utils.py 258 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# coding=utf-8
# Copyright 2020 The Google AI Language Team Authors, Facebook AI Research authors and The HuggingFace Inc. team.
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

17
import copy
18
19
20
import inspect
import warnings
from dataclasses import dataclass
21
from typing import TYPE_CHECKING, Any, Callable, Dict, List, Optional, Tuple, Union
22
23
24
25
26

import torch
import torch.distributed as dist
from torch import nn

27
from ..cache_utils import Cache, DynamicCache, StaticCache
28
from ..integrations.deepspeed import is_deepspeed_zero3_enabled
29
30
31
32
33
34
35
36
from ..modeling_outputs import CausalLMOutputWithPast, Seq2SeqLMOutput
from ..models.auto import (
    MODEL_FOR_CAUSAL_IMAGE_MODELING_MAPPING,
    MODEL_FOR_CAUSAL_LM_MAPPING,
    MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
    MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING,
    MODEL_FOR_VISION_2_SEQ_MAPPING,
)
Marc Sun's avatar
Marc Sun committed
37
from ..utils import ExplicitEnum, ModelOutput, is_accelerate_available, logging
38
from .beam_constraints import DisjunctiveConstraint, PhrasalConstraint
39
from .beam_search import BeamScorer, BeamSearchScorer, ConstrainedBeamSearchScorer
40
41
42
from .candidate_generator import (
    AssistedCandidateGenerator,
    CandidateGenerator,
43
    PromptLookupCandidateGenerator,
44
45
46
47
    _crop_past_key_values,
    _prepare_attention_mask,
    _prepare_token_type_ids,
)
48
from .configuration_utils import GenerationConfig
49
50
from .logits_process import (
    EncoderNoRepeatNGramLogitsProcessor,
Karim Foda's avatar
Karim Foda committed
51
    EncoderRepetitionPenaltyLogitsProcessor,
52
53
    EpsilonLogitsWarper,
    EtaLogitsWarper,
54
55
56
57
58
59
60
61
62
    ExponentialDecayLengthPenalty,
    ForcedBOSTokenLogitsProcessor,
    ForcedEOSTokenLogitsProcessor,
    ForceTokensLogitsProcessor,
    HammingDiversityLogitsProcessor,
    InfNanRemoveLogitsProcessor,
    LogitNormalization,
    LogitsProcessorList,
    MinLengthLogitsProcessor,
63
    MinNewTokensLengthLogitsProcessor,
64
65
66
67
    NoBadWordsLogitsProcessor,
    NoRepeatNGramLogitsProcessor,
    PrefixConstrainedLogitsProcessor,
    RepetitionPenaltyLogitsProcessor,
68
    SequenceBiasLogitsProcessor,
69
70
71
72
73
74
    SuppressTokensAtBeginLogitsProcessor,
    SuppressTokensLogitsProcessor,
    TemperatureLogitsWarper,
    TopKLogitsWarper,
    TopPLogitsWarper,
    TypicalLogitsWarper,
75
    UnbatchedClassifierFreeGuidanceLogitsProcessor,
76
77
78
79
80
81
82
83
84
85
)
from .stopping_criteria import (
    MaxLengthCriteria,
    MaxTimeCriteria,
    StoppingCriteria,
    StoppingCriteriaList,
    validate_stopping_criteria,
)


86
if TYPE_CHECKING:
87
    from ..modeling_utils import PreTrainedModel
88
89
    from .streamers import BaseStreamer

90
91
logger = logging.get_logger(__name__)

Marc Sun's avatar
Marc Sun committed
92
93
94
if is_accelerate_available():
    from accelerate.hooks import AlignDevicesHook, add_hook_to_module

95
96
97
98
NEED_SETUP_CACHE_CLASSES_MAPPING = {
    "static": StaticCache,
}

99
100

@dataclass
101
class GenerateDecoderOnlyOutput(ModelOutput):
102
    """
103
    Outputs of decoder-only generation models, when using non-beam methods.
104
105
106
107
108
109
110
111
112

    Args:
        sequences (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
            The generated sequences. The second dimension (sequence_length) is either equal to `max_length` or shorter
            if all batches finished early due to the `eos_token_id`.
        scores (`tuple(torch.FloatTensor)` *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`):
            Processed prediction scores of the language modeling head (scores for each vocabulary token before SoftMax)
            at each generation step. Tuple of `torch.FloatTensor` with up to `max_new_tokens` elements (one element for
            each generated token), with each tensor of shape `(batch_size, config.vocab_size)`.
113
114
115
116
        logits (`tuple(torch.FloatTensor)` *optional*, returned when `output_logits=True` is passed or when `config.output_logits=True`):
            Unprocessed prediction scores of the language modeling head (scores for each vocabulary token before SoftMax)
            at each generation step. Tuple of `torch.FloatTensor` with up to `max_new_tokens` elements (one element for
            each generated token), with each tensor of shape `(batch_size, config.vocab_size)`.
117
118
119
120
121
122
        attentions (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`):
            Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
            `torch.FloatTensor` of shape `(batch_size, num_heads, generated_length, sequence_length)`.
        hidden_states (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
            `torch.FloatTensor` of shape `(batch_size, generated_length, hidden_size)`.
123
124
125
126
127
128
129
        past_key_values (`tuple(tuple(torch.FloatTensor)))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
            NOTE: some models have a different `past_key_values` format, confirm with the model's documentation.
            Usually a Tuple (one element for each layer of the decoder) of tuples (two elements, key tensor and value
            tensor). The first Tuple is of length `config.n_layers`, with each tuple having 2 tensors of shape
            `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and optionally if
            `config.is_encoder_decoder=True` 2 additional tensors of shape `(batch_size, num_heads,
            encoder_sequence_length, embed_size_per_head)`.
130
131
132
133
    """

    sequences: torch.LongTensor = None
    scores: Optional[Tuple[torch.FloatTensor]] = None
134
    logits: Optional[Tuple[torch.FloatTensor]] = None
135
136
    attentions: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
    hidden_states: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
137
    past_key_values: Optional[Tuple[Tuple[Tuple[torch.FloatTensor]]]] = None
138
139
140


@dataclass
141
class GenerateEncoderDecoderOutput(ModelOutput):
142
    """
143
    Outputs of encoder-decoder generation models, when using non-beam methods.
144
145
146
147
148
149
150
151
152

    Args:
        sequences (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
            The generated sequences. The second dimension (sequence_length) is either equal to `max_length` or shorter
            if all batches finished early due to the `eos_token_id`.
        scores (`tuple(torch.FloatTensor)` *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`):
            Processed prediction scores of the language modeling head (scores for each vocabulary token before SoftMax)
            at each generation step. Tuple of `torch.FloatTensor` with up to `max_new_tokens` elements (one element for
            each generated token), with each tensor of shape `(batch_size, config.vocab_size)`.
153
154
155
156
        logits (`tuple(torch.FloatTensor)` *optional*, returned when `output_logits=True` is passed or when `config.output_logits=True`):
            Unprocessed prediction scores of the language modeling head (scores for each vocabulary token before SoftMax)
            at each generation step. Tuple of `torch.FloatTensor` with up to `max_new_tokens` elements (one element for
            each generated token), with each tensor of shape `(batch_size, config.vocab_size)`.
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
        encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`):
            Tuple of `torch.FloatTensor` (one for each layer of the decoder) of shape `(batch_size, num_heads,
            sequence_length, sequence_length)`.
        encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
            shape `(batch_size, sequence_length, hidden_size)`.
        decoder_attentions (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`):
            Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
            `torch.FloatTensor` of shape `(batch_size, num_heads, generated_length, sequence_length)`.
        cross_attentions (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`):
            Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
            `torch.FloatTensor` of shape `(batch_size, num_heads, generated_length, sequence_length)`.
        decoder_hidden_states (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
            `torch.FloatTensor` of shape `(batch_size, generated_length, hidden_size)`.
172
173
174
175
176
177
178
        past_key_values (`tuple(tuple(torch.FloatTensor)))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
            NOTE: some models have a different `past_key_values` format, confirm with the model's documentation.
            Usually a Tuple (one element for each layer of the decoder) of tuples (two elements, key tensor and value
            tensor). The first Tuple is of length `config.n_layers`, with each tuple having 2 tensors of shape
            `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and optionally if
            `config.is_encoder_decoder=True` 2 additional tensors of shape `(batch_size, num_heads,
            encoder_sequence_length, embed_size_per_head)`.
179
180
181
182
    """

    sequences: torch.LongTensor = None
    scores: Optional[Tuple[torch.FloatTensor]] = None
183
    logits: Optional[Tuple[torch.FloatTensor]] = None
184
185
186
187
188
    encoder_attentions: Optional[Tuple[torch.FloatTensor]] = None
    encoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
    decoder_attentions: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
    cross_attentions: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
    decoder_hidden_states: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
189
    past_key_values: Optional[Tuple[Tuple[Tuple[torch.FloatTensor]]]] = None
190
191
192


@dataclass
193
class GenerateBeamDecoderOnlyOutput(ModelOutput):
194
    """
195
    Outputs of decoder-only generation models, when using beam methods.
196
197
198
199
200
201
202
203
204
205
206
207

    Args:
        sequences (`torch.LongTensor` of shape `(batch_size*num_return_sequences, sequence_length)`):
            The generated sequences. The second dimension (sequence_length) is either equal to `max_length` or shorter
            if all batches finished early due to the `eos_token_id`.
        sequences_scores (`torch.FloatTensor` of shape `(batch_size*num_return_sequences)`, *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`):
            Final beam scores of the generated `sequences`.
        scores (`tuple(torch.FloatTensor)` *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`):
            Beam transition scores for each vocabulary token at each generation step. Beam transition scores consisting
            of log probabilities of tokens conditioned on log softmax of previously generated tokens in this beam.
            Tuple of `torch.FloatTensor` with up to `max_new_tokens` elements (one element for each generated token),
            with each tensor of shape `(batch_size*num_beams*num_return_sequences, config.vocab_size)`.
208
209
210
211
        logits (`tuple(torch.FloatTensor)` *optional*, returned when `output_logits=True` is passed or when `config.output_logits=True`):
            Unprocessed prediction scores of the language modeling head (scores for each vocabulary token before SoftMax)
            at each generation step. Tuple of `torch.FloatTensor` with up to `max_new_tokens` elements (one element for
            each generated token), with each tensor of shape `(batch_size, config.vocab_size)`.
212
        beam_indices (`torch.LongTensor`, *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`):
213
            Beam indices of generated token id at each generation step. `torch.LongTensor` of shape
214
            `(batch_size*num_return_sequences, sequence_length)`.
215
216
217
218
219
220
        attentions (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`):
            Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
            `torch.FloatTensor` of shape `(batch_size*num_beams, num_heads, generated_length, sequence_length)`.
        hidden_states (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
            `torch.FloatTensor` of shape `(batch_size*num_beams*num_return_sequences, generated_length, hidden_size)`.
221
222
223
224
225
226
227
        past_key_values (`tuple(tuple(torch.FloatTensor)))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
            NOTE: some models have a different `past_key_values` format, confirm with the model's documentation.
            Usually a Tuple (one element for each layer of the decoder) of tuples (two elements, key tensor and value
            tensor). The first Tuple is of length `config.n_layers`, with each tuple having 2 tensors of shape
            `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and optionally if
            `config.is_encoder_decoder=True` 2 additional tensors of shape `(batch_size, num_heads,
            encoder_sequence_length, embed_size_per_head)`.
228
229
230
231
232
    """

    sequences: torch.LongTensor = None
    sequences_scores: Optional[torch.FloatTensor] = None
    scores: Optional[Tuple[torch.FloatTensor]] = None
233
    logits: Optional[Tuple[torch.FloatTensor]] = None
234
235
236
    beam_indices: Optional[torch.LongTensor] = None
    attentions: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
    hidden_states: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
237
    past_key_values: Optional[Tuple[Tuple[Tuple[torch.FloatTensor]]]] = None
238
239
240


@dataclass
241
class GenerateBeamEncoderDecoderOutput(ModelOutput):
242
    """
243
    Outputs of encoder-decoder generation models, when using beam methods.
244
245
246
247
248
249
250
251
252
253
254
255

    Args:
        sequences (`torch.LongTensor` of shape `(batch_size*num_return_sequences, sequence_length)`):
            The generated sequences. The second dimension (sequence_length) is either equal to `max_length` or shorter
            if all batches finished early due to the `eos_token_id`.
        sequences_scores (`torch.FloatTensor` of shape `(batch_size*num_return_sequences)`, *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`):
            Final beam scores of the generated `sequences`.
        scores (`tuple(torch.FloatTensor)` *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`):
            Beam transition scores for each vocabulary token at each generation step. Beam transition scores consisting
            of log probabilities of tokens conditioned on log softmax of previously generated tokens in this beam.
            Tuple of `torch.FloatTensor` with up to `max_new_tokens` elements (one element for each generated token),
            with each tensor of shape `(batch_size*num_beams, config.vocab_size)`.
256
257
258
259
        logits (`tuple(torch.FloatTensor)` *optional*, returned when `output_logits=True` is passed or when `config.output_logits=True`):
            Unprocessed prediction scores of the language modeling head (scores for each vocabulary token before SoftMax)
            at each generation step. Tuple of `torch.FloatTensor` with up to `max_new_tokens` elements (one element for
            each generated token), with each tensor of shape `(batch_size, config.vocab_size)`.
260
        beam_indices (`torch.LongTensor`, *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`):
261
            Beam indices of generated token id at each generation step. `torch.LongTensor` of shape
262
            `(batch_size*num_return_sequences, sequence_length)`.
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
        encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`):
            Tuple of `torch.FloatTensor` (one for each layer of the decoder) of shape `(batch_size, num_heads,
            sequence_length, sequence_length)`.
        encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
            shape `(batch_size*num_beams*num_return_sequences, sequence_length, hidden_size)`.
        decoder_attentions (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`):
            Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
            `torch.FloatTensor` of shape `(batch_size*num_beams*num_return_sequences, num_heads, generated_length,
            sequence_length)`.
        cross_attentions (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`):
            Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
            `torch.FloatTensor` of shape `(batch_size, num_heads, generated_length, sequence_length)`.
        decoder_hidden_states (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
            `torch.FloatTensor` of shape `(batch_size*num_beams*num_return_sequences, generated_length, hidden_size)`.
279
280
281
282
283
284
285
        past_key_values (`tuple(tuple(torch.FloatTensor)))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
            NOTE: some models have a different `past_key_values` format, confirm with the model's documentation.
            Usually a Tuple (one element for each layer of the decoder) of tuples (two elements, key tensor and value
            tensor). The first Tuple is of length `config.n_layers`, with each tuple having 2 tensors of shape
            `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and optionally if
            `config.is_encoder_decoder=True` 2 additional tensors of shape `(batch_size, num_heads,
            encoder_sequence_length, embed_size_per_head)`.
286
287
288
289
290
    """

    sequences: torch.LongTensor = None
    sequences_scores: Optional[torch.FloatTensor] = None
    scores: Optional[Tuple[torch.FloatTensor]] = None
291
    logits: Optional[Tuple[torch.FloatTensor]] = None
292
293
294
295
296
297
    beam_indices: Optional[torch.LongTensor] = None
    encoder_attentions: Optional[Tuple[torch.FloatTensor]] = None
    encoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
    decoder_attentions: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
    cross_attentions: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
    decoder_hidden_states: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
298
    past_key_values: Optional[Tuple[Tuple[Tuple[torch.FloatTensor]]]] = None
299
300


301
302
303
304
# Equivalent classes (kept for retrocompatibility purposes)
GreedySearchDecoderOnlyOutput = GenerateDecoderOnlyOutput
ContrastiveSearchDecoderOnlyOutput = GenerateDecoderOnlyOutput
SampleDecoderOnlyOutput = GenerateDecoderOnlyOutput
305

306
307
308
ContrastiveSearchEncoderDecoderOutput = GenerateEncoderDecoderOutput
GreedySearchEncoderDecoderOutput = GenerateEncoderDecoderOutput
SampleEncoderDecoderOutput = GenerateEncoderDecoderOutput
309

310
311
BeamSearchDecoderOnlyOutput = GenerateBeamDecoderOnlyOutput
BeamSampleDecoderOnlyOutput = GenerateBeamDecoderOnlyOutput
312

313
314
BeamSearchEncoderDecoderOutput = GenerateBeamEncoderDecoderOutput
BeamSampleEncoderDecoderOutput = GenerateBeamEncoderDecoderOutput
315

316
317
318
319
320
GreedySearchOutput = Union[GreedySearchEncoderDecoderOutput, GreedySearchDecoderOnlyOutput]
SampleOutput = Union[SampleEncoderDecoderOutput, SampleDecoderOnlyOutput]
BeamSearchOutput = Union[BeamSearchEncoderDecoderOutput, BeamSearchDecoderOnlyOutput]
BeamSampleOutput = Union[BeamSampleEncoderDecoderOutput, BeamSampleDecoderOnlyOutput]
ContrastiveSearchOutput = Union[ContrastiveSearchEncoderDecoderOutput, ContrastiveSearchDecoderOnlyOutput]
321

322
323
324
325
# Typing shortcuts
GenerateNonBeamOutput = Union[GenerateDecoderOnlyOutput, GenerateEncoderDecoderOutput]
GenerateBeamOutput = Union[GenerateBeamDecoderOnlyOutput, GenerateBeamEncoderDecoderOutput]
GenerateOutput = Union[GenerateNonBeamOutput, GenerateBeamOutput]
326
327


328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
class GenerationMode(ExplicitEnum):
    """
    Possible generation modes, downstream of the [`~generation.GenerationMixin.generate`] method.
    """

    # Non-beam methods
    CONTRASTIVE_SEARCH = "contrastive_search"
    GREEDY_SEARCH = "greedy_search"
    SAMPLE = "sample"
    ASSISTED_GENERATION = "assisted_generation"
    # Beam methods
    BEAM_SEARCH = "beam_search"
    BEAM_SAMPLE = "beam_sample"
    CONSTRAINED_BEAM_SEARCH = "constrained_beam_search"
    GROUP_BEAM_SEARCH = "group_beam_search"


345
346
347
348
349
350
class GenerationMixin:
    """
    A class containing all functions for auto-regressive text generation, to be used as a mixin in [`PreTrainedModel`].

    The class exposes [`~generation.GenerationMixin.generate`], which can be used for:
        - *greedy decoding* by calling [`~generation.GenerationMixin.greedy_search`] if `num_beams=1` and
351
          `do_sample=False`
352
353
354
        - *contrastive search* by calling [`~generation.GenerationMixin.contrastive_search`] if `penalty_alpha>0` and
          `top_k>1`
        - *multinomial sampling* by calling [`~generation.GenerationMixin.sample`] if `num_beams=1` and
355
          `do_sample=True`
356
        - *beam-search decoding* by calling [`~generation.GenerationMixin.beam_search`] if `num_beams>1` and
357
          `do_sample=False`
358
        - *beam-search multinomial sampling* by calling [`~generation.GenerationMixin.beam_sample`] if `num_beams>1`
359
          and `do_sample=True`
360
        - *diverse beam-search decoding* by calling [`~generation.GenerationMixin.group_beam_search`], if `num_beams>1`
361
          and `num_beam_groups>1`
362
        - *constrained beam-search decoding* by calling [`~generation.GenerationMixin.constrained_beam_search`], if
363
364
365
          `constraints!=None` or `force_words_ids!=None`

    You do not need to call any of the above methods directly. Pass custom parameter values to 'generate' instead. To
366
    learn more about decoding strategies refer to the [text generation strategies guide](../generation_strategies).
367
368
    """

369
370
    def prepare_inputs_for_generation(self, *args, **kwargs):
        raise NotImplementedError(
371
            "A model class needs to define a `prepare_inputs_for_generation` method in order to use `.generate()`."
372
373
        )

374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
    def _prepare_model_inputs(
        self,
        inputs: Optional[torch.Tensor] = None,
        bos_token_id: Optional[int] = None,
        model_kwargs: Optional[Dict[str, torch.Tensor]] = None,
    ) -> Tuple[torch.Tensor, Optional[str], Dict[str, torch.Tensor]]:
        """
        This function extracts the model-specific `inputs` for generation.
        """
        # 1. retrieve all kwargs that are non-None or non-model input related.
        # some encoder-decoder models have different names for model and encoder
        if (
            self.config.is_encoder_decoder
            and hasattr(self, "encoder")
            and self.encoder.main_input_name != self.main_input_name
        ):
            input_name = self.encoder.main_input_name
        else:
            input_name = self.main_input_name

        model_kwargs = {k: v for k, v in model_kwargs.items() if v is not None or k != input_name}

        # 2. check whether model_input_name is passed as kwarg
        # if yes and `inputs` is None use kwarg inputs
        inputs_kwarg = model_kwargs.pop(input_name, None)
        if inputs_kwarg is not None and inputs is not None:
            raise ValueError(
401
                f"`inputs`: {inputs}` were passed alongside {input_name} which is not allowed. "
402
403
404
405
406
                f"Make sure to either pass {inputs} or {input_name}=..."
            )
        elif inputs_kwarg is not None:
            inputs = inputs_kwarg

407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
        # 3. In the presence of `inputs_embeds` for text models:
        # - decoder-only models should complain if the user attempts to pass `inputs_embeds`, but the model
        # doesn't have its forwarding implemented. `inputs_embeds` is kept in `model_kwargs` and can coexist with
        # input_ids (`inputs_embeds` will be used in the 1st generation step, as opposed to `input_ids`)
        # - encoder-decoder models should complain if the user attempts to pass `inputs_embeds` and `input_ids`, and
        # pull the former to inputs. It will be used in place of `input_ids` to get the encoder hidden states.
        if input_name == "input_ids" and "inputs_embeds" in model_kwargs:
            if not self.config.is_encoder_decoder:
                has_inputs_embeds_forwarding = "inputs_embeds" in set(
                    inspect.signature(self.prepare_inputs_for_generation).parameters.keys()
                )
                if not has_inputs_embeds_forwarding:
                    raise ValueError(
                        f"You passed `inputs_embeds` to `.generate()`, but the model class {self.__class__.__name__} "
                        "doesn't have its forwarding implemented. See the GPT2 implementation for an example "
                        "(https://github.com/huggingface/transformers/pull/21405), and feel free to open a PR with it!"
                    )
424
425
426
                # In this case, `input_ids` is moved to the `model_kwargs`, so a few automations (like the creation of
                # the attention mask) can rely on the actual model input.
                model_kwargs["input_ids"] = self._maybe_initialize_input_ids_for_generation(
427
                    inputs, bos_token_id, model_kwargs=model_kwargs
428
                )
429
430
431
            else:
                if inputs is not None:
                    raise ValueError("You passed `inputs_embeds` and `input_ids` to `.generate()`. Please pick one.")
432
            inputs, input_name = model_kwargs["inputs_embeds"], "inputs_embeds"
433
434

