utils.py 262 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# coding=utf-8
# Copyright 2020 The Google AI Language Team Authors, Facebook AI Research authors and The HuggingFace Inc. team.
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

17
import copy
18
19
20
import inspect
import warnings
from dataclasses import dataclass
21
from typing import TYPE_CHECKING, Any, Callable, Dict, List, Optional, Tuple, Union
22
23
24
25
26

import torch
import torch.distributed as dist
from torch import nn

27
from ..cache_utils import Cache, DynamicCache
28
from ..integrations.deepspeed import is_deepspeed_zero3_enabled
29
30
31
32
33
34
35
36
from ..modeling_outputs import CausalLMOutputWithPast, Seq2SeqLMOutput
from ..models.auto import (
    MODEL_FOR_CAUSAL_IMAGE_MODELING_MAPPING,
    MODEL_FOR_CAUSAL_LM_MAPPING,
    MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
    MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING,
    MODEL_FOR_VISION_2_SEQ_MAPPING,
)
Marc Sun's avatar
Marc Sun committed
37
from ..utils import ExplicitEnum, ModelOutput, is_accelerate_available, logging
38
from .beam_constraints import DisjunctiveConstraint, PhrasalConstraint
39
from .beam_search import BeamScorer, BeamSearchScorer, ConstrainedBeamSearchScorer
40
41
42
43
44
45
46
from .candidate_generator import (
    AssistedCandidateGenerator,
    CandidateGenerator,
    _crop_past_key_values,
    _prepare_attention_mask,
    _prepare_token_type_ids,
)
47
from .configuration_utils import GenerationConfig
48
49
from .logits_process import (
    EncoderNoRepeatNGramLogitsProcessor,
Karim Foda's avatar
Karim Foda committed
50
    EncoderRepetitionPenaltyLogitsProcessor,
51
52
    EpsilonLogitsWarper,
    EtaLogitsWarper,
53
54
55
56
57
58
59
60
61
    ExponentialDecayLengthPenalty,
    ForcedBOSTokenLogitsProcessor,
    ForcedEOSTokenLogitsProcessor,
    ForceTokensLogitsProcessor,
    HammingDiversityLogitsProcessor,
    InfNanRemoveLogitsProcessor,
    LogitNormalization,
    LogitsProcessorList,
    MinLengthLogitsProcessor,
62
    MinNewTokensLengthLogitsProcessor,
63
64
65
66
    NoBadWordsLogitsProcessor,
    NoRepeatNGramLogitsProcessor,
    PrefixConstrainedLogitsProcessor,
    RepetitionPenaltyLogitsProcessor,
67
    SequenceBiasLogitsProcessor,
68
69
70
71
72
73
    SuppressTokensAtBeginLogitsProcessor,
    SuppressTokensLogitsProcessor,
    TemperatureLogitsWarper,
    TopKLogitsWarper,
    TopPLogitsWarper,
    TypicalLogitsWarper,
74
    UnbatchedClassifierFreeGuidanceLogitsProcessor,
75
76
77
78
79
80
81
82
83
84
)
from .stopping_criteria import (
    MaxLengthCriteria,
    MaxTimeCriteria,
    StoppingCriteria,
    StoppingCriteriaList,
    validate_stopping_criteria,
)


85
if TYPE_CHECKING:
86
    from ..modeling_utils import PreTrainedModel
87
88
    from .streamers import BaseStreamer

89
90
logger = logging.get_logger(__name__)

Marc Sun's avatar
Marc Sun committed
91
92
93
if is_accelerate_available():
    from accelerate.hooks import AlignDevicesHook, add_hook_to_module

94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114

@dataclass
class GreedySearchDecoderOnlyOutput(ModelOutput):
    """
    Base class for outputs of decoder-only generation models using greedy search.


    Args:
        sequences (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
            The generated sequences. The second dimension (sequence_length) is either equal to `max_length` or shorter
            if all batches finished early due to the `eos_token_id`.
        scores (`tuple(torch.FloatTensor)` *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`):
            Processed prediction scores of the language modeling head (scores for each vocabulary token before SoftMax)
            at each generation step. Tuple of `torch.FloatTensor` with up to `max_new_tokens` elements (one element for
            each generated token), with each tensor of shape `(batch_size, config.vocab_size)`.
        attentions (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`):
            Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
            `torch.FloatTensor` of shape `(batch_size, num_heads, generated_length, sequence_length)`.
        hidden_states (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
            `torch.FloatTensor` of shape `(batch_size, generated_length, hidden_size)`.
115
116
117
118
119
120
121
        past_key_values (`tuple(tuple(torch.FloatTensor)))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
            NOTE: some models have a different `past_key_values` format, confirm with the model's documentation.
            Usually a Tuple (one element for each layer of the decoder) of tuples (two elements, key tensor and value
            tensor). The first Tuple is of length `config.n_layers`, with each tuple having 2 tensors of shape
            `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and optionally if
            `config.is_encoder_decoder=True` 2 additional tensors of shape `(batch_size, num_heads,
            encoder_sequence_length, embed_size_per_head)`.
122
123
124
125
126
127
    """

    sequences: torch.LongTensor = None
    scores: Optional[Tuple[torch.FloatTensor]] = None
    attentions: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
    hidden_states: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
128
    past_key_values: Optional[Tuple[Tuple[Tuple[torch.FloatTensor]]]] = None
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158


@dataclass
class ContrastiveSearchEncoderDecoderOutput(ModelOutput):
    """
    Base class for outputs of decoder-only generation models using contrastive search.

    Args:
        sequences (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
            The generated sequences. The second dimension (sequence_length) is either equal to `max_length` or shorter
            if all batches finished early due to the `eos_token_id`.
        scores (`tuple(torch.FloatTensor)` *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`):
            Processed prediction scores of the language modeling head (scores for each vocabulary token before SoftMax)
            at each generation step. Tuple of `torch.FloatTensor` with up to `max_new_tokens` elements (one element for
            each generated token), with each tensor of shape `(batch_size, config.vocab_size)`.
        encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`):
            Tuple of `torch.FloatTensor` (one for each layer of the decoder) of shape `(batch_size, num_heads,
            sequence_length, sequence_length)`.
        encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
            shape `(batch_size, sequence_length, hidden_size)`.
        decoder_attentions (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`):
            Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
            `torch.FloatTensor` of shape `(batch_size, num_heads, generated_length, sequence_length)`.
        cross_attentions (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`):
            Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
            `torch.FloatTensor` of shape `(batch_size, num_heads, generated_length, sequence_length)`.
        decoder_hidden_states (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
            `torch.FloatTensor` of shape `(batch_size, generated_length, hidden_size)`.
159
160
161
162
163
164
165
        past_key_values (`tuple(tuple(torch.FloatTensor)))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
            NOTE: some models have a different `past_key_values` format, confirm with the model's documentation.
            Usually a Tuple (one element for each layer of the decoder) of tuples (two elements, key tensor and value
            tensor). The first Tuple is of length `config.n_layers`, with each tuple having 2 tensors of shape
            `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and optionally if
            `config.is_encoder_decoder=True` 2 additional tensors of shape `(batch_size, num_heads,
            encoder_sequence_length, embed_size_per_head)`.
166
167
168
169
170
171
172
173
174
    """

    sequences: torch.LongTensor = None
    scores: Optional[Tuple[torch.FloatTensor]] = None
    encoder_attentions: Optional[Tuple[torch.FloatTensor]] = None
    encoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
    decoder_attentions: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
    cross_attentions: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
    decoder_hidden_states: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
175
    past_key_values: Optional[Tuple[Tuple[Tuple[torch.FloatTensor]]]] = None
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195


@dataclass
class ContrastiveSearchDecoderOnlyOutput(ModelOutput):
    """
    Base class for outputs of decoder-only generation models using contrastive search.

    Args:
        sequences (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
            The generated sequences. The second dimension (sequence_length) is either equal to `max_length` or shorter
            if all batches finished early due to the `eos_token_id`.
        scores (`tuple(torch.FloatTensor)` *optional*, returned when `output_scores=True` is passed or when
        `config.output_scores=True`):
            Processed prediction scores of the language modeling head (scores for each vocabulary token before SoftMax)
            at each generation step. Tuple of `torch.FloatTensor` with up to `max_new_tokens` elements (one element for
            each generated token), with each tensor of shape `(batch_size, config.vocab_size)`.
        attentions (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`):
            Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
            `torch.FloatTensor` of shape `(batch_size, num_heads, generated_length, sequence_length)`.
        hidden_states (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_hidden_states=True` is
196
197
198
199
200
201
202
203
204
205
            passed or when `config.output_hidden_states=True`): Tuple (one element for each generated token) of tuples
            (one element for each layer of the decoder) of `torch.FloatTensor` of shape `(batch_size, generated_length,
            hidden_size)`.
        past_key_values (`tuple(tuple(torch.FloatTensor)))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
            NOTE: some models have a different `past_key_values` format, confirm with the model's documentation.
            Usually a Tuple (one element for each layer of the decoder) of tuples (two elements, key tensor and value
            tensor). The first Tuple is of length `config.n_layers`, with each tuple having 2 tensors of shape
            `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and optionally if
            `config.is_encoder_decoder=True` 2 additional tensors of shape `(batch_size, num_heads,
            encoder_sequence_length, embed_size_per_head)`.
206
207
208
209
210
211
    """

    sequences: torch.LongTensor = None
    scores: Optional[Tuple[torch.FloatTensor]] = None
    attentions: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
    hidden_states: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
212
    past_key_values: Optional[Tuple[Tuple[Tuple[torch.FloatTensor]]]] = None
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245


@dataclass
class GreedySearchEncoderDecoderOutput(ModelOutput):
    """
    Base class for outputs of encoder-decoder generation models using greedy search. Hidden states and attention
    weights of the decoder (respectively the encoder) can be accessed via the encoder_attentions and the
    encoder_hidden_states attributes (respectively the decoder_attentions and the decoder_hidden_states attributes)


    Args:
        sequences (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
            The generated sequences. The second dimension (sequence_length) is either equal to `max_length` or shorter
            if all batches finished early due to the `eos_token_id`.
        scores (`tuple(torch.FloatTensor)` *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`):
            Processed prediction scores of the language modeling head (scores for each vocabulary token before SoftMax)
            at each generation step. Tuple of `torch.FloatTensor` with up to `max_new_tokens` elements (one element for
            each generated token), with each tensor of shape `(batch_size, config.vocab_size)`.
        encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`):
            Tuple of `torch.FloatTensor` (one for each layer of the decoder) of shape `(batch_size, num_heads,
            sequence_length, sequence_length)`.
        encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
            shape `(batch_size, sequence_length, hidden_size)`.
        decoder_attentions (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`):
            Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
            `torch.FloatTensor` of shape `(batch_size, num_heads, generated_length, sequence_length)`.
        cross_attentions (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`):
            Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
            `torch.FloatTensor` of shape `(batch_size, num_heads, generated_length, sequence_length)`.
        decoder_hidden_states (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
            `torch.FloatTensor` of shape `(batch_size, generated_length, hidden_size)`.
246
247
248
249
250
251
252
        past_key_values (`tuple(tuple(torch.FloatTensor)))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
            NOTE: some models have a different `past_key_values` format, confirm with the model's documentation.
            Usually a Tuple (one element for each layer of the decoder) of tuples (two elements, key tensor and value
            tensor). The first Tuple is of length `config.n_layers`, with each tuple having 2 tensors of shape
            `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and optionally if
            `config.is_encoder_decoder=True` 2 additional tensors of shape `(batch_size, num_heads,
            encoder_sequence_length, embed_size_per_head)`.
253
254
255
256
257
258
259
260
261
    """

    sequences: torch.LongTensor = None
    scores: Optional[Tuple[torch.FloatTensor]] = None
    encoder_attentions: Optional[Tuple[torch.FloatTensor]] = None
    encoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
    decoder_attentions: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
    cross_attentions: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
    decoder_hidden_states: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
262
    past_key_values: Optional[Tuple[Tuple[Tuple[torch.FloatTensor]]]] = None
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285


@dataclass
class SampleDecoderOnlyOutput(ModelOutput):
    """
    Base class for outputs of decoder-only generation models using sampling.


    Args:
        sequences (`torch.LongTensor` of shape `(batch_size*num_return_sequences, sequence_length)`):
            The generated sequences. The second dimension (sequence_length) is either equal to `max_length` or shorter
            if all batches finished early due to the `eos_token_id`.
        scores (`tuple(torch.FloatTensor)` *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`):
            Processed prediction scores of the language modeling head (scores for each vocabulary token before SoftMax)
            at each generation step. Tuple of `torch.FloatTensor` with up to `max_new_tokens` elements (one element for
            each generated token), with each tensor of shape `(batch_size*num_return_sequences, config.vocab_size)`.
        attentions (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`):
            Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
            `torch.FloatTensor` of shape `(num_return_sequences*batch_size, num_heads, generated_length,
            sequence_length)`.
        hidden_states (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
            `torch.FloatTensor` of shape `(num_return_sequences*batch_size, generated_length, hidden_size)`.
286
287
288
289
290
291
292
        past_key_values (`tuple(tuple(torch.FloatTensor)))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
            NOTE: some models have a different `past_key_values` format, confirm with the model's documentation.
            Usually a Tuple (one element for each layer of the decoder) of tuples (two elements, key tensor and value
            tensor). The first Tuple is of length `config.n_layers`, with each tuple having 2 tensors of shape
            `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and optionally if
            `config.is_encoder_decoder=True` 2 additional tensors of shape `(batch_size, num_heads,
            encoder_sequence_length, embed_size_per_head)`.
293
294
295
296
297
298
    """

    sequences: torch.LongTensor = None
    scores: Optional[Tuple[torch.FloatTensor]] = None
    attentions: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
    hidden_states: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
299
    past_key_values: Optional[Tuple[Tuple[Tuple[torch.FloatTensor]]]] = None
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333


@dataclass
class SampleEncoderDecoderOutput(ModelOutput):
    """
    Base class for outputs of encoder-decoder generation models using sampling. Hidden states and attention weights of
    the decoder (respectively the encoder) can be accessed via the encoder_attentions and the encoder_hidden_states
    attributes (respectively the decoder_attentions and the decoder_hidden_states attributes)


    Args:
        sequences (`torch.LongTensor` of shape `(batch_size*num_return_sequences, sequence_length)`):
            The generated sequences. The second dimension (sequence_length) is either equal to `max_length` or shorter
            if all batches finished early due to the `eos_token_id`.
        scores (`tuple(torch.FloatTensor)` *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`):
            Processed prediction scores of the language modeling head (scores for each vocabulary token before SoftMax)
            at each generation step. Tuple of `torch.FloatTensor` with up to `max_new_tokens` elements (one element for
            each generated token), with each tensor of shape `(batch_size*num_return_sequences, config.vocab_size)`.
        encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`):
            Tuple of `torch.FloatTensor` (one for each layer of the decoder) of shape
            `(batch_size*num_return_sequences, num_heads, sequence_length, sequence_length)`.
        encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
            shape `(batch_size*num_return_sequences, sequence_length, hidden_size)`.
        decoder_attentions (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`):
            Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
            `torch.FloatTensor` of shape `(batch_size*num_return_sequences, num_heads, generated_length,
            sequence_length)`.
        cross_attentions (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`):
            Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
            `torch.FloatTensor` of shape `(batch_size, num_heads, generated_length, sequence_length)`.
        decoder_hidden_states (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
            `torch.FloatTensor` of shape `(batch_size*num_return_sequences, generated_length, hidden_size)`.
334
335
336
337
338
339
340
        past_key_values (`tuple(tuple(torch.FloatTensor)))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
            NOTE: some models have a different `past_key_values` format, confirm with the model's documentation.
            Usually a Tuple (one element for each layer of the decoder) of tuples (two elements, key tensor and value
            tensor). The first Tuple is of length `config.n_layers`, with each tuple having 2 tensors of shape
            `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and optionally if
            `config.is_encoder_decoder=True` 2 additional tensors of shape `(batch_size, num_heads,
            encoder_sequence_length, embed_size_per_head)`.
341
342
343
344
345
346
347
348
349
    """

    sequences: torch.LongTensor = None
    scores: Optional[Tuple[torch.FloatTensor]] = None
    encoder_attentions: Optional[Tuple[torch.FloatTensor]] = None
    encoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
    decoder_attentions: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
    cross_attentions: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
    decoder_hidden_states: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
350
    past_key_values: Optional[Tuple[Tuple[Tuple[torch.FloatTensor]]]] = None
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368


@dataclass
class BeamSearchDecoderOnlyOutput(ModelOutput):
    """
    Base class for outputs of decoder-only generation models using beam search.

    Args:
        sequences (`torch.LongTensor` of shape `(batch_size*num_return_sequences, sequence_length)`):
            The generated sequences. The second dimension (sequence_length) is either equal to `max_length` or shorter
            if all batches finished early due to the `eos_token_id`.
        sequences_scores (`torch.FloatTensor` of shape `(batch_size*num_return_sequences)`, *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`):
            Final beam scores of the generated `sequences`.
        scores (`tuple(torch.FloatTensor)` *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`):
            Beam transition scores for each vocabulary token at each generation step. Beam transition scores consisting
            of log probabilities of tokens conditioned on log softmax of previously generated tokens in this beam.
            Tuple of `torch.FloatTensor` with up to `max_new_tokens` elements (one element for each generated token),
            with each tensor of shape `(batch_size*num_beams*num_return_sequences, config.vocab_size)`.
369
        beam_indices (`torch.LongTensor`, *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`):
370
            Beam indices of generated token id at each generation step. `torch.LongTensor` of shape
371
            `(batch_size*num_return_sequences, sequence_length)`.
372
373
374
375
376
377
        attentions (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`):
            Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
            `torch.FloatTensor` of shape `(batch_size*num_beams, num_heads, generated_length, sequence_length)`.
        hidden_states (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
            `torch.FloatTensor` of shape `(batch_size*num_beams*num_return_sequences, generated_length, hidden_size)`.
378
379
380
381
382
383
384
        past_key_values (`tuple(tuple(torch.FloatTensor)))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
            NOTE: some models have a different `past_key_values` format, confirm with the model's documentation.
            Usually a Tuple (one element for each layer of the decoder) of tuples (two elements, key tensor and value
            tensor). The first Tuple is of length `config.n_layers`, with each tuple having 2 tensors of shape
            `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and optionally if
            `config.is_encoder_decoder=True` 2 additional tensors of shape `(batch_size, num_heads,
            encoder_sequence_length, embed_size_per_head)`.
385
386
387
388
389
390
391
392
    """

    sequences: torch.LongTensor = None
    sequences_scores: Optional[torch.FloatTensor] = None
    scores: Optional[Tuple[torch.FloatTensor]] = None
    beam_indices: Optional[torch.LongTensor] = None
    attentions: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
    hidden_states: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
393
    past_key_values: Optional[Tuple[Tuple[Tuple[torch.FloatTensor]]]] = None
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413


@dataclass
class BeamSearchEncoderDecoderOutput(ModelOutput):
    """
    Base class for outputs of encoder-decoder generation models using beam search. Hidden states and attention weights
    of the decoder (respectively the encoder) can be accessed via the encoder_attentions and the encoder_hidden_states
    attributes (respectively the decoder_attentions and the decoder_hidden_states attributes)

    Args:
        sequences (`torch.LongTensor` of shape `(batch_size*num_return_sequences, sequence_length)`):
            The generated sequences. The second dimension (sequence_length) is either equal to `max_length` or shorter
            if all batches finished early due to the `eos_token_id`.
        sequences_scores (`torch.FloatTensor` of shape `(batch_size*num_return_sequences)`, *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`):
            Final beam scores of the generated `sequences`.
        scores (`tuple(torch.FloatTensor)` *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`):
            Beam transition scores for each vocabulary token at each generation step. Beam transition scores consisting
            of log probabilities of tokens conditioned on log softmax of previously generated tokens in this beam.
            Tuple of `torch.FloatTensor` with up to `max_new_tokens` elements (one element for each generated token),
            with each tensor of shape `(batch_size*num_beams, config.vocab_size)`.
414
        beam_indices (`torch.LongTensor`, *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`):
415
            Beam indices of generated token id at each generation step. `torch.LongTensor` of shape
416
            `(batch_size*num_return_sequences, sequence_length)`.
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
        encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`):
            Tuple of `torch.FloatTensor` (one for each layer of the decoder) of shape `(batch_size, num_heads,
            sequence_length, sequence_length)`.
        encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
            shape `(batch_size*num_beams*num_return_sequences, sequence_length, hidden_size)`.
        decoder_attentions (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`):
            Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
            `torch.FloatTensor` of shape `(batch_size*num_beams*num_return_sequences, num_heads, generated_length,
            sequence_length)`.
        cross_attentions (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`):
            Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
            `torch.FloatTensor` of shape `(batch_size, num_heads, generated_length, sequence_length)`.
        decoder_hidden_states (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
            `torch.FloatTensor` of shape `(batch_size*num_beams*num_return_sequences, generated_length, hidden_size)`.
433
434
435
436
437
438
439
        past_key_values (`tuple(tuple(torch.FloatTensor)))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
            NOTE: some models have a different `past_key_values` format, confirm with the model's documentation.
            Usually a Tuple (one element for each layer of the decoder) of tuples (two elements, key tensor and value
            tensor). The first Tuple is of length `config.n_layers`, with each tuple having 2 tensors of shape
            `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and optionally if
            `config.is_encoder_decoder=True` 2 additional tensors of shape `(batch_size, num_heads,
            encoder_sequence_length, embed_size_per_head)`.
440
441
442
443
444
445
446
447
448
449
450
    """

    sequences: torch.LongTensor = None
    sequences_scores: Optional[torch.FloatTensor] = None
    scores: Optional[Tuple[torch.FloatTensor]] = None
    beam_indices: Optional[torch.LongTensor] = None
    encoder_attentions: Optional[Tuple[torch.FloatTensor]] = None
    encoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
    decoder_attentions: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
    cross_attentions: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
    decoder_hidden_states: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
451
    past_key_values: Optional[Tuple[Tuple[Tuple[torch.FloatTensor]]]] = None
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469


@dataclass
class BeamSampleDecoderOnlyOutput(ModelOutput):
    """
    Base class for outputs of decoder-only generation models using beam sample.

    Args:
        sequences (`torch.LongTensor` of shape `(batch_size*num_return_sequences, sequence_length)`):
            The generated sequences. The second dimension (sequence_length) is either equal to `max_length` or shorter
            if all batches finished early due to the `eos_token_id`.
        sequences_scores (`torch.FloatTensor` of shape `(batch_size * num_return_sequence)`, *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`):
            Final beam scores of the generated `sequences`.
        scores (`tuple(torch.FloatTensor)` *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`):
            Beam transition scores for each vocabulary token at each generation step. Beam transition scores consisting
            of log probabilities of tokens conditioned on log softmax of previously generated tokens in this beam.
            Tuple of `torch.FloatTensor` with up to `max_new_tokens` elements (one element for each generated token),
            with each tensor of shape `(batch_size*num_beams*num_return_sequences, config.vocab_size)`.
470
        beam_indices (`torch.LongTensor`, *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`):
471
            Beam indices of generated token id at each generation step. `torch.LongTensor` of shape
472
            `(batch_size*num_return_sequences, sequence_length)`.
473
474
475
476
477
478
        attentions (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`):
            Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
            `torch.FloatTensor` of shape `(batch_size*num_beams, num_heads, generated_length, sequence_length)`.
        hidden_states (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
            `torch.FloatTensor` of shape `(batch_size*num_beams, generated_length, hidden_size)`.
479
480
481
482
483
484
485
        past_key_values (`tuple(tuple(torch.FloatTensor)))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
            NOTE: some models have a different `past_key_values` format, confirm with the model's documentation.
            Usually a Tuple (one element for each layer of the decoder) of tuples (two elements, key tensor and value
            tensor). The first Tuple is of length `config.n_layers`, with each tuple having 2 tensors of shape
            `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and optionally if
            `config.is_encoder_decoder=True` 2 additional tensors of shape `(batch_size, num_heads,
            encoder_sequence_length, embed_size_per_head)`.
486
487
488
489
490
491
492
493
    """

    sequences: torch.LongTensor = None
    sequences_scores: Optional[torch.FloatTensor] = None
    scores: Optional[Tuple[torch.FloatTensor]] = None
    beam_indices: Optional[torch.LongTensor] = None
    attentions: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
    hidden_states: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
494
    past_key_values: Optional[Tuple[Tuple[Tuple[torch.FloatTensor]]]] = None
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516


@dataclass
class BeamSampleEncoderDecoderOutput(ModelOutput):
    """
    Base class for outputs of encoder-decoder generation models using beam sampling. Hidden states and attention
    weights of the decoder (respectively the encoder) can be accessed via the encoder_attentions and the
    encoder_hidden_states attributes (respectively the decoder_attentions and the decoder_hidden_states attributes)

    Args:
        sequences (`torch.LongTensor` of shape `(batch_size*num_beams, sequence_length)`):
            The generated sequences. The second dimension (sequence_length) is either equal to `max_length` or shorter
            if all batches finished early due to the `eos_token_id`.
        sequences_scores (`torch.FloatTensor` of shape `(batch_size * num_return_sequence)`, *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`):
            Final beam scores of the generated `sequences`.
        scores (`tuple(torch.FloatTensor)` *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`):
            Beam transition scores for each vocabulary token at each generation step. Beam transition scores consisting
            of log probabilities of tokens conditioned on log softmax of previously generated tokens in this beam.
            Tuple of `torch.FloatTensor` with up to `max_new_tokens` elements (one element for each generated token),
            with each tensor of shape `(batch_size*num_beams, config.vocab_size)`).
        beam_indices (`torch.LongTensor`, *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`):
            Beam indices of generated token id at each generation step. `torch.LongTensor` of shape
517
            `(batch_size*num_return_sequences, sequence_length)`.
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
        encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`):
            Tuple of `torch.FloatTensor` (one for each layer of the decoder) of shape `(batch_size, num_heads,
            sequence_length, sequence_length)`.
        encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
            shape `(batch_size*num_beams, sequence_length, hidden_size)`.
        decoder_attentions (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`):
            Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
            `torch.FloatTensor` of shape `(batch_size*num_beams, num_heads, generated_length, sequence_length)`.
        cross_attentions (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`):
            Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
            `torch.FloatTensor` of shape `(batch_size, num_heads, generated_length, sequence_length)`.
        decoder_hidden_states (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
            `torch.FloatTensor` of shape `(batch_size*num_beams, generated_length, hidden_size)`.
533
534
535
536
537
538
539
        past_key_values (`tuple(tuple(torch.FloatTensor)))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
            NOTE: some models have a different `past_key_values` format, confirm with the model's documentation.
            Usually a Tuple (one element for each layer of the decoder) of tuples (two elements, key tensor and value
            tensor). The first Tuple is of length `config.n_layers`, with each tuple having 2 tensors of shape
            `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and optionally if
            `config.is_encoder_decoder=True` 2 additional tensors of shape `(batch_size, num_heads,
            encoder_sequence_length, embed_size_per_head)`.
540
541
542
543
544
545
546
547
548
549
550
    """

    sequences: torch.LongTensor = None
    sequences_scores: Optional[torch.FloatTensor] = None
    scores: Optional[Tuple[torch.FloatTensor]] = None
    beam_indices: Optional[torch.LongTensor] = None
    encoder_attentions: Optional[Tuple[torch.FloatTensor]] = None
    encoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
    decoder_attentions: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
    cross_attentions: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
    decoder_hidden_states: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
551
    past_key_values: Optional[Tuple[Tuple[Tuple[torch.FloatTensor]]]] = None
552
553
554
555
556
557
558
559
560
561


GreedySearchOutput = Union[GreedySearchEncoderDecoderOutput, GreedySearchDecoderOnlyOutput]
SampleOutput = Union[SampleEncoderDecoderOutput, SampleDecoderOnlyOutput]
BeamSearchOutput = Union[BeamSearchEncoderDecoderOutput, BeamSearchDecoderOnlyOutput]
BeamSampleOutput = Union[BeamSampleEncoderDecoderOutput, BeamSampleDecoderOnlyOutput]
ContrastiveSearchOutput = Union[ContrastiveSearchEncoderDecoderOutput, ContrastiveSearchDecoderOnlyOutput]
GenerateOutput = Union[GreedySearchOutput, SampleOutput, BeamSearchOutput, BeamSampleOutput, ContrastiveSearchOutput]


562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
class GenerationMode(ExplicitEnum):
    """
    Possible generation modes, downstream of the [`~generation.GenerationMixin.generate`] method.
    """

    # Non-beam methods
    CONTRASTIVE_SEARCH = "contrastive_search"
    GREEDY_SEARCH = "greedy_search"
    SAMPLE = "sample"
    ASSISTED_GENERATION = "assisted_generation"
    # Beam methods
    BEAM_SEARCH = "beam_search"
    BEAM_SAMPLE = "beam_sample"
    CONSTRAINED_BEAM_SEARCH = "constrained_beam_search"
    GROUP_BEAM_SEARCH = "group_beam_search"


579
580
581
582
583
584
class GenerationMixin:
    """
    A class containing all functions for auto-regressive text generation, to be used as a mixin in [`PreTrainedModel`].

