],
2555
        logits_warper: Optional[LogitsProcessorList] = None,
2556
        **model_kwargs,
2557
    ) -> Union[GenerateNonBeamOutput, torch.LongTensor]:
2558
2559
2560
2561
2562
2563
2564
        r"""
        Generates sequences of token ids for models with a language modeling head using **multinomial sampling** and
        can be used for text-decoder, text-to-text, speech-to-text, and vision-to-text models.

        Parameters:
            input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
                The sequence used as a prompt for the generation.
2565
            logits_processor (`LogitsProcessorList`):
2566
2567
                An instance of [`LogitsProcessorList`]. List of instances of class derived from [`LogitsProcessor`]
                used to modify the prediction scores of the language modeling head applied at each generation step.
2568
            stopping_criteria (`StoppingCriteriaList`):
2569
2570
                An instance of [`StoppingCriteriaList`]. List of instances of class derived from [`StoppingCriteria`]
                used to tell if the generation loop should stop.
2571
2572
2573
            generation_config ([`~generation.GenerationConfig`]):
                The generation configuration to be used as parametrization of the decoding method.
            synced_gpus (`bool`):
2574
                Whether to continue running the while loop until max_length (needed for ZeRO stage 3)
2575
2576
2577
            streamer (`BaseStreamer`, *optional*):
                Streamer object that will be used to stream the generated sequences. Generated tokens are passed
                through `streamer.put(token_ids)` and the streamer is responsible for any further processing.
2578
2579
2580
2581
2582
            logits_warper (`LogitsProcessorList`, *optional*):
                An instance of [`LogitsProcessorList`]. List of instances of class derived from [`LogitsWarper`] used
                to warp the prediction score distribution of the language modeling head applied before multinomial
                sampling at each generation step. Only required with sampling strategies (i.e. `do_sample` is set in
                `generation_config`)
2583
2584
2585
2586
2587
            model_kwargs:
                Additional model specific kwargs will be forwarded to the `forward` function of the model. If model is
                an encoder-decoder model the kwargs should include `encoder_outputs`.

        Return:
2588
            [`~generation.GenerateDecoderOnlyOutput`], [`~generation.GenerateEncoderDecoderOutput`] or `torch.LongTensor`:
2589
            A `torch.LongTensor` containing the generated tokens (default behaviour) or a
2590
2591
            [`~generation.GenerateDecoderOnlyOutput`] if `model.config.is_encoder_decoder=False` and
            `return_dict_in_generate=True` or a [`~generation.GenerateEncoderDecoderOutput`] if
2592
            `model.config.is_encoder_decoder=True`.
2593
        """
2594
        # init values
2595
2596
2597
2598
2599
2600
2601
        pad_token_id = generation_config.pad_token_id
        output_attentions = generation_config.output_attentions
        output_hidden_states = generation_config.output_hidden_states
        output_scores = generation_config.output_scores
        output_logits = generation_config.output_logits
        return_dict_in_generate = generation_config.return_dict_in_generate
        has_eos_stopping_criteria = any(hasattr(criteria, "eos_token_id") for criteria in stopping_criteria)
2602
2603
2604
2605
2606
2607
        do_sample = generation_config.do_sample
        if do_sample is True and not isinstance(logits_warper, LogitsProcessorList):
            raise ValueError(
                "`do_sample` is set to `True`, `logits_warper` must be a `LogitsProcessorList` instance (it is "
                f"{logits_warper})."
            )
2608
2609
2610

        # init attention / hidden states / scores tuples
        scores = () if (return_dict_in_generate and output_scores) else None
2611
        raw_logits = () if (return_dict_in_generate and output_logits) else None
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
        decoder_attentions = () if (return_dict_in_generate and output_attentions) else None
        cross_attentions = () if (return_dict_in_generate and output_attentions) else None
        decoder_hidden_states = () if (return_dict_in_generate and output_hidden_states) else None

        # if model is an encoder-decoder, retrieve encoder attention weights and hidden states
        if return_dict_in_generate and self.config.is_encoder_decoder:
            encoder_attentions = model_kwargs["encoder_outputs"].get("attentions") if output_attentions else None
            encoder_hidden_states = (
                model_kwargs["encoder_outputs"].get("hidden_states") if output_hidden_states else None
            )

        # keep track of which sequences are already finished
2624
        batch_size = input_ids.shape[0]
2625
        this_peer_finished = False
2626
        unfinished_sequences = torch.ones(batch_size, dtype=torch.long, device=input_ids.device)
2627
        model_kwargs = self._get_initial_cache_position(input_ids, model_kwargs)
2628

2629
        while self._has_unfinished_sequences(this_peer_finished, synced_gpus, device=input_ids.device):
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
            # prepare model inputs
            model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)

            # forward pass to get next token
            outputs = self(
                **model_inputs,
                return_dict=True,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
            )

            if synced_gpus and this_peer_finished:
                continue  # don't waste resources running the code we don't need

2644
2645
2646
            # Clone is needed to avoid keeping a hanging ref to outputs.logits which may be very large for first iteration
            # (the clone itself is always small)
            next_token_logits = outputs.logits[:, -1, :].clone()
2647
2648
2649

            # pre-process distribution
            next_token_scores = logits_processor(input_ids, next_token_logits)
2650
2651
            if do_sample:
                next_token_scores = logits_warper(input_ids, next_token_scores)
2652
2653
2654
2655
2656

            # Store scores, attentions and hidden_states when required
            if return_dict_in_generate:
                if output_scores:
                    scores += (next_token_scores,)
2657
2658
                if output_logits:
                    raw_logits += (next_token_logits,)
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
                if output_attentions:
                    decoder_attentions += (
                        (outputs.decoder_attentions,) if self.config.is_encoder_decoder else (outputs.attentions,)
                    )
                    if self.config.is_encoder_decoder:
                        cross_attentions += (outputs.cross_attentions,)

                if output_hidden_states:
                    decoder_hidden_states += (
                        (outputs.decoder_hidden_states,)
                        if self.config.is_encoder_decoder
                        else (outputs.hidden_states,)
                    )

2673
2674
2675
2676
2677
2678
            # token selection
            if do_sample:
                probs = nn.functional.softmax(next_token_scores, dim=-1)
                next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1)
            else:
                next_tokens = torch.argmax(next_token_scores, dim=-1)
2679
2680

            # finished sentences should have their next token be a padding token
2681
            if has_eos_stopping_criteria:
2682
2683
2684
2685
                next_tokens = next_tokens * unfinished_sequences + pad_token_id * (1 - unfinished_sequences)

            # update generated ids, model inputs, and length for next step
            input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1)
2686
2687
            if streamer is not None:
                streamer.put(next_tokens.cpu())
2688
            model_kwargs = self._update_model_kwargs_for_generation(
2689
2690
2691
                outputs,
                model_kwargs,
                is_encoder_decoder=self.config.is_encoder_decoder,
2692
2693
            )

2694
            unfinished_sequences = unfinished_sequences & ~stopping_criteria(input_ids, scores)
2695
            this_peer_finished = unfinished_sequences.max() == 0
2696

2697
2698
2699
2700
            # This is needed to properly delete outputs.logits which may be very large for first iteration
            # Otherwise a reference to outputs is kept which keeps the logits alive in the next iteration
            del outputs

2701
2702
2703
        if streamer is not None:
            streamer.end()

2704
2705
        if return_dict_in_generate:
            if self.config.is_encoder_decoder:
2706
                return GenerateEncoderDecoderOutput(
2707
2708
                    sequences=input_ids,
                    scores=scores,
2709
                    logits=raw_logits,
2710
2711
2712
2713
2714
                    encoder_attentions=encoder_attentions,
                    encoder_hidden_states=encoder_hidden_states,
                    decoder_attentions=decoder_attentions,
                    cross_attentions=cross_attentions,
                    decoder_hidden_states=decoder_hidden_states,
2715
                    past_key_values=model_kwargs.get("past_key_values"),
2716
2717
                )
            else:
2718
                return GenerateDecoderOnlyOutput(
2719
2720
                    sequences=input_ids,
                    scores=scores,
2721
                    logits=raw_logits,
2722
2723
                    attentions=decoder_attentions,
                    hidden_states=decoder_hidden_states,
2724
                    past_key_values=model_kwargs.get("past_key_values"),
2725
2726
2727
2728
                )
        else:
            return input_ids

2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
    def _temporary_reorder_cache(self, past_key_values, beam_idx):
        """
        Temporary function to handle the different types of cache reordering processes while we roll out `Cache`.

        TODO: standardize cache formats and make all models compatible with `Cache`. It would remove the need
        for this function, with `Cache.reorder_cache` being the sole remaining code path
        """
        model_class = self.__class__.__name__.lower()
        # Exception 1: code path for models using the legacy cache format
        if isinstance(past_key_values, (tuple, list)):
            past_key_values = self._reorder_cache(past_key_values, beam_idx)
        # Exception 2: models with different cache formats. These are limited to `DynamicCache` until their
        # cache format is standardized, to avoid adding complexity to the codebase.
        elif "bloom" in model_class or "gptbigcode" in model_class:
            if not isinstance(past_key_values, DynamicCache):
                raise ValueError(
                    f"Using an unsupported cache format with {model_class}. Currently, it only supports the "
                    "legacy tuple format or `DynamicCache`"
                )
            past_key_values = self._reorder_cache(past_key_values, beam_idx)
            past_key_values = DynamicCache.from_legacy_cache(past_key_values)
        # Standard code path: use the `Cache.reorder_cache`
        else:
            past_key_values.reorder_cache(beam_idx)
        return past_key_values

2755
    # TODO (joao, v4.42): remove default for `logits_warper`
2756
    def _beam_search(
2757
2758
2759
        self,
        input_ids: torch.LongTensor,
        beam_scorer: BeamScorer,
2760
2761
2762
2763
        logits_processor: LogitsProcessorList,
        stopping_criteria: StoppingCriteriaList,
        generation_config: GenerationConfig,
        synced_gpus: bool,
2764
        logits_warper: Optional[LogitsProcessorList] = None,
2765
        **model_kwargs,
2766
    ) -> Union[GenerateBeamOutput, torch.LongTensor]:
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
        r"""
        Generates sequences of token ids for models with a language modeling head using **beam search decoding** and
        can be used for text-decoder, text-to-text, speech-to-text, and vision-to-text models.