        # 4. if `inputs` is still None, try to create `input_ids` from BOS token
435
        inputs = self._maybe_initialize_input_ids_for_generation(inputs, bos_token_id, model_kwargs)
436
437
        return inputs, input_name, model_kwargs

438
439
440
441
    def _maybe_initialize_input_ids_for_generation(
        self,
        inputs: Optional[torch.Tensor] = None,
        bos_token_id: Optional[int] = None,
442
        model_kwargs: Optional[Dict[str, torch.Tensor]] = None,
443
    ) -> torch.LongTensor:
444
445
446
447
        """Initializes input ids for generation, if necessary."""
        if inputs is not None:
            return inputs

448
        encoder_outputs = model_kwargs.get("encoder_outputs")
449
450
451
452
453
454
455
        if self.config.is_encoder_decoder and encoder_outputs is not None:
            # make dummy input_ids with value -100, as a sanity check ensuring that they won't be used for encoding
            shape = encoder_outputs.last_hidden_state.size()[:-1]
            return torch.ones(shape, dtype=torch.long, device=self.device) * -100

        if bos_token_id is None:
            raise ValueError("`bos_token_id` has to be defined when no `input_ids` are provided.")
456

457
458
459
460
461
462
463
        # If there is some tensor in `model_kwargs`, we can infer the batch size from it. This is helpful with
        # soft-prompting or in multimodal implementations built on top of decoder-only language models.
        batch_size = 1
        for value in model_kwargs.values():
            if isinstance(value, torch.Tensor):
                batch_size = value.shape[0]
                break
464
465
466

        if "inputs_embeds" in model_kwargs:
            return torch.ones((batch_size, 0), dtype=torch.long, device=self.device)
467
        return torch.ones((batch_size, 1), dtype=torch.long, device=self.device) * bos_token_id
468
469
470
471
472

    def _prepare_attention_mask_for_generation(
        self,
        inputs: torch.Tensor,
        pad_token_id: Optional[int],
473
        eos_token_id: Optional[Union[int, List[int]]],
474
475
476
    ) -> torch.LongTensor:
        is_input_ids = len(inputs.shape) == 2 and inputs.dtype in [torch.int, torch.long]
        is_pad_token_in_inputs = (pad_token_id is not None) and (pad_token_id in inputs)
477
478
479
        if isinstance(eos_token_id, int):
            eos_token_id = [eos_token_id]
        is_pad_token_not_equal_to_eos_token_id = (eos_token_id is None) or (pad_token_id not in eos_token_id)
480
481
482
483
484
485
486
487
488
489
490
491

        # Check if input is input_ids and padded -> only then is attention_mask defined
        if is_input_ids and is_pad_token_in_inputs and is_pad_token_not_equal_to_eos_token_id:
            return inputs.ne(pad_token_id).long()
        else:
            return torch.ones(inputs.shape[:2], dtype=torch.long, device=inputs.device)

    def _prepare_encoder_decoder_kwargs_for_generation(
        self, inputs_tensor: torch.Tensor, model_kwargs, model_input_name: Optional[str] = None
    ) -> Dict[str, Any]:
        # 1. get encoder
        encoder = self.get_encoder()
492
493
        # Compatibility with Accelerate big model inference: we need the encoder to outputs stuff on the same device
        # as the inputs.
Marc Sun's avatar
Marc Sun committed
494
495
496
497
498
        if hasattr(self, "hf_device_map"):
            if hasattr(encoder, "_hf_hook"):
                encoder._hf_hook.io_same_device = True
            else:
                add_hook_to_module(encoder, AlignDevicesHook(io_same_device=True))
499

500
        # 2. Prepare encoder args and encoder kwargs from model kwargs.
501
502
503
504
505
506
        irrelevant_prefix = ["decoder_", "cross_attn", "use_cache"]
        encoder_kwargs = {
            argument: value
            for argument, value in model_kwargs.items()
            if not any(argument.startswith(p) for p in irrelevant_prefix)
        }
507
508
509
510
511
512
        encoder_signature = set(inspect.signature(encoder.forward).parameters)
        encoder_accepts_wildcard = "kwargs" in encoder_signature or "model_kwargs" in encoder_signature
        if not encoder_accepts_wildcard:
            encoder_kwargs = {
                argument: value for argument, value in encoder_kwargs.items() if argument in encoder_signature
            }
513
514
515
516
517
518
519
520
521
522
523
524

        # 3. make sure that encoder returns `ModelOutput`
        model_input_name = model_input_name if model_input_name is not None else self.main_input_name
        encoder_kwargs["return_dict"] = True
        encoder_kwargs[model_input_name] = inputs_tensor
        model_kwargs["encoder_outputs"]: ModelOutput = encoder(**encoder_kwargs)

        return model_kwargs

    def _prepare_decoder_input_ids_for_generation(
        self,
        batch_size: int,
525
526
        model_input_name: str,
        model_kwargs: Dict[str, torch.Tensor],
527
        decoder_start_token_id: Union[int, List[int]] = None,
528
529
        bos_token_id: int = None,
        device: torch.device = None,
530
531
532
533
    ) -> Tuple[torch.LongTensor, Dict[str, torch.Tensor]]:
        """Prepares `decoder_input_ids` for generation with encoder-decoder models"""
        # 1. Check whether the user has defined `decoder_input_ids` manually. To facilitate in terms of input naming,
        # we also allow the user to pass it under `input_ids`, if the encoder does not use it as the main input.
534
        if model_kwargs is not None and "decoder_input_ids" in model_kwargs:
535
536
537
            decoder_input_ids = model_kwargs.pop("decoder_input_ids")
        elif "input_ids" in model_kwargs and model_input_name != "input_ids":
            decoder_input_ids = model_kwargs.pop("input_ids")
538
        else:
539
540
541
542
543
544
            decoder_input_ids = None

        # 2. Encoder-decoder models expect the `decoder_input_ids` to start with a special token. Let's ensure that.
        decoder_start_token_id = self._get_decoder_start_token_id(decoder_start_token_id, bos_token_id)
        if device is None:
            device = self.device
545
546
547
548
549
550
551
552
553
554
555
        if isinstance(decoder_start_token_id, list):
            if len(decoder_start_token_id) != batch_size:
                raise ValueError(
                    f"`decoder_start_token_id` expcted to have length {batch_size} but got {len(decoder_start_token_id)}"
                )
            decoder_input_ids_start = torch.tensor(decoder_start_token_id, dtype=torch.long, device=device)
            decoder_input_ids_start = decoder_input_ids_start.view(-1, 1)
        else:
            decoder_input_ids_start = (
                torch.ones((batch_size, 1), dtype=torch.long, device=device) * decoder_start_token_id
            )
556
557
558
559

        # no user input -> use decoder_start_token_id as decoder_input_ids
        if decoder_input_ids is None:
            decoder_input_ids = decoder_input_ids_start
560
561
562
        # exception: Donut checkpoints have task-specific decoder starts and don't expect a BOS token
        elif self.config.model_type == "vision-encoder-decoder" and "donut" in self.name_or_path.lower():
            pass
563
564
        elif self.config.model_type in ["whisper"]:
            pass
565
566
        # user input but doesn't start with decoder_start_token_id -> prepend decoder_start_token_id (and adjust
        # decoder_attention_mask if provided)
567
568
569
570
571
572
573
        elif (
            isinstance(decoder_start_token_id, int)
            and (decoder_input_ids[:, 0] != decoder_start_token_id).all().item()
        ) or (
            isinstance(decoder_start_token_id, torch.Tensor)
            and (decoder_input_ids[:, 0] != decoder_start_token_id[:, 0]).all().item()
        ):
574
575
576
577
578
579
580
581
582
583
            decoder_input_ids = torch.cat([decoder_input_ids_start, decoder_input_ids], dim=-1)
            if "decoder_attention_mask" in model_kwargs:
                decoder_attention_mask = model_kwargs["decoder_attention_mask"]
                decoder_attention_mask = torch.cat(
                    (torch.ones_like(decoder_attention_mask)[:, :1], decoder_attention_mask),
                    dim=-1,
                )
                model_kwargs["decoder_attention_mask"] = decoder_attention_mask

        return decoder_input_ids, model_kwargs
584

585
586
587
    def _get_decoder_start_token_id(
        self, decoder_start_token_id: Union[int, List[int]] = None, bos_token_id: int = None
    ) -> int:
588
        decoder_start_token_id = (
589
590
591
            decoder_start_token_id
            if decoder_start_token_id is not None
            else self.generation_config.decoder_start_token_id
592
        )
593
        bos_token_id = bos_token_id if bos_token_id is not None else self.generation_config.bos_token_id
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610

        if decoder_start_token_id is not None:
            return decoder_start_token_id
        elif bos_token_id is not None:
            return bos_token_id
        raise ValueError(
            "`decoder_start_token_id` or `bos_token_id` has to be defined for encoder-decoder generation."
        )

    @staticmethod
    def _expand_inputs_for_generation(
        expand_size: int = 1,
        is_encoder_decoder: bool = False,
        input_ids: Optional[torch.LongTensor] = None,
        **model_kwargs,
    ) -> Tuple[torch.LongTensor, Dict[str, Any]]:
        """Expands tensors from [batch_size, ...] to [batch_size * expand_size, ...]"""
611
612
613
614
615
616
617

        def _expand_dict_for_generation(dict_to_expand):
            for key in dict_to_expand:
                if dict_to_expand[key] is not None and isinstance(dict_to_expand[key], torch.Tensor):
                    dict_to_expand[key] = dict_to_expand[key].repeat_interleave(expand_size, dim=0)
            return dict_to_expand

618
619
620
        if input_ids is not None:
            input_ids = input_ids.repeat_interleave(expand_size, dim=0)

621
        model_kwargs = _expand_dict_for_generation(model_kwargs)
622
623

        if is_encoder_decoder:
624
            if model_kwargs.get("encoder_outputs") is None:
625
                raise ValueError("If `is_encoder_decoder` is True, make sure that `encoder_outputs` is defined.")
626
            model_kwargs["encoder_outputs"] = _expand_dict_for_generation(model_kwargs["encoder_outputs"])
627
628
629

        return input_ids, model_kwargs

630
    def _extract_past_from_model_output(self, outputs: ModelOutput, standardize_cache_format: bool = False):
631
        past_key_values = None
632
        if "past_key_values" in outputs:
633
            past_key_values = outputs.past_key_values
634
        elif "mems" in outputs:
635
            past_key_values = outputs.mems
636
        elif "past_buckets_states" in outputs:
637
            past_key_values = outputs.past_buckets_states
638
639
640
641

        # Bloom fix: standardizes the cache format when requested
        if standardize_cache_format and hasattr(self, "_convert_to_standard_cache"):
            batch_size = outputs.logits.shape[0]
642
643
            past_key_values = self._convert_to_standard_cache(past_key_values, batch_size=batch_size)
        return past_key_values
644
645

    def _update_model_kwargs_for_generation(
646
647
648
649
650
        self,
        outputs: ModelOutput,
        model_kwargs: Dict[str, Any],
        is_encoder_decoder: bool = False,
        standardize_cache_format: bool = False,
651
        model_inputs: Optional[Dict[str, Any]] = None,
652
    ) -> Dict[str, Any]:
653
654
        # update past_key_values
        model_kwargs["past_key_values"] = self._extract_past_from_model_output(
655
656
            outputs, standardize_cache_format=standardize_cache_format
        )
Sylvain Gugger's avatar
Sylvain Gugger committed
657
658
        if getattr(outputs, "state", None) is not None:
            model_kwargs["state"] = outputs.state
659
660
661
662
663
664
665

        # update token_type_ids with last value
        if "token_type_ids" in model_kwargs:
            token_type_ids = model_kwargs["token_type_ids"]
            model_kwargs["token_type_ids"] = torch.cat([token_type_ids, token_type_ids[:, -1].unsqueeze(-1)], dim=-1)

        if not is_encoder_decoder:
666
            # update attention mask
667
668
669
670
671
            if "attention_mask" in model_kwargs:
                attention_mask = model_kwargs["attention_mask"]
                model_kwargs["attention_mask"] = torch.cat(
                    [attention_mask, attention_mask.new_ones((attention_mask.shape[0], 1))], dim=-1
                )
672
673
674
675
676
677
678
679
        else:
            # update decoder attention mask
            if "decoder_attention_mask" in model_kwargs:
                decoder_attention_mask = model_kwargs["decoder_attention_mask"]
                model_kwargs["decoder_attention_mask"] = torch.cat(
                    [decoder_attention_mask, decoder_attention_mask.new_ones((decoder_attention_mask.shape[0], 1))],
                    dim=-1,
                )
680

681
682
        model_kwargs["cache_position"] = model_inputs.get("cache_position", None)

683
684
        return model_kwargs

685
    def _reorder_cache(self, past_key_values, beam_idx):
686
687
688
689
690
        raise NotImplementedError(
            f"Make sure that a `_reorder_cache` function is correctly implemented in {self.__class__.__module__} to"
            f" enable beam search for {self.__class__}"
        )

691
692
693
694
695
696
697
698
699
700
701
702
    def _get_candidate_generator(
        self,
        generation_config: GenerationConfig,
        input_ids: torch.LongTensor,
        inputs_tensor: torch.Tensor,
        assistant_model: "PreTrainedModel",
        logits_processor: LogitsProcessorList,
        model_kwargs: Dict,
    ) -> CandidateGenerator:
        """
        Returns the candidate generator to be used in `assisted_generation`
        """
703
704
705
706
707
708
709
710
711
712
713
714
715
        if generation_config.prompt_lookup_num_tokens is not None:
            candidate_generator = PromptLookupCandidateGenerator(
                num_output_tokens=generation_config.prompt_lookup_num_tokens,
            )
        else:
            candidate_generator = AssistedCandidateGenerator(
                input_ids=input_ids,
                assistant_model=assistant_model,
                generation_config=generation_config,
                logits_processor=logits_processor,
                model_kwargs=model_kwargs,
                inputs_tensor=inputs_tensor,
            )
716
717
        return candidate_generator

718
719
    def _get_logits_warper(
        self,
720
        generation_config: GenerationConfig,
721
722
723
724
725
726
727
728
729
    ) -> LogitsProcessorList:
        """
        This class returns a [`LogitsProcessorList`] list object that contains all relevant [`LogitsWarper`] instances
        used for multinomial sampling.
        """

        # instantiate warpers list
        warpers = LogitsProcessorList()

730
731
732
733
734
735
736
737
738
739
        # In beam methods, we need to keep at least one non-eos token to explore continuations that might have a
        # better score (i.e. keep len(list(generation_config.eos_token_id)) + 1)
        if generation_config.num_beams > 1:
            if isinstance(generation_config.eos_token_id, list):
                min_tokens_to_keep = len(generation_config.eos_token_id) + 1
            else:
                min_tokens_to_keep = 2
        else:
            min_tokens_to_keep = 1

740
741
        # the following idea is largely copied from this PR: https://github.com/huggingface/transformers/pull/5420/files
        # all samplers can be found in `generation_utils_samplers.py`
742
743
744
        if generation_config.temperature is not None and generation_config.temperature != 1.0:
            warpers.append(TemperatureLogitsWarper(generation_config.temperature))
        if generation_config.top_k is not None and generation_config.top_k != 0:
745
746
747
748
            warpers.append(TopKLogitsWarper(top_k=generation_config.top_k, min_tokens_to_keep=min_tokens_to_keep))
        if generation_config.top_p is not None and generation_config.top_p < 1.0:
            warpers.append(TopPLogitsWarper(top_p=generation_config.top_p, min_tokens_to_keep=min_tokens_to_keep))
        if generation_config.typical_p is not None and generation_config.typical_p < 1.0:
749
            warpers.append(
750
                TypicalLogitsWarper(mass=generation_config.typical_p, min_tokens_to_keep=min_tokens_to_keep)
751
            )
752
        if generation_config.epsilon_cutoff is not None and 0.0 < generation_config.epsilon_cutoff < 1.0:
753
            warpers.append(
754
                EpsilonLogitsWarper(epsilon=generation_config.epsilon_cutoff, min_tokens_to_keep=min_tokens_to_keep)
755
            )
756
        if generation_config.eta_cutoff is not None and 0.0 < generation_config.eta_cutoff < 1.0:
757
            warpers.append(
758
                EtaLogitsWarper(epsilon=generation_config.eta_cutoff, min_tokens_to_keep=min_tokens_to_keep)
759
            )
760
        # `LogitNormalization` should always be the last logit processor, when present
761
        if generation_config.renormalize_logits is True:
762
763
764
            warpers.append(LogitNormalization())
        return warpers

765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
    def _get_generation_mode(
        self, generation_config: GenerationConfig, assistant_model: Optional["PreTrainedModel"]
    ) -> GenerationMode:
        """
        Returns the generation mode triggered by a [`GenerationConfig`] instance.
        """
        if generation_config.constraints is not None or generation_config.force_words_ids is not None:
            generation_mode = GenerationMode.CONSTRAINED_BEAM_SEARCH
        elif generation_config.num_beams == 1:
            if generation_config.do_sample is False:
                if (
                    generation_config.top_k is not None
                    and generation_config.top_k > 1
                    and generation_config.penalty_alpha is not None
                    and generation_config.penalty_alpha > 0
                ):
                    generation_mode = GenerationMode.CONTRASTIVE_SEARCH
                else:
                    generation_mode = GenerationMode.GREEDY_SEARCH
            else:
                generation_mode = GenerationMode.SAMPLE
        else:
            if generation_config.num_beam_groups > 1:
                generation_mode = GenerationMode.GROUP_BEAM_SEARCH
            elif generation_config.do_sample is True:
                generation_mode = GenerationMode.BEAM_SAMPLE
            else:
                generation_mode = GenerationMode.BEAM_SEARCH

        # Assisted generation may extend some generation modes
795
        if assistant_model is not None or generation_config.prompt_lookup_num_tokens is not None:
796
797
798
799
800
801
802
803
804
            if generation_mode in ("greedy_search", "sample"):
                generation_mode = GenerationMode.ASSISTED_GENERATION
            else:
                raise ValueError(
                    "You've set `assistant_model`, which triggers assisted generate. Currently, assisted generate "
                    "is only supported with Greedy Search and Sample."
                )
        return generation_mode

805
806
    def _get_logits_processor(
        self,
807
        generation_config: GenerationConfig,
808
809
810
811
        input_ids_seq_length: int,
        encoder_input_ids: torch.LongTensor,
        prefix_allowed_tokens_fn: Callable[[int, torch.Tensor], List[int]],
        logits_processor: Optional[LogitsProcessorList],
812
813
814
        model_kwargs: Optional[Dict[str, Any]] = None,
        negative_prompt_ids: Optional[torch.Tensor] = None,
        negative_prompt_attention_mask: Optional[torch.Tensor] = None,
815
816
817
818
819
820
    ) -> LogitsProcessorList:
        """
        This class returns a [`LogitsProcessorList`] list object that contains all relevant [`LogitsProcessor`]
        instances used to modify the scores of the language model head.
        """
        # instantiate processors list
821
        processors = LogitsProcessorList()
822

823
        if generation_config.guidance_scale is not None and generation_config.guidance_scale != 1:
824
825
826
827
828
829
830
831
832
            processors.append(
                UnbatchedClassifierFreeGuidanceLogitsProcessor(
                    generation_config.guidance_scale,
                    self,
                    unconditional_ids=negative_prompt_ids,
                    unconditional_attention_mask=negative_prompt_attention_mask,
                    use_cache=model_kwargs["use_cache"],
                )
            )
833
834
835
        if generation_config.sequence_bias is not None:
            processors.append(SequenceBiasLogitsProcessor(sequence_bias=generation_config.sequence_bias))

836
        if generation_config.diversity_penalty is not None and generation_config.diversity_penalty > 0.0:
837
838
            processors.append(
                HammingDiversityLogitsProcessor(
839
840
841
                    diversity_penalty=generation_config.diversity_penalty,
                    num_beams=generation_config.num_beams,
                    num_beam_groups=generation_config.num_beam_groups,
842
843
                )
            )
Karim Foda's avatar
Karim Foda committed
844
845
846
847
848
849
850
851
852
        if (
            generation_config.encoder_repetition_penalty is not None
            and generation_config.encoder_repetition_penalty != 1.0
        ):
            processors.append(
                EncoderRepetitionPenaltyLogitsProcessor(
                    penalty=generation_config.encoder_repetition_penalty, encoder_input_ids=encoder_input_ids
                )
            )
853
854
855
856
857
858
859
860
        if generation_config.repetition_penalty is not None and generation_config.repetition_penalty != 1.0:
            processors.append(RepetitionPenaltyLogitsProcessor(penalty=generation_config.repetition_penalty))
        if generation_config.no_repeat_ngram_size is not None and generation_config.no_repeat_ngram_size > 0:
            processors.append(NoRepeatNGramLogitsProcessor(generation_config.no_repeat_ngram_size))
        if (
            generation_config.encoder_no_repeat_ngram_size is not None
            and generation_config.encoder_no_repeat_ngram_size > 0
        ):
861
862
863
            processors.append(
                EncoderNoRepeatNGramLogitsProcessor(generation_config.encoder_no_repeat_ngram_size, encoder_input_ids)
            )
864
865
866
867
868
869
870
871
872
873
        if generation_config.bad_words_ids is not None:
            processors.append(
                NoBadWordsLogitsProcessor(generation_config.bad_words_ids, generation_config.eos_token_id)
            )
        if (
            generation_config.min_length is not None
            and generation_config.eos_token_id is not None
            and generation_config.min_length > 0
        ):
            processors.append(MinLengthLogitsProcessor(generation_config.min_length, generation_config.eos_token_id))
874
875
876
877
878
879
880
881
882
883
        if (
            generation_config.min_new_tokens is not None
            and generation_config.eos_token_id is not None
            and generation_config.min_new_tokens > 0
        ):
            processors.append(
                MinNewTokensLengthLogitsProcessor(
                    input_ids_seq_length, generation_config.min_new_tokens, generation_config.eos_token_id
                )
            )
884
        if prefix_allowed_tokens_fn is not None:
885
886
887
888
889
890
891
892
893
894
895
896
            processors.append(
                PrefixConstrainedLogitsProcessor(
                    prefix_allowed_tokens_fn, generation_config.num_beams // generation_config.num_beam_groups
                )
            )
        if generation_config.forced_bos_token_id is not None:
            processors.append(ForcedBOSTokenLogitsProcessor(generation_config.forced_bos_token_id))
        if generation_config.forced_eos_token_id is not None:
            processors.append(
                ForcedEOSTokenLogitsProcessor(generation_config.max_length, generation_config.forced_eos_token_id)
            )
        if generation_config.remove_invalid_values is True:
897
            processors.append(InfNanRemoveLogitsProcessor())
898
        if generation_config.exponential_decay_length_penalty is not None:
899
            processors.append(
900
901
902
                ExponentialDecayLengthPenalty(
                    generation_config.exponential_decay_length_penalty,
                    generation_config.eos_token_id,
903
                    input_ids_seq_length,
904
                )
905
            )
906
907
908
        if generation_config.suppress_tokens is not None:
            processors.append(SuppressTokensLogitsProcessor(generation_config.suppress_tokens))
        if generation_config.begin_suppress_tokens is not None:
909
            begin_index = input_ids_seq_length
910
911
912
913
914
915
916
917
918
919
920
921
922
            begin_index = (
                begin_index
                if (input_ids_seq_length > 1 or generation_config.forced_bos_token_id is None)
                else begin_index + 1
            )
            if generation_config.forced_decoder_ids is not None:
                # generation starts after the last token that is forced
                begin_index += generation_config.forced_decoder_ids[-1][0]
            processors.append(
                SuppressTokensAtBeginLogitsProcessor(generation_config.begin_suppress_tokens, begin_index)
            )
        if generation_config.forced_decoder_ids is not None:
            processors.append(ForceTokensLogitsProcessor(generation_config.forced_decoder_ids))
923
924
        processors = self._merge_criteria_processor_list(processors, logits_processor)
        # `LogitNormalization` should always be the last logit processor, when present
925
        if generation_config.renormalize_logits is True:
926
927
928
929
            processors.append(LogitNormalization())
        return processors

    def _get_stopping_criteria(
930
        self, generation_config: GenerationConfig, stopping_criteria: Optional[StoppingCriteriaList]
931
932
    ) -> StoppingCriteriaList:
        criteria = StoppingCriteriaList()
933
        if generation_config.max_length is not None:
934
935
936
937
938
939
940
            max_position_embeddings = getattr(self.config, "max_position_embeddings", None)
            criteria.append(
                MaxLengthCriteria(
                    max_length=generation_config.max_length,
                    max_position_embeddings=max_position_embeddings,
                )
            )
941
942
        if generation_config.max_time is not None:
            criteria.append(MaxTimeCriteria(max_time=generation_config.max_time))
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
        criteria = self._merge_criteria_processor_list(criteria, stopping_criteria)
        return criteria

    def _merge_criteria_processor_list(
        self,
        default_list: Union[LogitsProcessorList, StoppingCriteriaList],
        custom_list: Union[LogitsProcessorList, StoppingCriteriaList],
    ) -> Union[LogitsProcessorList, StoppingCriteriaList]:
        if len(custom_list) == 0:
            return default_list
        for default in default_list:
            for custom in custom_list:
                if type(custom) is type(default):
                    object_type = "stopping criteria" if isinstance(custom, StoppingCriteria) else "logits processor"
                    raise ValueError(
                        f"A custom {object_type} of type {type(custom)} with values {custom} has been passed to"
959
                        f" `.generate()`, but it has already been created with the values {default}. {default} has been"
960
961
                        " created by passing the corresponding arguments to generate or by the model's config default"
                        f" values. If you just want to change the default values of {object_type} consider passing"
962
                        f" them as arguments to `.generate()` instead of using a custom {object_type}."
963
964
965
966
                    )
        default_list.extend(custom_list)
        return default_list

967
    def compute_transition_scores(
968
969
970
        self,
        sequences: torch.Tensor,
        scores: Tuple[torch.Tensor],
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
        beam_indices: Optional[torch.Tensor] = None,
        normalize_logits: bool = False,
    ) -> torch.Tensor:
        """
        Computes the transition scores of sequences given the generation scores (and beam indices, if beam search was
        used). This is a convenient method to quicky obtain the scores of the selected tokens at generation time.