    The class exposes [`~generation.GenerationMixin.generate`], which can be used for:
        - *greedy decoding* by calling [`~generation.GenerationMixin.greedy_search`] if `num_beams=1` and
585
          `do_sample=False`
586
587
588
        - *contrastive search* by calling [`~generation.GenerationMixin.contrastive_search`] if `penalty_alpha>0` and
          `top_k>1`
        - *multinomial sampling* by calling [`~generation.GenerationMixin.sample`] if `num_beams=1` and
589
          `do_sample=True`
590
        - *beam-search decoding* by calling [`~generation.GenerationMixin.beam_search`] if `num_beams>1` and
591
          `do_sample=False`
592
        - *beam-search multinomial sampling* by calling [`~generation.GenerationMixin.beam_sample`] if `num_beams>1`
593
          and `do_sample=True`
594
        - *diverse beam-search decoding* by calling [`~generation.GenerationMixin.group_beam_search`], if `num_beams>1`
595
          and `num_beam_groups>1`
596
        - *constrained beam-search decoding* by calling [`~generation.GenerationMixin.constrained_beam_search`], if
597
598
599
          `constraints!=None` or `force_words_ids!=None`

    You do not need to call any of the above methods directly. Pass custom parameter values to 'generate' instead. To
600
    learn more about decoding strategies refer to the [text generation strategies guide](../generation_strategies).
601
602
    """

603
604
    def prepare_inputs_for_generation(self, *args, **kwargs):
        raise NotImplementedError(
605
            "A model class needs to define a `prepare_inputs_for_generation` method in order to use `.generate()`."
606
607
        )

608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
    def _prepare_model_inputs(
        self,
        inputs: Optional[torch.Tensor] = None,
        bos_token_id: Optional[int] = None,
        model_kwargs: Optional[Dict[str, torch.Tensor]] = None,
    ) -> Tuple[torch.Tensor, Optional[str], Dict[str, torch.Tensor]]:
        """
        This function extracts the model-specific `inputs` for generation.
        """
        # 1. retrieve all kwargs that are non-None or non-model input related.
        # some encoder-decoder models have different names for model and encoder
        if (
            self.config.is_encoder_decoder
            and hasattr(self, "encoder")
            and self.encoder.main_input_name != self.main_input_name
        ):
            input_name = self.encoder.main_input_name
        else:
            input_name = self.main_input_name

        model_kwargs = {k: v for k, v in model_kwargs.items() if v is not None or k != input_name}

        # 2. check whether model_input_name is passed as kwarg
        # if yes and `inputs` is None use kwarg inputs
        inputs_kwarg = model_kwargs.pop(input_name, None)
        if inputs_kwarg is not None and inputs is not None:
            raise ValueError(
635
                f"`inputs`: {inputs}` were passed alongside {input_name} which is not allowed. "
636
637
638
639
640
                f"Make sure to either pass {inputs} or {input_name}=..."
            )
        elif inputs_kwarg is not None:
            inputs = inputs_kwarg

641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
        # 3. In the presence of `inputs_embeds` for text models:
        # - decoder-only models should complain if the user attempts to pass `inputs_embeds`, but the model
        # doesn't have its forwarding implemented. `inputs_embeds` is kept in `model_kwargs` and can coexist with
        # input_ids (`inputs_embeds` will be used in the 1st generation step, as opposed to `input_ids`)
        # - encoder-decoder models should complain if the user attempts to pass `inputs_embeds` and `input_ids`, and
        # pull the former to inputs. It will be used in place of `input_ids` to get the encoder hidden states.
        if input_name == "input_ids" and "inputs_embeds" in model_kwargs:
            if not self.config.is_encoder_decoder:
                has_inputs_embeds_forwarding = "inputs_embeds" in set(
                    inspect.signature(self.prepare_inputs_for_generation).parameters.keys()
                )
                if not has_inputs_embeds_forwarding:
                    raise ValueError(
                        f"You passed `inputs_embeds` to `.generate()`, but the model class {self.__class__.__name__} "
                        "doesn't have its forwarding implemented. See the GPT2 implementation for an example "
                        "(https://github.com/huggingface/transformers/pull/21405), and feel free to open a PR with it!"
                    )
658
659
660
                # In this case, `input_ids` is moved to the `model_kwargs`, so a few automations (like the creation of
                # the attention mask) can rely on the actual model input.
                model_kwargs["input_ids"] = self._maybe_initialize_input_ids_for_generation(
661
                    inputs, bos_token_id, model_kwargs=model_kwargs
662
                )
663
664
665
            else:
                if inputs is not None:
                    raise ValueError("You passed `inputs_embeds` and `input_ids` to `.generate()`. Please pick one.")
666
            inputs, input_name = model_kwargs["inputs_embeds"], "inputs_embeds"
667
668

        # 4. if `inputs` is still None, try to create `input_ids` from BOS token
669
        inputs = self._maybe_initialize_input_ids_for_generation(inputs, bos_token_id, model_kwargs)
670
671
        return inputs, input_name, model_kwargs

672
673
674
675
    def _maybe_initialize_input_ids_for_generation(
        self,
        inputs: Optional[torch.Tensor] = None,
        bos_token_id: Optional[int] = None,
676
        model_kwargs: Optional[Dict[str, torch.Tensor]] = None,
677
    ) -> torch.LongTensor:
678
679
680
681
        """Initializes input ids for generation, if necessary."""
        if inputs is not None:
            return inputs

682
        encoder_outputs = model_kwargs.get("encoder_outputs")
683
684
685
686
687
688
689
        if self.config.is_encoder_decoder and encoder_outputs is not None:
            # make dummy input_ids with value -100, as a sanity check ensuring that they won't be used for encoding
            shape = encoder_outputs.last_hidden_state.size()[:-1]
            return torch.ones(shape, dtype=torch.long, device=self.device) * -100

        if bos_token_id is None:
            raise ValueError("`bos_token_id` has to be defined when no `input_ids` are provided.")
690

691
692
693
694
695
696
697
        # If there is some tensor in `model_kwargs`, we can infer the batch size from it. This is helpful with
        # soft-prompting or in multimodal implementations built on top of decoder-only language models.
        batch_size = 1
        for value in model_kwargs.values():
            if isinstance(value, torch.Tensor):
                batch_size = value.shape[0]
                break
698
        return torch.ones((batch_size, 1), dtype=torch.long, device=self.device) * bos_token_id
699
700
701
702
703

    def _prepare_attention_mask_for_generation(
        self,
        inputs: torch.Tensor,
        pad_token_id: Optional[int],
704
        eos_token_id: Optional[Union[int, List[int]]],
705
706
707
    ) -> torch.LongTensor:
        is_input_ids = len(inputs.shape) == 2 and inputs.dtype in [torch.int, torch.long]
        is_pad_token_in_inputs = (pad_token_id is not None) and (pad_token_id in inputs)
708
709
710
        if isinstance(eos_token_id, int):
            eos_token_id = [eos_token_id]
        is_pad_token_not_equal_to_eos_token_id = (eos_token_id is None) or (pad_token_id not in eos_token_id)
711
712
713
714
715
716
717
718
719
720
721
722

        # Check if input is input_ids and padded -> only then is attention_mask defined
        if is_input_ids and is_pad_token_in_inputs and is_pad_token_not_equal_to_eos_token_id:
            return inputs.ne(pad_token_id).long()
        else:
            return torch.ones(inputs.shape[:2], dtype=torch.long, device=inputs.device)

    def _prepare_encoder_decoder_kwargs_for_generation(
        self, inputs_tensor: torch.Tensor, model_kwargs, model_input_name: Optional[str] = None
    ) -> Dict[str, Any]:
        # 1. get encoder
        encoder = self.get_encoder()
723
724
        # Compatibility with Accelerate big model inference: we need the encoder to outputs stuff on the same device
        # as the inputs.
Marc Sun's avatar
Marc Sun committed
725
726
727
728
729
        if hasattr(self, "hf_device_map"):
            if hasattr(encoder, "_hf_hook"):
                encoder._hf_hook.io_same_device = True
            else:
                add_hook_to_module(encoder, AlignDevicesHook(io_same_device=True))
730

731
        # 2. Prepare encoder args and encoder kwargs from model kwargs.
732
733
734
735
736
737
        irrelevant_prefix = ["decoder_", "cross_attn", "use_cache"]
        encoder_kwargs = {
            argument: value
            for argument, value in model_kwargs.items()
            if not any(argument.startswith(p) for p in irrelevant_prefix)
        }
738
739
740
741
742
743
        encoder_signature = set(inspect.signature(encoder.forward).parameters)
        encoder_accepts_wildcard = "kwargs" in encoder_signature or "model_kwargs" in encoder_signature
        if not encoder_accepts_wildcard:
            encoder_kwargs = {
                argument: value for argument, value in encoder_kwargs.items() if argument in encoder_signature
            }
744
745
746
747
748
749
750
751
752
753
754
755

        # 3. make sure that encoder returns `ModelOutput`
        model_input_name = model_input_name if model_input_name is not None else self.main_input_name
        encoder_kwargs["return_dict"] = True
        encoder_kwargs[model_input_name] = inputs_tensor
        model_kwargs["encoder_outputs"]: ModelOutput = encoder(**encoder_kwargs)

        return model_kwargs

    def _prepare_decoder_input_ids_for_generation(
        self,
        batch_size: int,
756
757
        model_input_name: str,
        model_kwargs: Dict[str, torch.Tensor],
758
759
760
        decoder_start_token_id: int = None,
        bos_token_id: int = None,
        device: torch.device = None,
761
762
763
764
    ) -> Tuple[torch.LongTensor, Dict[str, torch.Tensor]]:
        """Prepares `decoder_input_ids` for generation with encoder-decoder models"""
        # 1. Check whether the user has defined `decoder_input_ids` manually. To facilitate in terms of input naming,
        # we also allow the user to pass it under `input_ids`, if the encoder does not use it as the main input.
765
        if model_kwargs is not None and "decoder_input_ids" in model_kwargs:
766
767
768
            decoder_input_ids = model_kwargs.pop("decoder_input_ids")
        elif "input_ids" in model_kwargs and model_input_name != "input_ids":
            decoder_input_ids = model_kwargs.pop("input_ids")
769
        else:
770
771
772
773
774
775
776
777
778
779
780
            decoder_input_ids = None

        # 2. Encoder-decoder models expect the `decoder_input_ids` to start with a special token. Let's ensure that.
        decoder_start_token_id = self._get_decoder_start_token_id(decoder_start_token_id, bos_token_id)
        if device is None:
            device = self.device
        decoder_input_ids_start = torch.ones((batch_size, 1), dtype=torch.long, device=device) * decoder_start_token_id

        # no user input -> use decoder_start_token_id as decoder_input_ids
        if decoder_input_ids is None:
            decoder_input_ids = decoder_input_ids_start
781
782
783
        # exception: Donut checkpoints have task-specific decoder starts and don't expect a BOS token
        elif self.config.model_type == "vision-encoder-decoder" and "donut" in self.name_or_path.lower():
            pass
784
785
786
787
788
789
790
791
792
793
794
795
796
        # user input but doesn't start with decoder_start_token_id -> prepend decoder_start_token_id (and adjust
        # decoder_attention_mask if provided)
        elif (decoder_input_ids[:, 0] != decoder_start_token_id).all().item():
            decoder_input_ids = torch.cat([decoder_input_ids_start, decoder_input_ids], dim=-1)
            if "decoder_attention_mask" in model_kwargs:
                decoder_attention_mask = model_kwargs["decoder_attention_mask"]
                decoder_attention_mask = torch.cat(
                    (torch.ones_like(decoder_attention_mask)[:, :1], decoder_attention_mask),
                    dim=-1,
                )
                model_kwargs["decoder_attention_mask"] = decoder_attention_mask

        return decoder_input_ids, model_kwargs
797
798
799

    def _get_decoder_start_token_id(self, decoder_start_token_id: int = None, bos_token_id: int = None) -> int:
        decoder_start_token_id = (
800
801
802
            decoder_start_token_id
            if decoder_start_token_id is not None
            else self.generation_config.decoder_start_token_id
803
        )
804
        bos_token_id = bos_token_id if bos_token_id is not None else self.generation_config.bos_token_id
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821

        if decoder_start_token_id is not None:
            return decoder_start_token_id
        elif bos_token_id is not None:
            return bos_token_id
        raise ValueError(
            "`decoder_start_token_id` or `bos_token_id` has to be defined for encoder-decoder generation."
        )

    @staticmethod
    def _expand_inputs_for_generation(
        expand_size: int = 1,
        is_encoder_decoder: bool = False,
        input_ids: Optional[torch.LongTensor] = None,
        **model_kwargs,
    ) -> Tuple[torch.LongTensor, Dict[str, Any]]:
        """Expands tensors from [batch_size, ...] to [batch_size * expand_size, ...]"""
822
823
824
825
826
827
828

        def _expand_dict_for_generation(dict_to_expand):
            for key in dict_to_expand:
                if dict_to_expand[key] is not None and isinstance(dict_to_expand[key], torch.Tensor):
                    dict_to_expand[key] = dict_to_expand[key].repeat_interleave(expand_size, dim=0)
            return dict_to_expand

829
830
831
        if input_ids is not None:
            input_ids = input_ids.repeat_interleave(expand_size, dim=0)

832
        model_kwargs = _expand_dict_for_generation(model_kwargs)
833
834

        if is_encoder_decoder:
835
            if model_kwargs.get("encoder_outputs") is None:
836
                raise ValueError("If `is_encoder_decoder` is True, make sure that `encoder_outputs` is defined.")
837
            model_kwargs["encoder_outputs"] = _expand_dict_for_generation(model_kwargs["encoder_outputs"])
838
839
840

        return input_ids, model_kwargs

841
    def _extract_past_from_model_output(self, outputs: ModelOutput, standardize_cache_format: bool = False):
842
        past_key_values = None
843
        if "past_key_values" in outputs:
844
            past_key_values = outputs.past_key_values
845
        elif "mems" in outputs:
846
            past_key_values = outputs.mems
847
        elif "past_buckets_states" in outputs:
848
            past_key_values = outputs.past_buckets_states
849
850
851
852

        # Bloom fix: standardizes the cache format when requested
        if standardize_cache_format and hasattr(self, "_convert_to_standard_cache"):
            batch_size = outputs.logits.shape[0]
853
854
            past_key_values = self._convert_to_standard_cache(past_key_values, batch_size=batch_size)
        return past_key_values
855
856

    def _update_model_kwargs_for_generation(
857
858
859
860
861
        self,
        outputs: ModelOutput,
        model_kwargs: Dict[str, Any],
        is_encoder_decoder: bool = False,
        standardize_cache_format: bool = False,
862
    ) -> Dict[str, Any]:
863
864
        # update past_key_values
        model_kwargs["past_key_values"] = self._extract_past_from_model_output(
865
866
            outputs, standardize_cache_format=standardize_cache_format
        )
Sylvain Gugger's avatar
Sylvain Gugger committed
867
868
        if getattr(outputs, "state", None) is not None:
            model_kwargs["state"] = outputs.state
869
870
871
872
873
874
875

        # update token_type_ids with last value
        if "token_type_ids" in model_kwargs:
            token_type_ids = model_kwargs["token_type_ids"]
            model_kwargs["token_type_ids"] = torch.cat([token_type_ids, token_type_ids[:, -1].unsqueeze(-1)], dim=-1)

        if not is_encoder_decoder:
876
            # update attention mask
877
878
879
880
881
            if "attention_mask" in model_kwargs:
                attention_mask = model_kwargs["attention_mask"]
                model_kwargs["attention_mask"] = torch.cat(
                    [attention_mask, attention_mask.new_ones((attention_mask.shape[0], 1))], dim=-1
                )
882
883
884
885
886
887
888
889
        else:
            # update decoder attention mask
            if "decoder_attention_mask" in model_kwargs:
                decoder_attention_mask = model_kwargs["decoder_attention_mask"]
                model_kwargs["decoder_attention_mask"] = torch.cat(
                    [decoder_attention_mask, decoder_attention_mask.new_ones((decoder_attention_mask.shape[0], 1))],
                    dim=-1,
                )
890
891
892

        return model_kwargs

893
    def _reorder_cache(self, past_key_values, beam_idx):
894
895
896
897
898
        raise NotImplementedError(
            f"Make sure that a `_reorder_cache` function is correctly implemented in {self.__class__.__module__} to"
            f" enable beam search for {self.__class__}"
        )

899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
    def _get_candidate_generator(
        self,
        generation_config: GenerationConfig,
        input_ids: torch.LongTensor,
        inputs_tensor: torch.Tensor,
        assistant_model: "PreTrainedModel",
        logits_processor: LogitsProcessorList,
        model_kwargs: Dict,
    ) -> CandidateGenerator:
        """
        Returns the candidate generator to be used in `assisted_generation`
        """
        candidate_generator = AssistedCandidateGenerator(
            input_ids=input_ids,
            assistant_model=assistant_model,
914
            generation_config=generation_config,
915
916
917
918
919
920
            logits_processor=logits_processor,
            model_kwargs=model_kwargs,
            inputs_tensor=inputs_tensor,
        )
        return candidate_generator

921
922
    def _get_logits_warper(
        self,
923
        generation_config: GenerationConfig,
924
925
926
927
928
929
930
931
932
    ) -> LogitsProcessorList:
        """
        This class returns a [`LogitsProcessorList`] list object that contains all relevant [`LogitsWarper`] instances
        used for multinomial sampling.
        """

        # instantiate warpers list
        warpers = LogitsProcessorList()

933
934
935
936
937
938
939
940
941
942
        # In beam methods, we need to keep at least one non-eos token to explore continuations that might have a
        # better score (i.e. keep len(list(generation_config.eos_token_id)) + 1)
        if generation_config.num_beams > 1:
            if isinstance(generation_config.eos_token_id, list):
                min_tokens_to_keep = len(generation_config.eos_token_id) + 1
            else:
                min_tokens_to_keep = 2
        else:
            min_tokens_to_keep = 1

943
944
        # the following idea is largely copied from this PR: https://github.com/huggingface/transformers/pull/5420/files
        # all samplers can be found in `generation_utils_samplers.py`
945
946
947
        if generation_config.temperature is not None and generation_config.temperature != 1.0:
            warpers.append(TemperatureLogitsWarper(generation_config.temperature))
        if generation_config.top_k is not None and generation_config.top_k != 0:
948
949
950
951
            warpers.append(TopKLogitsWarper(top_k=generation_config.top_k, min_tokens_to_keep=min_tokens_to_keep))
        if generation_config.top_p is not None and generation_config.top_p < 1.0:
            warpers.append(TopPLogitsWarper(top_p=generation_config.top_p, min_tokens_to_keep=min_tokens_to_keep))
        if generation_config.typical_p is not None and generation_config.typical_p < 1.0:
952
            warpers.append(
953
                TypicalLogitsWarper(mass=generation_config.typical_p, min_tokens_to_keep=min_tokens_to_keep)
954
            )
955
        if generation_config.epsilon_cutoff is not None and 0.0 < generation_config.epsilon_cutoff < 1.0:
956
            warpers.append(
957
                EpsilonLogitsWarper(epsilon=generation_config.epsilon_cutoff, min_tokens_to_keep=min_tokens_to_keep)
958
            )
959
        if generation_config.eta_cutoff is not None and 0.0 < generation_config.eta_cutoff < 1.0:
960
            warpers.append(
961
                EtaLogitsWarper(epsilon=generation_config.eta_cutoff, min_tokens_to_keep=min_tokens_to_keep)
962
            )
963
        # `LogitNormalization` should always be the last logit processor, when present
964
        if generation_config.renormalize_logits is True:
965
966
967
            warpers.append(LogitNormalization())
        return warpers

968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
    def _get_generation_mode(
        self, generation_config: GenerationConfig, assistant_model: Optional["PreTrainedModel"]
    ) -> GenerationMode:
        """
        Returns the generation mode triggered by a [`GenerationConfig`] instance.
        """
        if generation_config.constraints is not None or generation_config.force_words_ids is not None:
            generation_mode = GenerationMode.CONSTRAINED_BEAM_SEARCH
        elif generation_config.num_beams == 1:
            if generation_config.do_sample is False:
                if (
                    generation_config.top_k is not None
                    and generation_config.top_k > 1
                    and generation_config.penalty_alpha is not None
                    and generation_config.penalty_alpha > 0
                ):
                    generation_mode = GenerationMode.CONTRASTIVE_SEARCH
                else:
                    generation_mode = GenerationMode.GREEDY_SEARCH
            else:
                generation_mode = GenerationMode.SAMPLE
        else:
            if generation_config.num_beam_groups > 1:
                generation_mode = GenerationMode.GROUP_BEAM_SEARCH
            elif generation_config.do_sample is True:
                generation_mode = GenerationMode.BEAM_SAMPLE
            else:
                generation_mode = GenerationMode.BEAM_SEARCH

        # Assisted generation may extend some generation modes
        if assistant_model is not None:
            if generation_mode in ("greedy_search", "sample"):
                generation_mode = GenerationMode.ASSISTED_GENERATION
            else:
                raise ValueError(
                    "You've set `assistant_model`, which triggers assisted generate. Currently, assisted generate "
                    "is only supported with Greedy Search and Sample."
                )
        return generation_mode

1008
1009
    def _get_logits_processor(
        self,
1010
        generation_config: GenerationConfig,
1011
1012
1013
1014
        input_ids_seq_length: int,
        encoder_input_ids: torch.LongTensor,
        prefix_allowed_tokens_fn: Callable[[int, torch.Tensor], List[int]],
        logits_processor: Optional[LogitsProcessorList],
1015
1016
1017
        model_kwargs: Optional[Dict[str, Any]] = None,
        negative_prompt_ids: Optional[torch.Tensor] = None,
        negative_prompt_attention_mask: Optional[torch.Tensor] = None,
1018
1019
1020
1021
1022
1023
    ) -> LogitsProcessorList:
        """
        This class returns a [`LogitsProcessorList`] list object that contains all relevant [`LogitsProcessor`]
        instances used to modify the scores of the language model head.
        """
        # instantiate processors list
1024
        processors = LogitsProcessorList()
1025

1026
        if generation_config.guidance_scale is not None and generation_config.guidance_scale != 1:
1027
1028
1029
1030
1031
1032
1033
1034
1035
            processors.append(
                UnbatchedClassifierFreeGuidanceLogitsProcessor(
                    generation_config.guidance_scale,
                    self,
                    unconditional_ids=negative_prompt_ids,
                    unconditional_attention_mask=negative_prompt_attention_mask,
                    use_cache=model_kwargs["use_cache"],
                )
            )
1036
1037
1038
        if generation_config.sequence_bias is not None:
            processors.append(SequenceBiasLogitsProcessor(sequence_bias=generation_config.sequence_bias))

1039
        if generation_config.diversity_penalty is not None and generation_config.diversity_penalty > 0.0:
1040
1041
            processors.append(
                HammingDiversityLogitsProcessor(
1042
1043
1044
                    diversity_penalty=generation_config.diversity_penalty,
                    num_beams=generation_config.num_beams,
                    num_beam_groups=generation_config.num_beam_groups,
1045
1046
                )
            )
Karim Foda's avatar
Karim Foda committed
1047
1048
1049
1050
1051
1052
1053
1054
1055
        if (
            generation_config.encoder_repetition_penalty is not None
            and generation_config.encoder_repetition_penalty != 1.0
        ):
            processors.append(
                EncoderRepetitionPenaltyLogitsProcessor(
                    penalty=generation_config.encoder_repetition_penalty, encoder_input_ids=encoder_input_ids
                )
            )
1056
1057
1058
1059
1060
1061
1062
1063
        if generation_config.repetition_penalty is not None and generation_config.repetition_penalty != 1.0:
            processors.append(RepetitionPenaltyLogitsProcessor(penalty=generation_config.repetition_penalty))
        if generation_config.no_repeat_ngram_size is not None and generation_config.no_repeat_ngram_size > 0:
            processors.append(NoRepeatNGramLogitsProcessor(generation_config.no_repeat_ngram_size))
        if (
            generation_config.encoder_no_repeat_ngram_size is not None
            and generation_config.encoder_no_repeat_ngram_size > 0
        ):
1064
1065
1066
            processors.append(
                EncoderNoRepeatNGramLogitsProcessor(generation_config.encoder_no_repeat_ngram_size, encoder_input_ids)
            )
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
        if generation_config.bad_words_ids is not None:
            processors.append(
                NoBadWordsLogitsProcessor(generation_config.bad_words_ids, generation_config.eos_token_id)
            )
        if (
            generation_config.min_length is not None
            and generation_config.eos_token_id is not None
            and generation_config.min_length > 0
        ):
            processors.append(MinLengthLogitsProcessor(generation_config.min_length, generation_config.eos_token_id))
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
        if (
            generation_config.min_new_tokens is not None
            and generation_config.eos_token_id is not None
            and generation_config.min_new_tokens > 0
        ):
            processors.append(
                MinNewTokensLengthLogitsProcessor(
                    input_ids_seq_length, generation_config.min_new_tokens, generation_config.eos_token_id
                )
            )
1087
        if prefix_allowed_tokens_fn is not None:
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
            processors.append(
                PrefixConstrainedLogitsProcessor(
                    prefix_allowed_tokens_fn, generation_config.num_beams // generation_config.num_beam_groups
                )
            )
        if generation_config.forced_bos_token_id is not None:
            processors.append(ForcedBOSTokenLogitsProcessor(generation_config.forced_bos_token_id))
        if generation_config.forced_eos_token_id is not None:
            processors.append(
                ForcedEOSTokenLogitsProcessor(generation_config.max_length, generation_config.forced_eos_token_id)
            )
        if generation_config.remove_invalid_values is True:
1100
            processors.append(InfNanRemoveLogitsProcessor())
1101
        if generation_config.exponential_decay_length_penalty is not None:
1102
            processors.append(
1103
1104
1105
                ExponentialDecayLengthPenalty(
                    generation_config.exponential_decay_length_penalty,
                    generation_config.eos_token_id,
1106
                    input_ids_seq_length,
1107
                )
1108
            )
1109
1110
1111
        if generation_config.suppress_tokens is not None:
            processors.append(SuppressTokensLogitsProcessor(generation_config.suppress_tokens))
        if generation_config.begin_suppress_tokens is not None:
1112
            begin_index = input_ids_seq_length
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
            begin_index = (
                begin_index
                if (input_ids_seq_length > 1 or generation_config.forced_bos_token_id is None)
                else begin_index + 1
            )
            if generation_config.forced_decoder_ids is not None:
                # generation starts after the last token that is forced
                begin_index += generation_config.forced_decoder_ids[-1][0]
            processors.append(
                SuppressTokensAtBeginLogitsProcessor(generation_config.begin_suppress_tokens, begin_index)
            )
        if generation_config.forced_decoder_ids is not None:
            processors.append(ForceTokensLogitsProcessor(generation_config.forced_decoder_ids))
1126
1127
        processors = self._merge_criteria_processor_list(processors, logits_processor)
        # `LogitNormalization` should always be the last logit processor, when present
1128
        if generation_config.renormalize_logits is True:
1129
1130
1131
1132
            processors.append(LogitNormalization())
        return processors

    def _get_stopping_criteria(
1133
        self, generation_config: GenerationConfig, stopping_criteria: Optional[StoppingCriteriaList]
1134
1135
    ) -> StoppingCriteriaList:
        criteria = StoppingCriteriaList()
1136
        if generation_config.max_length is not None:
1137
1138
1139
1140
1141
1142
1143
            max_position_embeddings = getattr(self.config, "max_position_embeddings", None)
            criteria.append(
                MaxLengthCriteria(
                    max_length=generation_config.max_length,
                    max_position_embeddings=max_position_embeddings,
                )
            )
1144
1145
        if generation_config.max_time is not None:
            criteria.append(MaxTimeCriteria(max_time=generation_config.max_time))
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
        criteria = self._merge_criteria_processor_list(criteria, stopping_criteria)
        return criteria

    def _merge_criteria_processor_list(
        self,
        default_list: Union[LogitsProcessorList, StoppingCriteriaList],
        custom_list: Union[LogitsProcessorList, StoppingCriteriaList],
    ) -> Union[LogitsProcessorList, StoppingCriteriaList]:
        if len(custom_list) == 0:
            return default_list
        for default in default_list:
            for custom in custom_list:
                if type(custom) is type(default):
                    object_type = "stopping criteria" if isinstance(custom, StoppingCriteria) else "logits processor"
                    raise ValueError(
                        f"A custom {object_type} of type {type(custom)} with values {custom} has been passed to"
1162
                        f" `.generate()`, but it has already been created with the values {default}. {default} has been"
1163
1164
                        " created by passing the corresponding arguments to generate or by the model's config default"
                        f" values. If you just want to change the default values of {object_type} consider passing"
1165
                        f" them as arguments to `.generate()` instead of using a custom {object_type}."
1166
1167
1168
1169
                    )
        default_list.extend(custom_list)
        return default_list

1170
    def compute_transition_scores(
1171
1172
1173
        self,
        sequences: torch.Tensor,
        scores: Tuple[torch.Tensor],
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
        beam_indices: Optional[torch.Tensor] = None,
        normalize_logits: bool = False,
    ) -> torch.Tensor:
        """
        Computes the transition scores of sequences given the generation scores (and beam indices, if beam search was
        used). This is a convenient method to quicky obtain the scores of the selected tokens at generation time.