        Parameters:
            input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
                The sequence used as a prompt for the generation.
            beam_scorer (`BeamScorer`):
                An derived instance of [`BeamScorer`] that defines how beam hypotheses are constructed, stored and
                sorted during generation. For more information, the documentation of [`BeamScorer`] should be read.
2777
            logits_processor (`LogitsProcessorList`):
2778
2779
                An instance of [`LogitsProcessorList`]. List of instances of class derived from [`LogitsProcessor`]
                used to modify the prediction scores of the language modeling head applied at each generation step.
2780
            stopping_criteria (`StoppingCriteriaList`:
2781
2782
                An instance of [`StoppingCriteriaList`]. List of instances of class derived from [`StoppingCriteria`]
                used to tell if the generation loop should stop.
2783
2784
2785
            generation_config ([`~generation.GenerationConfig`]):
                The generation configuration to be used as parametrization of the decoding method.
            synced_gpus (`bool`):
2786
                Whether to continue running the while loop until max_length (needed for ZeRO stage 3)
2787
2788
2789
2790
2791
            logits_warper (`LogitsProcessorList`, *optional*):
                An instance of [`LogitsProcessorList`]. List of instances of class derived from [`LogitsWarper`] used
                to warp the prediction score distribution of the language modeling head applied before multinomial
                sampling at each generation step. Only required with sampling strategies (i.e. `do_sample` is set in
                `generation_config`)
2792
2793
2794
2795
2796
            model_kwargs:
                Additional model specific kwargs will be forwarded to the `forward` function of the model. If model is
                an encoder-decoder model the kwargs should include `encoder_outputs`.

        Return:
2797
            [`generation.GenerateBeamDecoderOnlyOutput`], [`~generation.GenerateBeamEncoderDecoderOutput`] or
2798
            `torch.LongTensor`: A `torch.LongTensor` containing the generated tokens (default behaviour) or a
2799
2800
            [`~generation.GenerateBeamDecoderOnlyOutput`] if `model.config.is_encoder_decoder=False` and
            `return_dict_in_generate=True` or a [`~generation.GenerateBeamEncoderDecoderOutput`] if
2801
            `model.config.is_encoder_decoder=True`.
2802
        """
2803
        # init values
2804
2805
2806
2807
2808
2809
2810
2811
        pad_token_id = generation_config.pad_token_id
        eos_token_id = generation_config.eos_token_id
        output_attentions = generation_config.output_attentions
        output_hidden_states = generation_config.output_hidden_states
        output_scores = generation_config.output_scores
        output_logits = generation_config.output_logits
        return_dict_in_generate = generation_config.return_dict_in_generate
        sequential = generation_config.low_memory
2812
2813
2814
2815
2816
2817
        do_sample = generation_config.do_sample
        if do_sample is True and not isinstance(logits_warper, LogitsProcessorList):
            raise ValueError(
                "`do_sample` is set to `True`, `logits_warper` must be a `LogitsProcessorList` instance (it is "
                f"{logits_warper})."
            )
2818

2819
2820
2821
2822
        batch_size = len(beam_scorer._beam_hyps)
        num_beams = beam_scorer.num_beams

        batch_beam_size, cur_len = input_ids.shape
2823
        model_kwargs = self._get_initial_cache_position(input_ids, model_kwargs)
2824
2825
2826
2827
2828
2829
2830
2831

        if num_beams * batch_size != batch_beam_size:
            raise ValueError(
                f"Batch dimension of `input_ids` should be {num_beams * batch_size}, but is {batch_beam_size}."
            )

        # init attention / hidden states / scores tuples
        scores = () if (return_dict_in_generate and output_scores) else None
2832
        raw_logits = () if (return_dict_in_generate and output_logits) else None
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
        beam_indices = (
            tuple(() for _ in range(batch_beam_size)) if (return_dict_in_generate and output_scores) else None
        )
        decoder_attentions = () if (return_dict_in_generate and output_attentions) else None
        cross_attentions = () if (return_dict_in_generate and output_attentions) else None
        decoder_hidden_states = () if (return_dict_in_generate and output_hidden_states) else None

        # if model is an encoder-decoder, retrieve encoder attention weights and hidden states
        if return_dict_in_generate and self.config.is_encoder_decoder:
            encoder_attentions = model_kwargs["encoder_outputs"].get("attentions") if output_attentions else None
            encoder_hidden_states = (
                model_kwargs["encoder_outputs"].get("hidden_states") if output_hidden_states else None
            )

        # initialise score of first beam with 0 and the rest with -1e9. This makes sure that only tokens
        # of the first beam are considered to avoid sampling the exact same tokens across all beams.
        beam_scores = torch.zeros((batch_size, num_beams), dtype=torch.float, device=input_ids.device)
        beam_scores[:, 1:] = -1e9
        beam_scores = beam_scores.view((batch_size * num_beams,))

2853
        this_peer_finished = False
2854
2855

        decoder_prompt_len = input_ids.shape[-1]  # record the prompt length of decoder
2856

2857
        while self._has_unfinished_sequences(this_peer_finished, synced_gpus, device=input_ids.device):
2858
2859
            model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)

2860
2861
2862
2863
            # if sequential is True, split the input to batches of batch_size and run sequentially
            if sequential:
                if any(
                    model_name in self.__class__.__name__.lower()
2864
2865
2866
2867
2868
2869
2870
2871
2872
                    for model_name in [
                        "fsmt",
                        "reformer",
                        "bloom",
                        "ctrl",
                        "gpt_bigcode",
                        "transo_xl",
                        "xlnet",
                        "cpm",
tomeras91's avatar
tomeras91 committed
2873
                        "jamba",
2874
                    ]
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
                ):
                    raise RuntimeError(
                        f"Currently generation for {self.__class__.__name__} is not supported "
                        f"for `low_memory beam_search`. Please open an issue on GitHub if you need this feature."
                    )

                inputs_per_sub_batches = _split_model_inputs(
                    model_inputs, split_size=batch_size, full_batch_size=batch_beam_size
                )
                outputs_per_sub_batch = [
                    self(
                        **inputs_per_sub_batch,
                        return_dict=True,
                        output_attentions=output_attentions,
                        output_hidden_states=output_hidden_states,
                    )
                    for inputs_per_sub_batch in inputs_per_sub_batches
                ]

                outputs = stack_model_outputs(outputs_per_sub_batch)

            else:  # Unchanged original behavior
                outputs = self(
                    **model_inputs,
                    return_dict=True,
                    output_attentions=output_attentions,
                    output_hidden_states=output_hidden_states,
                )
2903
2904
2905
2906
2907

            if synced_gpus and this_peer_finished:
                cur_len = cur_len + 1
                continue  # don't waste resources running the code we don't need

2908
2909
2910
            # Clone is needed to avoid keeping a hanging ref to outputs.logits which may be very large for first iteration
            # (the clone itself is always small)
            next_token_logits = outputs.logits[:, -1, :].clone()
2911
2912
2913
2914
2915
            next_token_scores = nn.functional.log_softmax(
                next_token_logits, dim=-1
            )  # (batch_size * num_beams, vocab_size)

            next_token_scores_processed = logits_processor(input_ids, next_token_scores)
2916
2917
            if do_sample:
                next_token_scores_processed = logits_warper(input_ids, next_token_scores_processed)
2918
2919
2920
            next_token_scores = next_token_scores_processed + beam_scores[:, None].expand_as(
                next_token_scores_processed
            )
2921
2922
2923
2924
2925

            # Store scores, attentions and hidden_states when required
            if return_dict_in_generate:
                if output_scores:
                    scores += (next_token_scores_processed,)
2926
2927
                if output_logits:
                    raw_logits += (next_token_logits,)
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
                if output_attentions:
                    decoder_attentions += (
                        (outputs.decoder_attentions,) if self.config.is_encoder_decoder else (outputs.attentions,)
                    )
                    if self.config.is_encoder_decoder:
                        cross_attentions += (outputs.cross_attentions,)
                if output_hidden_states:
                    decoder_hidden_states += (
                        (outputs.decoder_hidden_states,)
                        if self.config.is_encoder_decoder
                        else (outputs.hidden_states,)
                    )

            # reshape for beam search
            vocab_size = next_token_scores.shape[-1]
            next_token_scores = next_token_scores.view(batch_size, num_beams * vocab_size)