        Parameters:
            sequences (`torch.LongTensor`):
                The generated sequences. The second dimension (sequence_length) is either equal to `max_length` or
                shorter if all batches finished early due to the `eos_token_id`.
            scores (`tuple(torch.FloatTensor)`):
                Transition scores for each vocabulary token at each generation step. Beam transition scores consisting
                of log probabilities of tokens conditioned on log softmax of previously generated tokens Tuple of
                `torch.FloatTensor` with up to `max_new_tokens` elements (one element for each generated token), with
                each tensor of shape `(batch_size*num_beams, config.vocab_size)`.
987
            beam_indices (`torch.LongTensor`, *optional*):
988
                Beam indices of generated token id at each generation step. `torch.LongTensor` of shape
989
                `(batch_size*num_return_sequences, sequence_length)`. Only required if a `num_beams>1` at
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
                generate-time.
            normalize_logits (`bool`, *optional*, defaults to `False`):
                Whether to normalize the logits (which, for legacy reasons, may be unnormalized).

        Return:
            `torch.Tensor`: A `torch.Tensor` of shape `(batch_size*num_return_sequences, sequence_length)` containing
                the transition scores (logits)

        Examples:

        ```python
        >>> from transformers import GPT2Tokenizer, AutoModelForCausalLM
        >>> import numpy as np

        >>> tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
1005
        >>> model = AutoModelForCausalLM.from_pretrained("openai-community/gpt2")
1006
1007
1008
1009
1010
1011
1012
1013
        >>> tokenizer.pad_token_id = tokenizer.eos_token_id
        >>> inputs = tokenizer(["Today is"], return_tensors="pt")

        >>> # Example 1: Print the scores for each token generated with Greedy Search
        >>> outputs = model.generate(**inputs, max_new_tokens=5, return_dict_in_generate=True, output_scores=True)
        >>> transition_scores = model.compute_transition_scores(
        ...     outputs.sequences, outputs.scores, normalize_logits=True
        ... )
1014
1015
1016
        >>> # input_length is the length of the input prompt for decoder-only models, like the GPT family, and 1 for
        >>> # encoder-decoder models, like BART or T5.
        >>> input_length = 1 if model.config.is_encoder_decoder else inputs.input_ids.shape[1]
1017
1018
        >>> generated_tokens = outputs.sequences[:, input_length:]
        >>> for tok, score in zip(generated_tokens[0], transition_scores[0]):
1019
        ...     # | token | token string | log probability | probability
1020
1021
1022
1023
1024
1025
        ...     print(f"| {tok:5d} | {tokenizer.decode(tok):8s} | {score.numpy():.3f} | {np.exp(score.numpy()):.2%}")
        |   262 |  the     | -1.414 | 24.33%
        |  1110 |  day     | -2.609 | 7.36%
        |   618 |  when    | -2.010 | 13.40%
        |   356 |  we      | -1.859 | 15.58%
        |   460 |  can     | -2.508 | 8.14%
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039

        >>> # Example 2: Reconstruct the sequence scores from Beam Search
        >>> outputs = model.generate(
        ...     **inputs,
        ...     max_new_tokens=5,
        ...     num_beams=4,
        ...     num_return_sequences=4,
        ...     return_dict_in_generate=True,
        ...     output_scores=True,
        ... )
        >>> transition_scores = model.compute_transition_scores(
        ...     outputs.sequences, outputs.scores, outputs.beam_indices, normalize_logits=False
        ... )
        >>> # If you sum the generated tokens' scores and apply the length penalty, you'll get the sequence scores.
1040
        >>> # Tip 1: recomputing the scores is only guaranteed to match with `normalize_logits=False`. Depending on the
1041
        >>> # use case, you might want to recompute it with `normalize_logits=True`.
1042
1043
        >>> # Tip 2: the output length does NOT include the input length
        >>> output_length = np.sum(transition_scores.numpy() < 0, axis=1)
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
        >>> length_penalty = model.generation_config.length_penalty
        >>> reconstructed_scores = transition_scores.sum(axis=1) / (output_length**length_penalty)
        >>> print(np.allclose(outputs.sequences_scores, reconstructed_scores))
        True
        ```"""
        # 1. In absence of `beam_indices`, we can assume that we come from e.g. greedy search, which is equivalent
        # to a beam search approach were the first (and only) beam is always selected
        if beam_indices is None:
            beam_indices = torch.arange(scores[0].shape[0]).view(-1, 1).to(sequences.device)
            beam_indices = beam_indices.expand(-1, len(scores))

        # 2. reshape scores as [batch_size*vocab_size, # generation steps] with # generation steps being
1056
1057
1058
        # seq_len - input_length
        scores = torch.stack(scores).reshape(len(scores), -1).transpose(0, 1)

1059
1060
1061
1062
1063
1064
1065
        # 3. Optionally normalize the logits (across the vocab dimension)
        if normalize_logits:
            scores = scores.reshape(-1, self.config.vocab_size, scores.shape[-1])
            scores = torch.nn.functional.log_softmax(scores, dim=1)
            scores = scores.reshape(-1, scores.shape[-1])

        # 4. cut beam_indices to longest beam length
1066
1067
        beam_indices_mask = beam_indices < 0
        max_beam_length = (1 - beam_indices_mask.long()).sum(-1).max()
1068
        beam_indices = beam_indices.clone()[:, :max_beam_length]
1069
1070
        beam_indices_mask = beam_indices_mask[:, :max_beam_length]

1071
        # 5. Set indices of beams that finished early to 0; such indices will be masked correctly afterwards
1072
1073
        beam_indices[beam_indices_mask] = 0

1074
        # 6. multiply beam_indices with vocab size to gather correctly from scores
1075
1076
        beam_sequence_indices = beam_indices * self.config.vocab_size

1077
        # 7. Define which indices contributed to scores
1078
1079
1080
        cut_idx = sequences.shape[-1] - max_beam_length
        indices = sequences[:, cut_idx:] + beam_sequence_indices

1081
        # 8. Compute scores
1082
1083
        transition_scores = scores.gather(0, indices)

1084
        # 9. Mask out transition_scores of beams that stopped early
1085
1086
1087
1088
1089
1090
1091
1092
1093
        transition_scores[beam_indices_mask] = 0

        return transition_scores

    def _validate_model_class(self):
        """
        Confirms that the model class is compatible with generation. If not, raises an exception that points to the
        right class to use.
        """
1094
        if not self.can_generate():
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
            generate_compatible_mappings = [
                MODEL_FOR_CAUSAL_LM_MAPPING,
                MODEL_FOR_CAUSAL_IMAGE_MODELING_MAPPING,
                MODEL_FOR_VISION_2_SEQ_MAPPING,
                MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
                MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING,
            ]
            generate_compatible_classes = set()
            for model_mapping in generate_compatible_mappings:
                supported_models = model_mapping.get(type(self.config), default=None)
                if supported_models is not None:
                    generate_compatible_classes.add(supported_models.__name__)
            exception_message = (
                f"The current model class ({self.__class__.__name__}) is not compatible with `.generate()`, as "
                "it doesn't have a language model head."
            )
            if generate_compatible_classes:
                exception_message += f" Please use one of the following classes instead: {generate_compatible_classes}"
            raise TypeError(exception_message)

    def _validate_model_kwargs(self, model_kwargs: Dict[str, Any]):
        """Validates model kwargs for generation. Generate argument typos will also be caught here."""
1117
1118
1119
1120
1121
1122
1123
        # If a `Cache` instance is passed, checks whether the model is compatible with it
        if isinstance(model_kwargs.get("past_key_values", None), Cache) and not self._supports_cache_class:
            raise ValueError(
                f"{self.__class__.__name__} does not support an instance of `Cache` as `past_key_values`. Please "
                "check the model documentation for supported cache formats."
            )

1124
1125
1126
1127
1128
1129
1130
        # Excludes arguments that are handled before calling any model function
        if self.config.is_encoder_decoder:
            for key in ["decoder_input_ids"]:
                model_kwargs.pop(key, None)

        unused_model_args = []
        model_args = set(inspect.signature(self.prepare_inputs_for_generation).parameters)
1131
1132
1133
        # `kwargs`/`model_kwargs` is often used to handle optional forward pass inputs like `attention_mask`. If
        # `prepare_inputs_for_generation` doesn't accept them, then a stricter check can be made ;)
        if "kwargs" in model_args or "model_kwargs" in model_args:
1134
            model_args |= set(inspect.signature(self.forward).parameters)
1135
1136
1137
1138
1139
1140
1141

        # Encoder-Decoder models may also need Encoder arguments from `model_kwargs`
        if self.config.is_encoder_decoder:
            base_model = getattr(self, self.base_model_prefix, None)

            # allow encoder kwargs
            encoder = getattr(self, "encoder", None)
1142
1143
1144
1145
1146
            # `MusicgenForConditionalGeneration` has `text_encoder` and `audio_encoder`.
            # Also, it has `base_model_prefix = "encoder_decoder"` but there is no `self.encoder_decoder`
            # TODO: A better way to handle this.
            if encoder is None and base_model is not None:
                encoder = getattr(base_model, "encoder", None)
1147

1148
1149
1150
            if encoder is not None:
                encoder_model_args = set(inspect.signature(encoder.forward).parameters)
                model_args |= encoder_model_args
1151
1152
1153

            # allow decoder kwargs
            decoder = getattr(self, "decoder", None)
1154
1155
            if decoder is None and base_model is not None:
                decoder = getattr(base_model, "decoder", None)
1156

1157
1158
1159
            if decoder is not None:
                decoder_model_args = set(inspect.signature(decoder.forward).parameters)
                model_args |= {f"decoder_{x}" for x in decoder_model_args}
1160

1161
1162
1163
1164
            # allow assistant_encoder_outputs to be passed if we're doing assisted generating
            if "assistant_encoder_outputs" in model_kwargs:
                model_args |= {"assistant_encoder_outputs"}

1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
        for key, value in model_kwargs.items():
            if value is not None and key not in model_args:
                unused_model_args.append(key)

        if unused_model_args:
            raise ValueError(
                f"The following `model_kwargs` are not used by the model: {unused_model_args} (note: typos in the"
                " generate arguments will also show up in this list)"
            )

1175
1176
1177
1178
    def _validate_generated_length(self, generation_config, input_ids_length, has_default_max_length):
        """Performs validation related to the resulting generated length"""

        # 1. Max length warnings related to poor parameterization
1179
        if has_default_max_length and generation_config.max_new_tokens is None and generation_config.max_length == 20:
1180
1181
            # 20 is the default max_length of the generation config
            warnings.warn(
1182
                f"Using the model-agnostic default `max_length` (={generation_config.max_length}) to control the "
1183
1184
1185
1186
1187
1188
                "generation length. We recommend setting `max_new_tokens` to control the maximum length of the "
                "generation.",
                UserWarning,
            )
        if input_ids_length >= generation_config.max_length:
            input_ids_string = "decoder_input_ids" if self.config.is_encoder_decoder else "input_ids"
1189
            raise ValueError(
1190
1191
                f"Input length of {input_ids_string} is {input_ids_length}, but `max_length` is set to"
                f" {generation_config.max_length}. This can lead to unexpected behavior. You should consider"
1192
                " increasing `max_length` or, better yet, setting `max_new_tokens`."
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
            )

        # 2. Min length warnings due to unfeasible parameter combinations
        min_length_error_suffix = (
            " Generation will stop at the defined maximum length. You should decrease the minimum length and/or "
            "increase the maximum length."
        )
        if has_default_max_length:
            min_length_error_suffix += (
                f" Note that `max_length` is set to {generation_config.max_length}, its default value."
            )
        if generation_config.min_length is not None and generation_config.min_length > generation_config.max_length:
            warnings.warn(
                f"Unfeasible length constraints: `min_length` ({generation_config.min_length}) is larger than"
                f" the maximum possible length ({generation_config.max_length})." + min_length_error_suffix,
                UserWarning,
            )
        if generation_config.min_new_tokens is not None:
            min_length = generation_config.min_new_tokens + input_ids_length
            if min_length > generation_config.max_length:
                warnings.warn(
                    f"Unfeasible length constraints: `min_new_tokens` ({generation_config.min_new_tokens}), when "
                    f"added to the prompt length ({input_ids_length}), is larger than"
                    f" the maximum possible length ({generation_config.max_length})." + min_length_error_suffix,
                    UserWarning,
                )

1220
1221
1222
1223
    @torch.no_grad()
    def generate(
        self,
        inputs: Optional[torch.Tensor] = None,
1224
        generation_config: Optional[GenerationConfig] = None,
1225
1226
        logits_processor: Optional[LogitsProcessorList] = None,
        stopping_criteria: Optional[StoppingCriteriaList] = None,
1227
        prefix_allowed_tokens_fn: Optional[Callable[[int, torch.Tensor], List[int]]] = None,
1228
        synced_gpus: Optional[bool] = None,
1229
        assistant_model: Optional["PreTrainedModel"] = None,
1230
        streamer: Optional["BaseStreamer"] = None,
1231
1232
        negative_prompt_ids: Optional[torch.Tensor] = None,
        negative_prompt_attention_mask: Optional[torch.Tensor] = None,
1233
        **kwargs,
1234
1235
1236
    ) -> Union[GenerateOutput, torch.LongTensor]:
        r"""

1237
        Generates sequences of token ids for models with a language modeling head.
1238
1239
1240

        <Tip warning={true}>

1241
1242
        Most generation-controlling parameters are set in `generation_config` which, if not passed, will be set to the
        model's default generation configuration. You can override any `generation_config` by passing the corresponding
1243
        parameters to generate(), e.g. `.generate(inputs, num_beams=4, do_sample=True)`.
1244

1245
        For an overview of generation strategies and code examples, check out the [following
1246
        guide](../generation_strategies).
1247

1248
        </Tip>
1249
1250
1251
1252
1253
1254
1255

        Parameters:
            inputs (`torch.Tensor` of varying shape depending on the modality, *optional*):
                The sequence used as a prompt for the generation or as model inputs to the encoder. If `None` the
                method initializes it with `bos_token_id` and a batch size of 1. For decoder-only models `inputs`
                should of in the format of `input_ids`. For encoder-decoder models *inputs* can represent any of
                `input_ids`, `input_values`, `input_features`, or `pixel_values`.
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
            generation_config (`~generation.GenerationConfig`, *optional*):
                The generation configuration to be used as base parametrization for the generation call. `**kwargs`
                passed to generate matching the attributes of `generation_config` will override them. If
                `generation_config` is not provided, the default will be used, which had the following loading
                priority: 1) from the `generation_config.json` model file, if it exists; 2) from the model
                configuration. Please note that unspecified parameters will inherit [`~generation.GenerationConfig`]'s
                default values, whose documentation should be checked to parameterize generation.
            logits_processor (`LogitsProcessorList`, *optional*):
                Custom logits processors that complement the default logits processors built from arguments and
                generation config. If a logit processor is passed that is already created with the arguments or a
                generation config an error is thrown. This feature is intended for advanced users.
            stopping_criteria (`StoppingCriteriaList`, *optional*):
                Custom stopping criteria that complement the default stopping criteria built from arguments and a
                generation config. If a stopping criteria is passed that is already created with the arguments or a
1270
1271
1272
                generation config an error is thrown. If your stopping criteria depends on the `scores` input, make
                sure you pass `return_dict_in_generate=True, output_scores=True` to `generate`. This feature is
                intended for advanced users.
1273
1274
1275
1276
1277
1278
1279
            prefix_allowed_tokens_fn (`Callable[[int, torch.Tensor], List[int]]`, *optional*):
                If provided, this function constraints the beam search to allowed tokens only at each step. If not
                provided no constraint is applied. This function takes 2 arguments: the batch ID `batch_id` and
                `input_ids`. It has to return a list with the allowed tokens for the next generation step conditioned
                on the batch ID `batch_id` and the previously generated tokens `inputs_ids`. This argument is useful
                for constrained generation conditioned on the prefix, as described in [Autoregressive Entity
                Retrieval](https://arxiv.org/abs/2010.00904).
1280
1281
1282
1283
            synced_gpus (`bool`, *optional*):
                Whether to continue running the while loop until max_length. Unless overridden this flag will be set to
                `True` under DeepSpeed ZeRO Stage 3 multiple GPUs environment to avoid hanging if one GPU finished
                generating before other GPUs. Otherwise it'll be set to `False`.
1284
1285
1286
1287
1288
            assistant_model (`PreTrainedModel`, *optional*):
                An assistant model that can be used to accelerate generation. The assistant model must have the exact
                same tokenizer. The acceleration is achieved when forecasting candidate tokens with the assistent model
                is much faster than running generation with the model you're calling generate from. As such, the
                assistant model should be much smaller.
1289
1290
1291
            streamer (`BaseStreamer`, *optional*):
                Streamer object that will be used to stream the generated sequences. Generated tokens are passed
                through `streamer.put(token_ids)` and the streamer is responsible for any further processing.
1292
1293
1294
1295
1296
            negative_prompt_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
                The negative prompt needed for some processors such as CFG. The batch size must match the input batch
                size. This is an experimental feature, subject to breaking API changes in future versions.
            negative_prompt_attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
                Attention_mask for `negative_prompt_ids`.
1297
            kwargs (`Dict[str, Any]`, *optional*):
1298
1299
1300
                Ad hoc parametrization of `generate_config` and/or additional model-specific kwargs that will be
                forwarded to the `forward` function of the model. If the model is an encoder-decoder model, encoder
                specific kwargs should not be prefixed and decoder specific kwargs should be prefixed with *decoder_*.
1301
1302
1303
1304
1305
1306
1307
1308

        Return:
            [`~utils.ModelOutput`] or `torch.LongTensor`: A [`~utils.ModelOutput`] (if `return_dict_in_generate=True`
            or when `config.return_dict_in_generate=True`) or a `torch.FloatTensor`.