        Parameters:
            sequences (`torch.LongTensor`):
                The generated sequences. The second dimension (sequence_length) is either equal to `max_length` or
                shorter if all batches finished early due to the `eos_token_id`.
            scores (`tuple(torch.FloatTensor)`):
                Transition scores for each vocabulary token at each generation step. Beam transition scores consisting
                of log probabilities of tokens conditioned on log softmax of previously generated tokens Tuple of
                `torch.FloatTensor` with up to `max_new_tokens` elements (one element for each generated token), with
                each tensor of shape `(batch_size*num_beams, config.vocab_size)`.
1190
            beam_indices (`torch.LongTensor`, *optional*):
1191
                Beam indices of generated token id at each generation step. `torch.LongTensor` of shape
1192
                `(batch_size*num_return_sequences, sequence_length)`. Only required if a `num_beams>1` at
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
                generate-time.
            normalize_logits (`bool`, *optional*, defaults to `False`):
                Whether to normalize the logits (which, for legacy reasons, may be unnormalized).

        Return:
            `torch.Tensor`: A `torch.Tensor` of shape `(batch_size*num_return_sequences, sequence_length)` containing
                the transition scores (logits)

        Examples:

        ```python
        >>> from transformers import GPT2Tokenizer, AutoModelForCausalLM
        >>> import numpy as np

        >>> tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
        >>> model = AutoModelForCausalLM.from_pretrained("gpt2")
        >>> tokenizer.pad_token_id = tokenizer.eos_token_id
        >>> inputs = tokenizer(["Today is"], return_tensors="pt")

        >>> # Example 1: Print the scores for each token generated with Greedy Search
        >>> outputs = model.generate(**inputs, max_new_tokens=5, return_dict_in_generate=True, output_scores=True)
        >>> transition_scores = model.compute_transition_scores(
        ...     outputs.sequences, outputs.scores, normalize_logits=True
        ... )
1217
1218
1219
        >>> # input_length is the length of the input prompt for decoder-only models, like the GPT family, and 1 for
        >>> # encoder-decoder models, like BART or T5.
        >>> input_length = 1 if model.config.is_encoder_decoder else inputs.input_ids.shape[1]
1220
1221
1222
        >>> generated_tokens = outputs.sequences[:, input_length:]
        >>> for tok, score in zip(generated_tokens[0], transition_scores[0]):
        ...     # | token | token string | logits | probability
1223
1224
1225
1226
1227
1228
        ...     print(f"| {tok:5d} | {tokenizer.decode(tok):8s} | {score.numpy():.3f} | {np.exp(score.numpy()):.2%}")
        |   262 |  the     | -1.414 | 24.33%
        |  1110 |  day     | -2.609 | 7.36%
        |   618 |  when    | -2.010 | 13.40%
        |   356 |  we      | -1.859 | 15.58%
        |   460 |  can     | -2.508 | 8.14%
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242

        >>> # Example 2: Reconstruct the sequence scores from Beam Search
        >>> outputs = model.generate(
        ...     **inputs,
        ...     max_new_tokens=5,
        ...     num_beams=4,
        ...     num_return_sequences=4,
        ...     return_dict_in_generate=True,
        ...     output_scores=True,
        ... )
        >>> transition_scores = model.compute_transition_scores(
        ...     outputs.sequences, outputs.scores, outputs.beam_indices, normalize_logits=False
        ... )
        >>> # If you sum the generated tokens' scores and apply the length penalty, you'll get the sequence scores.
1243
        >>> # Tip 1: recomputing the scores is only guaranteed to match with `normalize_logits=False`. Depending on the
1244
        >>> # use case, you might want to recompute it with `normalize_logits=True`.
1245
1246
        >>> # Tip 2: the output length does NOT include the input length
        >>> output_length = np.sum(transition_scores.numpy() < 0, axis=1)
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
        >>> length_penalty = model.generation_config.length_penalty
        >>> reconstructed_scores = transition_scores.sum(axis=1) / (output_length**length_penalty)
        >>> print(np.allclose(outputs.sequences_scores, reconstructed_scores))
        True
        ```"""
        # 1. In absence of `beam_indices`, we can assume that we come from e.g. greedy search, which is equivalent
        # to a beam search approach were the first (and only) beam is always selected
        if beam_indices is None:
            beam_indices = torch.arange(scores[0].shape[0]).view(-1, 1).to(sequences.device)
            beam_indices = beam_indices.expand(-1, len(scores))

        # 2. reshape scores as [batch_size*vocab_size, # generation steps] with # generation steps being
1259
1260
1261
        # seq_len - input_length
        scores = torch.stack(scores).reshape(len(scores), -1).transpose(0, 1)

1262
1263
1264
1265
1266
1267
1268
        # 3. Optionally normalize the logits (across the vocab dimension)
        if normalize_logits:
            scores = scores.reshape(-1, self.config.vocab_size, scores.shape[-1])
            scores = torch.nn.functional.log_softmax(scores, dim=1)
            scores = scores.reshape(-1, scores.shape[-1])

        # 4. cut beam_indices to longest beam length
1269
1270
        beam_indices_mask = beam_indices < 0
        max_beam_length = (1 - beam_indices_mask.long()).sum(-1).max()
1271
        beam_indices = beam_indices.clone()[:, :max_beam_length]
1272
1273
        beam_indices_mask = beam_indices_mask[:, :max_beam_length]

1274
        # 5. Set indices of beams that finished early to 0; such indices will be masked correctly afterwards
1275
1276
        beam_indices[beam_indices_mask] = 0

1277
        # 6. multiply beam_indices with vocab size to gather correctly from scores
1278
1279
        beam_sequence_indices = beam_indices * self.config.vocab_size

1280
        # 7. Define which indices contributed to scores
1281
1282
1283
        cut_idx = sequences.shape[-1] - max_beam_length
        indices = sequences[:, cut_idx:] + beam_sequence_indices

1284
        # 8. Compute scores
1285
1286
        transition_scores = scores.gather(0, indices)

1287
        # 9. Mask out transition_scores of beams that stopped early
1288
1289
1290
1291
1292
1293
1294
1295
1296
        transition_scores[beam_indices_mask] = 0

        return transition_scores

    def _validate_model_class(self):
        """
        Confirms that the model class is compatible with generation. If not, raises an exception that points to the
        right class to use.
        """
1297
        if not self.can_generate():
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
            generate_compatible_mappings = [
                MODEL_FOR_CAUSAL_LM_MAPPING,
                MODEL_FOR_CAUSAL_IMAGE_MODELING_MAPPING,
                MODEL_FOR_VISION_2_SEQ_MAPPING,
                MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
                MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING,
            ]
            generate_compatible_classes = set()
            for model_mapping in generate_compatible_mappings:
                supported_models = model_mapping.get(type(self.config), default=None)
                if supported_models is not None:
                    generate_compatible_classes.add(supported_models.__name__)
            exception_message = (
                f"The current model class ({self.__class__.__name__}) is not compatible with `.generate()`, as "
                "it doesn't have a language model head."
            )
            if generate_compatible_classes:
                exception_message += f" Please use one of the following classes instead: {generate_compatible_classes}"
            raise TypeError(exception_message)

    def _validate_model_kwargs(self, model_kwargs: Dict[str, Any]):
        """Validates model kwargs for generation. Generate argument typos will also be caught here."""
1320
1321
1322
1323
1324
1325
1326
        # If a `Cache` instance is passed, checks whether the model is compatible with it
        if isinstance(model_kwargs.get("past_key_values", None), Cache) and not self._supports_cache_class:
            raise ValueError(
                f"{self.__class__.__name__} does not support an instance of `Cache` as `past_key_values`. Please "
                "check the model documentation for supported cache formats."
            )

1327
1328
1329
1330
1331
1332
1333
        # Excludes arguments that are handled before calling any model function
        if self.config.is_encoder_decoder:
            for key in ["decoder_input_ids"]:
                model_kwargs.pop(key, None)

        unused_model_args = []
        model_args = set(inspect.signature(self.prepare_inputs_for_generation).parameters)
1334
1335
1336
        # `kwargs`/`model_kwargs` is often used to handle optional forward pass inputs like `attention_mask`. If
        # `prepare_inputs_for_generation` doesn't accept them, then a stricter check can be made ;)
        if "kwargs" in model_args or "model_kwargs" in model_args:
1337
            model_args |= set(inspect.signature(self.forward).parameters)
1338
1339
1340
1341
1342
1343
1344

        # Encoder-Decoder models may also need Encoder arguments from `model_kwargs`
        if self.config.is_encoder_decoder:
            base_model = getattr(self, self.base_model_prefix, None)

            # allow encoder kwargs
            encoder = getattr(self, "encoder", None)
1345
1346
1347
1348
1349
            # `MusicgenForConditionalGeneration` has `text_encoder` and `audio_encoder`.
            # Also, it has `base_model_prefix = "encoder_decoder"` but there is no `self.encoder_decoder`
            # TODO: A better way to handle this.
            if encoder is None and base_model is not None:
                encoder = getattr(base_model, "encoder", None)
1350

1351
1352
1353
            if encoder is not None:
                encoder_model_args = set(inspect.signature(encoder.forward).parameters)
                model_args |= encoder_model_args
1354
1355
1356

            # allow decoder kwargs
            decoder = getattr(self, "decoder", None)
1357
1358
            if decoder is None and base_model is not None:
                decoder = getattr(base_model, "decoder", None)
1359

1360
1361
1362
            if decoder is not None:
                decoder_model_args = set(inspect.signature(decoder.forward).parameters)
                model_args |= {f"decoder_{x}" for x in decoder_model_args}
1363

1364
1365
1366
1367
            # allow assistant_encoder_outputs to be passed if we're doing assisted generating
            if "assistant_encoder_outputs" in model_kwargs:
                model_args |= {"assistant_encoder_outputs"}

1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
        for key, value in model_kwargs.items():
            if value is not None and key not in model_args:
                unused_model_args.append(key)

        if unused_model_args:
            raise ValueError(
                f"The following `model_kwargs` are not used by the model: {unused_model_args} (note: typos in the"
                " generate arguments will also show up in this list)"
            )

1378
1379
1380
1381
    def _validate_generated_length(self, generation_config, input_ids_length, has_default_max_length):
        """Performs validation related to the resulting generated length"""

        # 1. Max length warnings related to poor parameterization
1382
        if has_default_max_length and generation_config.max_new_tokens is None and generation_config.max_length == 20:
1383
1384
            # 20 is the default max_length of the generation config
            warnings.warn(
1385
                f"Using the model-agnostic default `max_length` (={generation_config.max_length}) to control the "
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
                "generation length. We recommend setting `max_new_tokens` to control the maximum length of the "
                "generation.",
                UserWarning,
            )
        if input_ids_length >= generation_config.max_length:
            input_ids_string = "decoder_input_ids" if self.config.is_encoder_decoder else "input_ids"
            warnings.warn(
                f"Input length of {input_ids_string} is {input_ids_length}, but `max_length` is set to"
                f" {generation_config.max_length}. This can lead to unexpected behavior. You should consider"
                " increasing `max_new_tokens`.",
                UserWarning,
            )

        # 2. Min length warnings due to unfeasible parameter combinations
        min_length_error_suffix = (
            " Generation will stop at the defined maximum length. You should decrease the minimum length and/or "
            "increase the maximum length."
        )
        if has_default_max_length:
            min_length_error_suffix += (
                f" Note that `max_length` is set to {generation_config.max_length}, its default value."
            )
        if generation_config.min_length is not None and generation_config.min_length > generation_config.max_length:
            warnings.warn(
                f"Unfeasible length constraints: `min_length` ({generation_config.min_length}) is larger than"
                f" the maximum possible length ({generation_config.max_length})." + min_length_error_suffix,
                UserWarning,
            )
        if generation_config.min_new_tokens is not None:
            min_length = generation_config.min_new_tokens + input_ids_length
            if min_length > generation_config.max_length:
                warnings.warn(
                    f"Unfeasible length constraints: `min_new_tokens` ({generation_config.min_new_tokens}), when "
                    f"added to the prompt length ({input_ids_length}), is larger than"
                    f" the maximum possible length ({generation_config.max_length})." + min_length_error_suffix,
                    UserWarning,
                )

1424
1425
1426
1427
    @torch.no_grad()
    def generate(
        self,
        inputs: Optional[torch.Tensor] = None,
1428
        generation_config: Optional[GenerationConfig] = None,
1429
1430
        logits_processor: Optional[LogitsProcessorList] = None,
        stopping_criteria: Optional[StoppingCriteriaList] = None,
1431
        prefix_allowed_tokens_fn: Optional[Callable[[int, torch.Tensor], List[int]]] = None,
1432
        synced_gpus: Optional[bool] = None,
1433
        assistant_model: Optional["PreTrainedModel"] = None,
1434
        streamer: Optional["BaseStreamer"] = None,
1435
1436
        negative_prompt_ids: Optional[torch.Tensor] = None,
        negative_prompt_attention_mask: Optional[torch.Tensor] = None,
1437
        **kwargs,
1438
1439
1440
    ) -> Union[GenerateOutput, torch.LongTensor]:
        r"""

1441
        Generates sequences of token ids for models with a language modeling head.
1442
1443
1444

        <Tip warning={true}>

1445
1446
        Most generation-controlling parameters are set in `generation_config` which, if not passed, will be set to the
        model's default generation configuration. You can override any `generation_config` by passing the corresponding
1447
        parameters to generate(), e.g. `.generate(inputs, num_beams=4, do_sample=True)`.
1448

1449
        For an overview of generation strategies and code examples, check out the [following
1450
        guide](../generation_strategies).
1451

1452
        </Tip>
1453
1454
1455
1456
1457
1458
1459

        Parameters:
            inputs (`torch.Tensor` of varying shape depending on the modality, *optional*):
                The sequence used as a prompt for the generation or as model inputs to the encoder. If `None` the
                method initializes it with `bos_token_id` and a batch size of 1. For decoder-only models `inputs`
                should of in the format of `input_ids`. For encoder-decoder models *inputs* can represent any of
                `input_ids`, `input_values`, `input_features`, or `pixel_values`.
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
            generation_config (`~generation.GenerationConfig`, *optional*):
                The generation configuration to be used as base parametrization for the generation call. `**kwargs`
                passed to generate matching the attributes of `generation_config` will override them. If
                `generation_config` is not provided, the default will be used, which had the following loading
                priority: 1) from the `generation_config.json` model file, if it exists; 2) from the model
                configuration. Please note that unspecified parameters will inherit [`~generation.GenerationConfig`]'s
                default values, whose documentation should be checked to parameterize generation.
            logits_processor (`LogitsProcessorList`, *optional*):
                Custom logits processors that complement the default logits processors built from arguments and
                generation config. If a logit processor is passed that is already created with the arguments or a
                generation config an error is thrown. This feature is intended for advanced users.
            stopping_criteria (`StoppingCriteriaList`, *optional*):
                Custom stopping criteria that complement the default stopping criteria built from arguments and a
                generation config. If a stopping criteria is passed that is already created with the arguments or a
1474
1475
1476
                generation config an error is thrown. If your stopping criteria depends on the `scores` input, make
                sure you pass `return_dict_in_generate=True, output_scores=True` to `generate`. This feature is
                intended for advanced users.
1477
1478
1479
1480
1481
1482
1483
            prefix_allowed_tokens_fn (`Callable[[int, torch.Tensor], List[int]]`, *optional*):
                If provided, this function constraints the beam search to allowed tokens only at each step. If not
                provided no constraint is applied. This function takes 2 arguments: the batch ID `batch_id` and
                `input_ids`. It has to return a list with the allowed tokens for the next generation step conditioned
                on the batch ID `batch_id` and the previously generated tokens `inputs_ids`. This argument is useful
                for constrained generation conditioned on the prefix, as described in [Autoregressive Entity
                Retrieval](https://arxiv.org/abs/2010.00904).
1484
1485
1486
1487
            synced_gpus (`bool`, *optional*):
                Whether to continue running the while loop until max_length. Unless overridden this flag will be set to
                `True` under DeepSpeed ZeRO Stage 3 multiple GPUs environment to avoid hanging if one GPU finished
                generating before other GPUs. Otherwise it'll be set to `False`.
1488
1489
1490
1491
1492
            assistant_model (`PreTrainedModel`, *optional*):
                An assistant model that can be used to accelerate generation. The assistant model must have the exact
                same tokenizer. The acceleration is achieved when forecasting candidate tokens with the assistent model
                is much faster than running generation with the model you're calling generate from. As such, the
                assistant model should be much smaller.
1493
1494
1495
            streamer (`BaseStreamer`, *optional*):
                Streamer object that will be used to stream the generated sequences. Generated tokens are passed
                through `streamer.put(token_ids)` and the streamer is responsible for any further processing.
1496
1497
1498
1499
1500
            negative_prompt_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
                The negative prompt needed for some processors such as CFG. The batch size must match the input batch
                size. This is an experimental feature, subject to breaking API changes in future versions.
            negative_prompt_attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
                Attention_mask for `negative_prompt_ids`.
1501
            kwargs (`Dict[str, Any]`, *optional*):
1502
1503
1504
                Ad hoc parametrization of `generate_config` and/or additional model-specific kwargs that will be
                forwarded to the `forward` function of the model. If the model is an encoder-decoder model, encoder
                specific kwargs should not be prefixed and decoder specific kwargs should be prefixed with *decoder_*.
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524

        Return:
            [`~utils.ModelOutput`] or `torch.LongTensor`: A [`~utils.ModelOutput`] (if `return_dict_in_generate=True`
            or when `config.return_dict_in_generate=True`) or a `torch.FloatTensor`.

                If the model is *not* an encoder-decoder model (`model.config.is_encoder_decoder=False`), the possible
                [`~utils.ModelOutput`] types are:

                    - [`~generation.GreedySearchDecoderOnlyOutput`],
                    - [`~generation.SampleDecoderOnlyOutput`],
                    - [`~generation.BeamSearchDecoderOnlyOutput`],
                    - [`~generation.BeamSampleDecoderOnlyOutput`]

                If the model is an encoder-decoder model (`model.config.is_encoder_decoder=True`), the possible
                [`~utils.ModelOutput`] types are:

                    - [`~generation.GreedySearchEncoderDecoderOutput`],
                    - [`~generation.SampleEncoderDecoderOutput`],
                    - [`~generation.BeamSearchEncoderDecoderOutput`],
                    - [`~generation.BeamSampleEncoderDecoderOutput`]
1525
        """
1526
1527

        if synced_gpus is None:
1528
            if is_deepspeed_zero3_enabled() and dist.get_world_size() > 1:
1529
1530
1531
1532
                synced_gpus = True
            else:
                synced_gpus = False

1533
        # 1. Handle `generation_config` and kwargs that might update it, and validate the `.generate()` call
1534
        self._validate_model_class()
1535
1536
1537

        # priority: `generation_config` argument > `model.generation_config` (the default generation config)
        if generation_config is None:
1538
1539
1540
1541
1542
1543
1544
            # legacy: users may modify the model configuration to control generation. To trigger this legacy behavior,
            # two conditions must be met
            # 1) the generation config must have been created from the model config (`_from_model_config` field);
            # 2) the generation config must have seen no modification since its creation (the hash is the same).
            if self.generation_config._from_model_config and self.generation_config._original_object_hash == hash(
                self.generation_config
            ):
1545
1546
1547
1548
1549
                new_generation_config = GenerationConfig.from_model_config(self.config)
                if new_generation_config != self.generation_config:
                    warnings.warn(
                        "You have modified the pretrained model configuration to control generation. This is a"
                        " deprecated strategy to control generation and will be removed soon, in a future version."
1550
1551
                        " Please use and modify the model generation configuration (see"
                        " https://huggingface.co/docs/transformers/generation_strategies#default-text-generation-configuration )"
1552
1553
1554
1555
1556
1557
                    )
                    self.generation_config = new_generation_config
            generation_config = self.generation_config

        generation_config = copy.deepcopy(generation_config)
        model_kwargs = generation_config.update(**kwargs)  # All unused kwargs must be model kwargs
1558
        generation_config.validate()
1559
1560
        self._validate_model_kwargs(model_kwargs.copy())

1561
        # 2. Set generation parameters if not already defined
1562
1563
1564
        logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList()
        stopping_criteria = stopping_criteria if stopping_criteria is not None else StoppingCriteriaList()

1565
        if generation_config.pad_token_id is None and generation_config.eos_token_id is not None:
1566
1567
1568
1569
1570
            if model_kwargs.get("attention_mask", None) is None:
                logger.warning(
                    "The attention mask and the pad token id were not set. As a consequence, you may observe "
                    "unexpected behavior. Please pass your input's `attention_mask` to obtain reliable results."
                )
1571
1572
1573
1574
1575
            eos_token_id = generation_config.eos_token_id
            if isinstance(eos_token_id, list):
                eos_token_id = eos_token_id[0]
            logger.warning(f"Setting `pad_token_id` to `eos_token_id`:{eos_token_id} for open-end generation.")
            generation_config.pad_token_id = eos_token_id
1576

1577
        # 3. Define model inputs
1578
1579
1580
1581
        # inputs_tensor has to be defined
        # model_input_name is defined if model-specific keyword input is passed
        # otherwise model_input_name is None
        # all model-specific keyword inputs are removed from `model_kwargs`
1582
1583
1584
        inputs_tensor, model_input_name, model_kwargs = self._prepare_model_inputs(
            inputs, generation_config.bos_token_id, model_kwargs
        )
1585
1586
        batch_size = inputs_tensor.shape[0]

1587
1588
1589
        # 4. Define other model kwargs
        model_kwargs["output_attentions"] = generation_config.output_attentions
        model_kwargs["output_hidden_states"] = generation_config.output_hidden_states
1590
1591
1592
1593
1594
1595
        # decoder-only models with inputs_embeds forwarding must use caching (otherwise we can't detect whether we are
        # generating the first new token or not, and we only want to use the embeddings for the first new token)
        if not self.config.is_encoder_decoder and model_input_name == "inputs_embeds":
            model_kwargs["use_cache"] = True
        else:
            model_kwargs["use_cache"] = generation_config.use_cache
1596
1597
1598
1599
1600
1601

        accepts_attention_mask = "attention_mask" in set(inspect.signature(self.forward).parameters.keys())
        requires_attention_mask = "encoder_outputs" not in model_kwargs

        if model_kwargs.get("attention_mask", None) is None and requires_attention_mask and accepts_attention_mask:
            model_kwargs["attention_mask"] = self._prepare_attention_mask_for_generation(
1602
                inputs_tensor, generation_config.pad_token_id, generation_config.eos_token_id
1603
1604
1605
1606
            )

        # decoder-only models should use left-padding for generation
        if not self.config.is_encoder_decoder:
1607
1608
            # If `input_ids` was given, check if the last id in any sequence is `pad_token_id`
            # Note: If using, `inputs_embeds` this check does not work, because we want to be more hands-off.
1609
1610
            if (
                generation_config.pad_token_id is not None
1611
                and len(inputs_tensor.shape) == 2
1612
1613
                and torch.sum(inputs_tensor[:, -1] == generation_config.pad_token_id) > 0
            ):
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
                logger.warning(
                    "A decoder-only architecture is being used, but right-padding was detected! For correct "
                    "generation results, please set `padding_side='left'` when initializing the tokenizer."
                )

        if self.config.is_encoder_decoder and "encoder_outputs" not in model_kwargs:
            # if model is encoder decoder encoder_outputs are created
            # and added to `model_kwargs`
            model_kwargs = self._prepare_encoder_decoder_kwargs_for_generation(
                inputs_tensor, model_kwargs, model_input_name
            )

1626
        # 5. Prepare `input_ids` which will be used for auto-regressive generation
1627
        if self.config.is_encoder_decoder:
1628
1629
1630
1631
            input_ids, model_kwargs = self._prepare_decoder_input_ids_for_generation(
                batch_size=batch_size,
                model_input_name=model_input_name,
                model_kwargs=model_kwargs,
1632
1633
                decoder_start_token_id=generation_config.decoder_start_token_id,
                bos_token_id=generation_config.bos_token_id,
1634
1635
1636
                device=inputs_tensor.device,
            )
        else:
1637
            input_ids = inputs_tensor if model_input_name == "input_ids" else model_kwargs.pop("input_ids")
1638

1639
1640
1641
        if streamer is not None:
            streamer.put(input_ids.cpu())

1642
        # 6. Prepare `max_length` depending on other stopping criteria.
1643
        input_ids_length = input_ids.shape[-1]
1644
        has_default_max_length = kwargs.get("max_length") is None and generation_config.max_length is not None
1645
        if generation_config.max_new_tokens is not None:
1646
            if not has_default_max_length and generation_config.max_length is not None:
1647
                logger.warning(
1648
1649
1650
                    f"Both `max_new_tokens` (={generation_config.max_new_tokens}) and `max_length`(="
                    f"{generation_config.max_length}) seem to have been set. `max_new_tokens` will take precedence. "
                    "Please refer to the documentation for more information. "
1651
                    "(https://huggingface.co/docs/transformers/main/en/main_classes/text_generation)"
1652
                )
1653
1654
            generation_config.max_length = generation_config.max_new_tokens + input_ids_length
        self._validate_generated_length(generation_config, input_ids_length, has_default_max_length)
1655

1656
        # 7. determine generation mode
1657
        generation_mode = self._get_generation_mode(generation_config, assistant_model)
1658

1659
1660
1661
1662
1663
        if streamer is not None and (generation_config.num_beams > 1):
            raise ValueError(
                "`streamer` cannot be used with beam search (yet!). Make sure that `num_beams` is set to 1."
            )

1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
        if self.device.type != input_ids.device.type:
            warnings.warn(
                "You are calling .generate() with the `input_ids` being on a device type different"
                f" than your model's device. `input_ids` is on {input_ids.device.type}, whereas the model"
                f" is on {self.device.type}. You may experience unexpected behaviors or slower generation."
                " Please make sure that you have put `input_ids` to the"
                f" correct device by calling for example input_ids = input_ids.to('{self.device.type}') before"
                " running `.generate()`.",
                UserWarning,
            )

1675
        # 8. prepare distribution pre_processing samplers
1676
        prepared_logits_processor = self._get_logits_processor(
1677
            generation_config=generation_config,
1678
            input_ids_seq_length=input_ids_length,
1679
1680
1681
            encoder_input_ids=inputs_tensor,
            prefix_allowed_tokens_fn=prefix_allowed_tokens_fn,
            logits_processor=logits_processor,
1682
1683
1684
            model_kwargs=model_kwargs,
            negative_prompt_ids=negative_prompt_ids,
            negative_prompt_attention_mask=negative_prompt_attention_mask,
1685
1686
        )