2945
2946
            # Beam token selection: pick 1 + eos_token_id.shape[0] next tokens for each beam so we have at least 1
            # non eos token per beam.
2947
            n_eos_tokens = eos_token_id.shape[0] if eos_token_id is not None else 0
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
            n_tokens_to_keep = max(2, 1 + n_eos_tokens) * num_beams
            if do_sample:
                probs = nn.functional.softmax(next_token_scores, dim=-1)
                next_tokens = torch.multinomial(probs, num_samples=n_tokens_to_keep)
                next_token_scores = torch.gather(next_token_scores, -1, next_tokens)
                next_token_scores, _indices = torch.sort(next_token_scores, descending=True, dim=1)
                next_tokens = torch.gather(next_tokens, -1, _indices)
            else:
                next_token_scores, next_tokens = torch.topk(
                    next_token_scores, n_tokens_to_keep, dim=1, largest=True, sorted=True
                )
2959

2960
            next_indices = torch.div(next_tokens, vocab_size, rounding_mode="floor")
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
            next_tokens = next_tokens % vocab_size

            # stateless
            beam_outputs = beam_scorer.process(
                input_ids,
                next_token_scores,
                next_tokens,
                next_indices,
                pad_token_id=pad_token_id,
                eos_token_id=eos_token_id,
                beam_indices=beam_indices,
2972
                decoder_prompt_len=decoder_prompt_len,
2973
2974
2975
2976
2977
2978
2979
2980
2981
            )

            beam_scores = beam_outputs["next_beam_scores"]
            beam_next_tokens = beam_outputs["next_beam_tokens"]
            beam_idx = beam_outputs["next_beam_indices"]

            input_ids = torch.cat([input_ids[beam_idx, :], beam_next_tokens.unsqueeze(-1)], dim=-1)

            model_kwargs = self._update_model_kwargs_for_generation(
2982
2983
2984
                outputs,
                model_kwargs,
                is_encoder_decoder=self.config.is_encoder_decoder,
2985
            )
2986
2987
2988
2989
2990
2991
2992

            # This is needed to properly delete outputs.logits which may be very large for first iteration
            # Otherwise a reference to outputs is kept which keeps the logits alive in the next iteration
            # IMPORTANT: Note that this should appear BEFORE the call to _reorder_cache() to save the maximum memory
            # (that way the memory peak does not include outputs.logits)
            del outputs

2993
            if model_kwargs.get("past_key_values", None) is not None:
2994
2995
2996
                model_kwargs["past_key_values"] = self._temporary_reorder_cache(
                    model_kwargs["past_key_values"], beam_idx
                )
2997
2998
2999
3000
3001
3002
3003

            if return_dict_in_generate and output_scores:
                beam_indices = tuple((beam_indices[beam_idx[i]] + (beam_idx[i],) for i in range(len(beam_indices))))

            # increase cur_len
            cur_len = cur_len + 1

3004
            if beam_scorer.is_done or all(stopping_criteria(input_ids, scores)):
3005
                this_peer_finished = True
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015

        sequence_outputs = beam_scorer.finalize(
            input_ids,
            beam_scores,
            next_tokens,
            next_indices,
            pad_token_id=pad_token_id,
            eos_token_id=eos_token_id,
            max_length=stopping_criteria.max_length,
            beam_indices=beam_indices,
3016
            decoder_prompt_len=decoder_prompt_len,
3017
3018
3019
3020
3021
3022
3023
        )

        if return_dict_in_generate:
            if not output_scores:
                sequence_outputs["sequence_scores"] = None

            if self.config.is_encoder_decoder:
3024
                return GenerateBeamEncoderDecoderOutput(
3025
3026
3027
                    sequences=sequence_outputs["sequences"],
                    sequences_scores=sequence_outputs["sequence_scores"],
                    scores=scores,
3028
                    logits=raw_logits,
3029
3030
3031
3032
3033
3034
                    beam_indices=sequence_outputs["beam_indices"],
                    encoder_attentions=encoder_attentions,
                    encoder_hidden_states=encoder_hidden_states,
                    decoder_attentions=decoder_attentions,
                    cross_attentions=cross_attentions,
                    decoder_hidden_states=decoder_hidden_states,
3035
                    past_key_values=model_kwargs.get("past_key_values"),
3036
3037
                )
            else:
3038
                return GenerateBeamDecoderOnlyOutput(
3039
3040
3041
                    sequences=sequence_outputs["sequences"],
                    sequences_scores=sequence_outputs["sequence_scores"],
                    scores=scores,
3042
                    logits=raw_logits,
3043
3044
3045
                    beam_indices=sequence_outputs["beam_indices"],
                    attentions=decoder_attentions,
                    hidden_states=decoder_hidden_states,
3046
                    past_key_values=model_kwargs.get("past_key_values"),
3047
3048
3049
3050
                )
        else:
            return sequence_outputs["sequences"]

3051
    def _beam_sample(
3052
3053
3054
        self,
        input_ids: torch.LongTensor,
        beam_scorer: BeamScorer,
3055
3056
3057
3058
3059
        logits_processor: LogitsProcessorList,
        stopping_criteria: StoppingCriteriaList,
        logits_warper: LogitsProcessorList,
        generation_config: GenerationConfig,
        synced_gpus: bool,
3060
        **model_kwargs,
3061
    ) -> Union[GenerateBeamOutput, torch.LongTensor]:
3062
        r"""
3063
        Deprecated. Use `._beam_search()` instead, passing the same arguments.
3064
        """
3065

3066
3067
3068
        logger.warning_once(
            "Calling `._beam_sample()` directly is deprecated and will be removed in v4.42. Use `._beam_search()` "
            "instead, passing the same arguments."
3069
        )
3070
3071
3072
3073
3074
3075
3076
3077
3078
        return self._beam_search(
            input_ids=input_ids,
            beam_scorer=beam_scorer,
            logits_processor=logits_processor,
            stopping_criteria=stopping_criteria,
            logits_warper=logits_warper,
            generation_config=generation_config,
            synced_gpus=synced_gpus,
            **model_kwargs,
3079
3080
        )

3081
    def _group_beam_search(
3082
3083
3084
        self,
        input_ids: torch.LongTensor,
        beam_scorer: BeamScorer,
3085
3086
3087
3088
        logits_processor: LogitsProcessorList,
        stopping_criteria: StoppingCriteriaList,
        generation_config: GenerationConfig,
        synced_gpus: bool,
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
        **model_kwargs,
    ):
        r"""
        Generates sequences of token ids for models with a language modeling head using **diverse beam search
        decoding** and can be used for text-decoder, text-to-text, speech-to-text, and vision-to-text models.

        Parameters:
            input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
                The sequence used as a prompt for the generation.
            beam_scorer (`BeamScorer`):
                An derived instance of [`BeamScorer`] that defines how beam hypotheses are constructed, stored and
                sorted during generation. For more information, the documentation of [`BeamScorer`] should be read.
3101
            logits_processor (`LogitsProcessorList`):
3102
3103
                An instance of [`LogitsProcessorList`]. List of instances of class derived from [`LogitsProcessor`]
                used to modify the prediction scores of the language modeling head applied at each generation step.
3104
            stopping_criteria (`StoppingCriteriaList`):
3105
3106
                An instance of [`StoppingCriteriaList`]. List of instances of class derived from [`StoppingCriteria`]
                used to tell if the generation loop should stop.
3107
3108
3109
            generation_config ([`~generation.GenerationConfig`]):
                The generation configuration to be used as parametrization of the decoding method.
            synced_gpus (`bool`):
3110
3111
3112
3113
3114
3115
                Whether to continue running the while loop until max_length (needed for ZeRO stage 3)
            model_kwargs:
                Additional model specific kwargs that will be forwarded to the `forward` function of the model. If
                model is an encoder-decoder model the kwargs should include `encoder_outputs`.

        Return:
3116
            [`~generation.GenerateBeamDecoderOnlyOutput`], [`~generation.GenerateBeamEncoderDecoderOutput`] or
3117
            `torch.LongTensor`: A `torch.LongTensor` containing the generated tokens (default behaviour) or a
3118
3119
3120
            [`~generation.GenerateBeamDecoderOnlyOutput`] if `model.config.is_encoder_decoder=False` and
            `return_dict_in_generate=True` or a [`~generation.GenerateBeamEncoderDecoderOutput`] if
            `model.config.is_encoder_decoder=True`.
3121
        """
3122
        # init values
3123
3124
3125
3126
3127
3128
3129
        pad_token_id = generation_config.pad_token_id
        eos_token_id = generation_config.eos_token_id
        output_attentions = generation_config.output_attentions
        output_hidden_states = generation_config.output_hidden_states
        output_scores = generation_config.output_scores
        output_logits = generation_config.output_logits
        return_dict_in_generate = generation_config.return_dict_in_generate
3130

3131
3132
3133
        num_beams = beam_scorer.num_beams
        num_beam_groups = beam_scorer.num_beam_groups
        num_sub_beams = num_beams // num_beam_groups
3134
        batch_size = len(beam_scorer._beam_hyps) // num_beam_groups
3135
3136
3137
        device = input_ids.device

        batch_beam_size, cur_len = input_ids.shape
3138
        model_kwargs = self._get_initial_cache_position(input_ids, model_kwargs)
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151

        if return_dict_in_generate and output_scores:
            beam_indices = [tuple(() for _ in range(num_sub_beams * batch_size)) for _ in range(num_beam_groups)]
        else:
            beam_indices = None

        if num_beams * batch_size != batch_beam_size:
            raise ValueError(
                f"Batch dimension of `input_ids` should be {num_beams * batch_size}, but is {batch_beam_size}."
            )

        # init attention / hidden states / scores tuples
        scores = () if (return_dict_in_generate and output_scores) else None
3152
        raw_logits = () if (return_dict_in_generate and output_logits) else None
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
        decoder_attentions = () if (return_dict_in_generate and output_attentions) else None
        cross_attentions = () if (return_dict_in_generate and output_attentions) else None
        decoder_hidden_states = () if (return_dict_in_generate and output_hidden_states) else None