                If the model is *not* an encoder-decoder model (`model.config.is_encoder_decoder=False`), the possible
                [`~utils.ModelOutput`] types are:

1309
1310
                    - [`~generation.GenerateDecoderOnlyOutput`],
                    - [`~generation.GenerateBeamDecoderOnlyOutput`]
1311
1312
1313
1314

                If the model is an encoder-decoder model (`model.config.is_encoder_decoder=True`), the possible
                [`~utils.ModelOutput`] types are:

1315
1316
                    - [`~generation.GenerateEncoderDecoderOutput`],
                    - [`~generation.GenerateBeamEncoderDecoderOutput`]
1317
        """
1318
1319

        if synced_gpus is None:
1320
            if is_deepspeed_zero3_enabled() and dist.get_world_size() > 1:
1321
1322
1323
1324
                synced_gpus = True
            else:
                synced_gpus = False

1325
        # 1. Handle `generation_config` and kwargs that might update it, and validate the `.generate()` call
1326
        self._validate_model_class()
1327
1328
1329

        # priority: `generation_config` argument > `model.generation_config` (the default generation config)
        if generation_config is None:
1330
            # legacy: users may modify the model configuration to control generation. To trigger this legacy behavior,
1331
            # three conditions must be met
1332
            # 1) the generation config must have been created from the model config (`_from_model_config` field);
1333
1334
1335
1336
1337
1338
            # 2) the generation config must have seen no modification since its creation (the hash is the same);
            # 3) the user must have set generation parameters in the model config.
            if (
                self.generation_config._from_model_config
                and self.generation_config._original_object_hash == hash(self.generation_config)
                and self.config._has_non_default_generation_parameters()
1339
            ):
1340
1341
1342
1343
1344
                new_generation_config = GenerationConfig.from_model_config(self.config)
                if new_generation_config != self.generation_config:
                    warnings.warn(
                        "You have modified the pretrained model configuration to control generation. This is a"
                        " deprecated strategy to control generation and will be removed soon, in a future version."
1345
1346
                        " Please use and modify the model generation configuration (see"
                        " https://huggingface.co/docs/transformers/generation_strategies#default-text-generation-configuration )"
1347
1348
1349
1350
1351
1352
                    )
                    self.generation_config = new_generation_config
            generation_config = self.generation_config

        generation_config = copy.deepcopy(generation_config)
        model_kwargs = generation_config.update(**kwargs)  # All unused kwargs must be model kwargs
1353
1354
        self._validate_model_kwargs(model_kwargs.copy())

1355
        # 2. Set generation parameters if not already defined
1356
1357
1358
        logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList()
        stopping_criteria = stopping_criteria if stopping_criteria is not None else StoppingCriteriaList()

1359
        if generation_config.pad_token_id is None and generation_config.eos_token_id is not None:
1360
1361
1362
1363
1364
            if model_kwargs.get("attention_mask", None) is None:
                logger.warning(
                    "The attention mask and the pad token id were not set. As a consequence, you may observe "
                    "unexpected behavior. Please pass your input's `attention_mask` to obtain reliable results."
                )
1365
1366
1367
1368
1369
            eos_token_id = generation_config.eos_token_id
            if isinstance(eos_token_id, list):
                eos_token_id = eos_token_id[0]
            logger.warning(f"Setting `pad_token_id` to `eos_token_id`:{eos_token_id} for open-end generation.")
            generation_config.pad_token_id = eos_token_id
1370

1371
        # 3. Define model inputs
1372
1373
1374
1375
        # inputs_tensor has to be defined
        # model_input_name is defined if model-specific keyword input is passed
        # otherwise model_input_name is None
        # all model-specific keyword inputs are removed from `model_kwargs`
1376
1377
1378
        inputs_tensor, model_input_name, model_kwargs = self._prepare_model_inputs(
            inputs, generation_config.bos_token_id, model_kwargs
        )
1379
1380
        batch_size = inputs_tensor.shape[0]

1381
1382
1383
        # 4. Define other model kwargs
        model_kwargs["output_attentions"] = generation_config.output_attentions
        model_kwargs["output_hidden_states"] = generation_config.output_hidden_states
1384
1385
1386
1387
1388
1389
        # decoder-only models with inputs_embeds forwarding must use caching (otherwise we can't detect whether we are
        # generating the first new token or not, and we only want to use the embeddings for the first new token)
        if not self.config.is_encoder_decoder and model_input_name == "inputs_embeds":
            model_kwargs["use_cache"] = True
        else:
            model_kwargs["use_cache"] = generation_config.use_cache
1390
1391
1392
1393
1394
1395

        accepts_attention_mask = "attention_mask" in set(inspect.signature(self.forward).parameters.keys())
        requires_attention_mask = "encoder_outputs" not in model_kwargs

        if model_kwargs.get("attention_mask", None) is None and requires_attention_mask and accepts_attention_mask:
            model_kwargs["attention_mask"] = self._prepare_attention_mask_for_generation(
1396
                inputs_tensor, generation_config.pad_token_id, generation_config.eos_token_id
1397
1398
1399
1400
            )

        # decoder-only models should use left-padding for generation
        if not self.config.is_encoder_decoder:
1401
1402
            # If `input_ids` was given, check if the last id in any sequence is `pad_token_id`
            # Note: If using, `inputs_embeds` this check does not work, because we want to be more hands-off.
1403
1404
            if (
                generation_config.pad_token_id is not None
1405
                and len(inputs_tensor.shape) == 2
1406
1407
                and torch.sum(inputs_tensor[:, -1] == generation_config.pad_token_id) > 0
            ):
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
                logger.warning(
                    "A decoder-only architecture is being used, but right-padding was detected! For correct "
                    "generation results, please set `padding_side='left'` when initializing the tokenizer."
                )

        if self.config.is_encoder_decoder and "encoder_outputs" not in model_kwargs:
            # if model is encoder decoder encoder_outputs are created
            # and added to `model_kwargs`
            model_kwargs = self._prepare_encoder_decoder_kwargs_for_generation(
                inputs_tensor, model_kwargs, model_input_name
            )

1420
        # 5. Prepare `input_ids` which will be used for auto-regressive generation
1421
        if self.config.is_encoder_decoder:
1422
1423
1424
1425
            input_ids, model_kwargs = self._prepare_decoder_input_ids_for_generation(
                batch_size=batch_size,
                model_input_name=model_input_name,
                model_kwargs=model_kwargs,
1426
1427
                decoder_start_token_id=generation_config.decoder_start_token_id,
                bos_token_id=generation_config.bos_token_id,
1428
1429
1430
                device=inputs_tensor.device,
            )
        else:
1431
            input_ids = inputs_tensor if model_input_name == "input_ids" else model_kwargs.pop("input_ids")
1432

1433
1434
1435
        if streamer is not None:
            streamer.put(input_ids.cpu())

1436
        # 6. Prepare `max_length` depending on other stopping criteria.
1437
        input_ids_length = input_ids.shape[-1]
1438
        has_default_max_length = kwargs.get("max_length") is None and generation_config.max_length is not None
1439
        if generation_config.max_new_tokens is not None:
1440
            if not has_default_max_length and generation_config.max_length is not None:
1441
                logger.warning(
1442
1443
1444
                    f"Both `max_new_tokens` (={generation_config.max_new_tokens}) and `max_length`(="
                    f"{generation_config.max_length}) seem to have been set. `max_new_tokens` will take precedence. "
                    "Please refer to the documentation for more information. "
1445
                    "(https://huggingface.co/docs/transformers/main/en/main_classes/text_generation)"
1446
                )
1447
            generation_config.max_length = generation_config.max_new_tokens + input_ids_length
1448

1449
1450
1451
1452
1453
1454
1455
1456
        # otherwise the total length [inputs-embeds-len + new-tokens-len] will go beyond indicated `max_length``
        elif (
            model_input_name == "inputs_embeds"
            and inputs_tensor.shape[:-1] != input_ids.shape
            and not self.config.is_encoder_decoder
        ):
            generation_config.max_length -= inputs_tensor.shape[1]

1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
        if generation_config.cache_implementation in NEED_SETUP_CACHE_CLASSES_MAPPING:
            if generation_config.cache_implementation == "static":
                if model_kwargs.get("past_key_values", False) is not False:
                    raise ValueError(
                        "Using `past_key_values` argument with `generate()` when using a static KV cache is not supported. Please open an issue in Transformers GitHub repository."
                    )
                cache_cls = NEED_SETUP_CACHE_CLASSES_MAPPING["static"]
                if not callable(getattr(self, "_setup_cache", None)):
                    raise ValueError(
                        "The `generation_config` defines a `cache_implementation` that is not compatible with this model."
                        " Make sure it has a `_setup_cache` function."
                    )
                self._setup_cache(cache_cls, max_batch_size=batch_size, max_cache_len=generation_config.max_length)
1470

1471
        self._validate_generated_length(generation_config, input_ids_length, has_default_max_length)
1472

1473
        # 7. determine generation mode
1474
        generation_mode = self._get_generation_mode(generation_config, assistant_model)
1475

1476
1477
1478
1479
1480
        if streamer is not None and (generation_config.num_beams > 1):
            raise ValueError(
                "`streamer` cannot be used with beam search (yet!). Make sure that `num_beams` is set to 1."
            )

1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
        if self.device.type != input_ids.device.type:
            warnings.warn(
                "You are calling .generate() with the `input_ids` being on a device type different"
                f" than your model's device. `input_ids` is on {input_ids.device.type}, whereas the model"
                f" is on {self.device.type}. You may experience unexpected behaviors or slower generation."
                " Please make sure that you have put `input_ids` to the"
                f" correct device by calling for example input_ids = input_ids.to('{self.device.type}') before"
                " running `.generate()`.",
                UserWarning,
            )

1492
        # 8. prepare distribution pre_processing samplers
1493
        prepared_logits_processor = self._get_logits_processor(
1494
            generation_config=generation_config,
1495
            input_ids_seq_length=input_ids_length,
1496
1497
1498
            encoder_input_ids=inputs_tensor,
            prefix_allowed_tokens_fn=prefix_allowed_tokens_fn,
            logits_processor=logits_processor,
1499
1500
1501
            model_kwargs=model_kwargs,
            negative_prompt_ids=negative_prompt_ids,
            negative_prompt_attention_mask=negative_prompt_attention_mask,
1502
1503
        )

1504
        # 9. prepare stopping criteria
1505
        prepared_stopping_criteria = self._get_stopping_criteria(
1506
            generation_config=generation_config, stopping_criteria=stopping_criteria
1507
        )
1508
        # 10. go into different generation modes
1509
        if generation_mode == GenerationMode.ASSISTED_GENERATION:
1510
1511
            if generation_config.num_return_sequences > 1:
                raise ValueError(
1512
                    "num_return_sequences has to be 1 when doing assisted generate, "
1513
1514
1515
                    f"but is {generation_config.num_return_sequences}."
                )
            if batch_size > 1:
1516
                raise ValueError("assisted generate is only supported for batch_size = 1")
1517
            if not model_kwargs["use_cache"]:
1518
                raise ValueError("assisted generate requires `use_cache=True`")
1519

1520
1521
1522
1523
1524
1525
1526
1527
            # 11. Get the candidate generator, given the parameterization
            candidate_generator = self._get_candidate_generator(
                generation_config=generation_config,
                input_ids=input_ids,
                inputs_tensor=inputs_tensor,
                assistant_model=assistant_model,
                logits_processor=logits_processor,
                model_kwargs=model_kwargs,
1528
1529
            )

1530
            # 12. run assisted generate
1531
            result = self.assisted_decoding(
1532
                input_ids,
1533
                candidate_generator=candidate_generator,
1534
                do_sample=generation_config.do_sample,
1535
                logits_processor=prepared_logits_processor,
1536
                logits_warper=self._get_logits_warper(generation_config) if generation_config.do_sample else None,
1537
                stopping_criteria=prepared_stopping_criteria,
1538
1539
1540
                pad_token_id=generation_config.pad_token_id,
                eos_token_id=generation_config.eos_token_id,
                output_scores=generation_config.output_scores,
1541
                output_logits=generation_config.output_logits,
1542
1543
1544
1545
1546
                return_dict_in_generate=generation_config.return_dict_in_generate,
                synced_gpus=synced_gpus,
                streamer=streamer,
                **model_kwargs,
            )
1547
        if generation_mode == GenerationMode.GREEDY_SEARCH:
1548
            # 11. run greedy search
1549
            result = self.greedy_search(
1550
                input_ids,
1551
1552
                logits_processor=prepared_logits_processor,
                stopping_criteria=prepared_stopping_criteria,
1553
1554
1555
                pad_token_id=generation_config.pad_token_id,
                eos_token_id=generation_config.eos_token_id,
                output_scores=generation_config.output_scores,
1556
                output_logits=generation_config.output_logits,
1557
                return_dict_in_generate=generation_config.return_dict_in_generate,
1558
                synced_gpus=synced_gpus,
1559
                streamer=streamer,
1560
1561
1562
                **model_kwargs,
            )

1563
        elif generation_mode == GenerationMode.CONTRASTIVE_SEARCH:
1564
1565
            if not model_kwargs["use_cache"]:
                raise ValueError("Contrastive search requires `use_cache=True`")
1566

1567
            result = self.contrastive_search(
1568
                input_ids,
1569
1570
                top_k=generation_config.top_k,
                penalty_alpha=generation_config.penalty_alpha,
1571
1572
                logits_processor=prepared_logits_processor,
                stopping_criteria=prepared_stopping_criteria,
1573
1574
1575
                pad_token_id=generation_config.pad_token_id,
                eos_token_id=generation_config.eos_token_id,
                output_scores=generation_config.output_scores,
1576
                output_logits=generation_config.output_logits,
1577
                return_dict_in_generate=generation_config.return_dict_in_generate,
1578
                synced_gpus=synced_gpus,
1579
                streamer=streamer,
1580
                sequential=generation_config.low_memory,
1581
1582
1583
                **model_kwargs,
            )

1584
        elif generation_mode == GenerationMode.SAMPLE:
1585
1586
            # 11. prepare logits warper
            logits_warper = self._get_logits_warper(generation_config)
1587

1588
            # 12. expand input_ids with `num_return_sequences` additional sequences per batch
1589
1590
            input_ids, model_kwargs = self._expand_inputs_for_generation(
                input_ids=input_ids,
1591
                expand_size=generation_config.num_return_sequences,
1592
1593
1594
1595
                is_encoder_decoder=self.config.is_encoder_decoder,
                **model_kwargs,
            )

1596
            # 13. run sample
1597
            result = self.sample(
1598
                input_ids,
1599
                logits_processor=prepared_logits_processor,
1600
                logits_warper=logits_warper,
1601
                stopping_criteria=prepared_stopping_criteria,
1602
1603
1604
                pad_token_id=generation_config.pad_token_id,
                eos_token_id=generation_config.eos_token_id,
                output_scores=generation_config.output_scores,
1605
                output_logits=generation_config.output_logits,
1606
                return_dict_in_generate=generation_config.return_dict_in_generate,
1607
                synced_gpus=synced_gpus,
1608
                streamer=streamer,
1609
1610
1611
                **model_kwargs,
            )

1612
        elif generation_mode == GenerationMode.BEAM_SEARCH:
1613
            # 11. prepare beam search scorer
1614
1615
            beam_scorer = BeamSearchScorer(
                batch_size=batch_size,
1616
                num_beams=generation_config.num_beams,
1617
                device=inputs_tensor.device,
1618
1619
1620
                length_penalty=generation_config.length_penalty,
                do_early_stopping=generation_config.early_stopping,
                num_beam_hyps_to_keep=generation_config.num_return_sequences,
1621
                max_length=generation_config.max_length,
1622
            )
1623
            # 12. interleave input_ids with `num_beams` additional sequences per batch
1624
1625
            input_ids, model_kwargs = self._expand_inputs_for_generation(
                input_ids=input_ids,
1626
                expand_size=generation_config.num_beams,
1627
1628
1629
                is_encoder_decoder=self.config.is_encoder_decoder,
                **model_kwargs,
            )
1630
            # 13. run beam search
1631
            result = self.beam_search(
1632
1633
                input_ids,
                beam_scorer,
1634
1635
                logits_processor=prepared_logits_processor,
                stopping_criteria=prepared_stopping_criteria,
1636
1637
1638
                pad_token_id=generation_config.pad_token_id,
                eos_token_id=generation_config.eos_token_id,
                output_scores=generation_config.output_scores,
1639
                output_logits=generation_config.output_logits,
1640
                return_dict_in_generate=generation_config.return_dict_in_generate,
1641
                synced_gpus=synced_gpus,
1642
                sequential=generation_config.low_memory,
1643
1644
1645
                **model_kwargs,
            )

1646
        elif generation_mode == GenerationMode.BEAM_SAMPLE:
1647
1648
            # 11. prepare logits warper
            logits_warper = self._get_logits_warper(generation_config)
1649

1650
            # 12. prepare beam search scorer
1651
            beam_scorer = BeamSearchScorer(
1652
                batch_size=batch_size,
1653
                num_beams=generation_config.num_beams,
1654
                device=inputs_tensor.device,
1655
1656
                length_penalty=generation_config.length_penalty,
                do_early_stopping=generation_config.early_stopping,
1657
                num_beam_hyps_to_keep=generation_config.num_return_sequences,
1658
                max_length=generation_config.max_length,
1659
1660
            )

1661
            # 13. interleave input_ids with `num_beams` additional sequences per batch
1662
1663
            input_ids, model_kwargs = self._expand_inputs_for_generation(
                input_ids=input_ids,
1664
                expand_size=generation_config.num_beams,
1665
1666
1667
1668
                is_encoder_decoder=self.config.is_encoder_decoder,
                **model_kwargs,
            )

1669
            # 14. run beam sample
1670
            result = self.beam_sample(
1671
1672
                input_ids,
                beam_scorer,
1673
                logits_processor=prepared_logits_processor,
1674
                logits_warper=logits_warper,
1675
                stopping_criteria=prepared_stopping_criteria,
1676
1677
1678
                pad_token_id=generation_config.pad_token_id,
                eos_token_id=generation_config.eos_token_id,
                output_scores=generation_config.output_scores,
1679
                output_logits=generation_config.output_logits,
1680
                return_dict_in_generate=generation_config.return_dict_in_generate,
1681
1682
1683
1684
                synced_gpus=synced_gpus,
                **model_kwargs,
            )

1685
        elif generation_mode == GenerationMode.GROUP_BEAM_SEARCH:
1686
            # 11. prepare beam search scorer
1687
1688
            beam_scorer = BeamSearchScorer(
                batch_size=batch_size,
1689
                num_beams=generation_config.num_beams,
1690
                device=inputs_tensor.device,
1691
1692
1693
1694
                length_penalty=generation_config.length_penalty,
                do_early_stopping=generation_config.early_stopping,
                num_beam_hyps_to_keep=generation_config.num_return_sequences,
                num_beam_groups=generation_config.num_beam_groups,
1695
                max_length=generation_config.max_length,
1696
            )
1697
            # 12. interleave input_ids with `num_beams` additional sequences per batch
1698
1699
            input_ids, model_kwargs = self._expand_inputs_for_generation(
                input_ids=input_ids,
1700
                expand_size=generation_config.num_beams,
1701
1702
1703
                is_encoder_decoder=self.config.is_encoder_decoder,
                **model_kwargs,
            )
1704
            # 13. run beam search
1705
            result = self.group_beam_search(
1706
1707
                input_ids,
                beam_scorer,
1708
1709
                logits_processor=prepared_logits_processor,
                stopping_criteria=prepared_stopping_criteria,
1710
1711
1712
                pad_token_id=generation_config.pad_token_id,
                eos_token_id=generation_config.eos_token_id,
                output_scores=generation_config.output_scores,
1713
                output_logits=generation_config.output_logits,
1714
                return_dict_in_generate=generation_config.return_dict_in_generate,
1715
1716
1717
1718
                synced_gpus=synced_gpus,
                **model_kwargs,
            )

1719
        elif generation_mode == GenerationMode.CONSTRAINED_BEAM_SEARCH:
1720
            final_constraints = []
1721
1722
            if generation_config.constraints is not None:
                final_constraints = generation_config.constraints
1723

1724
            if generation_config.force_words_ids is not None:
1725
1726
1727

                def typeerror():
                    raise ValueError(
1728
                        "`force_words_ids` has to either be a `List[List[List[int]]]` or `List[List[int]]` "
1729
                        f"of positive integers, but is {generation_config.force_words_ids}."
1730
1731
                    )

1732
1733
1734
1735
                if (
                    not isinstance(generation_config.force_words_ids, list)
                    or len(generation_config.force_words_ids) == 0
                ):
1736
1737
                    typeerror()

1738
                for word_ids in generation_config.force_words_ids:
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
                    if isinstance(word_ids[0], list):
                        if not isinstance(word_ids, list) or len(word_ids) == 0:
                            typeerror()
                        if any(not isinstance(token_ids, list) for token_ids in word_ids):
                            typeerror()
                        if any(
                            any((not isinstance(token_id, int) or token_id < 0) for token_id in token_ids)
                            for token_ids in word_ids
                        ):
                            typeerror()

                        constraint = DisjunctiveConstraint(word_ids)
                    else:
                        if not isinstance(word_ids, list) or len(word_ids) == 0:
                            typeerror()
                        if any((not isinstance(token_id, int) or token_id < 0) for token_id in word_ids):
                            typeerror()

                        constraint = PhrasalConstraint(word_ids)
                    final_constraints.append(constraint)

1760
            # 11. prepare beam search scorer
1761
1762
1763
            constrained_beam_scorer = ConstrainedBeamSearchScorer(
                constraints=final_constraints,
                batch_size=batch_size,
1764
                num_beams=generation_config.num_beams,
1765
                device=inputs_tensor.device,
1766
1767
1768
                length_penalty=generation_config.length_penalty,
                do_early_stopping=generation_config.early_stopping,
                num_beam_hyps_to_keep=generation_config.num_return_sequences,
1769
                max_length=generation_config.max_length,
1770
            )
1771
            # 12. interleave input_ids with `num_beams` additional sequences per batch
1772
1773
            input_ids, model_kwargs = self._expand_inputs_for_generation(
                input_ids=input_ids,
1774
                expand_size=generation_config.num_beams,
1775
1776
1777
                is_encoder_decoder=self.config.is_encoder_decoder,
                **model_kwargs,
            )
1778
            # 13. run beam search
1779
            result = self.constrained_beam_search(
1780
1781
                input_ids,
                constrained_beam_scorer=constrained_beam_scorer,
1782
1783
                logits_processor=prepared_logits_processor,
                stopping_criteria=prepared_stopping_criteria,
1784
1785
1786
                pad_token_id=generation_config.pad_token_id,
                eos_token_id=generation_config.eos_token_id,
                output_scores=generation_config.output_scores,
1787
                output_logits=generation_config.output_logits,
1788
                return_dict_in_generate=generation_config.return_dict_in_generate,
1789
1790
1791
1792
                synced_gpus=synced_gpus,
                **model_kwargs,
            )

1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
        if generation_config.cache_implementation in NEED_SETUP_CACHE_CLASSES_MAPPING:
            if not callable(getattr(self, "_reset_cache", None)):
                raise ValueError(
                    "A `static_cache` was used to generate but there was a failure when trying to  release the cache. "
                    " Make sure this model implements a `_reset_cache` function."
                )
            self._reset_cache()

        return result

1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
    @torch.no_grad()
    def contrastive_search(
        self,
        input_ids: torch.LongTensor,
        top_k: Optional[int] = 1,
        penalty_alpha: Optional[float] = 0,
        logits_processor: Optional[LogitsProcessorList] = None,
        logits_warper: Optional[LogitsProcessorList] = None,
        stopping_criteria: Optional[StoppingCriteriaList] = None,
        pad_token_id: Optional[int] = None,
1813
        eos_token_id: Optional[Union[int, List[int]]] = None,
1814
1815
1816
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        output_scores: Optional[bool] = None,
1817
        output_logits: Optional[bool] = None,
1818
        return_dict_in_generate: Optional[bool] = None,
1819
        synced_gpus: bool = False,
1820
        streamer: Optional["BaseStreamer"] = None,
1821
        sequential: Optional[bool] = None,
1822
        **model_kwargs,
1823
    ) -> Union[GenerateNonBeamOutput, torch.LongTensor]:
1824
1825
1826
1827
        r"""
        Generates sequences of token ids for models with a language modeling head using **contrastive search** and can
        be used for text-decoder, text-to-text, speech-to-text, and vision-to-text models.