1687
        # 9. prepare stopping criteria
1688
        prepared_stopping_criteria = self._get_stopping_criteria(
1689
            generation_config=generation_config, stopping_criteria=stopping_criteria
1690
        )
1691
        # 10. go into different generation modes
1692
        if generation_mode == GenerationMode.ASSISTED_GENERATION:
1693
1694
            if generation_config.num_return_sequences > 1:
                raise ValueError(
1695
                    "num_return_sequences has to be 1 when doing assisted generate, "
1696
1697
1698
                    f"but is {generation_config.num_return_sequences}."
                )
            if batch_size > 1:
1699
                raise ValueError("assisted generate is only supported for batch_size = 1")
1700
            if not model_kwargs["use_cache"]:
1701
                raise ValueError("assisted generate requires `use_cache=True`")
1702

1703
1704
1705
1706
1707
1708
1709
1710
            # 11. Get the candidate generator, given the parameterization
            candidate_generator = self._get_candidate_generator(
                generation_config=generation_config,
                input_ids=input_ids,
                inputs_tensor=inputs_tensor,
                assistant_model=assistant_model,
                logits_processor=logits_processor,
                model_kwargs=model_kwargs,
1711
1712
            )

1713
1714
            # 12. run assisted generate
            return self.assisted_decoding(
1715
                input_ids,
1716
                candidate_generator=candidate_generator,
1717
                do_sample=generation_config.do_sample,
1718
                logits_processor=prepared_logits_processor,
1719
                logits_warper=self._get_logits_warper(generation_config) if generation_config.do_sample else None,
1720
                stopping_criteria=prepared_stopping_criteria,
1721
1722
1723
1724
1725
1726
1727
1728
                pad_token_id=generation_config.pad_token_id,
                eos_token_id=generation_config.eos_token_id,
                output_scores=generation_config.output_scores,
                return_dict_in_generate=generation_config.return_dict_in_generate,
                synced_gpus=synced_gpus,
                streamer=streamer,
                **model_kwargs,
            )
1729
        if generation_mode == GenerationMode.GREEDY_SEARCH:
1730
            # 11. run greedy search
1731
1732
            return self.greedy_search(
                input_ids,
1733
1734
                logits_processor=prepared_logits_processor,
                stopping_criteria=prepared_stopping_criteria,
1735
1736
1737
1738
                pad_token_id=generation_config.pad_token_id,
                eos_token_id=generation_config.eos_token_id,
                output_scores=generation_config.output_scores,
                return_dict_in_generate=generation_config.return_dict_in_generate,
1739
                synced_gpus=synced_gpus,
1740
                streamer=streamer,
1741
1742
1743
                **model_kwargs,
            )

1744
        elif generation_mode == GenerationMode.CONTRASTIVE_SEARCH:
1745
1746
            if not model_kwargs["use_cache"]:
                raise ValueError("Contrastive search requires `use_cache=True`")
1747
1748
1749

            return self.contrastive_search(
                input_ids,
1750
1751
                top_k=generation_config.top_k,
                penalty_alpha=generation_config.penalty_alpha,
1752
1753
                logits_processor=prepared_logits_processor,
                stopping_criteria=prepared_stopping_criteria,
1754
1755
1756
1757
                pad_token_id=generation_config.pad_token_id,
                eos_token_id=generation_config.eos_token_id,
                output_scores=generation_config.output_scores,
                return_dict_in_generate=generation_config.return_dict_in_generate,
1758
                synced_gpus=synced_gpus,
1759
                streamer=streamer,
1760
                sequential=generation_config.low_memory,
1761
1762
1763
                **model_kwargs,
            )

1764
        elif generation_mode == GenerationMode.SAMPLE:
1765
1766
            # 11. prepare logits warper
            logits_warper = self._get_logits_warper(generation_config)
1767

1768
            # 12. expand input_ids with `num_return_sequences` additional sequences per batch
1769
1770
            input_ids, model_kwargs = self._expand_inputs_for_generation(
                input_ids=input_ids,
1771
                expand_size=generation_config.num_return_sequences,
1772
1773
1774
1775
                is_encoder_decoder=self.config.is_encoder_decoder,
                **model_kwargs,
            )

1776
            # 13. run sample
1777
1778
            return self.sample(
                input_ids,
1779
                logits_processor=prepared_logits_processor,
1780
                logits_warper=logits_warper,
1781
                stopping_criteria=prepared_stopping_criteria,
1782
1783
1784
1785
                pad_token_id=generation_config.pad_token_id,
                eos_token_id=generation_config.eos_token_id,
                output_scores=generation_config.output_scores,
                return_dict_in_generate=generation_config.return_dict_in_generate,
1786
                synced_gpus=synced_gpus,
1787
                streamer=streamer,
1788
1789
1790
                **model_kwargs,
            )

1791
        elif generation_mode == GenerationMode.BEAM_SEARCH:
1792
            # 11. prepare beam search scorer
1793
1794
            beam_scorer = BeamSearchScorer(
                batch_size=batch_size,
1795
                num_beams=generation_config.num_beams,
1796
                device=inputs_tensor.device,
1797
1798
1799
                length_penalty=generation_config.length_penalty,
                do_early_stopping=generation_config.early_stopping,
                num_beam_hyps_to_keep=generation_config.num_return_sequences,
1800
                max_length=generation_config.max_length,
1801
            )
1802
            # 12. interleave input_ids with `num_beams` additional sequences per batch
1803
1804
            input_ids, model_kwargs = self._expand_inputs_for_generation(
                input_ids=input_ids,
1805
                expand_size=generation_config.num_beams,
1806
1807
1808
                is_encoder_decoder=self.config.is_encoder_decoder,
                **model_kwargs,
            )
1809
            # 13. run beam search
1810
1811
1812
            return self.beam_search(
                input_ids,
                beam_scorer,
1813
1814
                logits_processor=prepared_logits_processor,
                stopping_criteria=prepared_stopping_criteria,
1815
1816
1817
1818
                pad_token_id=generation_config.pad_token_id,
                eos_token_id=generation_config.eos_token_id,
                output_scores=generation_config.output_scores,
                return_dict_in_generate=generation_config.return_dict_in_generate,
1819
1820
1821
1822
                synced_gpus=synced_gpus,
                **model_kwargs,
            )

1823
        elif generation_mode == GenerationMode.BEAM_SAMPLE:
1824
1825
            # 11. prepare logits warper
            logits_warper = self._get_logits_warper(generation_config)
1826

1827
            # 12. prepare beam search scorer
1828
            beam_scorer = BeamSearchScorer(
1829
                batch_size=batch_size,
1830
                num_beams=generation_config.num_beams,
1831
                device=inputs_tensor.device,
1832
1833
                length_penalty=generation_config.length_penalty,
                do_early_stopping=generation_config.early_stopping,
1834
                num_beam_hyps_to_keep=generation_config.num_return_sequences,
1835
                max_length=generation_config.max_length,
1836
1837
            )

1838
            # 13. interleave input_ids with `num_beams` additional sequences per batch
1839
1840
            input_ids, model_kwargs = self._expand_inputs_for_generation(
                input_ids=input_ids,
1841
                expand_size=generation_config.num_beams,
1842
1843
1844
1845
                is_encoder_decoder=self.config.is_encoder_decoder,
                **model_kwargs,
            )

1846
            # 14. run beam sample
1847
1848
1849
            return self.beam_sample(
                input_ids,
                beam_scorer,
1850
                logits_processor=prepared_logits_processor,
1851
                logits_warper=logits_warper,
1852
                stopping_criteria=prepared_stopping_criteria,
1853
1854
1855
1856
                pad_token_id=generation_config.pad_token_id,
                eos_token_id=generation_config.eos_token_id,
                output_scores=generation_config.output_scores,
                return_dict_in_generate=generation_config.return_dict_in_generate,
1857
1858
1859
1860
                synced_gpus=synced_gpus,
                **model_kwargs,
            )

1861
        elif generation_mode == GenerationMode.GROUP_BEAM_SEARCH:
1862
            # 11. prepare beam search scorer
1863
1864
            beam_scorer = BeamSearchScorer(
                batch_size=batch_size,
1865
                num_beams=generation_config.num_beams,
1866
                device=inputs_tensor.device,
1867
1868
1869
1870
                length_penalty=generation_config.length_penalty,
                do_early_stopping=generation_config.early_stopping,
                num_beam_hyps_to_keep=generation_config.num_return_sequences,
                num_beam_groups=generation_config.num_beam_groups,
1871
                max_length=generation_config.max_length,
1872
            )
1873
            # 12. interleave input_ids with `num_beams` additional sequences per batch
1874
1875
            input_ids, model_kwargs = self._expand_inputs_for_generation(
                input_ids=input_ids,
1876
                expand_size=generation_config.num_beams,
1877
1878
1879
                is_encoder_decoder=self.config.is_encoder_decoder,
                **model_kwargs,
            )
1880
            # 13. run beam search
1881
1882
1883
            return self.group_beam_search(
                input_ids,
                beam_scorer,
1884
1885
                logits_processor=prepared_logits_processor,
                stopping_criteria=prepared_stopping_criteria,
1886
1887
1888
1889
                pad_token_id=generation_config.pad_token_id,
                eos_token_id=generation_config.eos_token_id,
                output_scores=generation_config.output_scores,
                return_dict_in_generate=generation_config.return_dict_in_generate,
1890
1891
1892
1893
                synced_gpus=synced_gpus,
                **model_kwargs,
            )

1894
        elif generation_mode == GenerationMode.CONSTRAINED_BEAM_SEARCH:
1895
            final_constraints = []
1896
1897
            if generation_config.constraints is not None:
                final_constraints = generation_config.constraints
1898

1899
            if generation_config.force_words_ids is not None:
1900
1901
1902

                def typeerror():
                    raise ValueError(
1903
                        "`force_words_ids` has to either be a `List[List[List[int]]]` or `List[List[int]]` "
1904
                        f"of positive integers, but is {generation_config.force_words_ids}."
1905
1906
                    )

1907
1908
1909
1910
                if (
                    not isinstance(generation_config.force_words_ids, list)
                    or len(generation_config.force_words_ids) == 0
                ):
1911
1912
                    typeerror()

1913
                for word_ids in generation_config.force_words_ids:
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
                    if isinstance(word_ids[0], list):
                        if not isinstance(word_ids, list) or len(word_ids) == 0:
                            typeerror()
                        if any(not isinstance(token_ids, list) for token_ids in word_ids):
                            typeerror()
                        if any(
                            any((not isinstance(token_id, int) or token_id < 0) for token_id in token_ids)
                            for token_ids in word_ids
                        ):
                            typeerror()

                        constraint = DisjunctiveConstraint(word_ids)
                    else:
                        if not isinstance(word_ids, list) or len(word_ids) == 0:
                            typeerror()
                        if any((not isinstance(token_id, int) or token_id < 0) for token_id in word_ids):
                            typeerror()

                        constraint = PhrasalConstraint(word_ids)
                    final_constraints.append(constraint)

1935
            # 11. prepare beam search scorer
1936
1937
1938
            constrained_beam_scorer = ConstrainedBeamSearchScorer(
                constraints=final_constraints,
                batch_size=batch_size,
1939
                num_beams=generation_config.num_beams,
1940
                device=inputs_tensor.device,
1941
1942
1943
                length_penalty=generation_config.length_penalty,
                do_early_stopping=generation_config.early_stopping,
                num_beam_hyps_to_keep=generation_config.num_return_sequences,
1944
                max_length=generation_config.max_length,
1945
            )
1946
            # 12. interleave input_ids with `num_beams` additional sequences per batch
1947
1948
            input_ids, model_kwargs = self._expand_inputs_for_generation(
                input_ids=input_ids,
1949
                expand_size=generation_config.num_beams,
1950
1951
1952
                is_encoder_decoder=self.config.is_encoder_decoder,
                **model_kwargs,
            )
1953
            # 13. run beam search
1954
1955
1956
            return self.constrained_beam_search(
                input_ids,
                constrained_beam_scorer=constrained_beam_scorer,
1957
1958
                logits_processor=prepared_logits_processor,
                stopping_criteria=prepared_stopping_criteria,
1959
1960
1961
1962
                pad_token_id=generation_config.pad_token_id,
                eos_token_id=generation_config.eos_token_id,
                output_scores=generation_config.output_scores,
                return_dict_in_generate=generation_config.return_dict_in_generate,
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
                synced_gpus=synced_gpus,
                **model_kwargs,
            )

    @torch.no_grad()
    def contrastive_search(
        self,
        input_ids: torch.LongTensor,
        top_k: Optional[int] = 1,
        penalty_alpha: Optional[float] = 0,
        logits_processor: Optional[LogitsProcessorList] = None,
        logits_warper: Optional[LogitsProcessorList] = None,
        stopping_criteria: Optional[StoppingCriteriaList] = None,
        pad_token_id: Optional[int] = None,
1977
        eos_token_id: Optional[Union[int, List[int]]] = None,
1978
1979
1980
1981
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        output_scores: Optional[bool] = None,
        return_dict_in_generate: Optional[bool] = None,
1982
        synced_gpus: bool = False,
1983
        streamer: Optional["BaseStreamer"] = None,
1984
        sequential: Optional[bool] = None,
1985
1986
1987
1988
1989
1990
        **model_kwargs,
    ) -> Union[ContrastiveSearchOutput, torch.LongTensor]:
        r"""
        Generates sequences of token ids for models with a language modeling head using **contrastive search** and can
        be used for text-decoder, text-to-text, speech-to-text, and vision-to-text models.

1991
1992
1993
1994
        <Tip warning={true}>

        In most cases, you do not need to call [`~generation.GenerationMixin.contrastive_search`] directly. Use
        generate() instead. For an overview of generation strategies and code examples, check the [following
1995
        guide](../generation_strategies).
1996
1997
1998

        </Tip>

1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
        Parameters:
            input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
                The sequence used as a prompt for the generation.
            top_k (`int`, *optional*, defaults to 1):
                The size of the candidate set that is used to re-rank for contrastive search
            penalty_alpha (`float`, *optional*, defaults to 0):
                The degeneration penalty for contrastive search; activate when it is larger than 0
            logits_processor (`LogitsProcessorList`, *optional*):
                An instance of [`LogitsProcessorList`]. List of instances of class derived from [`LogitsProcessor`]
                used to modify the prediction scores of the language modeling head applied at each generation step.
            logits_warper (`LogitsProcessorList`, *optional*):
                An instance of [`LogitsProcessorList`]. List of instances of class derived from [`LogitsWarper`] used
                to warp the prediction score distribution of the language modeling head applied before multinomial
                sampling at each generation step.
            stopping_criteria (`StoppingCriteriaList`, *optional*):
                An instance of [`StoppingCriteriaList`]. List of instances of class derived from [`StoppingCriteria`]
                used to tell if the generation loop should stop.
            pad_token_id (`int`, *optional*):
                The id of the *padding* token.
2018
2019
            eos_token_id (`Union[int, List[int]]`, *optional*):
                The id of the *end-of-sequence* token. Optionally, use a list to set multiple *end-of-sequence* tokens.
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
            output_attentions (`bool`, *optional*, defaults to `False`):
                Whether or not to return the attentions tensors of all attention layers. See `attentions` under
                returned tensors for more details.
            output_hidden_states (`bool`, *optional*, defaults to `False`):
                Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
                for more details.
            output_scores (`bool`, *optional*, defaults to `False`):
                Whether or not to return the prediction scores. See `scores` under returned tensors for more details.
            return_dict_in_generate (`bool`, *optional*, defaults to `False`):
                Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
            synced_gpus (`bool`, *optional*, defaults to `False`):
                Whether to continue running the while loop until max_length (needed for ZeRO stage 3)
2032
2033
2034
            streamer (`BaseStreamer`, *optional*):
                Streamer object that will be used to stream the generated sequences. Generated tokens are passed
                through `streamer.put(token_ids)` and the streamer is responsible for any further processing.
2035
2036
            sequential (`bool`, *optional*):
                Switches topk hidden state computation from parallel to sequential to reduce memory if True.
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
            model_kwargs:
                Additional model specific keyword arguments will be forwarded to the `forward` function of the model.
                If model is an encoder-decoder model the kwargs should include `encoder_outputs`.

        Return:
            [`~generation.ContrastiveSearchDecoderOnlyOutput`], [`~generation.ContrastiveSearchEncoderDecoderOutput`]
            or `torch.LongTensor`: A `torch.LongTensor` containing the generated tokens (default behaviour) or a
            [`~generation.ContrastiveSearchDecoderOnlyOutput`] if `model.config.is_encoder_decoder=False` and
            `return_dict_in_generate=True` or a [`~generation.ContrastiveSearchEncoderDecoderOutput`] if
            `model.config.is_encoder_decoder=True`.

        Examples:
        ```python
        >>> from transformers import (
        ...     AutoTokenizer,
        ...     AutoModelForCausalLM,
        ...     StoppingCriteriaList,
        ...     MaxLengthCriteria,
        ... )

        >>> tokenizer = AutoTokenizer.from_pretrained("facebook/opt-125m")
        >>> model = AutoModelForCausalLM.from_pretrained("facebook/opt-125m")
        >>> # set pad_token_id to eos_token_id because OPT does not have a PAD token
        >>> model.config.pad_token_id = model.config.eos_token_id
        >>> input_prompt = "DeepMind Company is"
        >>> input_ids = tokenizer(input_prompt, return_tensors="pt")
        >>> stopping_criteria = StoppingCriteriaList([MaxLengthCriteria(max_length=64)])
        >>> outputs = model.contrastive_search(
        ...     **input_ids, penalty_alpha=0.6, top_k=4, stopping_criteria=stopping_criteria
        ... )
        >>> tokenizer.batch_decode(outputs, skip_special_tokens=True)
        ['DeepMind Company is a company that focuses on the development and commercialization of artificial intelligence (AI). DeepMind’s mission is to help people understand and solve problems that are difficult to solve in the world today.\n\nIn this post, we talk about the benefits of deep learning in business and how it']
        ```"""
        # init values
        logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList()
        logits_warper = logits_warper if logits_warper is not None else LogitsProcessorList()
        stopping_criteria = stopping_criteria if stopping_criteria is not None else StoppingCriteriaList()
2074
2075
        pad_token_id = pad_token_id if pad_token_id is not None else self.generation_config.pad_token_id
        eos_token_id = eos_token_id if eos_token_id is not None else self.generation_config.eos_token_id
2076
        sequential = sequential if sequential is not None else self.generation_config.low_memory
2077
2078
        if isinstance(eos_token_id, int):
            eos_token_id = [eos_token_id]
2079
        eos_token_id_tensor = torch.tensor(eos_token_id).to(input_ids.device) if eos_token_id is not None else None
2080
2081
2082
2083
        output_scores = output_scores if output_scores is not None else self.generation_config.output_scores
        output_attentions = (
            output_attentions if output_attentions is not None else self.generation_config.output_attentions
        )
2084
        output_hidden_states = (
2085
            output_hidden_states if output_hidden_states is not None else self.generation_config.output_hidden_states
2086
2087
        )
        return_dict_in_generate = (
2088
2089
2090
            return_dict_in_generate
            if return_dict_in_generate is not None
            else self.generation_config.return_dict_in_generate
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
        )

        # init attention / hidden states / scores tuples
        scores = () if (return_dict_in_generate and output_scores) else None
        decoder_attentions = () if (return_dict_in_generate and output_attentions) else None
        cross_attentions = () if (return_dict_in_generate and output_attentions) else None
        decoder_hidden_states = () if (return_dict_in_generate and output_hidden_states) else None

        # if model is an encoder-decoder, retrieve encoder attention weights and hidden states
        if return_dict_in_generate and self.config.is_encoder_decoder:
            encoder_attentions = model_kwargs["encoder_outputs"].get("attentions") if output_attentions else None
            encoder_hidden_states = (
                model_kwargs["encoder_outputs"].get("hidden_states") if output_hidden_states else None
            )

        # keep track of which sequences are already finished
2107
        unfinished_sequences = torch.ones(input_ids.shape[0], dtype=torch.long, device=input_ids.device)
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124

        this_peer_finished = False  # used by synced_gpus only
        batch_size = input_ids.shape[0]

        while True:
            if synced_gpus:
                # Under synced_gpus the `forward` call must continue until all gpus complete their sequence.
                # The following logic allows an early break if all peers finished generating their sequence
                this_peer_finished_flag = torch.tensor(0.0 if this_peer_finished else 1.0).to(input_ids.device)
                # send 0.0 if we finished, 1.0 otherwise
                dist.all_reduce(this_peer_finished_flag, op=dist.ReduceOp.SUM)
                # did all peers finish? the reduced sum will be 0.0 then
                if this_peer_finished_flag.item() == 0.0:
                    break

            # if the first step in the loop, encode all the prefix and obtain: (1) past_key_values;
            # (2) last_hidden_states; (3) logit_for_next_step; (4) update model kwargs for the next step
2125
            if model_kwargs.get("past_key_values") is None:
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
                # prepare inputs
                model_kwargs["use_cache"] = True
                model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)

                # encode the given prefix and prepare model inputs; encoder-decoder model process the prefix and save
                # the `encoder_outputs`
                outputs = self(
                    **model_inputs, return_dict=True, output_hidden_states=True, output_attentions=output_attentions
                )

                # last decoder hidden states will be used to compute the degeneration penalty (cosine similarity with
                # previous tokens)
                if self.config.is_encoder_decoder:
                    last_hidden_states = outputs.decoder_hidden_states[-1]
                else:
                    last_hidden_states = outputs.hidden_states[-1]
2142

2143
2144
2145
2146
                # next logit for contrastive search to select top-k candidate tokens
                logit_for_next_step = outputs.logits[:, -1, :]

                model_kwargs = self._update_model_kwargs_for_generation(
2147
2148
2149
2150
                    outputs,
                    model_kwargs,
                    is_encoder_decoder=self.config.is_encoder_decoder,
                    standardize_cache_format=True,
2151
                )
2152
2153
2154
2155
2156
                if not sequential:
                    # Expands model inputs top_k times, for batched forward passes (akin to beam search).
                    _, model_kwargs = self._expand_inputs_for_generation(
                        expand_size=top_k, is_encoder_decoder=self.config.is_encoder_decoder, **model_kwargs
                    )
2157

2158
2159
                past_key_values = model_kwargs.get("past_key_values")
                if past_key_values is None:
2160
2161
2162
2163
                    raise ValueError(
                        f"{self.__class__.__name__} does not support caching and therefore **can't** be used "
                        "for contrastive search."
                    )
2164
2165
2166
2167
                elif (
                    not isinstance(past_key_values[0], (tuple, torch.Tensor))
                    or past_key_values[0][0].shape[0] != batch_size
                ):
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
                    raise ValueError(
                        f"{self.__class__.__name__} does not have a standard cache format and therefore **can't** be "
                        "used for contrastive search without further modifications."
                    )

            # contrastive_search main logic start:
            # contrastive search decoding consists of two steps: (1) candidate tokens recall; (2) candidate re-rank by
            # degeneration penalty
            logit_for_next_step = logits_processor(input_ids, logit_for_next_step)
            logit_for_next_step = logits_warper(input_ids, logit_for_next_step)
            next_probs = nn.functional.softmax(logit_for_next_step, dim=-1)
            top_k_probs, top_k_ids = torch.topk(next_probs, dim=-1, k=top_k)

            # Store scores, attentions and hidden_states when required
            if return_dict_in_generate:
                if output_scores:
                    scores += (logit_for_next_step,)
                if output_attentions:
                    decoder_attentions += (
                        (outputs.decoder_attentions,) if self.config.is_encoder_decoder else (outputs.attentions,)
                    )
                    if self.config.is_encoder_decoder:
                        cross_attentions += (outputs.cross_attentions,)

                if output_hidden_states:
                    decoder_hidden_states += (
                        (outputs.decoder_hidden_states,)
                        if self.config.is_encoder_decoder
                        else (outputs.hidden_states,)
                    )

            # Replicates the new past_key_values to match the `top_k` candidates
            new_key_values = []
2201
            for layer in model_kwargs["past_key_values"]:
2202
2203
2204
                items = []
                # item is either the key or the value matrix
                for item in layer:
2205
2206
2207
2208
                    if sequential:
                        items.append(item.repeat_interleave(1, dim=0))
                    else:
                        items.append(item.repeat_interleave(top_k, dim=0))
2209
2210
                new_key_values.append(tuple(items))
            model_kwargs["past_key_values"] = tuple(new_key_values)
2211

2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
            if sequential:
                all_outputs = {key: [] for key in outputs}  # defined in first loop iteration
                all_last_hstates, all_hstates, all_logits = [], [], []
                for i in range(top_k):
                    # compute the candidate tokens by the language model and collect their hidden_states
                    next_model_inputs = self.prepare_inputs_for_generation(top_k_ids[:, i].view(-1, 1), **model_kwargs)

                    outputs = self(
                        **next_model_inputs,
                        return_dict=True,
                        output_hidden_states=True,
                        output_attentions=output_attentions,
                    )
                    for key in all_outputs:
                        all_outputs[key].append(outputs[key])

                    if self.config.is_encoder_decoder:
                        next_hidden = outputs.decoder_hidden_states[-1]
                        full_hidden_states = outputs.decoder_hidden_states

                    else:
                        next_hidden = outputs.hidden_states[-1]
                        full_hidden_states = outputs.hidden_states

                    all_last_hstates.append(torch.squeeze(next_hidden, 0))
                    all_hstates.append(full_hidden_states)
                    all_logits.append(outputs.logits[:, -1, :])

                # stack hidden states
                next_hidden = torch.stack([all_last_hstates[i] for i in range(top_k)], dim=0)
                final_full_hstates = [0 for i in range(len(full_hidden_states))]
                for layer in range(len(full_hidden_states)):
                    final_full_hstates[layer] = torch.stack(
                        [torch.squeeze(all_hstates[i][layer], 0) for i in range(top_k)], dim=0
                    )
                full_hidden_states = tuple(final_full_hstates)

                # stack logits
                logits = torch.cat(all_logits, dim=0)
2251
2252

            else:
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
                # compute the candidate tokens by the language model and collect their hidden_states
                # assembles top_k_ids into batch of size k
                next_model_inputs = self.prepare_inputs_for_generation(top_k_ids.view(-1, 1), **model_kwargs)

                outputs = self(
                    **next_model_inputs,
                    return_dict=True,
                    output_hidden_states=True,
                    output_attentions=output_attentions,
                )
                # name is different for encoder-decoder and decoder-only models
                if self.config.is_encoder_decoder:
                    next_hidden = outputs.decoder_hidden_states[-1]
                    full_hidden_states = outputs.decoder_hidden_states
                else:
                    next_hidden = outputs.hidden_states[-1]
                    full_hidden_states = outputs.hidden_states

                logits = outputs.logits[:, -1, :]

2273
2274
2275
            context_hidden = last_hidden_states.repeat_interleave(top_k, dim=0)

            # compute the degeneration penalty and re-rank the candidates based on the degeneration penalty and the
2276
2277
            # model confidence. Keeping `selected_idx` on CPU enables multi-device contrastive search and doesn't
            # introduce (noticeable) slowdowns on single-device runs.
2278
            selected_idx = _ranking_fast(context_hidden, next_hidden, top_k_probs, penalty_alpha, top_k)
2279
            selected_idx = selected_idx.to("cpu")
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293

            # prepare for the next step: (1) next token_id; (2) past_key_values; (3) last_hidden_states for computing
            # the degeneration penalty; (4) logits for selecting next top-k candidates; (5) selected tokens scores
            # (model confidence minus degeneration penalty); (6) decoder hidden_states
            next_tokens = top_k_ids[range(len(top_k_ids)), selected_idx]
            next_hidden = torch.stack(torch.split(next_hidden.squeeze(dim=1), top_k))
            next_hidden = next_hidden[range(batch_size), selected_idx, :]
            last_hidden_states = torch.cat([last_hidden_states, next_hidden.unsqueeze(1)], dim=1)

            next_decoder_hidden_states = ()
            for layer in full_hidden_states:
                layer = torch.stack(torch.split(layer, top_k))[range(batch_size), selected_idx, :]
                next_decoder_hidden_states += (layer,)

2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
            # generate past_key_values cache of only the selected token
            if sequential:
                next_model_input = self.prepare_inputs_for_generation(
                    top_k_ids[:, selected_idx].view(-1, 1), **model_kwargs
                )

                selected_outputs = self(
                    **next_model_input,
                    return_dict=True,
                    output_hidden_states=False,
                    output_attentions=False,
                )
                next_past_key_values = selected_outputs["past_key_values"]

            else:
                next_past_key_values = self._extract_past_from_model_output(outputs, standardize_cache_format=True)
                new_key_values = ()
                for layer in next_past_key_values:
                    items = ()
                    # item is either the key or the value matrix
                    for item in layer:
                        item = torch.stack(torch.split(item, top_k, dim=0))  # [B, K, num_head, seq_len, esz]
                        item = item[range(batch_size), selected_idx, ...]  # [B, num_head, seq_len, esz]
                        items += (item,)
                    new_key_values += (items,)
                next_past_key_values = new_key_values
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363

            logit_for_next_step = torch.stack(torch.split(logits, top_k))[range(batch_size), selected_idx, :]