        # if model is an encoder-decoder, retrieve encoder attention weights and hidden states
        if return_dict_in_generate and self.config.is_encoder_decoder:
            encoder_attentions = model_kwargs["encoder_outputs"].get("attentions") if output_attentions else None
            encoder_hidden_states = (
                model_kwargs["encoder_outputs"].get("hidden_states") if output_hidden_states else None
            )

        # initialise score of first beam of each group with 0 and the rest with -1e9. This ensures that the beams in
        # the same group don't produce same tokens everytime.
        beam_scores = torch.full((batch_size, num_beams), -1e9, dtype=torch.float, device=device)
        beam_scores[:, ::num_sub_beams] = 0
        beam_scores = beam_scores.view((batch_size * num_beams,))

3170
        this_peer_finished = False
3171
3172

        decoder_prompt_len = input_ids.shape[-1]  # record the prompt length of decoder
3173
        while self._has_unfinished_sequences(this_peer_finished, synced_gpus, device=input_ids.device):
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
            # predicted tokens in cur_len step
            current_tokens = torch.zeros(batch_size * num_beams, dtype=input_ids.dtype, device=device)

            # indices which will form the beams in the next time step
            reordering_indices = torch.zeros(batch_size * num_beams, dtype=torch.long, device=device)

            # do one decoder step on all beams of all sentences in batch
            model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)
            outputs = self(
                **model_inputs,
                return_dict=True,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
            )

            if synced_gpus and this_peer_finished:
                cur_len = cur_len + 1
                continue  # don't waste resources running the code we don't need

            if output_scores:
                processed_score = torch.zeros_like(outputs.logits[:, -1, :])
3195
            if output_logits:
3196
3197
3198
                # Clone is needed to avoid keeping a hanging ref to outputs.logits which may be very large for first iteration
                # (the clone itself is always small)
                raw_logit_score = outputs.logits[:, -1, :].clone()
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214

            for beam_group_idx in range(num_beam_groups):
                group_start_idx = beam_group_idx * num_sub_beams
                group_end_idx = min(group_start_idx + num_sub_beams, num_beams)
                group_size = group_end_idx - group_start_idx

                # indices of beams of current group among all sentences in batch
                batch_group_indices = []

                for batch_idx in range(batch_size):
                    batch_group_indices.extend(
                        [batch_idx * num_beams + idx for idx in range(group_start_idx, group_end_idx)]
                    )
                group_input_ids = input_ids[batch_group_indices]

                # select outputs of beams of current group only
3215
                # No need to clone() the logits here as they will not retain outputs.logits at the end of the loop
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
                next_token_logits = outputs.logits[batch_group_indices, -1, :]

                next_token_scores = nn.functional.log_softmax(
                    next_token_logits, dim=-1
                )  # (batch_size * group_size, vocab_size)
                vocab_size = next_token_scores.shape[-1]

                next_token_scores_processed = logits_processor(
                    group_input_ids, next_token_scores, current_tokens=current_tokens, beam_group_idx=beam_group_idx
                )
                next_token_scores = next_token_scores_processed + beam_scores[batch_group_indices].unsqueeze(-1)
                next_token_scores = next_token_scores.expand_as(next_token_scores_processed)

                if output_scores:
                    processed_score[batch_group_indices] = next_token_scores_processed

                # reshape for beam search
                next_token_scores = next_token_scores.view(batch_size, group_size * vocab_size)

3235
                # Sample 1 + len(eos_token_id) next tokens for each beam so we have at least 1 non eos token per beam.
3236
                n_eos_tokens = eos_token_id.shape[0] if eos_token_id is not None else 0
3237
                next_token_scores, next_tokens = torch.topk(
3238
                    next_token_scores, max(2, 1 + n_eos_tokens) * group_size, dim=1, largest=True, sorted=True
3239
3240
                )

3241
                next_indices = torch.div(next_tokens, vocab_size, rounding_mode="floor")
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
                next_tokens = next_tokens % vocab_size

                # stateless
                process_beam_indices = sum(beam_indices, ()) if beam_indices is not None else None
                beam_outputs = beam_scorer.process(
                    group_input_ids,
                    next_token_scores,
                    next_tokens,
                    next_indices,
                    pad_token_id=pad_token_id,
                    eos_token_id=eos_token_id,
                    beam_indices=process_beam_indices,
3254
                    group_index=beam_group_idx,
3255
                    decoder_prompt_len=decoder_prompt_len,
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
                )
                beam_scores[batch_group_indices] = beam_outputs["next_beam_scores"]
                beam_next_tokens = beam_outputs["next_beam_tokens"]
                beam_idx = beam_outputs["next_beam_indices"]

                if return_dict_in_generate and output_scores:
                    beam_indices[beam_group_idx] = tuple(
                        beam_indices[beam_group_idx][beam_idx[i]] + (beam_idx[i],) for i in range(len(beam_indices[0]))
                    )

                input_ids[batch_group_indices] = group_input_ids[beam_idx]
                group_input_ids = torch.cat([group_input_ids[beam_idx, :], beam_next_tokens.unsqueeze(-1)], dim=-1)
                current_tokens[batch_group_indices] = group_input_ids[:, -1]

                # (beam_idx // group_size) -> batch_idx
                # (beam_idx % group_size) -> offset of idx inside the group
                reordering_indices[batch_group_indices] = (
3273
3274
3275
                    num_beams * torch.div(beam_idx, group_size, rounding_mode="floor")
                    + group_start_idx
                    + (beam_idx % group_size)
3276
3277
3278
3279
3280
3281
                )

            # Store scores, attentions and hidden_states when required
            if return_dict_in_generate:
                if output_scores:
                    scores += (processed_score,)
3282
3283
                if output_logits:
                    raw_logits += (raw_logit_score,)
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
                if output_attentions:
                    decoder_attentions += (
                        (outputs.decoder_attentions,) if self.config.is_encoder_decoder else (outputs.attentions,)
                    )
                    if self.config.is_encoder_decoder:
                        cross_attentions += (outputs.cross_attentions,)

                if output_hidden_states:
                    decoder_hidden_states += (
                        (outputs.decoder_hidden_states,)
                        if self.config.is_encoder_decoder
                        else (outputs.hidden_states,)
                    )

            input_ids = torch.cat([input_ids, current_tokens.unsqueeze(-1)], dim=-1)

            model_kwargs = self._update_model_kwargs_for_generation(
3301
3302
3303
                outputs,
                model_kwargs,
                is_encoder_decoder=self.config.is_encoder_decoder,
3304
            )
3305
3306
3307
3308
3309
3310
3311

            # This is needed to properly delete outputs.logits which may be very large for first iteration
            # Otherwise a reference to outputs is kept which keeps the logits alive in the next iteration
            # IMPORTANT: Note that this should appear BEFORE the call to _reorder_cache() to save the maximum memory
            # (that way the memory peak does not include outputs.logits)
            del outputs

3312
            if model_kwargs.get("past_key_values", None) is not None:
3313
                model_kwargs["past_key_values"] = self._temporary_reorder_cache(
3314
3315
                    model_kwargs["past_key_values"], reordering_indices
                )
3316
3317
3318
3319

            # increase cur_len
            cur_len = cur_len + 1

3320
            if beam_scorer.is_done or all(stopping_criteria(input_ids, scores)):
3321
                this_peer_finished = True
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332

        final_beam_indices = sum(beam_indices, ()) if beam_indices is not None else None
        sequence_outputs = beam_scorer.finalize(
            input_ids,
            beam_scores,
            next_tokens,
            next_indices,
            pad_token_id=pad_token_id,
            eos_token_id=eos_token_id,
            max_length=stopping_criteria.max_length,
            beam_indices=final_beam_indices,
3333
            decoder_prompt_len=decoder_prompt_len,
3334
3335
3336
3337
3338
3339
3340
        )

        if return_dict_in_generate:
            if not output_scores:
                sequence_outputs["sequence_scores"] = None

            if self.config.is_encoder_decoder:
3341
                return GenerateBeamEncoderDecoderOutput(
3342
3343
3344
                    sequences=sequence_outputs["sequences"],
                    sequences_scores=sequence_outputs["sequence_scores"],
                    scores=scores,
3345
                    logits=raw_logits,
3346
3347
3348
3349
3350
3351
                    beam_indices=sequence_outputs["beam_indices"],
                    encoder_attentions=encoder_attentions,
                    encoder_hidden_states=encoder_hidden_states,
                    decoder_attentions=decoder_attentions,
                    cross_attentions=cross_attentions,
                    decoder_hidden_states=decoder_hidden_states,
3352
                    past_key_values=model_kwargs.get("past_key_values"),
3353
3354
                )
            else:
3355
                return GenerateBeamDecoderOnlyOutput(
3356
3357
3358
                    sequences=sequence_outputs["sequences"],
                    sequences_scores=sequence_outputs["sequence_scores"],
                    scores=scores,
3359
                    logits=raw_logits,
3360
3361
3362
                    beam_indices=sequence_outputs["beam_indices"],
                    attentions=decoder_attentions,
                    hidden_states=decoder_hidden_states,
3363
                    past_key_values=model_kwargs.get("past_key_values"),
3364
3365
3366
3367
                )
        else:
            return sequence_outputs["sequences"]

3368
    def _constrained_beam_search(
3369
3370
3371
        self,
        input_ids: torch.LongTensor,
        constrained_beam_scorer: ConstrainedBeamSearchScorer,
3372
3373
3374
3375
        logits_processor: LogitsProcessorList,
        stopping_criteria: StoppingCriteriaList,
        generation_config: GenerationConfig,
        synced_gpus: bool,
3376
        **model_kwargs,
3377
    ) -> Union[GenerateBeamOutput, torch.LongTensor]:
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
        r"""
        Generates sequences of token ids for models with a language modeling head using **constrained beam search
        decoding** and can be used for text-decoder, text-to-text, speech-to-text, and vision-to-text models.