1828
1829
1830
1831
        <Tip warning={true}>

        In most cases, you do not need to call [`~generation.GenerationMixin.contrastive_search`] directly. Use
        generate() instead. For an overview of generation strategies and code examples, check the [following
1832
        guide](../generation_strategies).
1833
1834
1835

        </Tip>

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
        Parameters:
            input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
                The sequence used as a prompt for the generation.
            top_k (`int`, *optional*, defaults to 1):
                The size of the candidate set that is used to re-rank for contrastive search
            penalty_alpha (`float`, *optional*, defaults to 0):
                The degeneration penalty for contrastive search; activate when it is larger than 0
            logits_processor (`LogitsProcessorList`, *optional*):
                An instance of [`LogitsProcessorList`]. List of instances of class derived from [`LogitsProcessor`]
                used to modify the prediction scores of the language modeling head applied at each generation step.
            logits_warper (`LogitsProcessorList`, *optional*):
                An instance of [`LogitsProcessorList`]. List of instances of class derived from [`LogitsWarper`] used
                to warp the prediction score distribution of the language modeling head applied before multinomial
                sampling at each generation step.
            stopping_criteria (`StoppingCriteriaList`, *optional*):
                An instance of [`StoppingCriteriaList`]. List of instances of class derived from [`StoppingCriteria`]
                used to tell if the generation loop should stop.
            pad_token_id (`int`, *optional*):
                The id of the *padding* token.
1855
1856
            eos_token_id (`Union[int, List[int]]`, *optional*):
                The id of the *end-of-sequence* token. Optionally, use a list to set multiple *end-of-sequence* tokens.
1857
1858
1859
1860
1861
1862
1863
1864
            output_attentions (`bool`, *optional*, defaults to `False`):
                Whether or not to return the attentions tensors of all attention layers. See `attentions` under
                returned tensors for more details.
            output_hidden_states (`bool`, *optional*, defaults to `False`):
                Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
                for more details.
            output_scores (`bool`, *optional*, defaults to `False`):
                Whether or not to return the prediction scores. See `scores` under returned tensors for more details.
1865
1866
1867
            output_logits (`bool`, *optional*, defaults to `False`):
                Whether or not to return the raw prediction logit scores. See `logits` under returned tensors
                for more details.
1868
1869
1870
1871
            return_dict_in_generate (`bool`, *optional*, defaults to `False`):
                Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
            synced_gpus (`bool`, *optional*, defaults to `False`):
                Whether to continue running the while loop until max_length (needed for ZeRO stage 3)
1872
1873
1874
            streamer (`BaseStreamer`, *optional*):
                Streamer object that will be used to stream the generated sequences. Generated tokens are passed
                through `streamer.put(token_ids)` and the streamer is responsible for any further processing.
1875
1876
            sequential (`bool`, *optional*):
                Switches topk hidden state computation from parallel to sequential to reduce memory if True.
1877
1878
1879
1880
1881
            model_kwargs:
                Additional model specific keyword arguments will be forwarded to the `forward` function of the model.
                If model is an encoder-decoder model the kwargs should include `encoder_outputs`.

        Return:
1882
            [`~generation.GenerateDecoderOnlyOutput`], [`~generation.GenerateEncoderDecoderOutput`]
1883
            or `torch.LongTensor`: A `torch.LongTensor` containing the generated tokens (default behaviour) or a
1884
1885
            [`~generation.GenerateDecoderOnlyOutput`] if `model.config.is_encoder_decoder=False` and
            `return_dict_in_generate=True` or a [`~generation.GenerateEncoderDecoderOutput`] if
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
            `model.config.is_encoder_decoder=True`.

        Examples:
        ```python
        >>> from transformers import (
        ...     AutoTokenizer,
        ...     AutoModelForCausalLM,
        ...     StoppingCriteriaList,
        ...     MaxLengthCriteria,
        ... )

        >>> tokenizer = AutoTokenizer.from_pretrained("facebook/opt-125m")
        >>> model = AutoModelForCausalLM.from_pretrained("facebook/opt-125m")
        >>> # set pad_token_id to eos_token_id because OPT does not have a PAD token
        >>> model.config.pad_token_id = model.config.eos_token_id
        >>> input_prompt = "DeepMind Company is"
        >>> input_ids = tokenizer(input_prompt, return_tensors="pt")
        >>> stopping_criteria = StoppingCriteriaList([MaxLengthCriteria(max_length=64)])
        >>> outputs = model.contrastive_search(
        ...     **input_ids, penalty_alpha=0.6, top_k=4, stopping_criteria=stopping_criteria
        ... )
        >>> tokenizer.batch_decode(outputs, skip_special_tokens=True)
        ['DeepMind Company is a company that focuses on the development and commercialization of artificial intelligence (AI). DeepMind’s mission is to help people understand and solve problems that are difficult to solve in the world today.\n\nIn this post, we talk about the benefits of deep learning in business and how it']
        ```"""
        # init values
        logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList()
        logits_warper = logits_warper if logits_warper is not None else LogitsProcessorList()
        stopping_criteria = stopping_criteria if stopping_criteria is not None else StoppingCriteriaList()
1914
1915
        pad_token_id = pad_token_id if pad_token_id is not None else self.generation_config.pad_token_id
        eos_token_id = eos_token_id if eos_token_id is not None else self.generation_config.eos_token_id
1916
        sequential = sequential if sequential is not None else self.generation_config.low_memory
1917
1918
        if isinstance(eos_token_id, int):
            eos_token_id = [eos_token_id]
1919
        eos_token_id_tensor = torch.tensor(eos_token_id).to(input_ids.device) if eos_token_id is not None else None
1920
        output_scores = output_scores if output_scores is not None else self.generation_config.output_scores
1921
        output_logits = output_logits if output_logits is not None else self.generation_config.output_logits
1922
1923
1924
        output_attentions = (
            output_attentions if output_attentions is not None else self.generation_config.output_attentions
        )
1925
        output_hidden_states = (
1926
            output_hidden_states if output_hidden_states is not None else self.generation_config.output_hidden_states
1927
1928
        )
        return_dict_in_generate = (
1929
1930
1931
            return_dict_in_generate
            if return_dict_in_generate is not None
            else self.generation_config.return_dict_in_generate
1932
1933
1934
        )

        # init attention / hidden states / scores tuples
1935
        raw_logits = () if (return_dict_in_generate and output_logits) else None
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
        scores = () if (return_dict_in_generate and output_scores) else None
        decoder_attentions = () if (return_dict_in_generate and output_attentions) else None
        cross_attentions = () if (return_dict_in_generate and output_attentions) else None
        decoder_hidden_states = () if (return_dict_in_generate and output_hidden_states) else None

        # if model is an encoder-decoder, retrieve encoder attention weights and hidden states
        if return_dict_in_generate and self.config.is_encoder_decoder:
            encoder_attentions = model_kwargs["encoder_outputs"].get("attentions") if output_attentions else None
            encoder_hidden_states = (
                model_kwargs["encoder_outputs"].get("hidden_states") if output_hidden_states else None
            )

        # keep track of which sequences are already finished
1949
        unfinished_sequences = torch.ones(input_ids.shape[0], dtype=torch.long, device=input_ids.device)
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966

        this_peer_finished = False  # used by synced_gpus only
        batch_size = input_ids.shape[0]

        while True:
            if synced_gpus:
                # Under synced_gpus the `forward` call must continue until all gpus complete their sequence.
                # The following logic allows an early break if all peers finished generating their sequence
                this_peer_finished_flag = torch.tensor(0.0 if this_peer_finished else 1.0).to(input_ids.device)
                # send 0.0 if we finished, 1.0 otherwise
                dist.all_reduce(this_peer_finished_flag, op=dist.ReduceOp.SUM)
                # did all peers finish? the reduced sum will be 0.0 then
                if this_peer_finished_flag.item() == 0.0:
                    break

            # if the first step in the loop, encode all the prefix and obtain: (1) past_key_values;
            # (2) last_hidden_states; (3) logit_for_next_step; (4) update model kwargs for the next step
1967
            if model_kwargs.get("past_key_values") is None:
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
                # prepare inputs
                model_kwargs["use_cache"] = True
                model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)

                # encode the given prefix and prepare model inputs; encoder-decoder model process the prefix and save
                # the `encoder_outputs`
                outputs = self(
                    **model_inputs, return_dict=True, output_hidden_states=True, output_attentions=output_attentions
                )

                # last decoder hidden states will be used to compute the degeneration penalty (cosine similarity with
                # previous tokens)
                if self.config.is_encoder_decoder:
                    last_hidden_states = outputs.decoder_hidden_states[-1]
                else:
                    last_hidden_states = outputs.hidden_states[-1]
1984

1985
1986
1987
1988
                # next logit for contrastive search to select top-k candidate tokens
                logit_for_next_step = outputs.logits[:, -1, :]

                model_kwargs = self._update_model_kwargs_for_generation(
1989
1990
1991
1992
                    outputs,
                    model_kwargs,
                    is_encoder_decoder=self.config.is_encoder_decoder,
                    standardize_cache_format=True,
1993
                    model_inputs=model_inputs,
1994
                )
1995
1996
1997
1998
1999
                if not sequential:
                    # Expands model inputs top_k times, for batched forward passes (akin to beam search).
                    _, model_kwargs = self._expand_inputs_for_generation(
                        expand_size=top_k, is_encoder_decoder=self.config.is_encoder_decoder, **model_kwargs
                    )
2000

2001
2002
                past_key_values = model_kwargs.get("past_key_values")
                if past_key_values is None:
2003
2004
2005
2006
                    raise ValueError(
                        f"{self.__class__.__name__} does not support caching and therefore **can't** be used "
                        "for contrastive search."
                    )
2007
2008
2009
2010
                elif (
                    not isinstance(past_key_values[0], (tuple, torch.Tensor))
                    or past_key_values[0][0].shape[0] != batch_size
                ):
2011
2012
2013
2014
2015
2016
2017
2018
                    raise ValueError(
                        f"{self.__class__.__name__} does not have a standard cache format and therefore **can't** be "
                        "used for contrastive search without further modifications."
                    )

            # contrastive_search main logic start:
            # contrastive search decoding consists of two steps: (1) candidate tokens recall; (2) candidate re-rank by
            # degeneration penalty
2019
2020
2021
2022
            processed_logit_for_next_step = logits_processor(input_ids, logit_for_next_step)
            processed_logit_for_next_step = logits_warper(input_ids, processed_logit_for_next_step)
            next_probs = nn.functional.softmax(processed_logit_for_next_step, dim=-1)

2023
2024
2025
2026
            top_k_probs, top_k_ids = torch.topk(next_probs, dim=-1, k=top_k)

            # Store scores, attentions and hidden_states when required
            if return_dict_in_generate:
2027
2028
                if output_logits:
                    raw_logits += (logit_for_next_step,)
2029
                if output_scores:
2030
                    scores += (processed_logit_for_next_step,)
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
                if output_attentions:
                    decoder_attentions += (
                        (outputs.decoder_attentions,) if self.config.is_encoder_decoder else (outputs.attentions,)
                    )
                    if self.config.is_encoder_decoder:
                        cross_attentions += (outputs.cross_attentions,)

                if output_hidden_states:
                    decoder_hidden_states += (
                        (outputs.decoder_hidden_states,)
                        if self.config.is_encoder_decoder
                        else (outputs.hidden_states,)
                    )

            # Replicates the new past_key_values to match the `top_k` candidates
            new_key_values = []
2047
            for layer in model_kwargs["past_key_values"]:
2048
2049
2050
                items = []
                # item is either the key or the value matrix
                for item in layer:
2051
2052
2053
2054
                    if sequential:
                        items.append(item.repeat_interleave(1, dim=0))
                    else:
                        items.append(item.repeat_interleave(top_k, dim=0))
2055
2056
                new_key_values.append(tuple(items))
            model_kwargs["past_key_values"] = tuple(new_key_values)
2057

2058
            if sequential:
2059
                all_outputs = []
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
                for i in range(top_k):
                    # compute the candidate tokens by the language model and collect their hidden_states
                    next_model_inputs = self.prepare_inputs_for_generation(top_k_ids[:, i].view(-1, 1), **model_kwargs)

                    outputs = self(
                        **next_model_inputs,
                        return_dict=True,
                        output_hidden_states=True,
                        output_attentions=output_attentions,
                    )
2070
2071
                    all_outputs.append(outputs)
                outputs = stack_model_outputs(all_outputs)
2072
2073

            else:
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
                # compute the candidate tokens by the language model and collect their hidden_states
                # assembles top_k_ids into batch of size k
                next_model_inputs = self.prepare_inputs_for_generation(top_k_ids.view(-1, 1), **model_kwargs)

                outputs = self(
                    **next_model_inputs,
                    return_dict=True,
                    output_hidden_states=True,
                    output_attentions=output_attentions,
                )
2084
2085
2086
2087
2088
2089
2090
            # name is different for encoder-decoder and decoder-only models
            if self.config.is_encoder_decoder:
                next_hidden = outputs.decoder_hidden_states[-1]
                full_hidden_states = outputs.decoder_hidden_states
            else:
                next_hidden = outputs.hidden_states[-1]
                full_hidden_states = outputs.hidden_states
2091

2092
            logits = outputs.logits[:, -1, :]
2093

2094
2095
2096
            context_hidden = last_hidden_states.repeat_interleave(top_k, dim=0)

            # compute the degeneration penalty and re-rank the candidates based on the degeneration penalty and the
2097
2098
            # model confidence. Keeping `selected_idx` on CPU enables multi-device contrastive search and doesn't
            # introduce (noticeable) slowdowns on single-device runs.
2099
            selected_idx = _ranking_fast(context_hidden, next_hidden, top_k_probs, penalty_alpha, top_k)
2100
            selected_idx = selected_idx.to("cpu")
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114

            # prepare for the next step: (1) next token_id; (2) past_key_values; (3) last_hidden_states for computing
            # the degeneration penalty; (4) logits for selecting next top-k candidates; (5) selected tokens scores
            # (model confidence minus degeneration penalty); (6) decoder hidden_states
            next_tokens = top_k_ids[range(len(top_k_ids)), selected_idx]
            next_hidden = torch.stack(torch.split(next_hidden.squeeze(dim=1), top_k))
            next_hidden = next_hidden[range(batch_size), selected_idx, :]
            last_hidden_states = torch.cat([last_hidden_states, next_hidden.unsqueeze(1)], dim=1)

            next_decoder_hidden_states = ()
            for layer in full_hidden_states:
                layer = torch.stack(torch.split(layer, top_k))[range(batch_size), selected_idx, :]
                next_decoder_hidden_states += (layer,)

2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
            # generate past_key_values cache of only the selected token
            if sequential:
                next_model_input = self.prepare_inputs_for_generation(
                    top_k_ids[:, selected_idx].view(-1, 1), **model_kwargs
                )

                selected_outputs = self(
                    **next_model_input,
                    return_dict=True,
                    output_hidden_states=False,
                    output_attentions=False,
                )
                next_past_key_values = selected_outputs["past_key_values"]

            else:
                next_past_key_values = self._extract_past_from_model_output(outputs, standardize_cache_format=True)
                new_key_values = ()
                for layer in next_past_key_values:
                    items = ()
                    # item is either the key or the value matrix
                    for item in layer:
                        item = torch.stack(torch.split(item, top_k, dim=0))  # [B, K, num_head, seq_len, esz]
                        item = item[range(batch_size), selected_idx, ...]  # [B, num_head, seq_len, esz]
                        items += (item,)
                    new_key_values += (items,)
                next_past_key_values = new_key_values
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184

            logit_for_next_step = torch.stack(torch.split(logits, top_k))[range(batch_size), selected_idx, :]

            # Rebuilds the relevant parts of the model output for the selected token, for use in the next iteration
            if self.config.is_encoder_decoder:
                next_step_cross_attentions = ()
                next_step_decoder_attentions = ()
                if output_attentions:
                    for layer in outputs.cross_attentions:
                        layer = torch.stack(torch.split(layer, top_k, dim=0))[range(batch_size), selected_idx, ...]
                        next_step_cross_attentions += (layer,)
                    for layer in outputs.decoder_attentions:
                        layer = torch.stack(torch.split(layer, top_k, dim=0))[range(batch_size), selected_idx, ...]
                        next_step_decoder_attentions += (layer,)
                outputs = Seq2SeqLMOutput(
                    past_key_values=next_past_key_values,
                    decoder_hidden_states=next_decoder_hidden_states,
                    decoder_attentions=next_step_decoder_attentions or None,
                    cross_attentions=next_step_cross_attentions or None,
                )
            else:
                next_step_attentions = ()
                if output_attentions:
                    for layer in outputs.attentions:
                        layer = torch.stack(torch.split(layer, top_k, dim=0))[range(batch_size), selected_idx, ...]
                        next_step_attentions += (layer,)
                outputs = CausalLMOutputWithPast(
                    past_key_values=next_past_key_values,
                    hidden_states=next_decoder_hidden_states,
                    attentions=next_step_attentions or None,
                )
            # contrastive_search main logic end

            if synced_gpus and this_peer_finished:
                continue  # don't waste resources running the code we don't need

            # finished sentences should have their next token be a padding token
            if eos_token_id is not None:
                if pad_token_id is None:
                    raise ValueError("If `eos_token_id` is defined, make sure that `pad_token_id` is defined.")
                next_tokens = next_tokens * unfinished_sequences + pad_token_id * (1 - unfinished_sequences)

            # update generated ids, model inputs, and length for next step
            input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1)
2185
2186
            if streamer is not None:
                streamer.put(next_tokens.cpu())
2187
            model_kwargs = self._update_model_kwargs_for_generation(
2188
                outputs, model_kwargs, is_encoder_decoder=self.config.is_encoder_decoder, model_inputs=model_inputs
2189
2190
2191
            )

            # if eos_token was found in one sentence, set sentence to finished
2192
            if eos_token_id_tensor is not None:
2193
                unfinished_sequences = unfinished_sequences.mul(
2194
2195
                    next_tokens.tile(eos_token_id_tensor.shape[0], 1).ne(eos_token_id_tensor.unsqueeze(1)).prod(dim=0)
                )
2196

2197
2198
            # stop when each sentence is finished
            unfinished_sequences = unfinished_sequences & ~stopping_criteria(input_ids, scores)
2199

2200
            if unfinished_sequences.max() == 0:
2201
2202
2203
2204
2205
                this_peer_finished = True

            if this_peer_finished and not synced_gpus:
                break

2206
2207
2208
        if streamer is not None:
            streamer.end()

2209
        if return_dict_in_generate:
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
            # Contrastive search works by forward looking at the next token, so we need to exclude it from
            # `past_key_values` to be consistent with the other decoding methods
            if model_kwargs.get("past_key_values") is not None:
                past_key_values = []
                for layer in model_kwargs["past_key_values"]:
                    layer_past_key_values = []
                    for item in layer:
                        layer_past_key_values.append(item[..., :-1, :])
                    past_key_values.append(tuple(layer_past_key_values))
                model_kwargs["past_key_values"] = tuple(past_key_values)

2221
            if self.config.is_encoder_decoder:
2222
                return GenerateEncoderDecoderOutput(
2223
2224
                    sequences=input_ids,
                    scores=scores,
2225
                    logits=raw_logits,
2226
2227
2228
2229
2230
                    encoder_attentions=encoder_attentions,
                    encoder_hidden_states=encoder_hidden_states,
                    decoder_attentions=decoder_attentions,
                    cross_attentions=cross_attentions,
                    decoder_hidden_states=decoder_hidden_states,
2231
                    past_key_values=model_kwargs.get("past_key_values"),
2232
2233
                )
            else:
2234
                return GenerateDecoderOnlyOutput(
2235
2236
                    sequences=input_ids,
                    scores=scores,
2237
                    logits=raw_logits,
2238
2239
                    attentions=decoder_attentions,
                    hidden_states=decoder_hidden_states,
2240
                    past_key_values=model_kwargs.get("past_key_values"),
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
                )
        else:
            return input_ids

    def greedy_search(
        self,
        input_ids: torch.LongTensor,
        logits_processor: Optional[LogitsProcessorList] = None,
        stopping_criteria: Optional[StoppingCriteriaList] = None,
        max_length: Optional[int] = None,
        pad_token_id: Optional[int] = None,
2252
        eos_token_id: Optional[Union[int, List[int]]] = None,
2253
2254
2255
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        output_scores: Optional[bool] = None,
2256
        output_logits: Optional[bool] = None,
2257
        return_dict_in_generate: Optional[bool] = None,
2258
        synced_gpus: bool = False,
2259
        streamer: Optional["BaseStreamer"] = None,
2260
        **model_kwargs,
2261
    ) -> Union[GenerateNonBeamOutput, torch.LongTensor]:
2262
2263
2264
2265
        r"""
        Generates sequences of token ids for models with a language modeling head using **greedy decoding** and can be
        used for text-decoder, text-to-text, speech-to-text, and vision-to-text models.

2266
2267
2268
2269
        <Tip warning={true}>

        In most cases, you do not need to call [`~generation.GenerationMixin.greedy_search`] directly. Use generate()
        instead. For an overview of generation strategies and code examples, check the [following
2270
        guide](../generation_strategies).
2271
2272
2273
2274

        </Tip>


2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
        Parameters:
            input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
                The sequence used as a prompt for the generation.
            logits_processor (`LogitsProcessorList`, *optional*):
                An instance of [`LogitsProcessorList`]. List of instances of class derived from [`LogitsProcessor`]
                used to modify the prediction scores of the language modeling head applied at each generation step.
            stopping_criteria (`StoppingCriteriaList`, *optional*):
                An instance of [`StoppingCriteriaList`]. List of instances of class derived from [`StoppingCriteria`]
                used to tell if the generation loop should stop.

            max_length (`int`, *optional*, defaults to 20):
                **DEPRECATED**. Use `logits_processor` or `stopping_criteria` directly to cap the number of generated
                tokens. The maximum length of the sequence to be generated.
            pad_token_id (`int`, *optional*):
                The id of the *padding* token.
2290
2291
            eos_token_id (`Union[int, List[int]]`, *optional*):
                The id of the *end-of-sequence* token. Optionally, use a list to set multiple *end-of-sequence* tokens.
2292
2293
2294
2295
2296
2297
2298
2299
            output_attentions (`bool`, *optional*, defaults to `False`):
                Whether or not to return the attentions tensors of all attention layers. See `attentions` under
                returned tensors for more details.
            output_hidden_states (`bool`, *optional*, defaults to `False`):
                Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
                for more details.
            output_scores (`bool`, *optional*, defaults to `False`):
                Whether or not to return the prediction scores. See `scores` under returned tensors for more details.
2300
2301
2302
            output_logits (`bool`, *optional*, defaults to `False`):
                Whether or not to return the raw prediction logit scores. See `logits` under returned tensors
                for more details.
2303
2304
2305
2306
            return_dict_in_generate (`bool`, *optional*, defaults to `False`):
                Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
            synced_gpus (`bool`, *optional*, defaults to `False`):
                Whether to continue running the while loop until max_length (needed for ZeRO stage 3)
2307
2308
2309
            streamer (`BaseStreamer`, *optional*):
                Streamer object that will be used to stream the generated sequences. Generated tokens are passed
                through `streamer.put(token_ids)` and the streamer is responsible for any further processing.
2310
2311
2312
2313
2314
            model_kwargs:
                Additional model specific keyword arguments will be forwarded to the `forward` function of the model.
                If model is an encoder-decoder model the kwargs should include `encoder_outputs`.