            # Rebuilds the relevant parts of the model output for the selected token, for use in the next iteration
            if self.config.is_encoder_decoder:
                next_step_cross_attentions = ()
                next_step_decoder_attentions = ()
                if output_attentions:
                    for layer in outputs.cross_attentions:
                        layer = torch.stack(torch.split(layer, top_k, dim=0))[range(batch_size), selected_idx, ...]
                        next_step_cross_attentions += (layer,)
                    for layer in outputs.decoder_attentions:
                        layer = torch.stack(torch.split(layer, top_k, dim=0))[range(batch_size), selected_idx, ...]
                        next_step_decoder_attentions += (layer,)
                outputs = Seq2SeqLMOutput(
                    past_key_values=next_past_key_values,
                    decoder_hidden_states=next_decoder_hidden_states,
                    decoder_attentions=next_step_decoder_attentions or None,
                    cross_attentions=next_step_cross_attentions or None,
                )
            else:
                next_step_attentions = ()
                if output_attentions:
                    for layer in outputs.attentions:
                        layer = torch.stack(torch.split(layer, top_k, dim=0))[range(batch_size), selected_idx, ...]
                        next_step_attentions += (layer,)
                outputs = CausalLMOutputWithPast(
                    past_key_values=next_past_key_values,
                    hidden_states=next_decoder_hidden_states,
                    attentions=next_step_attentions or None,
                )
            # contrastive_search main logic end

            if synced_gpus and this_peer_finished:
                continue  # don't waste resources running the code we don't need

            # finished sentences should have their next token be a padding token
            if eos_token_id is not None:
                if pad_token_id is None:
                    raise ValueError("If `eos_token_id` is defined, make sure that `pad_token_id` is defined.")
                next_tokens = next_tokens * unfinished_sequences + pad_token_id * (1 - unfinished_sequences)

            # update generated ids, model inputs, and length for next step
            input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1)
2364
2365
            if streamer is not None:
                streamer.put(next_tokens.cpu())
2366
2367
2368
2369
2370
            model_kwargs = self._update_model_kwargs_for_generation(
                outputs, model_kwargs, is_encoder_decoder=self.config.is_encoder_decoder
            )

            # if eos_token was found in one sentence, set sentence to finished
2371
            if eos_token_id_tensor is not None:
2372
                unfinished_sequences = unfinished_sequences.mul(
2373
2374
                    next_tokens.tile(eos_token_id_tensor.shape[0], 1).ne(eos_token_id_tensor.unsqueeze(1)).prod(dim=0)
                )
2375

2376
2377
                # stop when each sentence is finished
                if unfinished_sequences.max() == 0:
2378
2379
                    this_peer_finished = True

2380
2381
2382
2383
2384
2385
2386
            # stop if we exceed the maximum length
            if stopping_criteria(input_ids, scores):
                this_peer_finished = True

            if this_peer_finished and not synced_gpus:
                break

2387
2388
2389
        if streamer is not None:
            streamer.end()

2390
        if return_dict_in_generate:
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
            # Contrastive search works by forward looking at the next token, so we need to exclude it from
            # `past_key_values` to be consistent with the other decoding methods
            if model_kwargs.get("past_key_values") is not None:
                past_key_values = []
                for layer in model_kwargs["past_key_values"]:
                    layer_past_key_values = []
                    for item in layer:
                        layer_past_key_values.append(item[..., :-1, :])
                    past_key_values.append(tuple(layer_past_key_values))
                model_kwargs["past_key_values"] = tuple(past_key_values)

2402
2403
2404
2405
2406
2407
2408
2409
2410
            if self.config.is_encoder_decoder:
                return ContrastiveSearchEncoderDecoderOutput(
                    sequences=input_ids,
                    scores=scores,
                    encoder_attentions=encoder_attentions,
                    encoder_hidden_states=encoder_hidden_states,
                    decoder_attentions=decoder_attentions,
                    cross_attentions=cross_attentions,
                    decoder_hidden_states=decoder_hidden_states,
2411
                    past_key_values=model_kwargs.get("past_key_values"),
2412
2413
2414
2415
2416
2417
2418
                )
            else:
                return ContrastiveSearchDecoderOnlyOutput(
                    sequences=input_ids,
                    scores=scores,
                    attentions=decoder_attentions,
                    hidden_states=decoder_hidden_states,
2419
                    past_key_values=model_kwargs.get("past_key_values"),
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
                )
        else:
            return input_ids

    def greedy_search(
        self,
        input_ids: torch.LongTensor,
        logits_processor: Optional[LogitsProcessorList] = None,
        stopping_criteria: Optional[StoppingCriteriaList] = None,
        max_length: Optional[int] = None,
        pad_token_id: Optional[int] = None,
2431
        eos_token_id: Optional[Union[int, List[int]]] = None,
2432
2433
2434
2435
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        output_scores: Optional[bool] = None,
        return_dict_in_generate: Optional[bool] = None,
2436
        synced_gpus: bool = False,
2437
        streamer: Optional["BaseStreamer"] = None,
2438
2439
2440
2441
2442
2443
        **model_kwargs,
    ) -> Union[GreedySearchOutput, torch.LongTensor]:
        r"""
        Generates sequences of token ids for models with a language modeling head using **greedy decoding** and can be
        used for text-decoder, text-to-text, speech-to-text, and vision-to-text models.

2444
2445
2446
2447
        <Tip warning={true}>

        In most cases, you do not need to call [`~generation.GenerationMixin.greedy_search`] directly. Use generate()
        instead. For an overview of generation strategies and code examples, check the [following
2448
        guide](../generation_strategies).
2449
2450
2451
2452

        </Tip>


2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
        Parameters:
            input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
                The sequence used as a prompt for the generation.
            logits_processor (`LogitsProcessorList`, *optional*):
                An instance of [`LogitsProcessorList`]. List of instances of class derived from [`LogitsProcessor`]
                used to modify the prediction scores of the language modeling head applied at each generation step.
            stopping_criteria (`StoppingCriteriaList`, *optional*):
                An instance of [`StoppingCriteriaList`]. List of instances of class derived from [`StoppingCriteria`]
                used to tell if the generation loop should stop.

            max_length (`int`, *optional*, defaults to 20):
                **DEPRECATED**. Use `logits_processor` or `stopping_criteria` directly to cap the number of generated
                tokens. The maximum length of the sequence to be generated.
            pad_token_id (`int`, *optional*):
                The id of the *padding* token.
2468
2469
            eos_token_id (`Union[int, List[int]]`, *optional*):
                The id of the *end-of-sequence* token. Optionally, use a list to set multiple *end-of-sequence* tokens.
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
            output_attentions (`bool`, *optional*, defaults to `False`):
                Whether or not to return the attentions tensors of all attention layers. See `attentions` under
                returned tensors for more details.
            output_hidden_states (`bool`, *optional*, defaults to `False`):
                Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
                for more details.
            output_scores (`bool`, *optional*, defaults to `False`):
                Whether or not to return the prediction scores. See `scores` under returned tensors for more details.
            return_dict_in_generate (`bool`, *optional*, defaults to `False`):
                Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
            synced_gpus (`bool`, *optional*, defaults to `False`):
                Whether to continue running the while loop until max_length (needed for ZeRO stage 3)
2482
2483
2484
            streamer (`BaseStreamer`, *optional*):
                Streamer object that will be used to stream the generated sequences. Generated tokens are passed
                through `streamer.put(token_ids)` and the streamer is responsible for any further processing.
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
            model_kwargs:
                Additional model specific keyword arguments will be forwarded to the `forward` function of the model.
                If model is an encoder-decoder model the kwargs should include `encoder_outputs`.

        Return:
            [`~generation.GreedySearchDecoderOnlyOutput`], [`~generation.GreedySearchEncoderDecoderOutput`] or
            `torch.LongTensor`: A `torch.LongTensor` containing the generated tokens (default behaviour) or a
            [`~generation.GreedySearchDecoderOnlyOutput`] if `model.config.is_encoder_decoder=False` and
            `return_dict_in_generate=True` or a [`~generation.GreedySearchEncoderDecoderOutput`] if
            `model.config.is_encoder_decoder=True`.

        Examples:

        ```python
        >>> from transformers import (
        ...     AutoTokenizer,
        ...     AutoModelForCausalLM,
        ...     LogitsProcessorList,
        ...     MinLengthLogitsProcessor,
        ...     StoppingCriteriaList,
        ...     MaxLengthCriteria,
        ... )

        >>> tokenizer = AutoTokenizer.from_pretrained("gpt2")
        >>> model = AutoModelForCausalLM.from_pretrained("gpt2")

        >>> # set pad_token_id to eos_token_id because GPT2 does not have a PAD token
2512
        >>> model.generation_config.pad_token_id = model.generation_config.eos_token_id
2513
2514
2515
2516
2517
2518
2519

        >>> input_prompt = "It might be possible to"
        >>> input_ids = tokenizer(input_prompt, return_tensors="pt").input_ids

        >>> # instantiate logits processors
        >>> logits_processor = LogitsProcessorList(
        ...     [
2520
        ...         MinLengthLogitsProcessor(10, eos_token_id=model.generation_config.eos_token_id),
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
        ...     ]
        ... )
        >>> stopping_criteria = StoppingCriteriaList([MaxLengthCriteria(max_length=20)])

        >>> outputs = model.greedy_search(
        ...     input_ids, logits_processor=logits_processor, stopping_criteria=stopping_criteria
        ... )

        >>> tokenizer.batch_decode(outputs, skip_special_tokens=True)
        ["It might be possible to get a better understanding of the nature of the problem, but it's not"]
        ```"""
        # init values
        logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList()
        stopping_criteria = stopping_criteria if stopping_criteria is not None else StoppingCriteriaList()
        if max_length is not None:
            warnings.warn(
                "`max_length` is deprecated in this function, use"
                " `stopping_criteria=StoppingCriteriaList([MaxLengthCriteria(max_length=max_length)])` instead.",
                UserWarning,
            )
            stopping_criteria = validate_stopping_criteria(stopping_criteria, max_length)
2542
2543
        pad_token_id = pad_token_id if pad_token_id is not None else self.generation_config.pad_token_id
        eos_token_id = eos_token_id if eos_token_id is not None else self.generation_config.eos_token_id
2544
2545
        if isinstance(eos_token_id, int):
            eos_token_id = [eos_token_id]
2546
        eos_token_id_tensor = torch.tensor(eos_token_id).to(input_ids.device) if eos_token_id is not None else None
2547
2548
2549
2550
        output_scores = output_scores if output_scores is not None else self.generation_config.output_scores
        output_attentions = (
            output_attentions if output_attentions is not None else self.generation_config.output_attentions
        )
2551
        output_hidden_states = (
2552
            output_hidden_states if output_hidden_states is not None else self.generation_config.output_hidden_states
2553
2554
        )
        return_dict_in_generate = (
2555
2556
2557
            return_dict_in_generate
            if return_dict_in_generate is not None
            else self.generation_config.return_dict_in_generate
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
        )

        # init attention / hidden states / scores tuples
        scores = () if (return_dict_in_generate and output_scores) else None
        decoder_attentions = () if (return_dict_in_generate and output_attentions) else None
        cross_attentions = () if (return_dict_in_generate and output_attentions) else None
        decoder_hidden_states = () if (return_dict_in_generate and output_hidden_states) else None

        # if model is an encoder-decoder, retrieve encoder attention weights and hidden states
        if return_dict_in_generate and self.config.is_encoder_decoder:
            encoder_attentions = model_kwargs["encoder_outputs"].get("attentions") if output_attentions else None
            encoder_hidden_states = (
                model_kwargs["encoder_outputs"].get("hidden_states") if output_hidden_states else None
            )

        # keep track of which sequences are already finished
2574
        unfinished_sequences = torch.ones(input_ids.shape[0], dtype=torch.long, device=input_ids.device)
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635

        this_peer_finished = False  # used by synced_gpus only
        while True:
            if synced_gpus:
                # Under synced_gpus the `forward` call must continue until all gpus complete their sequence.
                # The following logic allows an early break if all peers finished generating their sequence
                this_peer_finished_flag = torch.tensor(0.0 if this_peer_finished else 1.0).to(input_ids.device)
                # send 0.0 if we finished, 1.0 otherwise
                dist.all_reduce(this_peer_finished_flag, op=dist.ReduceOp.SUM)
                # did all peers finish? the reduced sum will be 0.0 then
                if this_peer_finished_flag.item() == 0.0:
                    break

            # prepare model inputs
            model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)

            # forward pass to get next token
            outputs = self(
                **model_inputs,
                return_dict=True,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
            )

            if synced_gpus and this_peer_finished:
                continue  # don't waste resources running the code we don't need

            next_token_logits = outputs.logits[:, -1, :]

            # pre-process distribution
            next_tokens_scores = logits_processor(input_ids, next_token_logits)

            # Store scores, attentions and hidden_states when required
            if return_dict_in_generate:
                if output_scores:
                    scores += (next_tokens_scores,)
                if output_attentions:
                    decoder_attentions += (
                        (outputs.decoder_attentions,) if self.config.is_encoder_decoder else (outputs.attentions,)
                    )
                    if self.config.is_encoder_decoder:
                        cross_attentions += (outputs.cross_attentions,)

                if output_hidden_states:
                    decoder_hidden_states += (
                        (outputs.decoder_hidden_states,)
                        if self.config.is_encoder_decoder
                        else (outputs.hidden_states,)
                    )

            # argmax
            next_tokens = torch.argmax(next_tokens_scores, dim=-1)

            # finished sentences should have their next token be a padding token
            if eos_token_id is not None:
                if pad_token_id is None:
                    raise ValueError("If `eos_token_id` is defined, make sure that `pad_token_id` is defined.")
                next_tokens = next_tokens * unfinished_sequences + pad_token_id * (1 - unfinished_sequences)

            # update generated ids, model inputs, and length for next step
            input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1)
2636
2637
            if streamer is not None:
                streamer.put(next_tokens.cpu())
2638
2639
2640
2641
2642
            model_kwargs = self._update_model_kwargs_for_generation(
                outputs, model_kwargs, is_encoder_decoder=self.config.is_encoder_decoder
            )

            # if eos_token was found in one sentence, set sentence to finished
2643
            if eos_token_id_tensor is not None:
2644
                unfinished_sequences = unfinished_sequences.mul(
2645
2646
                    next_tokens.tile(eos_token_id_tensor.shape[0], 1).ne(eos_token_id_tensor.unsqueeze(1)).prod(dim=0)
                )
2647

2648
2649
                # stop when each sentence is finished
                if unfinished_sequences.max() == 0:
2650
2651
                    this_peer_finished = True

2652
2653
2654
2655
2656
2657
2658
            # stop if we exceed the maximum length
            if stopping_criteria(input_ids, scores):
                this_peer_finished = True

            if this_peer_finished and not synced_gpus:
                break

2659
2660
2661
        if streamer is not None:
            streamer.end()

2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
        if return_dict_in_generate:
            if self.config.is_encoder_decoder:
                return GreedySearchEncoderDecoderOutput(
                    sequences=input_ids,
                    scores=scores,
                    encoder_attentions=encoder_attentions,
                    encoder_hidden_states=encoder_hidden_states,
                    decoder_attentions=decoder_attentions,
                    cross_attentions=cross_attentions,
                    decoder_hidden_states=decoder_hidden_states,
2672
                    past_key_values=model_kwargs.get("past_key_values"),
2673
2674
2675
2676
2677
2678
2679
                )
            else:
                return GreedySearchDecoderOnlyOutput(
                    sequences=input_ids,
                    scores=scores,
                    attentions=decoder_attentions,
                    hidden_states=decoder_hidden_states,
2680
                    past_key_values=model_kwargs.get("past_key_values"),
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
                )
        else:
            return input_ids

    def sample(
        self,
        input_ids: torch.LongTensor,
        logits_processor: Optional[LogitsProcessorList] = None,
        stopping_criteria: Optional[StoppingCriteriaList] = None,
        logits_warper: Optional[LogitsProcessorList] = None,
        max_length: Optional[int] = None,
        pad_token_id: Optional[int] = None,
2693
        eos_token_id: Optional[Union[int, List[int]]] = None,
2694
2695
2696
2697
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        output_scores: Optional[bool] = None,
        return_dict_in_generate: Optional[bool] = None,
2698
        synced_gpus: bool = False,
2699
        streamer: Optional["BaseStreamer"] = None,
2700
2701
2702
2703
2704
2705
        **model_kwargs,
    ) -> Union[SampleOutput, torch.LongTensor]:
        r"""
        Generates sequences of token ids for models with a language modeling head using **multinomial sampling** and
        can be used for text-decoder, text-to-text, speech-to-text, and vision-to-text models.

2706
2707
2708
2709
        <Tip warning={true}>

        In most cases, you do not need to call [`~generation.GenerationMixin.sample`] directly. Use generate() instead.
        For an overview of generation strategies and code examples, check the [following
2710
        guide](../generation_strategies).
2711
2712
2713

        </Tip>

2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
        Parameters:
            input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
                The sequence used as a prompt for the generation.
            logits_processor (`LogitsProcessorList`, *optional*):
                An instance of [`LogitsProcessorList`]. List of instances of class derived from [`LogitsProcessor`]
                used to modify the prediction scores of the language modeling head applied at each generation step.
            stopping_criteria (`StoppingCriteriaList`, *optional*):
                An instance of [`StoppingCriteriaList`]. List of instances of class derived from [`StoppingCriteria`]
                used to tell if the generation loop should stop.
            logits_warper (`LogitsProcessorList`, *optional*):
                An instance of [`LogitsProcessorList`]. List of instances of class derived from [`LogitsWarper`] used
                to warp the prediction score distribution of the language modeling head applied before multinomial
                sampling at each generation step.
            max_length (`int`, *optional*, defaults to 20):
                **DEPRECATED**. Use `logits_processor` or `stopping_criteria` directly to cap the number of generated
                tokens. The maximum length of the sequence to be generated.
            pad_token_id (`int`, *optional*):
                The id of the *padding* token.
2732
2733
            eos_token_id (`Union[int, List[int]]`, *optional*):
                The id of the *end-of-sequence* token. Optionally, use a list to set multiple *end-of-sequence* tokens.
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
            output_attentions (`bool`, *optional*, defaults to `False`):
                Whether or not to return the attentions tensors of all attention layers. See `attentions` under
                returned tensors for more details.
            output_hidden_states (`bool`, *optional*, defaults to `False`):
                Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
                for more details.
            output_scores (`bool`, *optional*, defaults to `False`):
                Whether or not to return the prediction scores. See `scores` under returned tensors for more details.
            return_dict_in_generate (`bool`, *optional*, defaults to `False`):
                Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
            synced_gpus (`bool`, *optional*, defaults to `False`):
                Whether to continue running the while loop until max_length (needed for ZeRO stage 3)
2746
2747
2748
            streamer (`BaseStreamer`, *optional*):
                Streamer object that will be used to stream the generated sequences. Generated tokens are passed
                through `streamer.put(token_ids)` and the streamer is responsible for any further processing.
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
            model_kwargs:
                Additional model specific kwargs will be forwarded to the `forward` function of the model. If model is
                an encoder-decoder model the kwargs should include `encoder_outputs`.

        Return:
            [`~generation.SampleDecoderOnlyOutput`], [`~generation.SampleEncoderDecoderOutput`] or `torch.LongTensor`:
            A `torch.LongTensor` containing the generated tokens (default behaviour) or a
            [`~generation.SampleDecoderOnlyOutput`] if `model.config.is_encoder_decoder=False` and
            `return_dict_in_generate=True` or a [`~generation.SampleEncoderDecoderOutput`] if
            `model.config.is_encoder_decoder=True`.

        Examples:

        ```python
        >>> from transformers import (
        ...     AutoTokenizer,
        ...     AutoModelForCausalLM,
        ...     LogitsProcessorList,
        ...     MinLengthLogitsProcessor,
        ...     TopKLogitsWarper,
        ...     TemperatureLogitsWarper,
        ...     StoppingCriteriaList,
        ...     MaxLengthCriteria,
        ... )
        >>> import torch

        >>> tokenizer = AutoTokenizer.from_pretrained("gpt2")
        >>> model = AutoModelForCausalLM.from_pretrained("gpt2")

        >>> # set pad_token_id to eos_token_id because GPT2 does not have a EOS token
        >>> model.config.pad_token_id = model.config.eos_token_id
Arthur's avatar
Arthur committed
2780
        >>> model.generation_config.pad_token_id = model.config.eos_token_id
2781
2782
2783
2784
2785
2786
2787

        >>> input_prompt = "Today is a beautiful day, and"
        >>> input_ids = tokenizer(input_prompt, return_tensors="pt").input_ids

        >>> # instantiate logits processors
        >>> logits_processor = LogitsProcessorList(
        ...     [
2788
        ...         MinLengthLogitsProcessor(15, eos_token_id=model.generation_config.eos_token_id),
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
        ...     ]
        ... )
        >>> # instantiate logits processors
        >>> logits_warper = LogitsProcessorList(
        ...     [
        ...         TopKLogitsWarper(50),
        ...         TemperatureLogitsWarper(0.7),
        ...     ]
        ... )

        >>> stopping_criteria = StoppingCriteriaList([MaxLengthCriteria(max_length=20)])

        >>> torch.manual_seed(0)  # doctest: +IGNORE_RESULT
        >>> outputs = model.sample(
        ...     input_ids,
        ...     logits_processor=logits_processor,
        ...     logits_warper=logits_warper,
        ...     stopping_criteria=stopping_criteria,
        ... )

        >>> tokenizer.batch_decode(outputs, skip_special_tokens=True)
2810
        ['Today is a beautiful day, and we must do everything possible to make it a day of celebration.']
2811
2812
2813
2814
2815
2816
2817
        ```"""
        # init values
        logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList()
        stopping_criteria = stopping_criteria if stopping_criteria is not None else StoppingCriteriaList()
        if max_length is not None:
            warnings.warn(
                "`max_length` is deprecated in this function, use"
2818
                " `stopping_criteria=StoppingCriteriaList([MaxLengthCriteria(max_length=max_length)])` instead.",
2819
2820
2821
2822
                UserWarning,
            )
            stopping_criteria = validate_stopping_criteria(stopping_criteria, max_length)
        logits_warper = logits_warper if logits_warper is not None else LogitsProcessorList()
2823
2824
        pad_token_id = pad_token_id if pad_token_id is not None else self.generation_config.pad_token_id
        eos_token_id = eos_token_id if eos_token_id is not None else self.generation_config.eos_token_id
2825
2826
        if isinstance(eos_token_id, int):
            eos_token_id = [eos_token_id]
2827
        eos_token_id_tensor = torch.tensor(eos_token_id).to(input_ids.device) if eos_token_id is not None else None
2828
2829
2830
2831
        output_scores = output_scores if output_scores is not None else self.generation_config.output_scores
        output_attentions = (
            output_attentions if output_attentions is not None else self.generation_config.output_attentions
        )
2832
        output_hidden_states = (
2833
            output_hidden_states if output_hidden_states is not None else self.generation_config.output_hidden_states
2834
2835
        )
        return_dict_in_generate = (
2836
2837
2838
            return_dict_in_generate
            if return_dict_in_generate is not None
            else self.generation_config.return_dict_in_generate
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
        )

        # init attention / hidden states / scores tuples
        scores = () if (return_dict_in_generate and output_scores) else None
        decoder_attentions = () if (return_dict_in_generate and output_attentions) else None
        cross_attentions = () if (return_dict_in_generate and output_attentions) else None
        decoder_hidden_states = () if (return_dict_in_generate and output_hidden_states) else None

        # if model is an encoder-decoder, retrieve encoder attention weights and hidden states
        if return_dict_in_generate and self.config.is_encoder_decoder:
            encoder_attentions = model_kwargs["encoder_outputs"].get("attentions") if output_attentions else None
            encoder_hidden_states = (
                model_kwargs["encoder_outputs"].get("hidden_states") if output_hidden_states else None
            )

        # keep track of which sequences are already finished
2855
        unfinished_sequences = torch.ones(input_ids.shape[0], dtype=torch.long, device=input_ids.device)
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919

        this_peer_finished = False  # used by synced_gpus only
        # auto-regressive generation
        while True:
            if synced_gpus:
                # Under synced_gpus the `forward` call must continue until all gpus complete their sequence.
                # The following logic allows an early break if all peers finished generating their sequence
                this_peer_finished_flag = torch.tensor(0.0 if this_peer_finished else 1.0).to(input_ids.device)
                # send 0.0 if we finished, 1.0 otherwise
                dist.all_reduce(this_peer_finished_flag, op=dist.ReduceOp.SUM)
                # did all peers finish? the reduced sum will be 0.0 then
                if this_peer_finished_flag.item() == 0.0:
                    break

            # prepare model inputs
            model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)

            # forward pass to get next token
            outputs = self(
                **model_inputs,
                return_dict=True,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
            )

            if synced_gpus and this_peer_finished:
                continue  # don't waste resources running the code we don't need

            next_token_logits = outputs.logits[:, -1, :]

            # pre-process distribution
            next_token_scores = logits_processor(input_ids, next_token_logits)
            next_token_scores = logits_warper(input_ids, next_token_scores)

            # Store scores, attentions and hidden_states when required
            if return_dict_in_generate:
                if output_scores:
                    scores += (next_token_scores,)
                if output_attentions:
                    decoder_attentions += (
                        (outputs.decoder_attentions,) if self.config.is_encoder_decoder else (outputs.attentions,)
                    )
                    if self.config.is_encoder_decoder:
                        cross_attentions += (outputs.cross_attentions,)

                if output_hidden_states:
                    decoder_hidden_states += (
                        (outputs.decoder_hidden_states,)
                        if self.config.is_encoder_decoder
                        else (outputs.hidden_states,)
                    )

            # sample
            probs = nn.functional.softmax(next_token_scores, dim=-1)
            next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1)

            # finished sentences should have their next token be a padding token
            if eos_token_id is not None:
                if pad_token_id is None:
                    raise ValueError("If `eos_token_id` is defined, make sure that `pad_token_id` is defined.")
                next_tokens = next_tokens * unfinished_sequences + pad_token_id * (1 - unfinished_sequences)

            # update generated ids, model inputs, and length for next step
            input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1)
2920
2921
            if streamer is not None:
                streamer.put(next_tokens.cpu())
2922
2923
2924
2925
2926
            model_kwargs = self._update_model_kwargs_for_generation(
                outputs, model_kwargs, is_encoder_decoder=self.config.is_encoder_decoder
            )

            # if eos_token was found in one sentence, set sentence to finished
2927
            if eos_token_id_tensor is not None:
2928
                unfinished_sequences = unfinished_sequences.mul(
2929
2930
                    next_tokens.tile(eos_token_id_tensor.shape[0], 1).ne(eos_token_id_tensor.unsqueeze(1)).prod(dim=0)
                )
2931

2932
2933
                # stop when each sentence is finished
                if unfinished_sequences.max() == 0:
2934
2935
                    this_peer_finished = True

2936
2937
2938
2939
2940
2941
2942
            # stop if we exceed the maximum length
            if stopping_criteria(input_ids, scores):
                this_peer_finished = True

            if this_peer_finished and not synced_gpus:
                break

2943
2944
2945
        if streamer is not None:
            streamer.end()

2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
        if return_dict_in_generate:
            if self.config.is_encoder_decoder:
                return SampleEncoderDecoderOutput(
                    sequences=input_ids,
                    scores=scores,
                    encoder_attentions=encoder_attentions,
                    encoder_hidden_states=encoder_hidden_states,
                    decoder_attentions=decoder_attentions,
                    cross_attentions=cross_attentions,
                    decoder_hidden_states=decoder_hidden_states,
2956
                    past_key_values=model_kwargs.get("past_key_values"),
2957
2958
2959
2960
2961
2962
2963
                )
            else:
                return SampleDecoderOnlyOutput(
                    sequences=input_ids,
                    scores=scores,
                    attentions=decoder_attentions,
                    hidden_states=decoder_hidden_states,
2964
                    past_key_values=model_kwargs.get("past_key_values"),
2965
2966
2967
2968
                )
        else:
            return input_ids

2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
    def _temporary_reorder_cache(self, past_key_values, beam_idx):
        """
        Temporary function to handle the different types of cache reordering processes while we roll out `Cache`.