        Parameters:
            input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
                The sequence used as a prompt for the generation.
            constrained_beam_scorer (`ConstrainedBeamSearchScorer`):
                A derived instance of [`BeamScorer`] that defines how beam hypotheses are constructed, stored and
                sorted during generation, while satisfying a list of positive constraints. For more information, the
                documentation of [`ConstrainedBeamSearchScorer`] should be read.
3389
            logits_processor (`LogitsProcessorList`):
3390
3391
                An instance of [`LogitsProcessorList`]. List of instances of class derived from [`LogitsProcessor`]
                used to modify the prediction scores of the language modeling head applied at each generation step.
3392
            stopping_criteria (`StoppingCriteriaList`):
3393
3394
                An instance of [`StoppingCriteriaList`]. List of instances of class derived from [`StoppingCriteria`]
                used to tell if the generation loop should stop.
3395
            logits_warper (`LogitsProcessorList`):
3396
3397
3398
                An instance of [`LogitsProcessorList`]. List of instances of class derived from [`LogitsWarper`] used
                to warp the prediction score distribution of the language modeling head applied before multinomial
                sampling at each generation step.
3399
3400
3401
            generation_config ([`~generation.GenerationConfig`]):
                The generation configuration to be used as parametrization of the decoding method.
            synced_gpus (`bool`):
3402
3403
3404
3405
3406
3407
                Whether to continue running the while loop until max_length (needed for ZeRO stage 3)
            model_kwargs:
                Additional model specific kwargs will be forwarded to the `forward` function of the model. If model is
                an encoder-decoder model the kwargs should include `encoder_outputs`.

        Return:
3408
            [`~generation.GenerateBeamDecoderOnlyOutput`], [`~generation.GenerateBeamEncoderDecoderOutput`] or
3409
            `torch.LongTensor`: A `torch.LongTensor` containing the generated tokens (default behaviour) or a
3410
3411
            [`~generation.GenerateBeamDecoderOnlyOutput`] if `model.config.is_encoder_decoder=False` and
            `return_dict_in_generate=True` or a [`~generation.GenerateBeamEncoderDecoderOutput`] if
3412
            `model.config.is_encoder_decoder=True`.
3413
        """
3414
        # init values
3415
3416
3417
3418
3419
3420
3421
        pad_token_id = generation_config.pad_token_id
        eos_token_id = generation_config.eos_token_id
        output_attentions = generation_config.output_attentions
        output_hidden_states = generation_config.output_hidden_states
        output_scores = generation_config.output_scores
        output_logits = generation_config.output_logits
        return_dict_in_generate = generation_config.return_dict_in_generate
3422

3423
3424
3425
3426
        batch_size = len(constrained_beam_scorer._beam_hyps)
        num_beams = constrained_beam_scorer.num_beams

        batch_beam_size, cur_len = input_ids.shape
3427
        model_kwargs = self._get_initial_cache_position(input_ids, model_kwargs)
3428
3429
3430
3431
3432
3433

        if num_beams * batch_size != batch_beam_size:
            raise ValueError(
                f"Batch dimension of `input_ids` should be {num_beams * batch_size}, but is {batch_beam_size}."
            )

3434
3435
        # init attention / hidden states / scores tuples
        scores = () if (return_dict_in_generate and output_scores) else None
3436
        raw_logits = () if (return_dict_in_generate and output_logits) else None
3437
3438
3439
        beam_indices = (
            tuple(() for _ in range(batch_beam_size)) if (return_dict_in_generate and output_scores) else None
        )
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
        decoder_attentions = () if (return_dict_in_generate and output_attentions) else None
        cross_attentions = () if (return_dict_in_generate and output_attentions) else None
        decoder_hidden_states = () if (return_dict_in_generate and output_hidden_states) else None

        # if model is an encoder-decoder, retrieve encoder attention weights and hidden states
        if return_dict_in_generate and self.config.is_encoder_decoder:
            encoder_attentions = model_kwargs["encoder_outputs"].get("attentions") if output_attentions else None
            encoder_hidden_states = (
                model_kwargs["encoder_outputs"].get("hidden_states") if output_hidden_states else None
            )

        # initialise score of first beam with 0 and the rest with -1e9. This makes sure that only tokens
        # of the first beam are considered to avoid sampling the exact same tokens across all beams.
        beam_scores = torch.zeros((batch_size, num_beams), dtype=torch.float, device=input_ids.device)
        beam_scores[:, 1:] = -1e9
        beam_scores = beam_scores.view((batch_size * num_beams,))

3457
        this_peer_finished = False
3458
3459

        decoder_prompt_len = input_ids.shape[-1]  # record the prompt length of decoder
3460
        while self._has_unfinished_sequences(this_peer_finished, synced_gpus, device=input_ids.device):
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
            model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)

            outputs = self(
                **model_inputs,
                return_dict=True,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
            )

            if synced_gpus and this_peer_finished:
                cur_len = cur_len + 1
                continue  # don't waste resources running the code we don't need

3474
3475
3476
            # Clone is needed to avoid keeping a hanging ref to outputs.logits which may be very large for first iteration
            # (the clone itself is always small)
            next_token_logits = outputs.logits[:, -1, :].clone()
3477
3478
3479
3480
3481
3482
            next_token_scores = nn.functional.log_softmax(
                next_token_logits, dim=-1
            )  # (batch_size * num_beams, vocab_size)

            next_token_scores_processed = logits_processor(input_ids, next_token_scores)

3483
3484
3485
            next_token_scores = next_token_scores_processed + beam_scores[:, None].expand_as(
                next_token_scores_processed
            )
3486
3487
3488
3489
3490
3491
3492

            scores_for_all_vocab = next_token_scores.clone()

            # Store scores, attentions and hidden_states when required
            if return_dict_in_generate:
                if output_scores:
                    scores += (next_token_scores,)
3493
3494
                if output_logits:
                    raw_logits += (next_token_logits,)
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
                if output_attentions:
                    decoder_attentions += (
                        (outputs.decoder_attentions,) if self.config.is_encoder_decoder else (outputs.attentions,)
                    )
                    if self.config.is_encoder_decoder:
                        cross_attentions += (outputs.cross_attentions,)

                if output_hidden_states:
                    decoder_hidden_states += (
                        (outputs.decoder_hidden_states,)
                        if self.config.is_encoder_decoder
                        else (outputs.hidden_states,)
                    )

            # reshape for beam search
            vocab_size = next_token_scores.shape[-1]
            next_token_scores = next_token_scores.view(batch_size, num_beams * vocab_size)

3513
            # Sample 1 + len(eos_token_id) next tokens for each beam so we have at least 1 non eos token per beam.
3514
            n_eos_tokens = eos_token_id.shape[0] if eos_token_id is not None else 0
3515
            next_token_scores, next_tokens = torch.topk(
3516
                next_token_scores, max(2, 1 + n_eos_tokens) * num_beams, dim=1, largest=True, sorted=True
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
            )

            next_indices = (next_tokens / vocab_size).long()
            next_tokens = next_tokens % vocab_size

            # stateless
            beam_outputs = constrained_beam_scorer.process(
                input_ids,
                next_token_scores,
                next_tokens,
                next_indices,
                scores_for_all_vocab,
                pad_token_id=pad_token_id,
                eos_token_id=eos_token_id,
3531
                beam_indices=beam_indices,
3532
                decoder_prompt_len=decoder_prompt_len,
3533
3534
3535
3536
3537
3538
3539
            )
            beam_scores = beam_outputs["next_beam_scores"]
            beam_next_tokens = beam_outputs["next_beam_tokens"]
            beam_idx = beam_outputs["next_beam_indices"]

            input_ids = torch.cat([input_ids[beam_idx, :], beam_next_tokens.unsqueeze(-1)], dim=-1)
            model_kwargs = self._update_model_kwargs_for_generation(
3540
3541
3542
                outputs,
                model_kwargs,
                is_encoder_decoder=self.config.is_encoder_decoder,
3543
            )
3544
3545
3546
3547
3548
3549
3550

            # This is needed to properly delete outputs.logits which may be very large for first iteration
            # Otherwise a reference to outputs is kept which keeps the logits alive in the next iteration
            # IMPORTANT: Note that this should appear BEFORE the call to _reorder_cache() to save the maximum memory
            # (that way the memory peak does not include outputs.logits)
            del outputs

3551
            if model_kwargs.get("past_key_values", None) is not None:
3552
3553
3554
                model_kwargs["past_key_values"] = self._temporary_reorder_cache(
                    model_kwargs["past_key_values"], beam_idx
                )
3555

3556
3557
3558
            if return_dict_in_generate and output_scores:
                beam_indices = tuple((beam_indices[beam_idx[i]] + (beam_idx[i],) for i in range(len(beam_indices))))