        Return:
2315
            [`~generation.GenerateDecoderOnlyOutput`], [`~generation.GenerateEncoderDecoderOutput`] or
2316
            `torch.LongTensor`: A `torch.LongTensor` containing the generated tokens (default behaviour) or a
2317
2318
            [`~generation.GenerateDecoderOnlyOutput`] if `model.config.is_encoder_decoder=False` and
            `return_dict_in_generate=True` or a [`~generation.GenerateEncoderDecoderOutput`] if
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
            `model.config.is_encoder_decoder=True`.

        Examples:

        ```python
        >>> from transformers import (
        ...     AutoTokenizer,
        ...     AutoModelForCausalLM,
        ...     LogitsProcessorList,
        ...     MinLengthLogitsProcessor,
        ...     StoppingCriteriaList,
        ...     MaxLengthCriteria,
        ... )

2333
2334
        >>> tokenizer = AutoTokenizer.from_pretrained("openai-community/gpt2")
        >>> model = AutoModelForCausalLM.from_pretrained("openai-community/gpt2")
2335
2336

        >>> # set pad_token_id to eos_token_id because GPT2 does not have a PAD token
2337
        >>> model.generation_config.pad_token_id = model.generation_config.eos_token_id
2338
2339
2340
2341
2342
2343
2344

        >>> input_prompt = "It might be possible to"
        >>> input_ids = tokenizer(input_prompt, return_tensors="pt").input_ids

        >>> # instantiate logits processors
        >>> logits_processor = LogitsProcessorList(
        ...     [
2345
        ...         MinLengthLogitsProcessor(10, eos_token_id=model.generation_config.eos_token_id),
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
        ...     ]
        ... )
        >>> stopping_criteria = StoppingCriteriaList([MaxLengthCriteria(max_length=20)])

        >>> outputs = model.greedy_search(
        ...     input_ids, logits_processor=logits_processor, stopping_criteria=stopping_criteria
        ... )

        >>> tokenizer.batch_decode(outputs, skip_special_tokens=True)
        ["It might be possible to get a better understanding of the nature of the problem, but it's not"]
        ```"""
        # init values
        logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList()
        stopping_criteria = stopping_criteria if stopping_criteria is not None else StoppingCriteriaList()
        if max_length is not None:
            warnings.warn(
                "`max_length` is deprecated in this function, use"
                " `stopping_criteria=StoppingCriteriaList([MaxLengthCriteria(max_length=max_length)])` instead.",
                UserWarning,
            )
            stopping_criteria = validate_stopping_criteria(stopping_criteria, max_length)
2367
2368
        pad_token_id = pad_token_id if pad_token_id is not None else self.generation_config.pad_token_id
        eos_token_id = eos_token_id if eos_token_id is not None else self.generation_config.eos_token_id
2369
2370
        if isinstance(eos_token_id, int):
            eos_token_id = [eos_token_id]
2371
        eos_token_id_tensor = torch.tensor(eos_token_id).to(input_ids.device) if eos_token_id is not None else None
2372
2373
2374
2375
        output_scores = output_scores if output_scores is not None else self.generation_config.output_scores
        output_attentions = (
            output_attentions if output_attentions is not None else self.generation_config.output_attentions
        )
2376
        output_hidden_states = (
2377
            output_hidden_states if output_hidden_states is not None else self.generation_config.output_hidden_states
2378
2379
        )
        return_dict_in_generate = (
2380
2381
2382
            return_dict_in_generate
            if return_dict_in_generate is not None
            else self.generation_config.return_dict_in_generate
2383
2384
2385
        )

        # init attention / hidden states / scores tuples
2386
        raw_logits = () if (return_dict_in_generate and output_logits) else None
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
        scores = () if (return_dict_in_generate and output_scores) else None
        decoder_attentions = () if (return_dict_in_generate and output_attentions) else None
        cross_attentions = () if (return_dict_in_generate and output_attentions) else None
        decoder_hidden_states = () if (return_dict_in_generate and output_hidden_states) else None

        # if model is an encoder-decoder, retrieve encoder attention weights and hidden states
        if return_dict_in_generate and self.config.is_encoder_decoder:
            encoder_attentions = model_kwargs["encoder_outputs"].get("attentions") if output_attentions else None
            encoder_hidden_states = (
                model_kwargs["encoder_outputs"].get("hidden_states") if output_hidden_states else None
            )

        # keep track of which sequences are already finished
2400
        unfinished_sequences = torch.ones(input_ids.shape[0], dtype=torch.long, device=input_ids.device)
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436

        this_peer_finished = False  # used by synced_gpus only
        while True:
            if synced_gpus:
                # Under synced_gpus the `forward` call must continue until all gpus complete their sequence.
                # The following logic allows an early break if all peers finished generating their sequence
                this_peer_finished_flag = torch.tensor(0.0 if this_peer_finished else 1.0).to(input_ids.device)
                # send 0.0 if we finished, 1.0 otherwise
                dist.all_reduce(this_peer_finished_flag, op=dist.ReduceOp.SUM)
                # did all peers finish? the reduced sum will be 0.0 then
                if this_peer_finished_flag.item() == 0.0:
                    break

            # prepare model inputs
            model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)

            # forward pass to get next token
            outputs = self(
                **model_inputs,
                return_dict=True,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
            )

            if synced_gpus and this_peer_finished:
                continue  # don't waste resources running the code we don't need

            next_token_logits = outputs.logits[:, -1, :]

            # pre-process distribution
            next_tokens_scores = logits_processor(input_ids, next_token_logits)

            # Store scores, attentions and hidden_states when required
            if return_dict_in_generate:
                if output_scores:
                    scores += (next_tokens_scores,)
2437
2438
                if output_logits:
                    raw_logits += (next_token_logits,)
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
                if output_attentions:
                    decoder_attentions += (
                        (outputs.decoder_attentions,) if self.config.is_encoder_decoder else (outputs.attentions,)
                    )
                    if self.config.is_encoder_decoder:
                        cross_attentions += (outputs.cross_attentions,)

                if output_hidden_states:
                    decoder_hidden_states += (
                        (outputs.decoder_hidden_states,)
                        if self.config.is_encoder_decoder
                        else (outputs.hidden_states,)
                    )

            # argmax
            next_tokens = torch.argmax(next_tokens_scores, dim=-1)

            # finished sentences should have their next token be a padding token
            if eos_token_id is not None:
                if pad_token_id is None:
                    raise ValueError("If `eos_token_id` is defined, make sure that `pad_token_id` is defined.")
                next_tokens = next_tokens * unfinished_sequences + pad_token_id * (1 - unfinished_sequences)

            # update generated ids, model inputs, and length for next step
            input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1)
2464
2465
            if streamer is not None:
                streamer.put(next_tokens.cpu())
2466
            model_kwargs = self._update_model_kwargs_for_generation(
2467
2468
2469
2470
                outputs,
                model_kwargs,
                is_encoder_decoder=self.config.is_encoder_decoder,
                model_inputs=model_inputs,
2471
2472
2473
            )

            # if eos_token was found in one sentence, set sentence to finished
2474
            if eos_token_id_tensor is not None:
2475
                unfinished_sequences = unfinished_sequences.mul(
2476
2477
                    next_tokens.tile(eos_token_id_tensor.shape[0], 1).ne(eos_token_id_tensor.unsqueeze(1)).prod(dim=0)
                )
2478

2479
            unfinished_sequences = unfinished_sequences & ~stopping_criteria(input_ids, scores)
2480

2481
2482
            # stop when each sentence is finished
            if unfinished_sequences.max() == 0:
2483
2484
2485
2486
2487
                this_peer_finished = True

            if this_peer_finished and not synced_gpus:
                break

2488
2489
2490
        if streamer is not None:
            streamer.end()

2491
2492
        if return_dict_in_generate:
            if self.config.is_encoder_decoder:
2493
                return GenerateEncoderDecoderOutput(
2494
2495
                    sequences=input_ids,
                    scores=scores,
2496
                    logits=raw_logits,
2497
2498
2499
2500
2501
                    encoder_attentions=encoder_attentions,
                    encoder_hidden_states=encoder_hidden_states,
                    decoder_attentions=decoder_attentions,
                    cross_attentions=cross_attentions,
                    decoder_hidden_states=decoder_hidden_states,
2502
                    past_key_values=model_kwargs.get("past_key_values"),
2503
2504
                )
            else:
2505
                return GenerateDecoderOnlyOutput(
2506
2507
                    sequences=input_ids,
                    scores=scores,
2508
                    logits=raw_logits,
2509
2510
                    attentions=decoder_attentions,
                    hidden_states=decoder_hidden_states,
2511
                    past_key_values=model_kwargs.get("past_key_values"),
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
                )
        else:
            return input_ids

    def sample(
        self,
        input_ids: torch.LongTensor,
        logits_processor: Optional[LogitsProcessorList] = None,
        stopping_criteria: Optional[StoppingCriteriaList] = None,
        logits_warper: Optional[LogitsProcessorList] = None,
        max_length: Optional[int] = None,
        pad_token_id: Optional[int] = None,
2524
        eos_token_id: Optional[Union[int, List[int]]] = None,
2525
2526
2527
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        output_scores: Optional[bool] = None,
2528
        output_logits: Optional[bool] = None,
2529
        return_dict_in_generate: Optional[bool] = None,
2530
        synced_gpus: bool = False,
2531
        streamer: Optional["BaseStreamer"] = None,
2532
        **model_kwargs,
2533
    ) -> Union[GenerateNonBeamOutput, torch.LongTensor]:
2534
2535
2536
2537
        r"""
        Generates sequences of token ids for models with a language modeling head using **multinomial sampling** and
        can be used for text-decoder, text-to-text, speech-to-text, and vision-to-text models.

2538
2539
2540
2541
        <Tip warning={true}>

        In most cases, you do not need to call [`~generation.GenerationMixin.sample`] directly. Use generate() instead.
        For an overview of generation strategies and code examples, check the [following
2542
        guide](../generation_strategies).
2543
2544
2545

        </Tip>

2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
        Parameters:
            input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
                The sequence used as a prompt for the generation.
            logits_processor (`LogitsProcessorList`, *optional*):
                An instance of [`LogitsProcessorList`]. List of instances of class derived from [`LogitsProcessor`]
                used to modify the prediction scores of the language modeling head applied at each generation step.
            stopping_criteria (`StoppingCriteriaList`, *optional*):
                An instance of [`StoppingCriteriaList`]. List of instances of class derived from [`StoppingCriteria`]
                used to tell if the generation loop should stop.
            logits_warper (`LogitsProcessorList`, *optional*):
                An instance of [`LogitsProcessorList`]. List of instances of class derived from [`LogitsWarper`] used
                to warp the prediction score distribution of the language modeling head applied before multinomial
                sampling at each generation step.
            max_length (`int`, *optional*, defaults to 20):
                **DEPRECATED**. Use `logits_processor` or `stopping_criteria` directly to cap the number of generated
                tokens. The maximum length of the sequence to be generated.
            pad_token_id (`int`, *optional*):
                The id of the *padding* token.
2564
2565
            eos_token_id (`Union[int, List[int]]`, *optional*):
                The id of the *end-of-sequence* token. Optionally, use a list to set multiple *end-of-sequence* tokens.
2566
2567
2568
2569
2570
2571
2572
2573
            output_attentions (`bool`, *optional*, defaults to `False`):
                Whether or not to return the attentions tensors of all attention layers. See `attentions` under
                returned tensors for more details.
            output_hidden_states (`bool`, *optional*, defaults to `False`):
                Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
                for more details.
            output_scores (`bool`, *optional*, defaults to `False`):
                Whether or not to return the prediction scores. See `scores` under returned tensors for more details.
2574
2575
2576
            output_logits (`bool`, *optional*, defaults to `False`):
                Whether or not to return the raw prediction logit scores. See `logits` under returned tensors for
                more details.
2577
2578
2579
2580
            return_dict_in_generate (`bool`, *optional*, defaults to `False`):
                Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
            synced_gpus (`bool`, *optional*, defaults to `False`):
                Whether to continue running the while loop until max_length (needed for ZeRO stage 3)
2581
2582
2583
            streamer (`BaseStreamer`, *optional*):
                Streamer object that will be used to stream the generated sequences. Generated tokens are passed
                through `streamer.put(token_ids)` and the streamer is responsible for any further processing.
2584
2585
2586
2587
2588
            model_kwargs:
                Additional model specific kwargs will be forwarded to the `forward` function of the model. If model is
                an encoder-decoder model the kwargs should include `encoder_outputs`.

        Return:
2589
            [`~generation.GenerateDecoderOnlyOutput`], [`~generation.GenerateEncoderDecoderOutput`] or `torch.LongTensor`:
2590
            A `torch.LongTensor` containing the generated tokens (default behaviour) or a
2591
2592
            [`~generation.GenerateDecoderOnlyOutput`] if `model.config.is_encoder_decoder=False` and
            `return_dict_in_generate=True` or a [`~generation.GenerateEncoderDecoderOutput`] if
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
            `model.config.is_encoder_decoder=True`.

        Examples:

        ```python
        >>> from transformers import (
        ...     AutoTokenizer,
        ...     AutoModelForCausalLM,
        ...     LogitsProcessorList,
        ...     MinLengthLogitsProcessor,
        ...     TopKLogitsWarper,
        ...     TemperatureLogitsWarper,
        ...     StoppingCriteriaList,
        ...     MaxLengthCriteria,
        ... )
        >>> import torch

2610
2611
        >>> tokenizer = AutoTokenizer.from_pretrained("openai-community/gpt2")
        >>> model = AutoModelForCausalLM.from_pretrained("openai-community/gpt2")
2612
2613
2614

        >>> # set pad_token_id to eos_token_id because GPT2 does not have a EOS token
        >>> model.config.pad_token_id = model.config.eos_token_id
Arthur's avatar
Arthur committed
2615
        >>> model.generation_config.pad_token_id = model.config.eos_token_id
2616
2617
2618
2619
2620
2621
2622

        >>> input_prompt = "Today is a beautiful day, and"
        >>> input_ids = tokenizer(input_prompt, return_tensors="pt").input_ids

        >>> # instantiate logits processors
        >>> logits_processor = LogitsProcessorList(
        ...     [
2623
        ...         MinLengthLogitsProcessor(15, eos_token_id=model.generation_config.eos_token_id),
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
        ...     ]
        ... )
        >>> # instantiate logits processors
        >>> logits_warper = LogitsProcessorList(
        ...     [
        ...         TopKLogitsWarper(50),
        ...         TemperatureLogitsWarper(0.7),
        ...     ]
        ... )

        >>> stopping_criteria = StoppingCriteriaList([MaxLengthCriteria(max_length=20)])

        >>> torch.manual_seed(0)  # doctest: +IGNORE_RESULT
        >>> outputs = model.sample(
        ...     input_ids,
        ...     logits_processor=logits_processor,
        ...     logits_warper=logits_warper,
        ...     stopping_criteria=stopping_criteria,
        ... )

        >>> tokenizer.batch_decode(outputs, skip_special_tokens=True)
2645
        ['Today is a beautiful day, and we must do everything possible to make it a day of celebration.']
2646
2647
2648
2649
2650
2651
2652
        ```"""
        # init values
        logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList()
        stopping_criteria = stopping_criteria if stopping_criteria is not None else StoppingCriteriaList()
        if max_length is not None:
            warnings.warn(
                "`max_length` is deprecated in this function, use"
2653
                " `stopping_criteria=StoppingCriteriaList([MaxLengthCriteria(max_length=max_length)])` instead.",
2654
2655
2656
2657
                UserWarning,
            )
            stopping_criteria = validate_stopping_criteria(stopping_criteria, max_length)
        logits_warper = logits_warper if logits_warper is not None else LogitsProcessorList()
2658
2659
        pad_token_id = pad_token_id if pad_token_id is not None else self.generation_config.pad_token_id
        eos_token_id = eos_token_id if eos_token_id is not None else self.generation_config.eos_token_id
2660
2661
        if isinstance(eos_token_id, int):
            eos_token_id = [eos_token_id]
2662
        eos_token_id_tensor = torch.tensor(eos_token_id).to(input_ids.device) if eos_token_id is not None else None
2663
        output_scores = output_scores if output_scores is not None else self.generation_config.output_scores
2664
        output_logits = output_logits if output_logits is not None else self.generation_config.output_logits
2665
2666
2667
        output_attentions = (
            output_attentions if output_attentions is not None else self.generation_config.output_attentions
        )
2668
        output_hidden_states = (
2669
            output_hidden_states if output_hidden_states is not None else self.generation_config.output_hidden_states
2670
2671
        )
        return_dict_in_generate = (
2672
2673
2674
            return_dict_in_generate
            if return_dict_in_generate is not None
            else self.generation_config.return_dict_in_generate
2675
2676
2677
2678
        )

        # init attention / hidden states / scores tuples
        scores = () if (return_dict_in_generate and output_scores) else None
2679
        raw_logits = () if (return_dict_in_generate and output_logits) else None
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
        decoder_attentions = () if (return_dict_in_generate and output_attentions) else None
        cross_attentions = () if (return_dict_in_generate and output_attentions) else None
        decoder_hidden_states = () if (return_dict_in_generate and output_hidden_states) else None

        # if model is an encoder-decoder, retrieve encoder attention weights and hidden states
        if return_dict_in_generate and self.config.is_encoder_decoder:
            encoder_attentions = model_kwargs["encoder_outputs"].get("attentions") if output_attentions else None
            encoder_hidden_states = (
                model_kwargs["encoder_outputs"].get("hidden_states") if output_hidden_states else None
            )

        # keep track of which sequences are already finished
2692
        unfinished_sequences = torch.ones(input_ids.shape[0], dtype=torch.long, device=input_ids.device)
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730

        this_peer_finished = False  # used by synced_gpus only
        # auto-regressive generation
        while True:
            if synced_gpus:
                # Under synced_gpus the `forward` call must continue until all gpus complete their sequence.
                # The following logic allows an early break if all peers finished generating their sequence
                this_peer_finished_flag = torch.tensor(0.0 if this_peer_finished else 1.0).to(input_ids.device)
                # send 0.0 if we finished, 1.0 otherwise
                dist.all_reduce(this_peer_finished_flag, op=dist.ReduceOp.SUM)
                # did all peers finish? the reduced sum will be 0.0 then
                if this_peer_finished_flag.item() == 0.0:
                    break

            # prepare model inputs
            model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)

            # forward pass to get next token
            outputs = self(
                **model_inputs,
                return_dict=True,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
            )

            if synced_gpus and this_peer_finished:
                continue  # don't waste resources running the code we don't need

            next_token_logits = outputs.logits[:, -1, :]

            # pre-process distribution
            next_token_scores = logits_processor(input_ids, next_token_logits)
            next_token_scores = logits_warper(input_ids, next_token_scores)

            # Store scores, attentions and hidden_states when required
            if return_dict_in_generate:
                if output_scores:
                    scores += (next_token_scores,)
2731
2732
                if output_logits:
                    raw_logits += (next_token_logits,)
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
                if output_attentions:
                    decoder_attentions += (
                        (outputs.decoder_attentions,) if self.config.is_encoder_decoder else (outputs.attentions,)
                    )
                    if self.config.is_encoder_decoder:
                        cross_attentions += (outputs.cross_attentions,)

                if output_hidden_states:
                    decoder_hidden_states += (
                        (outputs.decoder_hidden_states,)
                        if self.config.is_encoder_decoder
                        else (outputs.hidden_states,)
                    )

            # sample
            probs = nn.functional.softmax(next_token_scores, dim=-1)
            next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1)

            # finished sentences should have their next token be a padding token
            if eos_token_id is not None:
                if pad_token_id is None:
                    raise ValueError("If `eos_token_id` is defined, make sure that `pad_token_id` is defined.")
                next_tokens = next_tokens * unfinished_sequences + pad_token_id * (1 - unfinished_sequences)

            # update generated ids, model inputs, and length for next step
            input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1)
2759
2760
            if streamer is not None:
                streamer.put(next_tokens.cpu())
2761
            model_kwargs = self._update_model_kwargs_for_generation(
2762
                outputs, model_kwargs, is_encoder_decoder=self.config.is_encoder_decoder, model_inputs=model_inputs
2763
2764
2765
            )

            # if eos_token was found in one sentence, set sentence to finished
2766
            if eos_token_id_tensor is not None:
2767
                unfinished_sequences = unfinished_sequences.mul(
2768
2769
                    next_tokens.tile(eos_token_id_tensor.shape[0], 1).ne(eos_token_id_tensor.unsqueeze(1)).prod(dim=0)
                )
2770

2771
            unfinished_sequences = unfinished_sequences & ~stopping_criteria(input_ids, scores)
2772

2773
2774
            # stop when each sentence is finished
            if unfinished_sequences.max() == 0:
2775
2776
2777
2778
2779
                this_peer_finished = True

            if this_peer_finished and not synced_gpus:
                break

2780
2781
2782
        if streamer is not None:
            streamer.end()

2783
2784
        if return_dict_in_generate:
            if self.config.is_encoder_decoder:
2785
                return GenerateEncoderDecoderOutput(
2786
2787
                    sequences=input_ids,
                    scores=scores,
2788
                    logits=raw_logits,
2789
2790
2791
2792
2793
                    encoder_attentions=encoder_attentions,
                    encoder_hidden_states=encoder_hidden_states,
                    decoder_attentions=decoder_attentions,
                    cross_attentions=cross_attentions,
                    decoder_hidden_states=decoder_hidden_states,
2794
                    past_key_values=model_kwargs.get("past_key_values"),
2795
2796
                )
            else:
2797
                return GenerateDecoderOnlyOutput(
2798
2799
                    sequences=input_ids,
                    scores=scores,
2800
                    logits=raw_logits,
2801
2802
                    attentions=decoder_attentions,
                    hidden_states=decoder_hidden_states,
2803
                    past_key_values=model_kwargs.get("past_key_values"),
2804
2805
2806
2807
                )
        else:
            return input_ids

2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
    def _temporary_reorder_cache(self, past_key_values, beam_idx):
        """
        Temporary function to handle the different types of cache reordering processes while we roll out `Cache`.