        TODO: standardize cache formats and make all models compatible with `Cache`. It would remove the need
        for this function, with `Cache.reorder_cache` being the sole remaining code path
        """
        model_class = self.__class__.__name__.lower()
        # Exception 1: code path for models using the legacy cache format
        if isinstance(past_key_values, (tuple, list)):
            past_key_values = self._reorder_cache(past_key_values, beam_idx)
        # Exception 2: models with different cache formats. These are limited to `DynamicCache` until their
        # cache format is standardized, to avoid adding complexity to the codebase.
        elif "bloom" in model_class or "gptbigcode" in model_class:
            if not isinstance(past_key_values, DynamicCache):
                raise ValueError(
                    f"Using an unsupported cache format with {model_class}. Currently, it only supports the "
                    "legacy tuple format or `DynamicCache`"
                )
            past_key_values = self._reorder_cache(past_key_values, beam_idx)
            past_key_values = DynamicCache.from_legacy_cache(past_key_values)
        # Standard code path: use the `Cache.reorder_cache`
        else:
            past_key_values.reorder_cache(beam_idx)
        return past_key_values

2995
2996
2997
2998
2999
3000
3001
3002
    def beam_search(
        self,
        input_ids: torch.LongTensor,
        beam_scorer: BeamScorer,
        logits_processor: Optional[LogitsProcessorList] = None,
        stopping_criteria: Optional[StoppingCriteriaList] = None,
        max_length: Optional[int] = None,
        pad_token_id: Optional[int] = None,
3003
        eos_token_id: Optional[Union[int, List[int]]] = None,
3004
3005
3006
3007
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        output_scores: Optional[bool] = None,
        return_dict_in_generate: Optional[bool] = None,
3008
        synced_gpus: bool = False,
3009
3010
3011
3012
3013
3014
        **model_kwargs,
    ) -> Union[BeamSearchOutput, torch.LongTensor]:
        r"""
        Generates sequences of token ids for models with a language modeling head using **beam search decoding** and
        can be used for text-decoder, text-to-text, speech-to-text, and vision-to-text models.

3015
3016
3017
3018
        <Tip warning={true}>

        In most cases, you do not need to call [`~generation.GenerationMixin.beam_search`] directly. Use generate()
        instead. For an overview of generation strategies and code examples, check the [following
3019
        guide](../generation_strategies).
3020
3021
3022

        </Tip>

3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
        Parameters:
            input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
                The sequence used as a prompt for the generation.
            beam_scorer (`BeamScorer`):
                An derived instance of [`BeamScorer`] that defines how beam hypotheses are constructed, stored and
                sorted during generation. For more information, the documentation of [`BeamScorer`] should be read.
            logits_processor (`LogitsProcessorList`, *optional*):
                An instance of [`LogitsProcessorList`]. List of instances of class derived from [`LogitsProcessor`]
                used to modify the prediction scores of the language modeling head applied at each generation step.
            stopping_criteria (`StoppingCriteriaList`, *optional*):
                An instance of [`StoppingCriteriaList`]. List of instances of class derived from [`StoppingCriteria`]
                used to tell if the generation loop should stop.
            max_length (`int`, *optional*, defaults to 20):
                **DEPRECATED**. Use `logits_processor` or `stopping_criteria` directly to cap the number of generated
                tokens. The maximum length of the sequence to be generated.
            pad_token_id (`int`, *optional*):
                The id of the *padding* token.
3040
3041
            eos_token_id (`Union[int, List[int]]`, *optional*):
                The id of the *end-of-sequence* token. Optionally, use a list to set multiple *end-of-sequence* tokens.
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
            output_attentions (`bool`, *optional*, defaults to `False`):
                Whether or not to return the attentions tensors of all attention layers. See `attentions` under
                returned tensors for more details.
            output_hidden_states (`bool`, *optional*, defaults to `False`):
                Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
                for more details.
            output_scores (`bool`, *optional*, defaults to `False`):
                Whether or not to return the prediction scores. See `scores` under returned tensors for more details.
            return_dict_in_generate (`bool`, *optional*, defaults to `False`):
                Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
            synced_gpus (`bool`, *optional*, defaults to `False`):
                Whether to continue running the while loop until max_length (needed for ZeRO stage 3)
            model_kwargs:
                Additional model specific kwargs will be forwarded to the `forward` function of the model. If model is
                an encoder-decoder model the kwargs should include `encoder_outputs`.

        Return:
            [`generation.BeamSearchDecoderOnlyOutput`], [`~generation.BeamSearchEncoderDecoderOutput`] or
            `torch.LongTensor`: A `torch.LongTensor` containing the generated tokens (default behaviour) or a
            [`~generation.BeamSearchDecoderOnlyOutput`] if `model.config.is_encoder_decoder=False` and
            `return_dict_in_generate=True` or a [`~generation.BeamSearchEncoderDecoderOutput`] if
            `model.config.is_encoder_decoder=True`.


        Examples:

        ```python
        >>> from transformers import (
        ...     AutoTokenizer,
        ...     AutoModelForSeq2SeqLM,
        ...     LogitsProcessorList,
        ...     MinLengthLogitsProcessor,
        ...     BeamSearchScorer,
        ... )
        >>> import torch

        >>> tokenizer = AutoTokenizer.from_pretrained("t5-base")
        >>> model = AutoModelForSeq2SeqLM.from_pretrained("t5-base")

        >>> encoder_input_str = "translate English to German: How old are you?"
        >>> encoder_input_ids = tokenizer(encoder_input_str, return_tensors="pt").input_ids


        >>> # lets run beam search using 3 beams
        >>> num_beams = 3
        >>> # define decoder start token ids
        >>> input_ids = torch.ones((num_beams, 1), device=model.device, dtype=torch.long)
        >>> input_ids = input_ids * model.config.decoder_start_token_id

        >>> # add encoder_outputs to model keyword arguments
        >>> model_kwargs = {
        ...     "encoder_outputs": model.get_encoder()(
        ...         encoder_input_ids.repeat_interleave(num_beams, dim=0), return_dict=True
        ...     )
        ... }

        >>> # instantiate beam scorer
        >>> beam_scorer = BeamSearchScorer(
        ...     batch_size=1,
        ...     num_beams=num_beams,
        ...     device=model.device,
        ... )

        >>> # instantiate logits processors
        >>> logits_processor = LogitsProcessorList(
        ...     [
        ...         MinLengthLogitsProcessor(5, eos_token_id=model.config.eos_token_id),
        ...     ]
        ... )

        >>> outputs = model.beam_search(input_ids, beam_scorer, logits_processor=logits_processor, **model_kwargs)

        >>> tokenizer.batch_decode(outputs, skip_special_tokens=True)
        ['Wie alt bist du?']
        ```"""
        # init values
        logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList()
        stopping_criteria = stopping_criteria if stopping_criteria is not None else StoppingCriteriaList()
        if max_length is not None:
            warnings.warn(
                "`max_length` is deprecated in this function, use"
3123
                " `stopping_criteria=StoppingCriteriaList([MaxLengthCriteria(max_length=max_length)])` instead.",
3124
3125
3126
3127
3128
                UserWarning,
            )
            stopping_criteria = validate_stopping_criteria(stopping_criteria, max_length)
        if len(stopping_criteria) == 0:
            warnings.warn("You don't have defined any stopping_criteria, this will likely loop forever", UserWarning)
3129
3130
        pad_token_id = pad_token_id if pad_token_id is not None else self.generation_config.pad_token_id
        eos_token_id = eos_token_id if eos_token_id is not None else self.generation_config.eos_token_id
3131
3132
        if isinstance(eos_token_id, int):
            eos_token_id = [eos_token_id]
3133
3134
3135
3136
        output_scores = output_scores if output_scores is not None else self.generation_config.output_scores
        output_attentions = (
            output_attentions if output_attentions is not None else self.generation_config.output_attentions
        )
3137
        output_hidden_states = (
3138
            output_hidden_states if output_hidden_states is not None else self.generation_config.output_hidden_states
3139
3140
        )
        return_dict_in_generate = (
3141
3142
3143
            return_dict_in_generate
            if return_dict_in_generate is not None
            else self.generation_config.return_dict_in_generate
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
        )

        batch_size = len(beam_scorer._beam_hyps)
        num_beams = beam_scorer.num_beams

        batch_beam_size, cur_len = input_ids.shape

        if num_beams * batch_size != batch_beam_size:
            raise ValueError(
                f"Batch dimension of `input_ids` should be {num_beams * batch_size}, but is {batch_beam_size}."
            )

        # init attention / hidden states / scores tuples
        scores = () if (return_dict_in_generate and output_scores) else None
        beam_indices = (
            tuple(() for _ in range(batch_beam_size)) if (return_dict_in_generate and output_scores) else None
        )
        decoder_attentions = () if (return_dict_in_generate and output_attentions) else None
        cross_attentions = () if (return_dict_in_generate and output_attentions) else None
        decoder_hidden_states = () if (return_dict_in_generate and output_hidden_states) else None

        # if model is an encoder-decoder, retrieve encoder attention weights and hidden states
        if return_dict_in_generate and self.config.is_encoder_decoder:
            encoder_attentions = model_kwargs["encoder_outputs"].get("attentions") if output_attentions else None
            encoder_hidden_states = (
                model_kwargs["encoder_outputs"].get("hidden_states") if output_hidden_states else None
            )

        # initialise score of first beam with 0 and the rest with -1e9. This makes sure that only tokens
        # of the first beam are considered to avoid sampling the exact same tokens across all beams.
        beam_scores = torch.zeros((batch_size, num_beams), dtype=torch.float, device=input_ids.device)
        beam_scores[:, 1:] = -1e9
        beam_scores = beam_scores.view((batch_size * num_beams,))

        this_peer_finished = False  # used by synced_gpus only
3179
3180

        decoder_prompt_len = input_ids.shape[-1]  # record the prompt length of decoder
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
        while True:
            if synced_gpus:
                # Under synced_gpus the `forward` call must continue until all gpus complete their sequence.
                # The following logic allows an early break if all peers finished generating their sequence
                this_peer_finished_flag = torch.tensor(0.0 if this_peer_finished else 1.0).to(input_ids.device)
                # send 0.0 if we finished, 1.0 otherwise
                dist.all_reduce(this_peer_finished_flag, op=dist.ReduceOp.SUM)
                # did all peers finish? the reduced sum will be 0.0 then
                if this_peer_finished_flag.item() == 0.0:
                    break

            model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)

            outputs = self(
                **model_inputs,
                return_dict=True,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
            )

            if synced_gpus and this_peer_finished:
                cur_len = cur_len + 1
                continue  # don't waste resources running the code we don't need

            next_token_logits = outputs.logits[:, -1, :]
            next_token_scores = nn.functional.log_softmax(
                next_token_logits, dim=-1
            )  # (batch_size * num_beams, vocab_size)

            next_token_scores_processed = logits_processor(input_ids, next_token_scores)
3211
3212
3213
            next_token_scores = next_token_scores_processed + beam_scores[:, None].expand_as(
                next_token_scores_processed
            )
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236

            # Store scores, attentions and hidden_states when required
            if return_dict_in_generate:
                if output_scores:
                    scores += (next_token_scores_processed,)
                if output_attentions:
                    decoder_attentions += (
                        (outputs.decoder_attentions,) if self.config.is_encoder_decoder else (outputs.attentions,)
                    )
                    if self.config.is_encoder_decoder:
                        cross_attentions += (outputs.cross_attentions,)

                if output_hidden_states:
                    decoder_hidden_states += (
                        (outputs.decoder_hidden_states,)
                        if self.config.is_encoder_decoder
                        else (outputs.hidden_states,)
                    )

            # reshape for beam search
            vocab_size = next_token_scores.shape[-1]
            next_token_scores = next_token_scores.view(batch_size, num_beams * vocab_size)

3237
3238
            # Sample 1 + len(eos_token_id) next tokens for each beam so we have at least 1 non eos token per beam.
            n_eos_tokens = len(eos_token_id) if eos_token_id else 0
3239
            next_token_scores, next_tokens = torch.topk(
3240
                next_token_scores, max(2, 1 + n_eos_tokens) * num_beams, dim=1, largest=True, sorted=True
3241
3242
            )

3243
            next_indices = torch.div(next_tokens, vocab_size, rounding_mode="floor")
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
            next_tokens = next_tokens % vocab_size

            # stateless
            beam_outputs = beam_scorer.process(
                input_ids,
                next_token_scores,
                next_tokens,
                next_indices,
                pad_token_id=pad_token_id,
                eos_token_id=eos_token_id,
                beam_indices=beam_indices,
3255
                decoder_prompt_len=decoder_prompt_len,
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
            )

            beam_scores = beam_outputs["next_beam_scores"]
            beam_next_tokens = beam_outputs["next_beam_tokens"]
            beam_idx = beam_outputs["next_beam_indices"]

            input_ids = torch.cat([input_ids[beam_idx, :], beam_next_tokens.unsqueeze(-1)], dim=-1)

            model_kwargs = self._update_model_kwargs_for_generation(
                outputs, model_kwargs, is_encoder_decoder=self.config.is_encoder_decoder
            )
3267
            if model_kwargs["past_key_values"] is not None:
3268
3269
3270
                model_kwargs["past_key_values"] = self._temporary_reorder_cache(
                    model_kwargs["past_key_values"], beam_idx
                )
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292

            if return_dict_in_generate and output_scores:
                beam_indices = tuple((beam_indices[beam_idx[i]] + (beam_idx[i],) for i in range(len(beam_indices))))

            # increase cur_len
            cur_len = cur_len + 1

            if beam_scorer.is_done or stopping_criteria(input_ids, scores):
                if not synced_gpus:
                    break
                else:
                    this_peer_finished = True

        sequence_outputs = beam_scorer.finalize(
            input_ids,
            beam_scores,
            next_tokens,
            next_indices,
            pad_token_id=pad_token_id,
            eos_token_id=eos_token_id,
            max_length=stopping_criteria.max_length,
            beam_indices=beam_indices,
3293
            decoder_prompt_len=decoder_prompt_len,
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
        )

        if return_dict_in_generate:
            if not output_scores:
                sequence_outputs["sequence_scores"] = None

            if self.config.is_encoder_decoder:
                return BeamSearchEncoderDecoderOutput(
                    sequences=sequence_outputs["sequences"],
                    sequences_scores=sequence_outputs["sequence_scores"],
                    scores=scores,
                    beam_indices=sequence_outputs["beam_indices"],
                    encoder_attentions=encoder_attentions,
                    encoder_hidden_states=encoder_hidden_states,
                    decoder_attentions=decoder_attentions,
                    cross_attentions=cross_attentions,
                    decoder_hidden_states=decoder_hidden_states,
3311
                    past_key_values=model_kwargs.get("past_key_values"),
3312
3313
3314
3315
3316
3317
3318
3319
3320
                )
            else:
                return BeamSearchDecoderOnlyOutput(
                    sequences=sequence_outputs["sequences"],
                    sequences_scores=sequence_outputs["sequence_scores"],
                    scores=scores,
                    beam_indices=sequence_outputs["beam_indices"],
                    attentions=decoder_attentions,
                    hidden_states=decoder_hidden_states,
3321
                    past_key_values=model_kwargs.get("past_key_values"),
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
                )
        else:
            return sequence_outputs["sequences"]

    def beam_sample(
        self,
        input_ids: torch.LongTensor,
        beam_scorer: BeamScorer,
        logits_processor: Optional[LogitsProcessorList] = None,
        stopping_criteria: Optional[StoppingCriteriaList] = None,
        logits_warper: Optional[LogitsProcessorList] = None,
        max_length: Optional[int] = None,
        pad_token_id: Optional[int] = None,
3335
        eos_token_id: Optional[Union[int, List[int]]] = None,
3336
3337
3338
3339
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        output_scores: Optional[bool] = None,
        return_dict_in_generate: Optional[bool] = None,
3340
        synced_gpus: bool = False,
3341
3342
3343
3344
3345
3346
        **model_kwargs,
    ) -> Union[BeamSampleOutput, torch.LongTensor]:
        r"""
        Generates sequences of token ids for models with a language modeling head using **beam search multinomial
        sampling** and can be used for text-decoder, text-to-text, speech-to-text, and vision-to-text models.

3347
3348
3349
3350
        <Tip warning={true}>

        In most cases, you do not need to call [`~generation.GenerationMixin.beam_sample`] directly. Use generate()
        instead. For an overview of generation strategies and code examples, check the [following
3351
        guide](../generation_strategies).
3352
3353
3354

        </Tip>

3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
        Parameters:
            input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
                The sequence used as a prompt for the generation.
            beam_scorer (`BeamScorer`):
                A derived instance of [`BeamScorer`] that defines how beam hypotheses are constructed, stored and
                sorted during generation. For more information, the documentation of [`BeamScorer`] should be read.
            logits_processor (`LogitsProcessorList`, *optional*):
                An instance of [`LogitsProcessorList`]. List of instances of class derived from [`LogitsProcessor`]
                used to modify the prediction scores of the language modeling head applied at each generation step.
            stopping_criteria (`StoppingCriteriaList`, *optional*):
                An instance of [`StoppingCriteriaList`]. List of instances of class derived from [`StoppingCriteria`]
                used to tell if the generation loop should stop.
            logits_warper (`LogitsProcessorList`, *optional*):
                An instance of [`LogitsProcessorList`]. List of instances of class derived from [`LogitsWarper`] used
                to warp the prediction score distribution of the language modeling head applied before multinomial
                sampling at each generation step.
            max_length (`int`, *optional*, defaults to 20):
                **DEPRECATED**. Use `logits_processor` or `stopping_criteria` directly to cap the number of generated
                tokens. The maximum length of the sequence to be generated.
            pad_token_id (`int`, *optional*):
                The id of the *padding* token.
3376
3377
            eos_token_id (`Union[int, List[int]]`, *optional*):
                The id of the *end-of-sequence* token. Optionally, use a list to set multiple *end-of-sequence* tokens.
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
            output_attentions (`bool`, *optional*, defaults to `False`):
                Whether or not to return the attentions tensors of all attention layers. See `attentions` under
                returned tensors for more details.
            output_hidden_states (`bool`, *optional*, defaults to `False`):
                Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
                for more details.
            output_scores (`bool`, *optional*, defaults to `False`):
                Whether or not to return the prediction scores. See `scores` under returned tensors for more details.
            return_dict_in_generate (`bool`, *optional*, defaults to `False`):
                Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
            synced_gpus (`bool`, *optional*, defaults to `False`):
                Whether to continue running the while loop until max_length (needed for ZeRO stage 3)
            model_kwargs:
                Additional model specific kwargs will be forwarded to the `forward` function of the model. If model is
                an encoder-decoder model the kwargs should include `encoder_outputs`.

        Return:
            [`~generation.BeamSampleDecoderOnlyOutput`], [`~generation.BeamSampleEncoderDecoderOutput`] or
            `torch.LongTensor`: A `torch.LongTensor` containing the generated tokens (default behaviour) or a
            [`~generation.BeamSampleDecoderOnlyOutput`] if `model.config.is_encoder_decoder=False` and
            `return_dict_in_generate=True` or a [`~generation.BeamSampleEncoderDecoderOutput`] if
            `model.config.is_encoder_decoder=True`.

        Examples:

        ```python
        >>> from transformers import (
        ...     AutoTokenizer,
        ...     AutoModelForSeq2SeqLM,
        ...     LogitsProcessorList,
        ...     MinLengthLogitsProcessor,
        ...     TopKLogitsWarper,
        ...     TemperatureLogitsWarper,
        ...     BeamSearchScorer,
        ... )
        >>> import torch

        >>> tokenizer = AutoTokenizer.from_pretrained("t5-base")
        >>> model = AutoModelForSeq2SeqLM.from_pretrained("t5-base")

        >>> encoder_input_str = "translate English to German: How old are you?"
        >>> encoder_input_ids = tokenizer(encoder_input_str, return_tensors="pt").input_ids

        >>> # lets run beam search using 3 beams
        >>> num_beams = 3
        >>> # define decoder start token ids
        >>> input_ids = torch.ones((num_beams, 1), device=model.device, dtype=torch.long)
        >>> input_ids = input_ids * model.config.decoder_start_token_id

        >>> # add encoder_outputs to model keyword arguments
        >>> model_kwargs = {
        ...     "encoder_outputs": model.get_encoder()(
        ...         encoder_input_ids.repeat_interleave(num_beams, dim=0), return_dict=True
        ...     )
        ... }

        >>> # instantiate beam scorer
        >>> beam_scorer = BeamSearchScorer(
        ...     batch_size=1,
        ...     max_length=model.config.max_length,
        ...     num_beams=num_beams,
        ...     device=model.device,
        ... )

        >>> # instantiate logits processors
        >>> logits_processor = LogitsProcessorList(
        ...     [MinLengthLogitsProcessor(5, eos_token_id=model.config.eos_token_id)]
        ... )
        >>> # instantiate logits processors
        >>> logits_warper = LogitsProcessorList(
        ...     [
        ...         TopKLogitsWarper(50),
        ...         TemperatureLogitsWarper(0.7),
        ...     ]
        ... )

        >>> outputs = model.beam_sample(
        ...     input_ids, beam_scorer, logits_processor=logits_processor, logits_warper=logits_warper, **model_kwargs
        ... )

        >>> tokenizer.batch_decode(outputs, skip_special_tokens=True)
        ['Wie alt bist du?']
        ```"""
        # init values
        logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList()
        stopping_criteria = stopping_criteria if stopping_criteria is not None else StoppingCriteriaList()
        if max_length is not None:
            warnings.warn(
                "`max_length` is deprecated in this function, use"
3467
                " `stopping_criteria=StoppingCriteriaList([MaxLengthCriteria(max_length=max_length)])` instead.",
3468
3469
3470
                UserWarning,
            )
            stopping_criteria = validate_stopping_criteria(stopping_criteria, max_length)
3471
3472
        pad_token_id = pad_token_id if pad_token_id is not None else self.generation_config.pad_token_id
        eos_token_id = eos_token_id if eos_token_id is not None else self.generation_config.eos_token_id
3473
3474
        if isinstance(eos_token_id, int):
            eos_token_id = [eos_token_id]
3475
3476
3477
3478
        output_scores = output_scores if output_scores is not None else self.generation_config.output_scores
        output_attentions = (
            output_attentions if output_attentions is not None else self.generation_config.output_attentions
        )
3479
        output_hidden_states = (
3480
            output_hidden_states if output_hidden_states is not None else self.generation_config.output_hidden_states
3481
3482
        )
        return_dict_in_generate = (
3483
3484
3485
            return_dict_in_generate
            if return_dict_in_generate is not None
            else self.generation_config.return_dict_in_generate
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
        )

        batch_size = len(beam_scorer._beam_hyps)
        num_beams = beam_scorer.num_beams

        batch_beam_size, cur_len = input_ids.shape

        # init attention / hidden states / scores tuples
        scores = () if (return_dict_in_generate and output_scores) else None
        beam_indices = (
            tuple(() for _ in range(batch_beam_size)) if (return_dict_in_generate and output_scores) else None
        )
        decoder_attentions = () if (return_dict_in_generate and output_attentions) else None
        cross_attentions = () if (return_dict_in_generate and output_attentions) else None
        decoder_hidden_states = () if (return_dict_in_generate and output_hidden_states) else None

        # if model is an encoder-decoder, retrieve encoder attention weights and hidden states
        if return_dict_in_generate and self.config.is_encoder_decoder:
            encoder_attentions = model_kwargs["encoder_outputs"].get("attentions") if output_attentions else None
            encoder_hidden_states = (
                model_kwargs["encoder_outputs"].get("hidden_states") if output_hidden_states else None
            )

        beam_scores = torch.zeros((batch_size, num_beams), dtype=torch.float, device=input_ids.device)
        beam_scores = beam_scores.view((batch_size * num_beams,))

        this_peer_finished = False  # used by synced_gpus only
3513
3514

        decoder_prompt_len = input_ids.shape[-1]  # record the prompt length of decoder
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
        while True:
            if synced_gpus:
                # Under synced_gpus the `forward` call must continue until all gpus complete their sequence.
                # The following logic allows an early break if all peers finished generating their sequence
                this_peer_finished_flag = torch.tensor(0.0 if this_peer_finished else 1.0).to(input_ids.device)
                # send 0.0 if we finished, 1.0 otherwise
                dist.all_reduce(this_peer_finished_flag, op=dist.ReduceOp.SUM)
                # did all peers finish? the reduced sum will be 0.0 then
                if this_peer_finished_flag.item() == 0.0:
                    break

            model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)

            outputs = self(
                **model_inputs,
                return_dict=True,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
            )

            if synced_gpus and this_peer_finished:
                cur_len = cur_len + 1
                continue  # don't waste resources running the code we don't need

            next_token_logits = outputs.logits[:, -1, :]

            next_token_scores = nn.functional.log_softmax(
                next_token_logits, dim=-1
            )  # (batch_size * num_beams, vocab_size)

            next_token_scores_processed = logits_processor(input_ids, next_token_scores)
3546
            next_token_scores_processed = logits_warper(input_ids, next_token_scores_processed)
3547
3548
3549
            next_token_scores = next_token_scores_processed + beam_scores[:, None].expand_as(
                next_token_scores_processed
            )
3550
3551
3552
3553

            # Store scores, attentions and hidden_states when required
            if return_dict_in_generate:
                if output_scores:
3554
                    scores += (next_token_scores_processed,)
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
                if output_attentions:
                    decoder_attentions += (
                        (outputs.decoder_attentions,) if self.config.is_encoder_decoder else (outputs.attentions,)
                    )
                    if self.config.is_encoder_decoder:
                        cross_attentions += (outputs.cross_attentions,)

                if output_hidden_states:
                    decoder_hidden_states += (
                        (outputs.decoder_hidden_states,)
                        if self.config.is_encoder_decoder
                        else (outputs.hidden_states,)
                    )

            # reshape for beam search
            vocab_size = next_token_scores.shape[-1]
            next_token_scores = next_token_scores.view(batch_size, num_beams * vocab_size)

            probs = nn.functional.softmax(next_token_scores, dim=-1)

            next_tokens = torch.multinomial(probs, num_samples=2 * num_beams)
            next_token_scores = torch.gather(next_token_scores, -1, next_tokens)

            next_token_scores, _indices = torch.sort(next_token_scores, descending=True, dim=1)
            next_tokens = torch.gather(next_tokens, -1, _indices)

3581
            next_indices = torch.div(next_tokens, vocab_size, rounding_mode="floor")
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
            next_tokens = next_tokens % vocab_size

            # stateless
            beam_outputs = beam_scorer.process(
                input_ids,
                next_token_scores,
                next_tokens,
                next_indices,
                pad_token_id=pad_token_id,
                eos_token_id=eos_token_id,
                beam_indices=beam_indices,
3593
                decoder_prompt_len=decoder_prompt_len,
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
            )
            beam_scores = beam_outputs["next_beam_scores"]
            beam_next_tokens = beam_outputs["next_beam_tokens"]
            beam_idx = beam_outputs["next_beam_indices"]

            input_ids = torch.cat([input_ids[beam_idx, :], beam_next_tokens.unsqueeze(-1)], dim=-1)

            model_kwargs = self._update_model_kwargs_for_generation(
                outputs, model_kwargs, is_encoder_decoder=self.config.is_encoder_decoder
            )
3604
            if model_kwargs["past_key_values"] is not None:
3605
3606
3607
                model_kwargs["past_key_values"] = self._temporary_reorder_cache(
                    model_kwargs["past_key_values"], beam_idx
                )
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629

            if return_dict_in_generate and output_scores:
                beam_indices = tuple((beam_indices[beam_idx[i]] + (beam_idx[i],) for i in range(len(beam_indices))))

            # increase cur_len
            cur_len = cur_len + 1

            if beam_scorer.is_done or stopping_criteria(input_ids, scores):
                if not synced_gpus:
                    break
                else:
                    this_peer_finished = True

        sequence_outputs = beam_scorer.finalize(
            input_ids,
            beam_scores,
            next_tokens,
            next_indices,
            pad_token_id=pad_token_id,
            eos_token_id=eos_token_id,
            max_length=stopping_criteria.max_length,
            beam_indices=beam_indices,
3630
            decoder_prompt_len=decoder_prompt_len,
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
        )

        if return_dict_in_generate:
            if not output_scores:
                sequence_outputs["sequence_scores"] = None

            if self.config.is_encoder_decoder:
                return BeamSampleEncoderDecoderOutput(
                    sequences=sequence_outputs["sequences"],
                    sequences_scores=sequence_outputs["sequence_scores"],
                    scores=scores,
                    beam_indices=sequence_outputs["beam_indices"],
                    encoder_attentions=encoder_attentions,
                    encoder_hidden_states=encoder_hidden_states,
                    decoder_attentions=decoder_attentions,
                    cross_attentions=cross_attentions,
                    decoder_hidden_states=decoder_hidden_states,
3648
                    past_key_values=model_kwargs.get("past_key_values"),
3649
3650
3651
3652
3653
3654
3655
3656
3657
                )
            else:
                return BeamSampleDecoderOnlyOutput(
                    sequences=sequence_outputs["sequences"],
                    sequences_scores=sequence_outputs["sequence_scores"],
                    scores=scores,
                    beam_indices=sequence_outputs["beam_indices"],
                    attentions=decoder_attentions,
                    hidden_states=decoder_hidden_states,
3658
                    past_key_values=model_kwargs.get("past_key_values"),
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
                )
        else:
            return sequence_outputs["sequences"]

    def group_beam_search(
        self,
        input_ids: torch.LongTensor,
        beam_scorer: BeamScorer,
        logits_processor: Optional[LogitsProcessorList] = None,
        stopping_criteria: Optional[StoppingCriteriaList] = None,
        max_length: Optional[int] = None,
        pad_token_id: Optional[int] = None,
3671
        eos_token_id: Optional[Union[int, List[int]]] = None,
3672
3673
3674
3675
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        output_scores: Optional[bool] = None,
        return_dict_in_generate: Optional[bool] = None,
3676
        synced_gpus: bool = False,
3677
3678
3679
3680
3681
3682
        **model_kwargs,
    ):
        r"""
        Generates sequences of token ids for models with a language modeling head using **diverse beam search
        decoding** and can be used for text-decoder, text-to-text, speech-to-text, and vision-to-text models.