3559
3560
3561
            # increase cur_len
            cur_len = cur_len + 1

3562
            if constrained_beam_scorer.is_done or all(stopping_criteria(input_ids, scores)):
3563
                this_peer_finished = True
3564
3565
3566
3567
3568
3569
3570
3571
3572

        sequence_outputs = constrained_beam_scorer.finalize(
            input_ids,
            beam_scores,
            next_tokens,
            next_indices,
            pad_token_id=pad_token_id,
            eos_token_id=eos_token_id,
            max_length=stopping_criteria.max_length,
3573
            beam_indices=beam_indices,
3574
            decoder_prompt_len=decoder_prompt_len,
3575
3576
3577
3578
3579
3580
        )

        if return_dict_in_generate:
            if not output_scores:
                sequence_outputs["sequence_scores"] = None
            if self.config.is_encoder_decoder:
3581
                return GenerateBeamEncoderDecoderOutput(
3582
3583
3584
                    sequences=sequence_outputs["sequences"],
                    sequences_scores=sequence_outputs["sequence_scores"],
                    scores=scores,
3585
                    logits=raw_logits,
3586
                    beam_indices=sequence_outputs["beam_indices"],
3587
3588
3589
3590
3591
                    encoder_attentions=encoder_attentions,
                    encoder_hidden_states=encoder_hidden_states,
                    decoder_attentions=decoder_attentions,
                    cross_attentions=cross_attentions,
                    decoder_hidden_states=decoder_hidden_states,
3592
                    past_key_values=model_kwargs.get("past_key_values"),
3593
3594
                )
            else:
3595
                return GenerateBeamDecoderOnlyOutput(
3596
3597
3598
                    sequences=sequence_outputs["sequences"],
                    sequences_scores=sequence_outputs["sequence_scores"],
                    scores=scores,
3599
                    logits=raw_logits,
3600
                    beam_indices=sequence_outputs["beam_indices"],
3601
3602
                    attentions=decoder_attentions,
                    hidden_states=decoder_hidden_states,
3603
                    past_key_values=model_kwargs.get("past_key_values"),
3604
3605
3606
3607
                )
        else:
            return sequence_outputs["sequences"]

3608
    def _assisted_decoding(
3609
3610
        self,
        input_ids: torch.LongTensor,
3611
3612
3613
3614
3615
3616
3617
        candidate_generator: CandidateGenerator,
        logits_processor: LogitsProcessorList,
        logits_warper: LogitsProcessorList,
        stopping_criteria: StoppingCriteriaList,
        generation_config: GenerationConfig,
        synced_gpus: bool,
        streamer: Optional["BaseStreamer"],
3618
        **model_kwargs,
3619
    ) -> Union[GenerateNonBeamOutput, torch.LongTensor]:
3620
        r"""
3621
        Generates sequences of token ids for models with a language modeling head using **greedy decoding** or
3622
3623
3624
        **sample** (depending on `do_sample`), assisted by candidate sequences. Assisted generation is an example of a
        candidate decoding strategy. Can be used for text-decoder, text-to-text, speech-to-text, and vision-to-text
        models.
3625
3626
3627
3628

        Parameters:
            input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
                The sequence used as a prompt for the generation.
3629
            candidate_generator (`CandidateGenerator`):
3630
                A derived instance of [`CandidateGenerator`] that defines how candidate sequences are generated. For
3631
                more information, the documentation of [`CandidateGenerator`] should be read.
3632
            logits_processor (`LogitsProcessorList`):
3633
3634
                An instance of [`LogitsProcessorList`]. List of instances of class derived from [`LogitsProcessor`]
                used to modify the prediction scores of the language modeling head applied at each generation step.
3635
            logits_warper (`LogitsProcessorList`):
3636
3637
                An instance of [`LogitsProcessorList`]. List of instances of class derived from [`LogitsWarper`] used
                to warp the prediction score distribution of the language modeling head applied before multinomial
3638
3639
                sampling at each generation step. Only used if sampling is active.
            stopping_criteria (`StoppingCriteriaList`):
3640
3641
                An instance of [`StoppingCriteriaList`]. List of instances of class derived from [`StoppingCriteria`]
                used to tell if the generation loop should stop.
3642
3643
3644
            generation_config ([`~generation.GenerationConfig`]):
                The generation configuration to be used as parametrization of the decoding method.
            synced_gpus (`bool`):
3645
3646
3647
3648
3649
3650
3651
3652
3653
                Whether to continue running the while loop until max_length (needed for ZeRO stage 3)
            streamer (`BaseStreamer`, *optional*):
                Streamer object that will be used to stream the generated sequences. Generated tokens are passed
                through `streamer.put(token_ids)` and the streamer is responsible for any further processing.
            model_kwargs:
                Additional model specific keyword arguments will be forwarded to the `forward` function of the model.
                If model is an encoder-decoder model the kwargs should include `encoder_outputs`.

        Return:
3654
            [`~generation.GenerateDecoderOnlyOutput`], [`~generation.GenerateEncoderDecoderOutput`] or
3655
            `torch.LongTensor`: A `torch.LongTensor` containing the generated tokens (default behaviour) or a
3656
3657
            [`~generation.GenerateDecoderOnlyOutput`] if `model.config.is_encoder_decoder=False` and
            `return_dict_in_generate=True` or a [`~generation.GenerateEncoderDecoderOutput`] if
3658
            `model.config.is_encoder_decoder=True`.
3659
        """
3660
        # init values
3661
3662
3663
3664
3665
3666
        do_sample = logits_warper is not None
        output_attentions = generation_config.output_attentions
        output_hidden_states = generation_config.output_hidden_states
        output_scores = generation_config.output_scores
        output_logits = generation_config.output_logits
        return_dict_in_generate = generation_config.return_dict_in_generate
3667
3668
3669

        # init attention / hidden states / scores tuples
        scores = () if (return_dict_in_generate and output_scores) else None
3670
        raw_logits = () if (return_dict_in_generate and output_logits) else None
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
        decoder_attentions = () if (return_dict_in_generate and output_attentions) else None
        cross_attentions = () if (return_dict_in_generate and output_attentions) else None
        decoder_hidden_states = () if (return_dict_in_generate and output_hidden_states) else None

        # if model is an encoder-decoder, retrieve encoder attention weights and hidden states
        if return_dict_in_generate and self.config.is_encoder_decoder:
            encoder_attentions = model_kwargs["encoder_outputs"].get("attentions") if output_attentions else None
            encoder_hidden_states = (
                model_kwargs["encoder_outputs"].get("hidden_states") if output_hidden_states else None
            )

        # keep track of which sequences are already finished
3683
        batch_size = input_ids.shape[0]
3684
        unfinished_sequences = torch.ones(batch_size, dtype=torch.long, device=input_ids.device)
3685
        model_kwargs = self._get_initial_cache_position(input_ids, model_kwargs)
3686

3687
3688
3689
3690
3691
3692
3693
        # This is needed if return_dict_in_generate is True
        if isinstance(model_kwargs.get("past_key_values", None), DynamicCache):
            if len(model_kwargs["past_key_values"]) == 0:
                start_from_empty_dynamic_cache = True
        else:
            start_from_empty_dynamic_cache = False

3694
3695
        this_peer_finished = False
        while self._has_unfinished_sequences(this_peer_finished, synced_gpus, device=input_ids.device):
3696
3697
            cur_len = input_ids.shape[-1]

3698
            #  1. Fetch candidate sequences from a `CandidateGenerator`
3699
            candidate_input_ids, candidate_logits = candidate_generator.get_candidates(input_ids)
3700
            candidate_input_ids = candidate_input_ids.to(self.device)
3701
3702
            if candidate_logits is not None:
                candidate_logits = candidate_logits.to(self.device)
3703

3704
            candidate_length = candidate_input_ids.shape[1] - input_ids.shape[1]
3705
            is_done_candidate = stopping_criteria(candidate_input_ids, None)
3706
3707

            # 2. Use the original model to obtain the next token logits given the candidate sequence. We obtain
3708
3709
            # `candidate_length + 1` relevant logits from this process: in the event that all candidates are correct,
            # we use this forward pass to also pick the subsequent logits in the original model.
3710

3711
            # 2.1. Prepare the model inputs
3712
3713
3714
            candidate_kwargs = copy.copy(model_kwargs)
            candidate_kwargs = _prepare_attention_mask(
                candidate_kwargs, candidate_input_ids.shape[1], self.config.is_encoder_decoder
3715
            )
3716
3717
3718
            candidate_kwargs = _prepare_token_type_ids(candidate_kwargs, candidate_input_ids.shape[1])
            if "cache_position" in candidate_kwargs:
                candidate_kwargs["cache_position"] = torch.cat(
3719
                    (
3720
                        candidate_kwargs["cache_position"],
3721
3722
3723
3724
                        torch.arange(cur_len, cur_len + candidate_length, device=input_ids.device, dtype=torch.long),
                    ),
                    dim=0,
                )
3725

3726
            model_inputs = self.prepare_inputs_for_generation(candidate_input_ids, **candidate_kwargs)
tomeras91's avatar
tomeras91 committed
3727
3728
            if "num_logits_to_keep" in model_inputs:
                model_inputs["num_logits_to_keep"] = candidate_length + 1
3729
3730
3731
3732
3733
3734
3735

            # 2.2. Run a forward pass on the candidate sequence
            outputs = self(
                **model_inputs,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
            )
3736