        TODO: standardize cache formats and make all models compatible with `Cache`. It would remove the need
        for this function, with `Cache.reorder_cache` being the sole remaining code path
        """
        model_class = self.__class__.__name__.lower()
        # Exception 1: code path for models using the legacy cache format
        if isinstance(past_key_values, (tuple, list)):
            past_key_values = self._reorder_cache(past_key_values, beam_idx)
        # Exception 2: models with different cache formats. These are limited to `DynamicCache` until their
        # cache format is standardized, to avoid adding complexity to the codebase.
        elif "bloom" in model_class or "gptbigcode" in model_class:
            if not isinstance(past_key_values, DynamicCache):
                raise ValueError(
                    f"Using an unsupported cache format with {model_class}. Currently, it only supports the "
                    "legacy tuple format or `DynamicCache`"
                )
            past_key_values = self._reorder_cache(past_key_values, beam_idx)
            past_key_values = DynamicCache.from_legacy_cache(past_key_values)
        # Standard code path: use the `Cache.reorder_cache`
        else:
            past_key_values.reorder_cache(beam_idx)
        return past_key_values

2834
2835
2836
2837
2838
2839
2840
2841
    def beam_search(
        self,
        input_ids: torch.LongTensor,
        beam_scorer: BeamScorer,
        logits_processor: Optional[LogitsProcessorList] = None,
        stopping_criteria: Optional[StoppingCriteriaList] = None,
        max_length: Optional[int] = None,
        pad_token_id: Optional[int] = None,
2842
        eos_token_id: Optional[Union[int, List[int]]] = None,
2843
2844
2845
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        output_scores: Optional[bool] = None,
2846
        output_logits: Optional[bool] = None,
2847
        return_dict_in_generate: Optional[bool] = None,
2848
        synced_gpus: bool = False,
2849
        sequential: Optional[bool] = None,
2850
        **model_kwargs,
2851
    ) -> Union[GenerateBeamOutput, torch.LongTensor]:
2852
2853
2854
2855
        r"""
        Generates sequences of token ids for models with a language modeling head using **beam search decoding** and
        can be used for text-decoder, text-to-text, speech-to-text, and vision-to-text models.

2856
2857
2858
2859
        <Tip warning={true}>

        In most cases, you do not need to call [`~generation.GenerationMixin.beam_search`] directly. Use generate()
        instead. For an overview of generation strategies and code examples, check the [following
2860
        guide](../generation_strategies).
2861
2862
2863

        </Tip>

2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
        Parameters:
            input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
                The sequence used as a prompt for the generation.
            beam_scorer (`BeamScorer`):
                An derived instance of [`BeamScorer`] that defines how beam hypotheses are constructed, stored and
                sorted during generation. For more information, the documentation of [`BeamScorer`] should be read.
            logits_processor (`LogitsProcessorList`, *optional*):
                An instance of [`LogitsProcessorList`]. List of instances of class derived from [`LogitsProcessor`]
                used to modify the prediction scores of the language modeling head applied at each generation step.
            stopping_criteria (`StoppingCriteriaList`, *optional*):
                An instance of [`StoppingCriteriaList`]. List of instances of class derived from [`StoppingCriteria`]
                used to tell if the generation loop should stop.
            max_length (`int`, *optional*, defaults to 20):
                **DEPRECATED**. Use `logits_processor` or `stopping_criteria` directly to cap the number of generated
                tokens. The maximum length of the sequence to be generated.
            pad_token_id (`int`, *optional*):
                The id of the *padding* token.
2881
2882
            eos_token_id (`Union[int, List[int]]`, *optional*):
                The id of the *end-of-sequence* token. Optionally, use a list to set multiple *end-of-sequence* tokens.
2883
2884
2885
2886
2887
2888
            output_attentions (`bool`, *optional*, defaults to `False`):
                Whether or not to return the attentions tensors of all attention layers. See `attentions` under
                returned tensors for more details.
            output_hidden_states (`bool`, *optional*, defaults to `False`):
                Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
                for more details.
2889
2890
2891
            output_logits (`bool`, *optional*, defaults to `False`):
                Whether or not to return the raw prediction logit scores. See `logits` under returned tensors for
                more details.
2892
2893
2894
2895
2896
2897
            output_scores (`bool`, *optional*, defaults to `False`):
                Whether or not to return the prediction scores. See `scores` under returned tensors for more details.
            return_dict_in_generate (`bool`, *optional*, defaults to `False`):
                Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
            synced_gpus (`bool`, *optional*, defaults to `False`):
                Whether to continue running the while loop until max_length (needed for ZeRO stage 3)
2898
2899
2900
2901
            sequential (`bool`, defaults to `False`):
                By default, beam search has `batch_size * num_beams` as effective batch size (see `beam_search()` for
                more details). This flag will avoid parallelizing the beam search and will instead run beam search
                sequentially.
2902
2903
2904
2905
2906
            model_kwargs:
                Additional model specific kwargs will be forwarded to the `forward` function of the model. If model is
                an encoder-decoder model the kwargs should include `encoder_outputs`.

        Return:
2907
            [`generation.GenerateBeamDecoderOnlyOutput`], [`~generation.GenerateBeamEncoderDecoderOutput`] or
2908
            `torch.LongTensor`: A `torch.LongTensor` containing the generated tokens (default behaviour) or a
2909
2910
            [`~generation.GenerateBeamDecoderOnlyOutput`] if `model.config.is_encoder_decoder=False` and
            `return_dict_in_generate=True` or a [`~generation.GenerateBeamEncoderDecoderOutput`] if
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
            `model.config.is_encoder_decoder=True`.


        Examples:

        ```python
        >>> from transformers import (
        ...     AutoTokenizer,
        ...     AutoModelForSeq2SeqLM,
        ...     LogitsProcessorList,
        ...     MinLengthLogitsProcessor,
        ...     BeamSearchScorer,
        ... )
        >>> import torch

2926
2927
        >>> tokenizer = AutoTokenizer.from_pretrained("google-t5/t5-base")
        >>> model = AutoModelForSeq2SeqLM.from_pretrained("google-t5/t5-base")
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967

        >>> encoder_input_str = "translate English to German: How old are you?"
        >>> encoder_input_ids = tokenizer(encoder_input_str, return_tensors="pt").input_ids


        >>> # lets run beam search using 3 beams
        >>> num_beams = 3
        >>> # define decoder start token ids
        >>> input_ids = torch.ones((num_beams, 1), device=model.device, dtype=torch.long)
        >>> input_ids = input_ids * model.config.decoder_start_token_id

        >>> # add encoder_outputs to model keyword arguments
        >>> model_kwargs = {
        ...     "encoder_outputs": model.get_encoder()(
        ...         encoder_input_ids.repeat_interleave(num_beams, dim=0), return_dict=True
        ...     )
        ... }

        >>> # instantiate beam scorer
        >>> beam_scorer = BeamSearchScorer(
        ...     batch_size=1,
        ...     num_beams=num_beams,
        ...     device=model.device,
        ... )

        >>> # instantiate logits processors
        >>> logits_processor = LogitsProcessorList(
        ...     [
        ...         MinLengthLogitsProcessor(5, eos_token_id=model.config.eos_token_id),
        ...     ]
        ... )

        >>> outputs = model.beam_search(input_ids, beam_scorer, logits_processor=logits_processor, **model_kwargs)

        >>> tokenizer.batch_decode(outputs, skip_special_tokens=True)
        ['Wie alt bist du?']
        ```"""
        # init values
        logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList()
        stopping_criteria = stopping_criteria if stopping_criteria is not None else StoppingCriteriaList()
2968
        sequential = sequential if sequential is not None else self.generation_config.low_memory
2969
2970
2971
        if max_length is not None:
            warnings.warn(
                "`max_length` is deprecated in this function, use"
2972
                " `stopping_criteria=StoppingCriteriaList([MaxLengthCriteria(max_length=max_length)])` instead.",
2973
2974
2975
2976
2977
                UserWarning,
            )
            stopping_criteria = validate_stopping_criteria(stopping_criteria, max_length)
        if len(stopping_criteria) == 0:
            warnings.warn("You don't have defined any stopping_criteria, this will likely loop forever", UserWarning)
2978
2979
        pad_token_id = pad_token_id if pad_token_id is not None else self.generation_config.pad_token_id
        eos_token_id = eos_token_id if eos_token_id is not None else self.generation_config.eos_token_id
2980
2981
        if isinstance(eos_token_id, int):
            eos_token_id = [eos_token_id]
2982
        output_scores = output_scores if output_scores is not None else self.generation_config.output_scores
2983
        output_logits = output_logits if output_logits is not None else self.generation_config.output_logits
2984
2985
2986
        output_attentions = (
            output_attentions if output_attentions is not None else self.generation_config.output_attentions
        )
2987
        output_hidden_states = (
2988
            output_hidden_states if output_hidden_states is not None else self.generation_config.output_hidden_states
2989
2990
        )
        return_dict_in_generate = (
2991
2992
2993
            return_dict_in_generate
            if return_dict_in_generate is not None
            else self.generation_config.return_dict_in_generate
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
        )

        batch_size = len(beam_scorer._beam_hyps)
        num_beams = beam_scorer.num_beams

        batch_beam_size, cur_len = input_ids.shape

        if num_beams * batch_size != batch_beam_size:
            raise ValueError(
                f"Batch dimension of `input_ids` should be {num_beams * batch_size}, but is {batch_beam_size}."
            )

        # init attention / hidden states / scores tuples
        scores = () if (return_dict_in_generate and output_scores) else None
3008
        raw_logits = () if (return_dict_in_generate and output_logits) else None
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
        beam_indices = (
            tuple(() for _ in range(batch_beam_size)) if (return_dict_in_generate and output_scores) else None
        )
        decoder_attentions = () if (return_dict_in_generate and output_attentions) else None
        cross_attentions = () if (return_dict_in_generate and output_attentions) else None
        decoder_hidden_states = () if (return_dict_in_generate and output_hidden_states) else None

        # if model is an encoder-decoder, retrieve encoder attention weights and hidden states
        if return_dict_in_generate and self.config.is_encoder_decoder:
            encoder_attentions = model_kwargs["encoder_outputs"].get("attentions") if output_attentions else None
            encoder_hidden_states = (
                model_kwargs["encoder_outputs"].get("hidden_states") if output_hidden_states else None
            )

        # initialise score of first beam with 0 and the rest with -1e9. This makes sure that only tokens
        # of the first beam are considered to avoid sampling the exact same tokens across all beams.
        beam_scores = torch.zeros((batch_size, num_beams), dtype=torch.float, device=input_ids.device)
        beam_scores[:, 1:] = -1e9
        beam_scores = beam_scores.view((batch_size * num_beams,))

        this_peer_finished = False  # used by synced_gpus only
3030
3031

        decoder_prompt_len = input_ids.shape[-1]  # record the prompt length of decoder
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
        while True:
            if synced_gpus:
                # Under synced_gpus the `forward` call must continue until all gpus complete their sequence.
                # The following logic allows an early break if all peers finished generating their sequence
                this_peer_finished_flag = torch.tensor(0.0 if this_peer_finished else 1.0).to(input_ids.device)
                # send 0.0 if we finished, 1.0 otherwise
                dist.all_reduce(this_peer_finished_flag, op=dist.ReduceOp.SUM)
                # did all peers finish? the reduced sum will be 0.0 then
                if this_peer_finished_flag.item() == 0.0:
                    break

            model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)

3045
3046
3047
3048
            # if sequential is True, split the input to batches of batch_size and run sequentially
            if sequential:
                if any(
                    model_name in self.__class__.__name__.lower()
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
                    for model_name in [
                        "fsmt",
                        "reformer",
                        "bloom",
                        "ctrl",
                        "gpt_bigcode",
                        "transo_xl",
                        "xlnet",
                        "cpm",
                    ]
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
                ):
                    raise RuntimeError(
                        f"Currently generation for {self.__class__.__name__} is not supported "
                        f"for `low_memory beam_search`. Please open an issue on GitHub if you need this feature."
                    )

                inputs_per_sub_batches = _split_model_inputs(
                    model_inputs, split_size=batch_size, full_batch_size=batch_beam_size
                )
                outputs_per_sub_batch = [
                    self(
                        **inputs_per_sub_batch,
                        return_dict=True,
                        output_attentions=output_attentions,
                        output_hidden_states=output_hidden_states,
                    )
                    for inputs_per_sub_batch in inputs_per_sub_batches
                ]

                outputs = stack_model_outputs(outputs_per_sub_batch)

            else:  # Unchanged original behavior
                outputs = self(
                    **model_inputs,
                    return_dict=True,
                    output_attentions=output_attentions,
                    output_hidden_states=output_hidden_states,
                )
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097

            if synced_gpus and this_peer_finished:
                cur_len = cur_len + 1
                continue  # don't waste resources running the code we don't need

            next_token_logits = outputs.logits[:, -1, :]
            next_token_scores = nn.functional.log_softmax(
                next_token_logits, dim=-1
            )  # (batch_size * num_beams, vocab_size)

            next_token_scores_processed = logits_processor(input_ids, next_token_scores)
3098
3099
3100
            next_token_scores = next_token_scores_processed + beam_scores[:, None].expand_as(
                next_token_scores_processed
            )
3101
3102
3103
3104
3105

            # Store scores, attentions and hidden_states when required
            if return_dict_in_generate:
                if output_scores:
                    scores += (next_token_scores_processed,)
3106
3107
                if output_logits:
                    raw_logits += (next_token_logits,)
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
                if output_attentions:
                    decoder_attentions += (
                        (outputs.decoder_attentions,) if self.config.is_encoder_decoder else (outputs.attentions,)
                    )
                    if self.config.is_encoder_decoder:
                        cross_attentions += (outputs.cross_attentions,)
                if output_hidden_states:
                    decoder_hidden_states += (
                        (outputs.decoder_hidden_states,)
                        if self.config.is_encoder_decoder
                        else (outputs.hidden_states,)
                    )

            # reshape for beam search
            vocab_size = next_token_scores.shape[-1]
            next_token_scores = next_token_scores.view(batch_size, num_beams * vocab_size)

3125
3126
            # Sample 1 + len(eos_token_id) next tokens for each beam so we have at least 1 non eos token per beam.
            n_eos_tokens = len(eos_token_id) if eos_token_id else 0
3127
            next_token_scores, next_tokens = torch.topk(
3128
                next_token_scores, max(2, 1 + n_eos_tokens) * num_beams, dim=1, largest=True, sorted=True
3129
3130
            )

3131
            next_indices = torch.div(next_tokens, vocab_size, rounding_mode="floor")
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
            next_tokens = next_tokens % vocab_size

            # stateless
            beam_outputs = beam_scorer.process(
                input_ids,
                next_token_scores,
                next_tokens,
                next_indices,
                pad_token_id=pad_token_id,
                eos_token_id=eos_token_id,
                beam_indices=beam_indices,
3143
                decoder_prompt_len=decoder_prompt_len,
3144
3145
3146
3147
3148
3149
3150
3151
3152
            )

            beam_scores = beam_outputs["next_beam_scores"]
            beam_next_tokens = beam_outputs["next_beam_tokens"]
            beam_idx = beam_outputs["next_beam_indices"]

            input_ids = torch.cat([input_ids[beam_idx, :], beam_next_tokens.unsqueeze(-1)], dim=-1)

            model_kwargs = self._update_model_kwargs_for_generation(
3153
                outputs, model_kwargs, is_encoder_decoder=self.config.is_encoder_decoder, model_inputs=model_inputs
3154
            )
3155
            if model_kwargs["past_key_values"] is not None:
3156
3157
3158
                model_kwargs["past_key_values"] = self._temporary_reorder_cache(
                    model_kwargs["past_key_values"], beam_idx
                )
3159
3160
3161
3162
3163
3164
3165

            if return_dict_in_generate and output_scores:
                beam_indices = tuple((beam_indices[beam_idx[i]] + (beam_idx[i],) for i in range(len(beam_indices))))

            # increase cur_len
            cur_len = cur_len + 1

3166
            if beam_scorer.is_done or all(stopping_criteria(input_ids, scores)):
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
                if not synced_gpus:
                    break
                else:
                    this_peer_finished = True

        sequence_outputs = beam_scorer.finalize(
            input_ids,
            beam_scores,
            next_tokens,
            next_indices,
            pad_token_id=pad_token_id,
            eos_token_id=eos_token_id,
            max_length=stopping_criteria.max_length,
            beam_indices=beam_indices,
3181
            decoder_prompt_len=decoder_prompt_len,
3182
3183
3184
3185
3186
3187
3188
        )

        if return_dict_in_generate:
            if not output_scores:
                sequence_outputs["sequence_scores"] = None

            if self.config.is_encoder_decoder:
3189
                return GenerateBeamEncoderDecoderOutput(
3190
3191
3192
                    sequences=sequence_outputs["sequences"],
                    sequences_scores=sequence_outputs["sequence_scores"],
                    scores=scores,
3193
                    logits=raw_logits,
3194
3195
3196
3197
3198
3199
                    beam_indices=sequence_outputs["beam_indices"],
                    encoder_attentions=encoder_attentions,
                    encoder_hidden_states=encoder_hidden_states,
                    decoder_attentions=decoder_attentions,
                    cross_attentions=cross_attentions,
                    decoder_hidden_states=decoder_hidden_states,
3200
                    past_key_values=model_kwargs.get("past_key_values"),
3201
3202
                )
            else:
3203
                return GenerateBeamDecoderOnlyOutput(
3204
3205
3206
                    sequences=sequence_outputs["sequences"],
                    sequences_scores=sequence_outputs["sequence_scores"],
                    scores=scores,
3207
                    logits=raw_logits,
3208
3209
3210
                    beam_indices=sequence_outputs["beam_indices"],
                    attentions=decoder_attentions,
                    hidden_states=decoder_hidden_states,
3211
                    past_key_values=model_kwargs.get("past_key_values"),
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
                )
        else:
            return sequence_outputs["sequences"]

    def beam_sample(
        self,
        input_ids: torch.LongTensor,
        beam_scorer: BeamScorer,
        logits_processor: Optional[LogitsProcessorList] = None,
        stopping_criteria: Optional[StoppingCriteriaList] = None,
        logits_warper: Optional[LogitsProcessorList] = None,
        max_length: Optional[int] = None,
        pad_token_id: Optional[int] = None,
3225
        eos_token_id: Optional[Union[int, List[int]]] = None,
3226
3227
3228
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        output_scores: Optional[bool] = None,
3229
        output_logits: Optional[bool] = None,
3230
        return_dict_in_generate: Optional[bool] = None,
3231
        synced_gpus: bool = False,
3232
        **model_kwargs,
3233
    ) -> Union[GenerateBeamOutput, torch.LongTensor]:
3234
3235
3236
3237
        r"""
        Generates sequences of token ids for models with a language modeling head using **beam search multinomial
        sampling** and can be used for text-decoder, text-to-text, speech-to-text, and vision-to-text models.

3238
3239
3240
3241
        <Tip warning={true}>

        In most cases, you do not need to call [`~generation.GenerationMixin.beam_sample`] directly. Use generate()
        instead. For an overview of generation strategies and code examples, check the [following
3242
        guide](../generation_strategies).
3243
3244
3245

        </Tip>

3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
        Parameters:
            input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
                The sequence used as a prompt for the generation.
            beam_scorer (`BeamScorer`):
                A derived instance of [`BeamScorer`] that defines how beam hypotheses are constructed, stored and
                sorted during generation. For more information, the documentation of [`BeamScorer`] should be read.
            logits_processor (`LogitsProcessorList`, *optional*):
                An instance of [`LogitsProcessorList`]. List of instances of class derived from [`LogitsProcessor`]
                used to modify the prediction scores of the language modeling head applied at each generation step.
            stopping_criteria (`StoppingCriteriaList`, *optional*):
                An instance of [`StoppingCriteriaList`]. List of instances of class derived from [`StoppingCriteria`]
                used to tell if the generation loop should stop.
            logits_warper (`LogitsProcessorList`, *optional*):
                An instance of [`LogitsProcessorList`]. List of instances of class derived from [`LogitsWarper`] used
                to warp the prediction score distribution of the language modeling head applied before multinomial
                sampling at each generation step.
            max_length (`int`, *optional*, defaults to 20):
                **DEPRECATED**. Use `logits_processor` or `stopping_criteria` directly to cap the number of generated
                tokens. The maximum length of the sequence to be generated.
            pad_token_id (`int`, *optional*):
                The id of the *padding* token.
3267
3268
            eos_token_id (`Union[int, List[int]]`, *optional*):
                The id of the *end-of-sequence* token. Optionally, use a list to set multiple *end-of-sequence* tokens.
3269
3270
3271
3272
3273
3274
3275
3276
            output_attentions (`bool`, *optional*, defaults to `False`):
                Whether or not to return the attentions tensors of all attention layers. See `attentions` under
                returned tensors for more details.
            output_hidden_states (`bool`, *optional*, defaults to `False`):
                Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
                for more details.
            output_scores (`bool`, *optional*, defaults to `False`):
                Whether or not to return the prediction scores. See `scores` under returned tensors for more details.
3277
3278
3279
            output_logits (`bool`, *optional*, defaults to `False`):
                Whether or not to return the raw prediction logit scores. See `logits` under returned tensors for
                more details.
3280
3281
3282
3283
3284
3285
3286
3287
3288
            return_dict_in_generate (`bool`, *optional*, defaults to `False`):
                Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
            synced_gpus (`bool`, *optional*, defaults to `False`):
                Whether to continue running the while loop until max_length (needed for ZeRO stage 3)
            model_kwargs:
                Additional model specific kwargs will be forwarded to the `forward` function of the model. If model is
                an encoder-decoder model the kwargs should include `encoder_outputs`.

        Return:
3289
            [`~generation.GenerateBeamDecoderOnlyOutput`], [`~generation.GenerateBeamEncoderDecoderOutput`] or
3290
            `torch.LongTensor`: A `torch.LongTensor` containing the generated tokens (default behaviour) or a
3291
3292
            [`~generation.GenerateBeamDecoderOnlyOutput`] if `model.config.is_encoder_decoder=False` and
            `return_dict_in_generate=True` or a [`~generation.GenerateBeamEncoderDecoderOutput`] if
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
            `model.config.is_encoder_decoder=True`.