3683
3684
3685
3686
        <Tip warning={true}>

        In most cases, you do not need to call [`~generation.GenerationMixin.group_beam_search`] directly. Use
        generate() instead. For an overview of generation strategies and code examples, check the [following
3687
        guide](../generation_strategies).
3688
3689
3690

        </Tip>

3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
        Parameters:
            input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
                The sequence used as a prompt for the generation.
            beam_scorer (`BeamScorer`):
                An derived instance of [`BeamScorer`] that defines how beam hypotheses are constructed, stored and
                sorted during generation. For more information, the documentation of [`BeamScorer`] should be read.
            logits_processor (`LogitsProcessorList`, *optional*):
                An instance of [`LogitsProcessorList`]. List of instances of class derived from [`LogitsProcessor`]
                used to modify the prediction scores of the language modeling head applied at each generation step.
            stopping_criteria (`StoppingCriteriaList`, *optional*):
                An instance of [`StoppingCriteriaList`]. List of instances of class derived from [`StoppingCriteria`]
                used to tell if the generation loop should stop.
            max_length (`int`, *optional*, defaults to 20):
                **DEPRECATED**. Use `logits_processor` or `stopping_criteria` directly to cap the number of generated
                tokens. The maximum length of the sequence to be generated.
            pad_token_id (`int`, *optional*):
                The id of the *padding* token.
3708
3709
            eos_token_id (`Union[int, List[int]]`, *optional*):
                The id of the *end-of-sequence* token. Optionally, use a list to set multiple *end-of-sequence* tokens.
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
            output_attentions (`bool`, *optional*, defaults to `False`):
                Whether or not to return the attentions tensors of all attention layers. See `attentions` under
                returned tensors for more details.
            output_hidden_states (`bool`, *optional*, defaults to `False`):
                Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
                for more details.
            output_scores (`bool`, *optional*, defaults to `False`):
                Whether or not to return the prediction scores. See `scores` under returned tensors for more details.
            return_dict_in_generate (`bool`, *optional*, defaults to `False`):
                Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
            synced_gpus (`bool`, *optional*, defaults to `False`):
                Whether to continue running the while loop until max_length (needed for ZeRO stage 3)

            model_kwargs:
                Additional model specific kwargs that will be forwarded to the `forward` function of the model. If
                model is an encoder-decoder model the kwargs should include `encoder_outputs`.

        Return:
            [`~generation.BeamSearchDecoderOnlyOutput`], [`~generation.BeamSearchEncoderDecoderOutput`] or
            `torch.LongTensor`: A `torch.LongTensor` containing the generated tokens (default behaviour) or a
            [`~generation.BeamSearchDecoderOnlyOutput`] if [`~generation.BeamSearchDecoderOnlyOutput`] if
            `model.config.is_encoder_decoder=False` and `return_dict_in_generate=True` or a
            [`~generation.BeamSearchEncoderDecoderOutput`] if `model.config.is_encoder_decoder=True`.

        Examples:

        ```python
        >>> from transformers import (
        ...     AutoTokenizer,
        ...     AutoModelForSeq2SeqLM,
        ...     LogitsProcessorList,
        ...     MinLengthLogitsProcessor,
        ...     HammingDiversityLogitsProcessor,
        ...     BeamSearchScorer,
        ... )
        >>> import torch

        >>> tokenizer = AutoTokenizer.from_pretrained("t5-base")
        >>> model = AutoModelForSeq2SeqLM.from_pretrained("t5-base")

        >>> encoder_input_str = "translate English to German: How old are you?"
        >>> encoder_input_ids = tokenizer(encoder_input_str, return_tensors="pt").input_ids


        >>> # lets run diverse beam search using 6 beams
        >>> num_beams = 6
        >>> # define decoder start token ids
        >>> input_ids = torch.ones((num_beams, 1), device=model.device, dtype=torch.long)
        >>> input_ids = input_ids * model.config.decoder_start_token_id

        >>> # add encoder_outputs to model keyword arguments
        >>> model_kwargs = {
        ...     "encoder_outputs": model.get_encoder()(
        ...         encoder_input_ids.repeat_interleave(num_beams, dim=0), return_dict=True
        ...     )
        ... }

        >>> # instantiate beam scorer
        >>> beam_scorer = BeamSearchScorer(
        ...     batch_size=1,
        ...     max_length=model.config.max_length,
        ...     num_beams=num_beams,
        ...     device=model.device,
        ...     num_beam_groups=3,
        ... )

        >>> # instantiate logits processors
        >>> logits_processor = LogitsProcessorList(
        ...     [
        ...         HammingDiversityLogitsProcessor(5.5, num_beams=6, num_beam_groups=3),
        ...         MinLengthLogitsProcessor(5, eos_token_id=model.config.eos_token_id),
        ...     ]
        ... )

        >>> outputs = model.group_beam_search(
        ...     input_ids, beam_scorer, logits_processor=logits_processor, **model_kwargs
        ... )

        >>> tokenizer.batch_decode(outputs, skip_special_tokens=True)
        ['Wie alt bist du?']
        ```"""
        # init values
        logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList()
        stopping_criteria = stopping_criteria if stopping_criteria is not None else StoppingCriteriaList()
        if max_length is not None:
            warnings.warn(
                "`max_length` is deprecated in this function, use"
3797
                " `stopping_criteria=StoppingCriteriaList([MaxLengthCriteria(max_length=max_length)])` instead.",
3798
3799
3800
                UserWarning,
            )
            stopping_criteria = validate_stopping_criteria(stopping_criteria, max_length)
3801
3802
        pad_token_id = pad_token_id if pad_token_id is not None else self.generation_config.pad_token_id
        eos_token_id = eos_token_id if eos_token_id is not None else self.generation_config.eos_token_id
3803
3804
        if isinstance(eos_token_id, int):
            eos_token_id = [eos_token_id]
3805
3806
3807
3808
        output_scores = output_scores if output_scores is not None else self.generation_config.output_scores
        output_attentions = (
            output_attentions if output_attentions is not None else self.generation_config.output_attentions
        )
3809
        output_hidden_states = (
3810
            output_hidden_states if output_hidden_states is not None else self.generation_config.output_hidden_states
3811
3812
        )
        return_dict_in_generate = (
3813
3814
3815
            return_dict_in_generate
            if return_dict_in_generate is not None
            else self.generation_config.return_dict_in_generate
3816
3817
3818
3819
3820
        )

        num_beams = beam_scorer.num_beams
        num_beam_groups = beam_scorer.num_beam_groups
        num_sub_beams = num_beams // num_beam_groups
3821
        batch_size = len(beam_scorer._beam_hyps) // num_beam_groups
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
        device = input_ids.device

        batch_beam_size, cur_len = input_ids.shape

        if return_dict_in_generate and output_scores:
            beam_indices = [tuple(() for _ in range(num_sub_beams * batch_size)) for _ in range(num_beam_groups)]
        else:
            beam_indices = None

        if num_beams * batch_size != batch_beam_size:
            raise ValueError(
                f"Batch dimension of `input_ids` should be {num_beams * batch_size}, but is {batch_beam_size}."
            )

        # init attention / hidden states / scores tuples
        scores = () if (return_dict_in_generate and output_scores) else None
        decoder_attentions = () if (return_dict_in_generate and output_attentions) else None
        cross_attentions = () if (return_dict_in_generate and output_attentions) else None
        decoder_hidden_states = () if (return_dict_in_generate and output_hidden_states) else None

        # if model is an encoder-decoder, retrieve encoder attention weights and hidden states
        if return_dict_in_generate and self.config.is_encoder_decoder:
            encoder_attentions = model_kwargs["encoder_outputs"].get("attentions") if output_attentions else None
            encoder_hidden_states = (
                model_kwargs["encoder_outputs"].get("hidden_states") if output_hidden_states else None
            )

        # initialise score of first beam of each group with 0 and the rest with -1e9. This ensures that the beams in
        # the same group don't produce same tokens everytime.
        beam_scores = torch.full((batch_size, num_beams), -1e9, dtype=torch.float, device=device)
        beam_scores[:, ::num_sub_beams] = 0
        beam_scores = beam_scores.view((batch_size * num_beams,))

        this_peer_finished = False  # used by synced_gpus only
3856
3857

        decoder_prompt_len = input_ids.shape[-1]  # record the prompt length of decoder
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
        while True:
            if synced_gpus:
                # Under synced_gpus the `forward` call must continue until all gpus complete their sequence.
                # The following logic allows an early break if all peers finished generating their sequence
                this_peer_finished_flag = torch.tensor(0.0 if this_peer_finished else 1.0).to(input_ids.device)
                # send 0.0 if we finished, 1.0 otherwise
                dist.all_reduce(this_peer_finished_flag, op=dist.ReduceOp.SUM)
                # did all peers finish? the reduced sum will be 0.0 then
                if this_peer_finished_flag.item() == 0.0:
                    break

            # predicted tokens in cur_len step
            current_tokens = torch.zeros(batch_size * num_beams, dtype=input_ids.dtype, device=device)

            # indices which will form the beams in the next time step
            reordering_indices = torch.zeros(batch_size * num_beams, dtype=torch.long, device=device)

            # do one decoder step on all beams of all sentences in batch
            model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)
            outputs = self(
                **model_inputs,
                return_dict=True,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
            )

            if synced_gpus and this_peer_finished:
                cur_len = cur_len + 1
                continue  # don't waste resources running the code we don't need

            if output_scores:
                processed_score = torch.zeros_like(outputs.logits[:, -1, :])

            for beam_group_idx in range(num_beam_groups):
                group_start_idx = beam_group_idx * num_sub_beams
                group_end_idx = min(group_start_idx + num_sub_beams, num_beams)
                group_size = group_end_idx - group_start_idx

                # indices of beams of current group among all sentences in batch
                batch_group_indices = []

                for batch_idx in range(batch_size):
                    batch_group_indices.extend(
                        [batch_idx * num_beams + idx for idx in range(group_start_idx, group_end_idx)]
                    )
                group_input_ids = input_ids[batch_group_indices]

                # select outputs of beams of current group only
                next_token_logits = outputs.logits[batch_group_indices, -1, :]

                next_token_scores = nn.functional.log_softmax(
                    next_token_logits, dim=-1
                )  # (batch_size * group_size, vocab_size)
                vocab_size = next_token_scores.shape[-1]

                next_token_scores_processed = logits_processor(
                    group_input_ids, next_token_scores, current_tokens=current_tokens, beam_group_idx=beam_group_idx
                )
                next_token_scores = next_token_scores_processed + beam_scores[batch_group_indices].unsqueeze(-1)
                next_token_scores = next_token_scores.expand_as(next_token_scores_processed)

                if output_scores:
                    processed_score[batch_group_indices] = next_token_scores_processed

                # reshape for beam search
                next_token_scores = next_token_scores.view(batch_size, group_size * vocab_size)

3925
3926
                # Sample 1 + len(eos_token_id) next tokens for each beam so we have at least 1 non eos token per beam.
                n_eos_tokens = len(eos_token_id) if eos_token_id else 0
3927
                next_token_scores, next_tokens = torch.topk(
3928
                    next_token_scores, max(2, 1 + n_eos_tokens) * group_size, dim=1, largest=True, sorted=True
3929
3930
                )

3931
                next_indices = torch.div(next_tokens, vocab_size, rounding_mode="floor")
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
                next_tokens = next_tokens % vocab_size

                # stateless
                process_beam_indices = sum(beam_indices, ()) if beam_indices is not None else None
                beam_outputs = beam_scorer.process(
                    group_input_ids,
                    next_token_scores,
                    next_tokens,
                    next_indices,
                    pad_token_id=pad_token_id,
                    eos_token_id=eos_token_id,
                    beam_indices=process_beam_indices,
3944
                    group_index=beam_group_idx,
3945
                    decoder_prompt_len=decoder_prompt_len,
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
                )
                beam_scores[batch_group_indices] = beam_outputs["next_beam_scores"]
                beam_next_tokens = beam_outputs["next_beam_tokens"]
                beam_idx = beam_outputs["next_beam_indices"]

                if return_dict_in_generate and output_scores:
                    beam_indices[beam_group_idx] = tuple(
                        beam_indices[beam_group_idx][beam_idx[i]] + (beam_idx[i],) for i in range(len(beam_indices[0]))
                    )

                input_ids[batch_group_indices] = group_input_ids[beam_idx]
                group_input_ids = torch.cat([group_input_ids[beam_idx, :], beam_next_tokens.unsqueeze(-1)], dim=-1)
                current_tokens[batch_group_indices] = group_input_ids[:, -1]

                # (beam_idx // group_size) -> batch_idx
                # (beam_idx % group_size) -> offset of idx inside the group
                reordering_indices[batch_group_indices] = (
3963
3964
3965
                    num_beams * torch.div(beam_idx, group_size, rounding_mode="floor")
                    + group_start_idx
                    + (beam_idx % group_size)
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
                )

            # Store scores, attentions and hidden_states when required
            if return_dict_in_generate:
                if output_scores:
                    scores += (processed_score,)
                if output_attentions:
                    decoder_attentions += (
                        (outputs.decoder_attentions,) if self.config.is_encoder_decoder else (outputs.attentions,)
                    )
                    if self.config.is_encoder_decoder:
                        cross_attentions += (outputs.cross_attentions,)

                if output_hidden_states:
                    decoder_hidden_states += (
                        (outputs.decoder_hidden_states,)
                        if self.config.is_encoder_decoder
                        else (outputs.hidden_states,)
                    )

            input_ids = torch.cat([input_ids, current_tokens.unsqueeze(-1)], dim=-1)

            model_kwargs = self._update_model_kwargs_for_generation(
                outputs, model_kwargs, is_encoder_decoder=self.config.is_encoder_decoder
            )
3991
            if model_kwargs["past_key_values"] is not None:
3992
                model_kwargs["past_key_values"] = self._temporary_reorder_cache(
3993
3994
                    model_kwargs["past_key_values"], reordering_indices
                )
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014

            # increase cur_len
            cur_len = cur_len + 1

            if beam_scorer.is_done or stopping_criteria(input_ids, scores):
                if not synced_gpus:
                    break
                else:
                    this_peer_finished = True

        final_beam_indices = sum(beam_indices, ()) if beam_indices is not None else None
        sequence_outputs = beam_scorer.finalize(
            input_ids,
            beam_scores,
            next_tokens,
            next_indices,
            pad_token_id=pad_token_id,
            eos_token_id=eos_token_id,
            max_length=stopping_criteria.max_length,
            beam_indices=final_beam_indices,
4015
            decoder_prompt_len=decoder_prompt_len,
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
        )

        if return_dict_in_generate:
            if not output_scores:
                sequence_outputs["sequence_scores"] = None

            if self.config.is_encoder_decoder:
                return BeamSearchEncoderDecoderOutput(
                    sequences=sequence_outputs["sequences"],
                    sequences_scores=sequence_outputs["sequence_scores"],
                    scores=scores,
                    beam_indices=sequence_outputs["beam_indices"],
                    encoder_attentions=encoder_attentions,
                    encoder_hidden_states=encoder_hidden_states,
                    decoder_attentions=decoder_attentions,
                    cross_attentions=cross_attentions,
                    decoder_hidden_states=decoder_hidden_states,
4033
                    past_key_values=model_kwargs.get("past_key_values"),
4034
4035
4036
4037
4038
4039
4040
4041
4042
                )
            else:
                return BeamSearchDecoderOnlyOutput(
                    sequences=sequence_outputs["sequences"],
                    sequences_scores=sequence_outputs["sequence_scores"],
                    scores=scores,
                    beam_indices=sequence_outputs["beam_indices"],
                    attentions=decoder_attentions,
                    hidden_states=decoder_hidden_states,
4043
                    past_key_values=model_kwargs.get("past_key_values"),
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
                )
        else:
            return sequence_outputs["sequences"]

    def constrained_beam_search(
        self,
        input_ids: torch.LongTensor,
        constrained_beam_scorer: ConstrainedBeamSearchScorer,
        logits_processor: Optional[LogitsProcessorList] = None,
        stopping_criteria: Optional[StoppingCriteriaList] = None,
        max_length: Optional[int] = None,
        pad_token_id: Optional[int] = None,
4056
        eos_token_id: Optional[Union[int, List[int]]] = None,
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        output_scores: Optional[bool] = None,
        return_dict_in_generate: Optional[bool] = None,
        synced_gpus: Optional[bool] = None,
        **model_kwargs,
    ) -> Union[BeamSearchOutput, torch.LongTensor]:
        r"""
        Generates sequences of token ids for models with a language modeling head using **constrained beam search
        decoding** and can be used for text-decoder, text-to-text, speech-to-text, and vision-to-text models.

4068
4069
4070
4071
        <Tip warning={true}>

        In most cases, you do not need to call [`~generation.GenerationMixin.constrained_beam_search`] directly. Use
        generate() instead. For an overview of generation strategies and code examples, check the [following
4072
        guide](../generation_strategies).
4073
4074
4075

        </Tip>

4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
        Parameters:
            input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
                The sequence used as a prompt for the generation.
            constrained_beam_scorer (`ConstrainedBeamSearchScorer`):
                A derived instance of [`BeamScorer`] that defines how beam hypotheses are constructed, stored and
                sorted during generation, while satisfying a list of positive constraints. For more information, the
                documentation of [`ConstrainedBeamSearchScorer`] should be read.
            logits_processor (`LogitsProcessorList`, *optional*):
                An instance of [`LogitsProcessorList`]. List of instances of class derived from [`LogitsProcessor`]
                used to modify the prediction scores of the language modeling head applied at each generation step.
            stopping_criteria (`StoppingCriteriaList`, *optional*):
                An instance of [`StoppingCriteriaList`]. List of instances of class derived from [`StoppingCriteria`]
                used to tell if the generation loop should stop.
            logits_warper (`LogitsProcessorList`, *optional*):
                An instance of [`LogitsProcessorList`]. List of instances of class derived from [`LogitsWarper`] used
                to warp the prediction score distribution of the language modeling head applied before multinomial
                sampling at each generation step.
            max_length (`int`, *optional*, defaults to 20):
                **DEPRECATED**. Use `logits_processor` or `stopping_criteria` directly to cap the number of generated
                tokens. The maximum length of the sequence to be generated.
            pad_token_id (`int`, *optional*):
                The id of the *padding* token.
4098
4099
            eos_token_id (`Union[int, List[int]]`, *optional*):
                The id of the *end-of-sequence* token. Optionally, use a list to set multiple *end-of-sequence* tokens.
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
            output_attentions (`bool`, *optional*, defaults to `False`):
                Whether or not to return the attentions tensors of all attention layers. See `attentions` under
                returned tensors for more details.
            output_hidden_states (`bool`, *optional*, defaults to `False`):
                Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
                for more details.
            output_scores (`bool`, *optional*, defaults to `False`):
                Whether or not to return the prediction scores. See `scores` under returned tensors for more details.
            return_dict_in_generate (`bool`, *optional*, defaults to `False`):
                Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
            synced_gpus (`bool`, *optional*, defaults to `False`):
                Whether to continue running the while loop until max_length (needed for ZeRO stage 3)
            model_kwargs:
                Additional model specific kwargs will be forwarded to the `forward` function of the model. If model is
                an encoder-decoder model the kwargs should include `encoder_outputs`.

        Return:
            [`generation.BeamSearchDecoderOnlyOutput`], [`~generation.BeamSearchEncoderDecoderOutput`] or
            `torch.LongTensor`: A `torch.LongTensor` containing the generated tokens (default behaviour) or a
            [`~generation.BeamSearchDecoderOnlyOutput`] if `model.config.is_encoder_decoder=False` and
            `return_dict_in_generate=True` or a [`~generation.BeamSearchEncoderDecoderOutput`] if
            `model.config.is_encoder_decoder=True`.


        Examples:

        ```python
        >>> from transformers import (
        ...     AutoTokenizer,
        ...     AutoModelForSeq2SeqLM,
        ...     LogitsProcessorList,
        ...     MinLengthLogitsProcessor,
        ...     ConstrainedBeamSearchScorer,
        ...     PhrasalConstraint,
        ... )
        >>> import torch

        >>> tokenizer = AutoTokenizer.from_pretrained("t5-base")
        >>> model = AutoModelForSeq2SeqLM.from_pretrained("t5-base")

        >>> encoder_input_str = "translate English to German: How old are you?"
        >>> encoder_input_ids = tokenizer(encoder_input_str, return_tensors="pt").input_ids


        >>> # lets run beam search using 3 beams
        >>> num_beams = 3
        >>> # define decoder start token ids
        >>> input_ids = torch.ones((num_beams, 1), device=model.device, dtype=torch.long)
        >>> input_ids = input_ids * model.config.decoder_start_token_id

        >>> # add encoder_outputs to model keyword arguments
        >>> model_kwargs = {
        ...     "encoder_outputs": model.get_encoder()(
        ...         encoder_input_ids.repeat_interleave(num_beams, dim=0), return_dict=True
        ...     )
        ... }

        >>> constraint_str = "Sie"
        >>> constraint_token_ids = tokenizer.encode(constraint_str)[:-1]  # slice to remove eos token
        >>> constraints = [PhrasalConstraint(token_ids=constraint_token_ids)]


        >>> # instantiate beam scorer
        >>> beam_scorer = ConstrainedBeamSearchScorer(
        ...     batch_size=1, num_beams=num_beams, device=model.device, constraints=constraints
        ... )

        >>> # instantiate logits processors
        >>> logits_processor = LogitsProcessorList(
        ...     [
        ...         MinLengthLogitsProcessor(5, eos_token_id=model.config.eos_token_id),
        ...     ]
        ... )

        >>> outputs = model.constrained_beam_search(
        ...     input_ids, beam_scorer, constraints=constraints, logits_processor=logits_processor, **model_kwargs
        ... )

        >>> tokenizer.batch_decode(outputs, skip_special_tokens=True)
        ['Wie alt sind Sie?']
        ```"""
        # init values
        logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList()
        stopping_criteria = stopping_criteria if stopping_criteria is not None else StoppingCriteriaList()
        if max_length is not None:
            warnings.warn(
                "`max_length` is deprecated in this function, use"
4187
                " `stopping_criteria=StoppingCriteriaList([MaxLengthCriteria(max_length=max_length)])` instead.",
4188
4189
4190
4191
4192
                UserWarning,
            )
            stopping_criteria = validate_stopping_criteria(stopping_criteria, max_length)
        if len(stopping_criteria) == 0:
            warnings.warn("You don't have defined any stopping_criteria, this will likely loop forever", UserWarning)
4193
4194
        pad_token_id = pad_token_id if pad_token_id is not None else self.generation_config.pad_token_id
        eos_token_id = eos_token_id if eos_token_id is not None else self.generation_config.eos_token_id
4195
4196
        if isinstance(eos_token_id, int):
            eos_token_id = [eos_token_id]
4197
4198
4199
4200
        output_scores = output_scores if output_scores is not None else self.generation_config.output_scores
        output_attentions = (
            output_attentions if output_attentions is not None else self.generation_config.output_attentions
        )
4201
        output_hidden_states = (
4202
            output_hidden_states if output_hidden_states is not None else self.generation_config.output_hidden_states
4203
4204
        )
        return_dict_in_generate = (
4205
4206
4207
            return_dict_in_generate
            if return_dict_in_generate is not None
            else self.generation_config.return_dict_in_generate
4208
4209
        )

4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
        batch_size = len(constrained_beam_scorer._beam_hyps)
        num_beams = constrained_beam_scorer.num_beams

        batch_beam_size, cur_len = input_ids.shape

        if num_beams * batch_size != batch_beam_size:
            raise ValueError(
                f"Batch dimension of `input_ids` should be {num_beams * batch_size}, but is {batch_beam_size}."
            )

4220
4221
        # init attention / hidden states / scores tuples
        scores = () if (return_dict_in_generate and output_scores) else None
4222
4223
4224
        beam_indices = (
            tuple(() for _ in range(batch_beam_size)) if (return_dict_in_generate and output_scores) else None
        )
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
        decoder_attentions = () if (return_dict_in_generate and output_attentions) else None
        cross_attentions = () if (return_dict_in_generate and output_attentions) else None
        decoder_hidden_states = () if (return_dict_in_generate and output_hidden_states) else None

        # if model is an encoder-decoder, retrieve encoder attention weights and hidden states
        if return_dict_in_generate and self.config.is_encoder_decoder:
            encoder_attentions = model_kwargs["encoder_outputs"].get("attentions") if output_attentions else None
            encoder_hidden_states = (
                model_kwargs["encoder_outputs"].get("hidden_states") if output_hidden_states else None
            )

        # initialise score of first beam with 0 and the rest with -1e9. This makes sure that only tokens
        # of the first beam are considered to avoid sampling the exact same tokens across all beams.
        beam_scores = torch.zeros((batch_size, num_beams), dtype=torch.float, device=input_ids.device)
        beam_scores[:, 1:] = -1e9
        beam_scores = beam_scores.view((batch_size * num_beams,))

        this_peer_finished = False  # used by synced_gpus only
4243
4244

        decoder_prompt_len = input_ids.shape[-1]  # record the prompt length of decoder
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
        while True:
            if synced_gpus:
                # Under synced_gpus the `forward` call must continue until all gpus complete their sequence.
                # The following logic allows an early break if all peers finished generating their sequence
                this_peer_finished_flag = torch.tensor(0.0 if this_peer_finished else 1.0).to(input_ids.device)
                # send 0.0 if we finished, 1.0 otherwise
                dist.all_reduce(this_peer_finished_flag, op=dist.ReduceOp.SUM)
                # did all peers finish? the reduced sum will be 0.0 then
                if this_peer_finished_flag.item() == 0.0:
                    break

            model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)

            outputs = self(
                **model_inputs,
                return_dict=True,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
            )

            if synced_gpus and this_peer_finished:
                cur_len = cur_len + 1
                continue  # don't waste resources running the code we don't need

            next_token_logits = outputs.logits[:, -1, :]
            next_token_scores = nn.functional.log_softmax(
                next_token_logits, dim=-1
            )  # (batch_size * num_beams, vocab_size)

            next_token_scores_processed = logits_processor(input_ids, next_token_scores)

4276
4277
4278
            next_token_scores = next_token_scores_processed + beam_scores[:, None].expand_as(
                next_token_scores_processed
            )
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303

            scores_for_all_vocab = next_token_scores.clone()

            # Store scores, attentions and hidden_states when required
            if return_dict_in_generate:
                if output_scores:
                    scores += (next_token_scores,)
                if output_attentions:
                    decoder_attentions += (
                        (outputs.decoder_attentions,) if self.config.is_encoder_decoder else (outputs.attentions,)
                    )
                    if self.config.is_encoder_decoder:
                        cross_attentions += (outputs.cross_attentions,)

                if output_hidden_states:
                    decoder_hidden_states += (
                        (outputs.decoder_hidden_states,)
                        if self.config.is_encoder_decoder
                        else (outputs.hidden_states,)
                    )