3737
            # 2.3. Process the new logits
3738
            new_logits = outputs.logits[:, -candidate_length - 1 :]  # excludes the input prompt if present
3739
            next_token_logits = new_logits.clone()
3740
            if len(logits_processor) > 0:
3741
                for i in range(candidate_length + 1):
3742
                    new_logits[:, i, :] = logits_processor(candidate_input_ids[:, : cur_len + i], new_logits[:, i, :])
3743
            if do_sample and len(logits_warper) > 0:
3744
                for i in range(candidate_length + 1):
3745
3746
                    new_logits[:, i, :] = logits_warper(candidate_input_ids[:, : cur_len + i], new_logits[:, i, :])

3747
3748
3749
3750
            # 3. Select the accepted tokens. There are two possible cases:
            # Case 1: `do_sample=True` and we have logits for the candidates (originally from speculative decoding)
            # 👉 Apply algorithm 1 from the speculative decoding paper (https://arxiv.org/pdf/2211.17192.pdf).
            if do_sample and candidate_logits is not None:
3751
                valid_tokens, n_matches = _speculative_sampling(
3752
3753
3754
3755
                    candidate_input_ids,
                    candidate_logits,
                    candidate_length,
                    new_logits,
3756
                    is_done_candidate,
3757
3758
3759
3760
3761
                )

            # Case 2: all other cases (originally from assisted generation) 👉 Compare the tokens selected from the
            # original model logits with the candidate tokens. We can keep the candidate tokens until the first
            # mismatch, or until the max length is reached.
3762
            else:
3763
3764
3765
3766
3767
                if do_sample:
                    probs = new_logits.softmax(dim=-1)
                    selected_tokens = torch.multinomial(probs[0, :, :], num_samples=1).squeeze(1)[None, :]
                else:
                    selected_tokens = new_logits.argmax(dim=-1)
3768

3769
                candidate_new_tokens = candidate_input_ids[:, cur_len:]
3770
                n_matches = ((~(candidate_new_tokens == selected_tokens[:, :-1])).cumsum(dim=-1) < 1).sum()
3771

3772
                # Ensure we don't generate beyond max_len or an EOS token
3773
                if is_done_candidate and n_matches == candidate_length:
3774
                    n_matches -= 1
3775
                valid_tokens = selected_tokens[:, : n_matches + 1]
3776
3777

            # 4. Update variables according to the number of matching assistant tokens. Remember: the token generated
3778
3779
3780
            # by the model after the last candidate match is also valid, as it is generated from a correct sequence.
            # Because of this last token, assisted generation search reduces to a normal greedy search/sample if there
            # is no match.
3781

3782
            # 4.1. Get the valid continuation, after the matching tokens
3783
            input_ids = torch.cat((input_ids, valid_tokens), dim=-1)
3784
            if streamer is not None:
3785
3786
                streamer.put(valid_tokens.cpu())
            new_cur_len = input_ids.shape[-1]
3787

3788
            # 4.2. Discard past key values relative to unused assistant tokens
3789
3790
            new_cache_size = new_cur_len - 1
            outputs.past_key_values = _crop_past_key_values(self, outputs.past_key_values, new_cache_size)
3791

3792
            # 5. Update the candidate generation strategy if needed
3793
3794
            candidate_generator.update_candidate_strategy(input_ids, new_logits, n_matches)

3795
3796
3797
3798
3799
3800
3801
3802
            if synced_gpus and this_peer_finished:
                continue  # don't waste resources running the code we don't need

            # Store scores, attentions and hidden_states when required
            # Assistant: modified to append one tuple element per token, as in the other generation methods.
            if return_dict_in_generate:
                if output_scores:
                    scores += tuple(new_logits[:, i, :] for i in range(n_matches + 1))
3803
3804
                if output_logits:
                    raw_logits += (next_token_logits,)
3805

3806
                if "past_key_values" not in model_kwargs or start_from_empty_dynamic_cache:
3807
                    added_len = new_cur_len
3808
3809
                    # set it to false for other iterations
                    start_from_empty_dynamic_cache = False
3810
                else:
3811
                    added_len = n_matches + 1
3812
3813
3814
3815

                if output_attentions:
                    if self.config.is_encoder_decoder:
                        cross_attentions = _split_model_outputs(
3816
                            cross_attentions, outputs.cross_attentions, cur_len, added_len
3817
3818
3819
3820
                        )
                        decoder_attentions = _split_model_outputs(
                            decoder_attentions,
                            outputs.decoder_attentions,
3821
                            cur_len,
3822
                            added_len,
3823
3824
3825
3826
3827
3828
                            is_decoder_attention=True,
                        )
                    else:
                        decoder_attentions = _split_model_outputs(
                            decoder_attentions,
                            outputs.attentions,
3829
                            cur_len,
3830
                            added_len,
3831
3832
3833
3834
3835
                            is_decoder_attention=True,
                        )
                if output_hidden_states:
                    if self.config.is_encoder_decoder:
                        decoder_hidden_states = _split_model_outputs(
3836
                            decoder_hidden_states, outputs.decoder_hidden_states, cur_len, added_len
3837
3838
3839
                        )
                    else:
                        decoder_hidden_states = _split_model_outputs(
3840
                            decoder_hidden_states, outputs.hidden_states, cur_len, added_len
3841
3842
3843
                        )

            model_kwargs = self._update_model_kwargs_for_generation(
3844
3845
3846
                outputs,
                model_kwargs,
                is_encoder_decoder=self.config.is_encoder_decoder,
3847
                num_new_tokens=n_matches + 1,
3848
3849
            )

3850
            unfinished_sequences = unfinished_sequences & ~stopping_criteria(input_ids, scores)
3851
            this_peer_finished = unfinished_sequences.max() == 0
3852

3853
3854
3855
        if streamer is not None:
            streamer.end()

3856
3857
3858
3859
3860
3861
3862
        if (
            hasattr(candidate_generator, "assistant_model")
            and candidate_generator.assistant_model.generation_config.num_assistant_tokens_schedule == "heuristic"
        ):
            candidate_generator.assistant_model.generation_config.num_assistant_tokens = (
                candidate_generator.num_assistant_tokens
            )
3863
3864
        if return_dict_in_generate:
            if self.config.is_encoder_decoder:
3865
                return GenerateEncoderDecoderOutput(
3866
3867
                    sequences=input_ids,
                    scores=scores,
3868
                    logits=raw_logits,
3869
3870
3871
3872
3873
                    encoder_attentions=encoder_attentions,
                    encoder_hidden_states=encoder_hidden_states,
                    decoder_attentions=decoder_attentions,
                    cross_attentions=cross_attentions,
                    decoder_hidden_states=decoder_hidden_states,
3874
                    past_key_values=model_kwargs.get("past_key_values"),
3875
3876
                )
            else:
3877
                return GenerateDecoderOnlyOutput(
3878
3879
                    sequences=input_ids,
                    scores=scores,
3880
                    logits=raw_logits,
3881
3882
                    attentions=decoder_attentions,
                    hidden_states=decoder_hidden_states,
3883
                    past_key_values=model_kwargs.get("past_key_values"),
3884
3885
3886
3887
3888
                )
        else:
            return input_ids


3889
3890
3891
3892
3893
def _speculative_sampling(
    candidate_input_ids,
    candidate_logits,
    candidate_length,
    new_logits,
3894
    is_done_candidate,
3895
3896
3897
):
    """
    Applies sampling as in the speculative decoding paper (https://arxiv.org/pdf/2211.17192.pdf, algorithm 1). Returns
3898
    the selected tokens, as well as the number of candidate matches.
3899
3900
3901

    NOTE: Unless otherwise stated, the variable names match those in the paper.
    """
3902
    new_candidate_input_ids = candidate_input_ids[:, -candidate_length:]
3903
3904
3905
    # Gets the probabilities from the logits. q_i and p_i denote the assistant and model probabilities of the tokens
    # selected by the assistant, respectively.
    q = candidate_logits.softmax(dim=-1)
3906
    q_i = q[:, torch.arange(candidate_length), new_candidate_input_ids].squeeze(0, 1)
3907
    p = new_logits.softmax(dim=-1)
3908
    p_i = p[:, torch.arange(candidate_length), new_candidate_input_ids].squeeze(0, 1)
3909
3910
3911
3912
3913
3914
3915
    probability_ratio = p_i / q_i

    # When probability_ratio > 1 (i.e. q_i(x) < p_i(x), or "assistant probability of the candidate token is smaller
    # than the model probability for the same token"), keep the token. Otherwise reject with p = 1 - probability_ratio
    # (= keep with p = probability_ratio). Keep all the tokens until the first rejection
    r_i = torch.rand_like(probability_ratio)
    is_accepted = r_i <= probability_ratio
3916
    n_matches = ((~is_accepted).cumsum(dim=-1) < 1).sum()  # this is `n` in algorithm 1
3917
3918

    # Ensure we don't generate beyond max_len or an EOS token (not in algorithm 1, but needed for correct behavior)
3919
    if is_done_candidate and n_matches == candidate_length:
3920
3921
        # Output length is assumed to be `n_matches + 1`. Since we won't generate another token with the target model
        # due to acceptance on EOS we fix `n_matches`
3922
        n_matches -= 1
3923
        valid_tokens = new_candidate_input_ids[:, : n_matches + 1]
3924
    else:
3925
        # Next token selection: if there is a rejection, adjust the distribution from the main model before sampling.
3926
        gamma = candidate_logits.shape[1]
3927
3928
3929
3930
3931
3932
3933
3934
        p_n_plus_1 = p[:, n_matches, :]
        if n_matches < gamma:
            q_n_plus_1 = q[:, n_matches, :]
            p_prime = torch.clamp((p_n_plus_1 - q_n_plus_1), min=0)
            p_prime.div_(p_prime.sum())
        else:
            p_prime = p_n_plus_1
        t = torch.multinomial(p_prime, num_samples=1).squeeze(1)[None, :]
3935

3936
3937
3938
3939
3940
        # The selected tokens include the matches (if any) plus the next sampled tokens
        if n_matches > 0:
            valid_tokens = torch.cat((new_candidate_input_ids[:, :n_matches], t), dim=-1)
        else:
            valid_tokens = t
3941
3942

    return valid_tokens, n_matches
3943
3944


3945
def _split_model_outputs(outputs, new_outputs, cur_len, added_len, is_decoder_attention=False):
3946
3947
3948
3949
3950
3951
    """
    Given the (decoder/cross attentions)/(decoder hidden states) for multiple generated tokens, splits it into a tuple
    where each member corresponds to a single generated token.
    """
    # Retrocompatibility: in our generation functions, the first iteration includes the attention/hidden states for the
    # prompt.
3952
    if len(outputs) == 0:
3953
3954
        new_tuple = ()
        for layer in new_outputs:
3955
3956
            last_dim_size = cur_len if is_decoder_attention else layer.shape[-1]
            new_tuple += (layer[..., :cur_len, :last_dim_size],)
3957
        outputs += (new_tuple,)
3958
3959
3960
        # The first iteration contains the prompt + 1 generated token, let's update the length variables accordingly
        cur_len += 1
        added_len -= cur_len
3961

3962
    for i in range(added_len):
3963
3964
        new_tuple = ()
        for layer in new_outputs:
3965
            last_dim_size = cur_len + i if is_decoder_attention else layer.shape[-1]
3966
3967
3968
3969
            new_tuple += (layer[..., i : i + 1, :last_dim_size],)
        outputs += (new_tuple,)
    return outputs

3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991

def _ranking_fast(
    context_hidden: torch.FloatTensor,
    next_hidden: torch.FloatTensor,
    next_top_k_probs: torch.FloatTensor,
    alpha: float,
    beam_width: int,
) -> torch.FloatTensor:
    """
    Reranks the top_k candidates based on a degeneration penalty (cosine similarity with previous tokens), as described
    in the paper "A Contrastive Framework for Neural Text Generation". Returns the index of the best candidate for each
    row in the batch.
    """
    norm_context_hidden = context_hidden / context_hidden.norm(dim=2, keepdim=True)
    norm_next_hidden = next_hidden / next_hidden.norm(dim=2, keepdim=True)
    cosine_matrix = torch.matmul(norm_context_hidden, norm_next_hidden.transpose(1, 2)).squeeze(-1)  # [B*K, S]
    degeneration_penalty, _ = torch.max(cosine_matrix, dim=-1)  # [B*K]
    next_top_k_probs = next_top_k_probs.view(-1)  # [B*K]
    contrastive_score = (1.0 - alpha) * next_top_k_probs - alpha * degeneration_penalty
    contrastive_score = torch.stack(torch.split(contrastive_score, beam_width))  # [B, K]
    _, selected_idx = contrastive_score.max(dim=-1)  # [B]
    return selected_idx
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007


def _split(data, full_batch_size: int, split_size: int = None):
    """
    Takes care of three cases:
    1. data is a tensor: e.g. last_hidden_state, pooler_output etc. split them on the batch_size dim
    2. data is a tuple: e.g. hidden_states, attentions etc. Keep the tuple as it is and split each tensor in it and
       return a list of tuples
    3. data is a tuple of tuples, e.g. past_key_values. Keep the tuple as it is and split each tuple in it and
       return a list of tuples of tuples
    (see documentation of ModelOutput)
    """
    if data is None:
        return [None] * (full_batch_size // split_size)
    if isinstance(data, torch.Tensor):
        return [data[i : i + split_size] for i in range(0, full_batch_size, split_size)]
4008
4009
4010
    # New cache format
    elif isinstance(data, DynamicCache):
        return data.batch_split(full_batch_size, split_size)
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
    elif isinstance(data, tuple):
        # If the elements of the tuple are also tuples (e.g., past_key_values in our earlier example)
        if isinstance(data[0], tuple):
            return [
                tuple(tuple(tensor[i : i + split_size] for tensor in inner_tuple) for inner_tuple in data)
                for i in range(0, full_batch_size, split_size)
            ]

        else:
            return [
                tuple(sub_tensor[i : i + split_size] for sub_tensor in data)
                for i in range(0, full_batch_size, split_size)
            ]
    else:
        raise ValueError(f"Unexpected attribute type: {type(data)}")


def _split_model_inputs(
    model_input: Union[ModelOutput, Dict], split_size: int, full_batch_size: int
) -> List[Union[ModelOutput, Dict]]:
    """
    Split a ModelOutput object (or its subclasses) or Dict into a list of same-class objects based on a specified split
    size. The input object is dict when it was prepared for forward pass and ModelOutput when it was returned from
    previous forward pass.
    """
    # Edge case: if model_input is None, return a list of Nones
    # this happens with Whisper where encoder_outputs is None
    if model_input is None:
        return [model_input] * (full_batch_size // split_size)
    # Infer the class from the object
    model_output_cls = type(model_input)
    if (full_batch_size % split_size) != 0:
        raise ValueError("`full_batch_size` must be divisible by `split_size`")

    if split_size > full_batch_size:
        raise ValueError("`split_size` must be smaller or equal to `full_batch_size`")

    # Helper function to split tensors or tuples of tensors

    # Find all the dataclass fields (e.g., last_hidden_state, pooler_output etc.) and split them
    keys = (
        model_input.__dataclass_fields__.keys() if hasattr(model_input, "__dataclass_fields__") else model_input.keys()
    )
    # We only keep keys that are in the model_input
    keys = [k for k in keys if k in model_input]
    # Here we can have four types of values: tensors, tuples of tensors and booleans, and encoder_outputs which is a
    # ModelOutput object.
    # bool should not be split but replicated for each split
4059
    bool_keys = [k for k in keys if isinstance(model_input[k], bool) or k == "cache_position"]
tomeras91's avatar
tomeras91 committed
4060
    keys_to_ignore = ["cache_position", "encoder_outputs", "num_logits_to_keep"]
4061
    non_bool_keys = [k for k in keys if not isinstance(model_input[k], bool) and k not in keys_to_ignore]
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075

    # we split the tensors and tuples of tensors
    data_split_list = [
        {k: _split(model_input[k], full_batch_size, split_size)[i] for k in non_bool_keys}
        for i in range(full_batch_size // split_size)
    ]
    # bool values are the same and replicated for each split
    bool_data = {k: model_input[k] for k in bool_keys}
    # encoder_outputs is a ModelOutput object and should be split by its own
    if "encoder_outputs" in model_input:
        encoder_outputs_split = _split_model_inputs(model_input["encoder_outputs"], split_size, full_batch_size)
        data_split_list = [
            {**data_split, "encoder_outputs": encoder_outputs_split[i]} for i, data_split in enumerate(data_split_list)
        ]
tomeras91's avatar
tomeras91 committed
4076
4077
4078
4079
4080
    # num_logits_to_keep should be replicated for each split, similar to bool values
    if "num_logits_to_keep" in model_input:
        data_split_list = [
            {**data_split, "num_logits_to_keep": model_input["num_logits_to_keep"]} for data_split in data_split_list
        ]
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113

    # Convert each dictionary in the list to an object of the inferred class
    split_model_inputs: List[Union[ModelOutput, Dict]] = [
        model_output_cls(**data_split, **bool_data) for data_split in data_split_list
    ]

    return split_model_inputs


def stack_model_outputs(model_outputs: List[ModelOutput]) -> ModelOutput:
    """
    Stack a list of ModelOutput objects (or its subclasses) along the batch_size dimension. The function infers the
    specific ModelOutput subclass from the list provided.
    """
    if not model_outputs:
        raise ValueError("Input list is empty.")

    # Infer the class from the first object in the list
    model_output_cls = type(model_outputs[0])

    # Ensure all objects are of the same type
    if not all(isinstance(obj, model_output_cls) for obj in model_outputs):
        raise ValueError("All elements in the list should be of the same type.")

    # Helper function to concat tensors or tuples of tensors
    def _concat(data):
        """
        Reverse of `_split` function above.
        """
        if any(data is None for data in data):
            return None
        if isinstance(data[0], torch.Tensor):
            return torch.cat(data, dim=0)
4114
4115
4116
        # New cache format
        elif isinstance(data[0], DynamicCache):
            return DynamicCache.from_batch_splits(data)
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
        elif isinstance(data[0], tuple):
            # If the elements of the tuple are also tuples (e.g., past_key_values in our earlier example)
            if isinstance(data[0][0], tuple):
                return tuple(
                    tuple(torch.cat([attr[i][j] for attr in data], dim=0) for j in range(len(data[0][0])))
                    for i in range(len(data[0]))
                )
            else:
                return tuple(torch.cat([attr[i] for attr in data], dim=0) for i in range(len(data[0])))
        elif isinstance(data[0], (int, float)):
            # If the elements are integers or floats, return a tensor
            return torch.tensor(data)
        else:
            raise ValueError(f"Unexpected attribute type: {type(data[0])}")

    # Use a dictionary comprehension to gather attributes from all objects and concatenate them
    concatenated_data = {
        k: _concat([getattr(model_output, k) for model_output in model_outputs])
        for k in model_output_cls.__dataclass_fields__.keys()
    }

    # Return a new object of the inferred class with the concatenated attributes
    return model_output_cls(**concatenated_data)