            # reshape for beam search
            vocab_size = next_token_scores.shape[-1]
            next_token_scores = next_token_scores.view(batch_size, num_beams * vocab_size)

4304
4305
            # Sample 1 + len(eos_token_id) next tokens for each beam so we have at least 1 non eos token per beam.
            n_eos_tokens = len(eos_token_id) if eos_token_id else 0
4306
            next_token_scores, next_tokens = torch.topk(
4307
                next_token_scores, max(2, 1 + n_eos_tokens) * num_beams, dim=1, largest=True, sorted=True
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
            )

            next_indices = (next_tokens / vocab_size).long()
            next_tokens = next_tokens % vocab_size

            # stateless
            beam_outputs = constrained_beam_scorer.process(
                input_ids,
                next_token_scores,
                next_tokens,
                next_indices,
                scores_for_all_vocab,
                pad_token_id=pad_token_id,
                eos_token_id=eos_token_id,
4322
                beam_indices=beam_indices,
4323
                decoder_prompt_len=decoder_prompt_len,
4324
4325
4326
4327
4328
4329
4330
4331
4332
            )
            beam_scores = beam_outputs["next_beam_scores"]
            beam_next_tokens = beam_outputs["next_beam_tokens"]
            beam_idx = beam_outputs["next_beam_indices"]

            input_ids = torch.cat([input_ids[beam_idx, :], beam_next_tokens.unsqueeze(-1)], dim=-1)
            model_kwargs = self._update_model_kwargs_for_generation(
                outputs, model_kwargs, is_encoder_decoder=self.config.is_encoder_decoder
            )
4333
            if model_kwargs["past_key_values"] is not None:
4334
4335
4336
                model_kwargs["past_key_values"] = self._temporary_reorder_cache(
                    model_kwargs["past_key_values"], beam_idx
                )
4337

4338
4339
4340
            if return_dict_in_generate and output_scores:
                beam_indices = tuple((beam_indices[beam_idx[i]] + (beam_idx[i],) for i in range(len(beam_indices))))

4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
            # increase cur_len
            cur_len = cur_len + 1

            if constrained_beam_scorer.is_done or stopping_criteria(input_ids, scores):
                if not synced_gpus:
                    break
                else:
                    this_peer_finished = True

        sequence_outputs = constrained_beam_scorer.finalize(
            input_ids,
            beam_scores,
            next_tokens,
            next_indices,
            pad_token_id=pad_token_id,
            eos_token_id=eos_token_id,
            max_length=stopping_criteria.max_length,
4358
            beam_indices=beam_indices,
4359
            decoder_prompt_len=decoder_prompt_len,
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
        )

        if return_dict_in_generate:
            if not output_scores:
                sequence_outputs["sequence_scores"] = None
            if self.config.is_encoder_decoder:
                return BeamSearchEncoderDecoderOutput(
                    sequences=sequence_outputs["sequences"],
                    sequences_scores=sequence_outputs["sequence_scores"],
                    scores=scores,
4370
                    beam_indices=sequence_outputs["beam_indices"],
4371
4372
4373
4374
4375
                    encoder_attentions=encoder_attentions,
                    encoder_hidden_states=encoder_hidden_states,
                    decoder_attentions=decoder_attentions,
                    cross_attentions=cross_attentions,
                    decoder_hidden_states=decoder_hidden_states,
4376
                    past_key_values=model_kwargs.get("past_key_values"),
4377
4378
4379
4380
4381
4382
                )
            else:
                return BeamSearchDecoderOnlyOutput(
                    sequences=sequence_outputs["sequences"],
                    sequences_scores=sequence_outputs["sequence_scores"],
                    scores=scores,
4383
                    beam_indices=sequence_outputs["beam_indices"],
4384
4385
                    attentions=decoder_attentions,
                    hidden_states=decoder_hidden_states,
4386
                    past_key_values=model_kwargs.get("past_key_values"),
4387
4388
4389
4390
                )
        else:
            return sequence_outputs["sequences"]

4391
    def assisted_decoding(
4392
4393
        self,
        input_ids: torch.LongTensor,
4394
4395
        assistant_model: Optional["PreTrainedModel"] = None,
        candidate_generator: Optional["CandidateGenerator"] = None,
4396
        do_sample: bool = False,
4397
        logits_processor: Optional[LogitsProcessorList] = None,
4398
        logits_warper: Optional[LogitsProcessorList] = None,
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
        stopping_criteria: Optional[StoppingCriteriaList] = None,
        pad_token_id: Optional[int] = None,
        eos_token_id: Optional[Union[int, List[int]]] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        output_scores: Optional[bool] = None,
        return_dict_in_generate: Optional[bool] = None,
        synced_gpus: bool = False,
        streamer: Optional["BaseStreamer"] = None,
        **model_kwargs,
    ):
        r"""
4411
        Generates sequences of token ids for models with a language modeling head using **greedy decoding** or
4412
4413
4414
        **sample** (depending on `do_sample`), assisted by candidate sequences. Assisted generation is an example of a
        candidate decoding strategy. Can be used for text-decoder, text-to-text, speech-to-text, and vision-to-text
        models.
4415
4416
4417

        <Tip warning={true}>

4418
        In most cases, you do not need to call [`~generation.GenerationMixin.candidate_decoding`] directly. Use
4419
4420
4421
4422
4423
4424
4425
4426
        generate() instead. For an overview of generation strategies and code examples, check the [following
        guide](../generation_strategies).

        </Tip>

        Parameters:
            input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
                The sequence used as a prompt for the generation.
4427
4428
4429
            candidate_generator (`CandidateGenerator`, *optional*):
                A derived instance of [`CandidateGenerator`] that defines how candidate sequences are generated. For
                more information, the documentation of [`CandidateGenerator`] should be read. Only one of `assistant_model` or `candidate_generator` should be passed as input to this function.
4430
4431
4432
4433
4434
            assistant_model (`PreTrainedModel`, *optional*):
                An assistant model that can be used to accelerate generation. The assistant model must have the exact
                same tokenizer. The acceleration is achieved when forecasting candidate tokens with the assistent model
                is much faster than running generation with the model you're calling generate from. As such, the
                assistant model should be much smaller.
4435
4436
            do_sample (`bool`, *optional*, defaults to `False`):
                Whether or not to use sampling ; use greedy decoding otherwise.
4437
4438
4439
            logits_processor (`LogitsProcessorList`, *optional*):
                An instance of [`LogitsProcessorList`]. List of instances of class derived from [`LogitsProcessor`]
                used to modify the prediction scores of the language modeling head applied at each generation step.
4440
4441
4442
4443
            logits_warper (`LogitsProcessorList`, *optional*):
                An instance of [`LogitsProcessorList`]. List of instances of class derived from [`LogitsWarper`] used
                to warp the prediction score distribution of the language modeling head applied before multinomial
                sampling at each generation step.
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
            stopping_criteria (`StoppingCriteriaList`, *optional*):
                An instance of [`StoppingCriteriaList`]. List of instances of class derived from [`StoppingCriteria`]
                used to tell if the generation loop should stop.
            pad_token_id (`int`, *optional*):
                The id of the *padding* token.
            eos_token_id (`Union[int, List[int]]`, *optional*):
                The id of the *end-of-sequence* token. Optionally, use a list to set multiple *end-of-sequence* tokens.
            output_attentions (`bool`, *optional*, defaults to `False`):
                Whether or not to return the attentions tensors of all attention layers. See `attentions` under
                returned tensors for more details.
            output_hidden_states (`bool`, *optional*, defaults to `False`):
                Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
                for more details.
            output_scores (`bool`, *optional*, defaults to `False`):
                Whether or not to return the prediction scores. See `scores` under returned tensors for more details.
            return_dict_in_generate (`bool`, *optional*, defaults to `False`):
                Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
            synced_gpus (`bool`, *optional*, defaults to `False`):
                Whether to continue running the while loop until max_length (needed for ZeRO stage 3)
            streamer (`BaseStreamer`, *optional*):
                Streamer object that will be used to stream the generated sequences. Generated tokens are passed
                through `streamer.put(token_ids)` and the streamer is responsible for any further processing.
            model_kwargs:
                Additional model specific keyword arguments will be forwarded to the `forward` function of the model.
                If model is an encoder-decoder model the kwargs should include `encoder_outputs`.

        Return:
            [`~generation.GreedySearchDecoderOnlyOutput`], [`~generation.GreedySearchEncoderDecoderOutput`] or
            `torch.LongTensor`: A `torch.LongTensor` containing the generated tokens (default behaviour) or a
            [`~generation.GreedySearchDecoderOnlyOutput`] if `model.config.is_encoder_decoder=False` and
            `return_dict_in_generate=True` or a [`~generation.GreedySearchEncoderDecoderOutput`] if
            `model.config.is_encoder_decoder=True`.

        Examples:

        ```python
        >>> from transformers import (
        ...     AutoTokenizer,
        ...     AutoModelForCausalLM,
        ...     LogitsProcessorList,
        ...     MinLengthLogitsProcessor,
        ...     StoppingCriteriaList,
        ...     MaxLengthCriteria,
        ... )

        >>> tokenizer = AutoTokenizer.from_pretrained("gpt2")
        >>> model = AutoModelForCausalLM.from_pretrained("gpt2")
        >>> assistant_model = AutoModelForCausalLM.from_pretrained("distilgpt2")
        >>> # set pad_token_id to eos_token_id because GPT2 does not have a PAD token
        >>> model.generation_config.pad_token_id = model.generation_config.eos_token_id
        >>> input_prompt = "It might be possible to"
        >>> input_ids = tokenizer(input_prompt, return_tensors="pt").input_ids
        >>> # instantiate logits processors
        >>> logits_processor = LogitsProcessorList(
        ...     [
        ...         MinLengthLogitsProcessor(10, eos_token_id=model.generation_config.eos_token_id),
        ...     ]
        ... )
        >>> stopping_criteria = StoppingCriteriaList([MaxLengthCriteria(max_length=20)])
4503
        >>> outputs = model.assisted_decoding(
4504
4505
4506
4507
4508
4509
4510
4511
        ...     input_ids,
        ...     assistant_model=assistant_model,
        ...     logits_processor=logits_processor,
        ...     stopping_criteria=stopping_criteria,
        ... )
        >>> tokenizer.batch_decode(outputs, skip_special_tokens=True)
        ["It might be possible to get a better understanding of the nature of the problem, but it's not"]
        ```"""
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
        # handling deprecated arguments
        if (assistant_model is None) == (candidate_generator is None):
            raise ValueError("One (and only one) of `assistant_model` and `candidate_generator` should be defined.")

        if assistant_model is not None:
            candidate_generator = AssistedCandidateGenerator(
                input_ids=input_ids,
                assistant_model=assistant_model,
                logits_processor=logits_processor,
                model_kwargs=model_kwargs,
                eos_token_id=eos_token_id,
            )
4524
            warnings.warn(
4525
4526
                "Passing `assistant_model` to `assisted_decoding` is deprecated and will be removed in v4.38. "
                "Pass the `candidate_generator` argument instead.",
4527
4528
                FutureWarning,
            )
4529
4530
4531

        # init values
        logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList()
4532
        logits_warper = logits_warper if logits_warper is not None else LogitsProcessorList()
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
        stopping_criteria = stopping_criteria if stopping_criteria is not None else StoppingCriteriaList()
        pad_token_id = pad_token_id if pad_token_id is not None else self.generation_config.pad_token_id
        eos_token_id = eos_token_id if eos_token_id is not None else self.generation_config.eos_token_id
        if eos_token_id is not None and pad_token_id is None:
            raise ValueError("If `eos_token_id` is defined, make sure that `pad_token_id` is defined.")
        if isinstance(eos_token_id, int):
            eos_token_id = [eos_token_id]
        eos_token_id_tensor = torch.tensor(eos_token_id).to(input_ids.device) if eos_token_id is not None else None
        output_scores = output_scores if output_scores is not None else self.generation_config.output_scores
        output_attentions = (
            output_attentions if output_attentions is not None else self.generation_config.output_attentions
        )
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.generation_config.output_hidden_states
        )
        return_dict_in_generate = (
            return_dict_in_generate
            if return_dict_in_generate is not None
            else self.generation_config.return_dict_in_generate
        )

        # init attention / hidden states / scores tuples
        scores = () if (return_dict_in_generate and output_scores) else None
        decoder_attentions = () if (return_dict_in_generate and output_attentions) else None
        cross_attentions = () if (return_dict_in_generate and output_attentions) else None
        decoder_hidden_states = () if (return_dict_in_generate and output_hidden_states) else None

        # if model is an encoder-decoder, retrieve encoder attention weights and hidden states
        if return_dict_in_generate and self.config.is_encoder_decoder:
            encoder_attentions = model_kwargs["encoder_outputs"].get("attentions") if output_attentions else None
            encoder_hidden_states = (
                model_kwargs["encoder_outputs"].get("hidden_states") if output_hidden_states else None
            )

        # keep track of which sequences are already finished
        unfinished_sequences = input_ids.new(input_ids.shape[0]).fill_(1)

4570
4571
4572
        # other auxiliary variables
        max_len = stopping_criteria[0].max_length

4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
        this_peer_finished = False  # used by synced_gpus only
        while True:
            if synced_gpus:
                # Under synced_gpus the `forward` call must continue until all gpus complete their sequence.
                # The following logic allows an early break if all peers finished generating their sequence
                this_peer_finished_flag = torch.tensor(0.0 if this_peer_finished else 1.0).to(input_ids.device)
                # send 0.0 if we finished, 1.0 otherwise
                dist.all_reduce(this_peer_finished_flag, op=dist.ReduceOp.SUM)
                # did all peers finish? the reduced sum will be 0.0 then
                if this_peer_finished_flag.item() == 0.0:
                    break

            cur_len = input_ids.shape[-1]

4587
            #  1. Fetch candidate sequences from a `CandidateGenerator`
4588
            candidate_input_ids, candidate_logits = candidate_generator.get_candidates(input_ids)
4589
            candidate_length = candidate_input_ids.shape[1] - input_ids.shape[1]
4590
4591
4592
4593
4594
4595
4596
            last_assistant_token_is_eos = (
                ~candidate_input_ids[:, -1]
                .tile(eos_token_id_tensor.shape[0], 1)
                .ne(eos_token_id_tensor.unsqueeze(1))
                .prod(dim=0)
                .bool()
            )
4597
4598

            # 2. Use the original model to obtain the next token logits given the candidate sequence. We obtain
4599
4600
            # `candidate_length + 1` relevant logits from this process: in the event that all candidates are correct,
            # we use this forward pass to also pick the subsequent logits in the original model.
4601

4602
4603
            # 2.1. Prepare the model inputs
            candidate_kwargs = copy.copy(model_kwargs)
4604
4605
4606
4607
            candidate_kwargs = _prepare_attention_mask(
                candidate_kwargs, candidate_input_ids.shape[1], self.config.is_encoder_decoder
            )
            candidate_kwargs = _prepare_token_type_ids(candidate_kwargs, candidate_input_ids.shape[1])
4608
4609
4610
4611
4612
4613
4614
4615
4616

            model_inputs = self.prepare_inputs_for_generation(candidate_input_ids, **candidate_kwargs)

            # 2.2. Run a forward pass on the candidate sequence
            outputs = self(
                **model_inputs,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
            )
4617

4618
            # 2.3. Process the new logits
4619
4620
            new_logits = outputs.logits[:, -candidate_length - 1 :]  # excludes the input prompt if present
            if len(logits_processor) > 0:
4621
                for i in range(candidate_length + 1):
4622
                    new_logits[:, i, :] = logits_processor(candidate_input_ids[:, : cur_len + i], new_logits[:, i, :])
4623
            if len(logits_warper) > 0:
4624
                for i in range(candidate_length + 1):
4625
4626
                    new_logits[:, i, :] = logits_warper(candidate_input_ids[:, : cur_len + i], new_logits[:, i, :])

4627
4628
4629
4630
4631
            # 3. Select the accepted tokens. There are two possible cases:
            # Case 1: `do_sample=True` and we have logits for the candidates (originally from speculative decoding)
            # 👉 Apply algorithm 1 from the speculative decoding paper (https://arxiv.org/pdf/2211.17192.pdf).
            max_matches = max_len - cur_len - 1
            if do_sample and candidate_logits is not None:
4632
                valid_tokens, n_matches = _speculative_sampling(
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
                    candidate_input_ids,
                    candidate_logits,
                    candidate_length,
                    new_logits,
                    last_assistant_token_is_eos,
                    max_matches,
                )

            # Case 2: all other cases (originally from assisted generation) 👉 Compare the tokens selected from the
            # original model logits with the candidate tokens. We can keep the candidate tokens until the first
            # mismatch, or until the max length is reached.
4644
            else:
4645
4646
4647
4648
4649
                if do_sample:
                    probs = new_logits.softmax(dim=-1)
                    selected_tokens = torch.multinomial(probs[0, :, :], num_samples=1).squeeze(1)[None, :]
                else:
                    selected_tokens = new_logits.argmax(dim=-1)
4650

4651
4652
                candidate_new_tokens = candidate_input_ids[:, -candidate_length:]
                n_matches = ((~(candidate_new_tokens == selected_tokens[:, :-1])).cumsum(dim=-1) < 1).sum()
4653

4654
4655
4656
4657
                # Ensure we don't generate beyond max_len or an EOS token
                if last_assistant_token_is_eos and n_matches == candidate_length:
                    n_matches -= 1
                n_matches = min(n_matches, max_matches)
4658
                valid_tokens = selected_tokens[:, : n_matches + 1]
4659
4660

            # 4. Update variables according to the number of matching assistant tokens. Remember: the token generated
4661
4662
4663
            # by the model after the last candidate match is also valid, as it is generated from a correct sequence.
            # Because of this last token, assisted generation search reduces to a normal greedy search/sample if there
            # is no match.
4664

4665
            # 4.1. Get the valid continuation, after the matching tokens
4666
            input_ids = torch.cat((input_ids, valid_tokens), dim=-1)
4667
            if streamer is not None:
4668
4669
                streamer.put(valid_tokens.cpu())
            new_cur_len = input_ids.shape[-1]
4670

4671
            # 4.2. Discard past key values relative to unused assistant tokens
4672
4673
            new_cache_size = new_cur_len - 1
            outputs.past_key_values = _crop_past_key_values(self, outputs.past_key_values, new_cache_size)
4674

4675
            # 5. Update the candidate generation strategy if needed
4676
4677
            candidate_generator.update_candidate_strategy(input_ids, new_logits, n_matches)

4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
            if synced_gpus and this_peer_finished:
                continue  # don't waste resources running the code we don't need

            # Store scores, attentions and hidden_states when required
            # Assistant: modified to append one tuple element per token, as in the other generation methods.
            if return_dict_in_generate:
                if output_scores:
                    scores += tuple(new_logits[:, i, :] for i in range(n_matches + 1))

                if "past_key_values" not in model_kwargs:
4688
                    added_len = new_cur_len
4689
                else:
4690
                    added_len = n_matches + 1
4691
4692
4693
4694

                if output_attentions:
                    if self.config.is_encoder_decoder:
                        cross_attentions = _split_model_outputs(
4695
                            cross_attentions, outputs.cross_attentions, cur_len, added_len
4696
4697
4698
4699
                        )
                        decoder_attentions = _split_model_outputs(
                            decoder_attentions,
                            outputs.decoder_attentions,
4700
                            cur_len,
4701
                            added_len,
4702
4703
4704
4705
4706
4707
                            is_decoder_attention=True,
                        )
                    else:
                        decoder_attentions = _split_model_outputs(
                            decoder_attentions,
                            outputs.attentions,
4708
                            cur_len,
4709
                            added_len,
4710
4711
4712
4713
4714
                            is_decoder_attention=True,
                        )
                if output_hidden_states:
                    if self.config.is_encoder_decoder:
                        decoder_hidden_states = _split_model_outputs(
4715
                            decoder_hidden_states, outputs.decoder_hidden_states, cur_len, added_len
4716
4717
4718
                        )
                    else:
                        decoder_hidden_states = _split_model_outputs(
4719
                            decoder_hidden_states, outputs.hidden_states, cur_len, added_len
4720
4721
4722
4723
4724
4725
4726
4727
4728
                        )

            model_kwargs = self._update_model_kwargs_for_generation(
                outputs, model_kwargs, is_encoder_decoder=self.config.is_encoder_decoder
            )

            # if eos_token was found in one sentence, set sentence to finished
            if eos_token_id_tensor is not None:
                unfinished_sequences = unfinished_sequences.mul(
4729
4730
4731
4732
                    input_ids[:, -1]
                    .tile(eos_token_id_tensor.shape[0], 1)
                    .ne(eos_token_id_tensor.unsqueeze(1))
                    .prod(dim=0)
4733
4734
                )

4735
4736
                # stop when each sentence is finished
                if unfinished_sequences.max() == 0:
4737
4738
                    this_peer_finished = True

4739
4740
4741
4742
4743
4744
4745
            # stop if we exceed the maximum length
            if stopping_criteria(input_ids, scores):
                this_peer_finished = True

            if this_peer_finished and not synced_gpus:
                break

4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
        if streamer is not None:
            streamer.end()

        if return_dict_in_generate:
            if self.config.is_encoder_decoder:
                return GreedySearchEncoderDecoderOutput(
                    sequences=input_ids,
                    scores=scores,
                    encoder_attentions=encoder_attentions,
                    encoder_hidden_states=encoder_hidden_states,
                    decoder_attentions=decoder_attentions,
                    cross_attentions=cross_attentions,
                    decoder_hidden_states=decoder_hidden_states,
4759
                    past_key_values=model_kwargs.get("past_key_values"),
4760
4761
4762
4763
4764
4765
4766
                )
            else:
                return GreedySearchDecoderOnlyOutput(
                    sequences=input_ids,
                    scores=scores,
                    attentions=decoder_attentions,
                    hidden_states=decoder_hidden_states,
4767
                    past_key_values=model_kwargs.get("past_key_values"),
4768
4769
4770
4771
4772
                )
        else:
            return input_ids


4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
def _speculative_sampling(
    candidate_input_ids,
    candidate_logits,
    candidate_length,
    new_logits,
    last_assistant_token_is_eos,
    max_matches,
):
    """
    Applies sampling as in the speculative decoding paper (https://arxiv.org/pdf/2211.17192.pdf, algorithm 1). Returns
4783
    the selected tokens, as well as the number of candidate matches.
4784
4785
4786
4787
4788
4789

    NOTE: Unless otherwise stated, the variable names match those in the paper.
    """
    # Gets the probabilities from the logits. q_i and p_i denote the assistant and model probabilities of the tokens
    # selected by the assistant, respectively.
    q = candidate_logits.softmax(dim=-1)
4790
    q_i = q[:, torch.arange(candidate_length), candidate_input_ids[:, -candidate_length:]].squeeze(0, 1)
4791
    p = new_logits.softmax(dim=-1)
4792
    p_i = p[:, torch.arange(candidate_length), candidate_input_ids[:, -candidate_length:]].squeeze(0, 1)
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
    probability_ratio = p_i / q_i

    # When probability_ratio > 1 (i.e. q_i(x) < p_i(x), or "assistant probability of the candidate token is smaller
    # than the model probability for the same token"), keep the token. Otherwise reject with p = 1 - probability_ratio
    # (= keep with p = probability_ratio). Keep all the tokens until the first rejection
    r_i = torch.rand_like(probability_ratio)
    is_accepted = r_i <= probability_ratio
    n_matches = (~is_accepted.cumsum(dim=-1) < 1).sum()  # this is `n` in algorithm 1

    # Ensure we don't generate beyond max_len or an EOS token (not in algorithm 1, but needed for correct behavior)
    if last_assistant_token_is_eos and n_matches == candidate_length:
        n_matches -= 1
    n_matches = min(n_matches, max_matches)

    # Next token selection: if there is a rejection, adjust the distribution from the main model before sampling.
    gamma = candidate_logits.shape[1]
    p_n_plus_1 = p[:, n_matches, :]
    if n_matches < gamma:
        q_n_plus_1 = q[:, n_matches, :]
        p_prime = torch.clamp((p_n_plus_1 - q_n_plus_1), min=0).softmax(dim=-1)
    else:
        p_prime = p_n_plus_1
    t = torch.multinomial(p_prime, num_samples=1).squeeze(1)[None, :]

4817
4818
4819
4820
4821
4822
4823
    # The selected tokens include the matches (if any) plus the next sampled tokens
    if n_matches > 0:
        valid_tokens = torch.cat((candidate_input_ids[:, -n_matches:], t), dim=-1)
    else:
        valid_tokens = t

    return valid_tokens, n_matches
4824
4825


4826
def _split_model_outputs(outputs, new_outputs, cur_len, added_len, is_decoder_attention=False):
4827
4828
4829
4830
4831
4832
    """
    Given the (decoder/cross attentions)/(decoder hidden states) for multiple generated tokens, splits it into a tuple
    where each member corresponds to a single generated token.
    """
    # Retrocompatibility: in our generation functions, the first iteration includes the attention/hidden states for the
    # prompt.
4833
    if len(outputs) == 0:
4834
4835
        new_tuple = ()
        for layer in new_outputs:
4836
4837
            last_dim_size = cur_len if is_decoder_attention else layer.shape[-1]
            new_tuple += (layer[..., :cur_len, :last_dim_size],)
4838
        outputs += (new_tuple,)
4839
4840
4841
        # The first iteration contains the prompt + 1 generated token, let's update the length variables accordingly
        cur_len += 1
        added_len -= cur_len
4842

4843
    for i in range(added_len):
4844
4845
        new_tuple = ()
        for layer in new_outputs:
4846
            last_dim_size = cur_len + i if is_decoder_attention else layer.shape[-1]
4847
4848
4849
4850
            new_tuple += (layer[..., i : i + 1, :last_dim_size],)
        outputs += (new_tuple,)
    return outputs

4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907

def top_k_top_p_filtering(
    logits: torch.FloatTensor,
    top_k: int = 0,
    top_p: float = 1.0,
    filter_value: float = -float("Inf"),
    min_tokens_to_keep: int = 1,
) -> torch.FloatTensor:
    """
    Filter a distribution of logits using top-k and/or nucleus (top-p) filtering

    Args:
        logits: logits distribution shape (batch size, vocabulary size)
        top_k (`int`, *optional*, defaults to 0):
            If > 0, only keep the top k tokens with highest probability (top-k filtering)
        top_p (`float`, *optional*, defaults to 1.0):
            If < 1.0, only keep the top tokens with cumulative probability >= top_p (nucleus filtering). Nucleus
            filtering is described in Holtzman et al. (http://arxiv.org/abs/1904.09751)
        min_tokens_to_keep (`int`, *optional*, defaults to 1):
            Minimumber of tokens we keep per batch example in the output.

    From: https://gist.github.com/thomwolf/1a5a29f6962089e871b94cbd09daf317
    """
    if top_k > 0:
        logits = TopKLogitsWarper(top_k=top_k, filter_value=filter_value, min_tokens_to_keep=min_tokens_to_keep)(
            None, logits
        )

    if 0 <= top_p <= 1.0:
        logits = TopPLogitsWarper(top_p=top_p, filter_value=filter_value, min_tokens_to_keep=min_tokens_to_keep)(
            None, logits
        )

    return logits


def _ranking_fast(
    context_hidden: torch.FloatTensor,
    next_hidden: torch.FloatTensor,
    next_top_k_probs: torch.FloatTensor,
    alpha: float,
    beam_width: int,
) -> torch.FloatTensor:
    """
    Reranks the top_k candidates based on a degeneration penalty (cosine similarity with previous tokens), as described
    in the paper "A Contrastive Framework for Neural Text Generation". Returns the index of the best candidate for each
    row in the batch.
    """
    norm_context_hidden = context_hidden / context_hidden.norm(dim=2, keepdim=True)
    norm_next_hidden = next_hidden / next_hidden.norm(dim=2, keepdim=True)
    cosine_matrix = torch.matmul(norm_context_hidden, norm_next_hidden.transpose(1, 2)).squeeze(-1)  # [B*K, S]
    degeneration_penalty, _ = torch.max(cosine_matrix, dim=-1)  # [B*K]
    next_top_k_probs = next_top_k_probs.view(-1)  # [B*K]
    contrastive_score = (1.0 - alpha) * next_top_k_probs - alpha * degeneration_penalty
    contrastive_score = torch.stack(torch.split(contrastive_score, beam_width))  # [B, K]
    _, selected_idx = contrastive_score.max(dim=-1)  # [B]
    return selected_idx