        Examples:

        ```python
        >>> from transformers import (
        ...     AutoTokenizer,
        ...     AutoModelForSeq2SeqLM,
        ...     LogitsProcessorList,
        ...     MinLengthLogitsProcessor,
        ...     TopKLogitsWarper,
        ...     TemperatureLogitsWarper,
        ...     BeamSearchScorer,
        ... )
        >>> import torch

3309
3310
        >>> tokenizer = AutoTokenizer.from_pretrained("google-t5/t5-base")
        >>> model = AutoModelForSeq2SeqLM.from_pretrained("google-t5/t5-base")
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360

        >>> encoder_input_str = "translate English to German: How old are you?"
        >>> encoder_input_ids = tokenizer(encoder_input_str, return_tensors="pt").input_ids

        >>> # lets run beam search using 3 beams
        >>> num_beams = 3
        >>> # define decoder start token ids
        >>> input_ids = torch.ones((num_beams, 1), device=model.device, dtype=torch.long)
        >>> input_ids = input_ids * model.config.decoder_start_token_id

        >>> # add encoder_outputs to model keyword arguments
        >>> model_kwargs = {
        ...     "encoder_outputs": model.get_encoder()(
        ...         encoder_input_ids.repeat_interleave(num_beams, dim=0), return_dict=True
        ...     )
        ... }

        >>> # instantiate beam scorer
        >>> beam_scorer = BeamSearchScorer(
        ...     batch_size=1,
        ...     max_length=model.config.max_length,
        ...     num_beams=num_beams,
        ...     device=model.device,
        ... )

        >>> # instantiate logits processors
        >>> logits_processor = LogitsProcessorList(
        ...     [MinLengthLogitsProcessor(5, eos_token_id=model.config.eos_token_id)]
        ... )
        >>> # instantiate logits processors
        >>> logits_warper = LogitsProcessorList(
        ...     [
        ...         TopKLogitsWarper(50),
        ...         TemperatureLogitsWarper(0.7),
        ...     ]
        ... )

        >>> outputs = model.beam_sample(
        ...     input_ids, beam_scorer, logits_processor=logits_processor, logits_warper=logits_warper, **model_kwargs
        ... )

        >>> tokenizer.batch_decode(outputs, skip_special_tokens=True)
        ['Wie alt bist du?']
        ```"""
        # init values
        logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList()
        stopping_criteria = stopping_criteria if stopping_criteria is not None else StoppingCriteriaList()
        if max_length is not None:
            warnings.warn(
                "`max_length` is deprecated in this function, use"
3361
                " `stopping_criteria=StoppingCriteriaList([MaxLengthCriteria(max_length=max_length)])` instead.",
3362
3363
3364
                UserWarning,
            )
            stopping_criteria = validate_stopping_criteria(stopping_criteria, max_length)
3365
3366
        pad_token_id = pad_token_id if pad_token_id is not None else self.generation_config.pad_token_id
        eos_token_id = eos_token_id if eos_token_id is not None else self.generation_config.eos_token_id
3367
3368
        if isinstance(eos_token_id, int):
            eos_token_id = [eos_token_id]
3369
        output_scores = output_scores if output_scores is not None else self.generation_config.output_scores
3370
        output_logits = output_logits if output_logits is not None else self.generation_config.output_logits
3371
3372
3373
        output_attentions = (
            output_attentions if output_attentions is not None else self.generation_config.output_attentions
        )
3374
        output_hidden_states = (
3375
            output_hidden_states if output_hidden_states is not None else self.generation_config.output_hidden_states
3376
3377
        )
        return_dict_in_generate = (
3378
3379
3380
            return_dict_in_generate
            if return_dict_in_generate is not None
            else self.generation_config.return_dict_in_generate
3381
3382
3383
3384
3385
3386
3387
3388
3389
        )

        batch_size = len(beam_scorer._beam_hyps)
        num_beams = beam_scorer.num_beams

        batch_beam_size, cur_len = input_ids.shape

        # init attention / hidden states / scores tuples
        scores = () if (return_dict_in_generate and output_scores) else None
3390
        raw_logits = () if (return_dict_in_generate and output_logits) else None
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
        beam_indices = (
            tuple(() for _ in range(batch_beam_size)) if (return_dict_in_generate and output_scores) else None
        )
        decoder_attentions = () if (return_dict_in_generate and output_attentions) else None
        cross_attentions = () if (return_dict_in_generate and output_attentions) else None
        decoder_hidden_states = () if (return_dict_in_generate and output_hidden_states) else None

        # if model is an encoder-decoder, retrieve encoder attention weights and hidden states
        if return_dict_in_generate and self.config.is_encoder_decoder:
            encoder_attentions = model_kwargs["encoder_outputs"].get("attentions") if output_attentions else None
            encoder_hidden_states = (
                model_kwargs["encoder_outputs"].get("hidden_states") if output_hidden_states else None
            )

        beam_scores = torch.zeros((batch_size, num_beams), dtype=torch.float, device=input_ids.device)
        beam_scores = beam_scores.view((batch_size * num_beams,))

        this_peer_finished = False  # used by synced_gpus only
3409
3410

        decoder_prompt_len = input_ids.shape[-1]  # record the prompt length of decoder
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
        while True:
            if synced_gpus:
                # Under synced_gpus the `forward` call must continue until all gpus complete their sequence.
                # The following logic allows an early break if all peers finished generating their sequence
                this_peer_finished_flag = torch.tensor(0.0 if this_peer_finished else 1.0).to(input_ids.device)
                # send 0.0 if we finished, 1.0 otherwise
                dist.all_reduce(this_peer_finished_flag, op=dist.ReduceOp.SUM)
                # did all peers finish? the reduced sum will be 0.0 then
                if this_peer_finished_flag.item() == 0.0:
                    break

            model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)

            outputs = self(
                **model_inputs,
                return_dict=True,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
            )

            if synced_gpus and this_peer_finished:
                cur_len = cur_len + 1
                continue  # don't waste resources running the code we don't need

            next_token_logits = outputs.logits[:, -1, :]

            next_token_scores = nn.functional.log_softmax(
                next_token_logits, dim=-1
            )  # (batch_size * num_beams, vocab_size)

            next_token_scores_processed = logits_processor(input_ids, next_token_scores)
3442
            next_token_scores_processed = logits_warper(input_ids, next_token_scores_processed)
3443
3444
3445
            next_token_scores = next_token_scores_processed + beam_scores[:, None].expand_as(
                next_token_scores_processed
            )
3446
3447
3448
3449

            # Store scores, attentions and hidden_states when required
            if return_dict_in_generate:
                if output_scores:
3450
                    scores += (next_token_scores_processed,)
3451
3452
                if output_logits:
                    raw_logits += (next_token_logits,)
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
                if output_attentions:
                    decoder_attentions += (
                        (outputs.decoder_attentions,) if self.config.is_encoder_decoder else (outputs.attentions,)
                    )
                    if self.config.is_encoder_decoder:
                        cross_attentions += (outputs.cross_attentions,)

                if output_hidden_states:
                    decoder_hidden_states += (
                        (outputs.decoder_hidden_states,)
                        if self.config.is_encoder_decoder
                        else (outputs.hidden_states,)
                    )

            # reshape for beam search
            vocab_size = next_token_scores.shape[-1]
            next_token_scores = next_token_scores.view(batch_size, num_beams * vocab_size)

            probs = nn.functional.softmax(next_token_scores, dim=-1)

            next_tokens = torch.multinomial(probs, num_samples=2 * num_beams)
            next_token_scores = torch.gather(next_token_scores, -1, next_tokens)

            next_token_scores, _indices = torch.sort(next_token_scores, descending=True, dim=1)
            next_tokens = torch.gather(next_tokens, -1, _indices)

3479
            next_indices = torch.div(next_tokens, vocab_size, rounding_mode="floor")
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
            next_tokens = next_tokens % vocab_size

            # stateless
            beam_outputs = beam_scorer.process(
                input_ids,
                next_token_scores,
                next_tokens,
                next_indices,
                pad_token_id=pad_token_id,
                eos_token_id=eos_token_id,
                beam_indices=beam_indices,
3491
                decoder_prompt_len=decoder_prompt_len,
3492
3493
3494
3495
3496
3497
3498
3499
            )
            beam_scores = beam_outputs["next_beam_scores"]
            beam_next_tokens = beam_outputs["next_beam_tokens"]
            beam_idx = beam_outputs["next_beam_indices"]

            input_ids = torch.cat([input_ids[beam_idx, :], beam_next_tokens.unsqueeze(-1)], dim=-1)

            model_kwargs = self._update_model_kwargs_for_generation(
3500
                outputs, model_kwargs, is_encoder_decoder=self.config.is_encoder_decoder, model_inputs=model_inputs
3501
            )
3502
            if model_kwargs["past_key_values"] is not None:
3503
3504
3505
                model_kwargs["past_key_values"] = self._temporary_reorder_cache(
                    model_kwargs["past_key_values"], beam_idx
                )
3506
3507
3508
3509
3510
3511
3512

            if return_dict_in_generate and output_scores:
                beam_indices = tuple((beam_indices[beam_idx[i]] + (beam_idx[i],) for i in range(len(beam_indices))))

            # increase cur_len
            cur_len = cur_len + 1

3513
            if beam_scorer.is_done or all(stopping_criteria(input_ids, scores)):
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
                if not synced_gpus:
                    break
                else:
                    this_peer_finished = True

        sequence_outputs = beam_scorer.finalize(
            input_ids,
            beam_scores,
            next_tokens,
            next_indices,
            pad_token_id=pad_token_id,
            eos_token_id=eos_token_id,
            max_length=stopping_criteria.max_length,
            beam_indices=beam_indices,
3528
            decoder_prompt_len=decoder_prompt_len,
3529
3530
3531
3532
3533
3534
3535
        )

        if return_dict_in_generate:
            if not output_scores:
                sequence_outputs["sequence_scores"] = None

            if self.config.is_encoder_decoder:
3536
                return GenerateBeamEncoderDecoderOutput(
3537
3538
3539
                    sequences=sequence_outputs["sequences"],
                    sequences_scores=sequence_outputs["sequence_scores"],
                    scores=scores,
3540
                    logits=raw_logits,
3541
3542
3543
3544
3545
3546
                    beam_indices=sequence_outputs["beam_indices"],
                    encoder_attentions=encoder_attentions,
                    encoder_hidden_states=encoder_hidden_states,
                    decoder_attentions=decoder_attentions,
                    cross_attentions=cross_attentions,
                    decoder_hidden_states=decoder_hidden_states,
3547
                    past_key_values=model_kwargs.get("past_key_values"),
3548
3549
                )
            else:
3550
                return GenerateBeamDecoderOnlyOutput(
3551
3552
3553
                    sequences=sequence_outputs["sequences"],
                    sequences_scores=sequence_outputs["sequence_scores"],
                    scores=scores,
3554
                    logits=raw_logits,
3555
3556
3557
                    beam_indices=sequence_outputs["beam_indices"],
                    attentions=decoder_attentions,
                    hidden_states=decoder_hidden_states,
3558
                    past_key_values=model_kwargs.get("past_key_values"),
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
                )
        else:
            return sequence_outputs["sequences"]

    def group_beam_search(
        self,
        input_ids: torch.LongTensor,
        beam_scorer: BeamScorer,
        logits_processor: Optional[LogitsProcessorList] = None,
        stopping_criteria: Optional[StoppingCriteriaList] = None,
        max_length: Optional[int] = None,
        pad_token_id: Optional[int] = None,
3571
        eos_token_id: Optional[Union[int, List[int]]] = None,
3572
3573
3574
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        output_scores: Optional[bool] = None,
3575
        output_logits: Optional[bool] = None,
3576
        return_dict_in_generate: Optional[bool] = None,
3577
        synced_gpus: bool = False,
3578
3579
3580
3581
3582
3583
        **model_kwargs,
    ):
        r"""
        Generates sequences of token ids for models with a language modeling head using **diverse beam search
        decoding** and can be used for text-decoder, text-to-text, speech-to-text, and vision-to-text models.

3584
3585
3586
3587
        <Tip warning={true}>

        In most cases, you do not need to call [`~generation.GenerationMixin.group_beam_search`] directly. Use
        generate() instead. For an overview of generation strategies and code examples, check the [following
3588
        guide](../generation_strategies).
3589
3590
3591

        </Tip>

3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
        Parameters:
            input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
                The sequence used as a prompt for the generation.
            beam_scorer (`BeamScorer`):
                An derived instance of [`BeamScorer`] that defines how beam hypotheses are constructed, stored and
                sorted during generation. For more information, the documentation of [`BeamScorer`] should be read.
            logits_processor (`LogitsProcessorList`, *optional*):
                An instance of [`LogitsProcessorList`]. List of instances of class derived from [`LogitsProcessor`]
                used to modify the prediction scores of the language modeling head applied at each generation step.
            stopping_criteria (`StoppingCriteriaList`, *optional*):
                An instance of [`StoppingCriteriaList`]. List of instances of class derived from [`StoppingCriteria`]
                used to tell if the generation loop should stop.
            max_length (`int`, *optional*, defaults to 20):
                **DEPRECATED**. Use `logits_processor` or `stopping_criteria` directly to cap the number of generated
                tokens. The maximum length of the sequence to be generated.
            pad_token_id (`int`, *optional*):
                The id of the *padding* token.
3609
3610
            eos_token_id (`Union[int, List[int]]`, *optional*):
                The id of the *end-of-sequence* token. Optionally, use a list to set multiple *end-of-sequence* tokens.
3611
3612
3613
3614
3615
3616
3617
3618
            output_attentions (`bool`, *optional*, defaults to `False`):
                Whether or not to return the attentions tensors of all attention layers. See `attentions` under
                returned tensors for more details.
            output_hidden_states (`bool`, *optional*, defaults to `False`):
                Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
                for more details.
            output_scores (`bool`, *optional*, defaults to `False`):
                Whether or not to return the prediction scores. See `scores` under returned tensors for more details.
3619
3620
3621
            output_logits (`bool`, *optional*, defaults to `False`):
                Whether or not to return the raw prediction logit scores. See `logits` under returned tensors for
                more details.
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
            return_dict_in_generate (`bool`, *optional*, defaults to `False`):
                Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
            synced_gpus (`bool`, *optional*, defaults to `False`):
                Whether to continue running the while loop until max_length (needed for ZeRO stage 3)

            model_kwargs:
                Additional model specific kwargs that will be forwarded to the `forward` function of the model. If
                model is an encoder-decoder model the kwargs should include `encoder_outputs`.

        Return:
3632
            [`~generation.GenerateBeamDecoderOnlyOutput`], [`~generation.GenerateBeamEncoderDecoderOutput`] or
3633
            `torch.LongTensor`: A `torch.LongTensor` containing the generated tokens (default behaviour) or a
3634
3635
3636
            [`~generation.GenerateBeamDecoderOnlyOutput`] if `model.config.is_encoder_decoder=False` and
            `return_dict_in_generate=True` or a [`~generation.GenerateBeamEncoderDecoderOutput`] if
            `model.config.is_encoder_decoder=True`.
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650

        Examples:

        ```python
        >>> from transformers import (
        ...     AutoTokenizer,
        ...     AutoModelForSeq2SeqLM,
        ...     LogitsProcessorList,
        ...     MinLengthLogitsProcessor,
        ...     HammingDiversityLogitsProcessor,
        ...     BeamSearchScorer,
        ... )
        >>> import torch

3651
3652
        >>> tokenizer = AutoTokenizer.from_pretrained("google-t5/t5-base")
        >>> model = AutoModelForSeq2SeqLM.from_pretrained("google-t5/t5-base")
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700

        >>> encoder_input_str = "translate English to German: How old are you?"
        >>> encoder_input_ids = tokenizer(encoder_input_str, return_tensors="pt").input_ids


        >>> # lets run diverse beam search using 6 beams
        >>> num_beams = 6
        >>> # define decoder start token ids
        >>> input_ids = torch.ones((num_beams, 1), device=model.device, dtype=torch.long)
        >>> input_ids = input_ids * model.config.decoder_start_token_id

        >>> # add encoder_outputs to model keyword arguments
        >>> model_kwargs = {
        ...     "encoder_outputs": model.get_encoder()(
        ...         encoder_input_ids.repeat_interleave(num_beams, dim=0), return_dict=True
        ...     )
        ... }

        >>> # instantiate beam scorer
        >>> beam_scorer = BeamSearchScorer(
        ...     batch_size=1,
        ...     max_length=model.config.max_length,
        ...     num_beams=num_beams,
        ...     device=model.device,
        ...     num_beam_groups=3,
        ... )

        >>> # instantiate logits processors
        >>> logits_processor = LogitsProcessorList(
        ...     [
        ...         HammingDiversityLogitsProcessor(5.5, num_beams=6, num_beam_groups=3),
        ...         MinLengthLogitsProcessor(5, eos_token_id=model.config.eos_token_id),
        ...     ]
        ... )

        >>> outputs = model.group_beam_search(
        ...     input_ids, beam_scorer, logits_processor=logits_processor, **model_kwargs
        ... )

        >>> tokenizer.batch_decode(outputs, skip_special_tokens=True)
        ['Wie alt bist du?']
        ```"""
        # init values
        logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList()
        stopping_criteria = stopping_criteria if stopping_criteria is not None else StoppingCriteriaList()
        if max_length is not None:
            warnings.warn(
                "`max_length` is deprecated in this function, use"
3701
                " `stopping_criteria=StoppingCriteriaList([MaxLengthCriteria(max_length=max_length)])` instead.",
3702
3703
3704
                UserWarning,
            )
            stopping_criteria = validate_stopping_criteria(stopping_criteria, max_length)
3705
3706
        pad_token_id = pad_token_id if pad_token_id is not None else self.generation_config.pad_token_id
        eos_token_id = eos_token_id if eos_token_id is not None else self.generation_config.eos_token_id
3707
3708
        if isinstance(eos_token_id, int):
            eos_token_id = [eos_token_id]
3709
        output_scores = output_scores if output_scores is not None else self.generation_config.output_scores
3710
        output_logits = output_logits if output_logits is not None else self.generation_config.output_logits
3711
3712
3713
        output_attentions = (
            output_attentions if output_attentions is not None else self.generation_config.output_attentions
        )
3714
        output_hidden_states = (
3715
            output_hidden_states if output_hidden_states is not None else self.generation_config.output_hidden_states
3716
3717
        )
        return_dict_in_generate = (
3718
3719
3720
            return_dict_in_generate
            if return_dict_in_generate is not None
            else self.generation_config.return_dict_in_generate
3721
3722
3723
3724
3725
        )

        num_beams = beam_scorer.num_beams
        num_beam_groups = beam_scorer.num_beam_groups
        num_sub_beams = num_beams // num_beam_groups
3726
        batch_size = len(beam_scorer._beam_hyps) // num_beam_groups
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
        device = input_ids.device

        batch_beam_size, cur_len = input_ids.shape

        if return_dict_in_generate and output_scores:
            beam_indices = [tuple(() for _ in range(num_sub_beams * batch_size)) for _ in range(num_beam_groups)]
        else:
            beam_indices = None

        if num_beams * batch_size != batch_beam_size:
            raise ValueError(
                f"Batch dimension of `input_ids` should be {num_beams * batch_size}, but is {batch_beam_size}."
            )

        # init attention / hidden states / scores tuples
        scores = () if (return_dict_in_generate and output_scores) else None
3743
        raw_logits = () if (return_dict_in_generate and output_logits) else None
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
        decoder_attentions = () if (return_dict_in_generate and output_attentions) else None
        cross_attentions = () if (return_dict_in_generate and output_attentions) else None
        decoder_hidden_states = () if (return_dict_in_generate and output_hidden_states) else None

        # if model is an encoder-decoder, retrieve encoder attention weights and hidden states
        if return_dict_in_generate and self.config.is_encoder_decoder:
            encoder_attentions = model_kwargs["encoder_outputs"].get("attentions") if output_attentions else None
            encoder_hidden_states = (
                model_kwargs["encoder_outputs"].get("hidden_states") if output_hidden_states else None
            )

        # initialise score of first beam of each group with 0 and the rest with -1e9. This ensures that the beams in
        # the same group don't produce same tokens everytime.
        beam_scores = torch.full((batch_size, num_beams), -1e9, dtype=torch.float, device=device)
        beam_scores[:, ::num_sub_beams] = 0
        beam_scores = beam_scores.view((batch_size * num_beams,))

        this_peer_finished = False  # used by synced_gpus only
3762
3763

        decoder_prompt_len = input_ids.shape[-1]  # record the prompt length of decoder
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
        while True:
            if synced_gpus:
                # Under synced_gpus the `forward` call must continue until all gpus complete their sequence.
                # The following logic allows an early break if all peers finished generating their sequence
                this_peer_finished_flag = torch.tensor(0.0 if this_peer_finished else 1.0).to(input_ids.device)
                # send 0.0 if we finished, 1.0 otherwise
                dist.all_reduce(this_peer_finished_flag, op=dist.ReduceOp.SUM)
                # did all peers finish? the reduced sum will be 0.0 then
                if this_peer_finished_flag.item() == 0.0:
                    break

            # predicted tokens in cur_len step
            current_tokens = torch.zeros(batch_size * num_beams, dtype=input_ids.dtype, device=device)

            # indices which will form the beams in the next time step
            reordering_indices = torch.zeros(batch_size * num_beams, dtype=torch.long, device=device)

            # do one decoder step on all beams of all sentences in batch
            model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)
            outputs = self(
                **model_inputs,
                return_dict=True,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
            )

            if synced_gpus and this_peer_finished:
                cur_len = cur_len + 1
                continue  # don't waste resources running the code we don't need

            if output_scores:
                processed_score = torch.zeros_like(outputs.logits[:, -1, :])
3796
3797
            if output_logits:
                raw_logit_score = outputs.logits[:, -1, :]
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832

            for beam_group_idx in range(num_beam_groups):
                group_start_idx = beam_group_idx * num_sub_beams
                group_end_idx = min(group_start_idx + num_sub_beams, num_beams)
                group_size = group_end_idx - group_start_idx

                # indices of beams of current group among all sentences in batch
                batch_group_indices = []

                for batch_idx in range(batch_size):
                    batch_group_indices.extend(
                        [batch_idx * num_beams + idx for idx in range(group_start_idx, group_end_idx)]
                    )
                group_input_ids = input_ids[batch_group_indices]

                # select outputs of beams of current group only
                next_token_logits = outputs.logits[batch_group_indices, -1, :]

                next_token_scores = nn.functional.log_softmax(
                    next_token_logits, dim=-1
                )  # (batch_size * group_size, vocab_size)
                vocab_size = next_token_scores.shape[-1]

                next_token_scores_processed = logits_processor(
                    group_input_ids, next_token_scores, current_tokens=current_tokens, beam_group_idx=beam_group_idx
                )
                next_token_scores = next_token_scores_processed + beam_scores[batch_group_indices].unsqueeze(-1)
                next_token_scores = next_token_scores.expand_as(next_token_scores_processed)

                if output_scores:
                    processed_score[batch_group_indices] = next_token_scores_processed

                # reshape for beam search
                next_token_scores = next_token_scores.view(batch_size, group_size * vocab_size)

3833
3834
                # Sample 1 + len(eos_token_id) next tokens for each beam so we have at least 1 non eos token per beam.
                n_eos_tokens = len(eos_token_id) if eos_token_id else 0
3835
                next_token_scores, next_tokens = torch.topk(
3836
                    next_token_scores, max(2, 1 + n_eos_tokens) * group_size, dim=1, largest=True, sorted=True
3837
3838
                )

3839
                next_indices = torch.div(next_tokens, vocab_size, rounding_mode="floor")
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
                next_tokens = next_tokens % vocab_size

                # stateless
                process_beam_indices = sum(beam_indices, ()) if beam_indices is not None else None
                beam_outputs = beam_scorer.process(
                    group_input_ids,
                    next_token_scores,
                    next_tokens,
                    next_indices,
                    pad_token_id=pad_token_id,
                    eos_token_id=eos_token_id,
                    beam_indices=process_beam_indices,
3852
                    group_index=beam_group_idx,
3853
                    decoder_prompt_len=decoder_prompt_len,
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
                )
                beam_scores[batch_group_indices] = beam_outputs["next_beam_scores"]
                beam_next_tokens = beam_outputs["next_beam_tokens"]
                beam_idx = beam_outputs["next_beam_indices"]

                if return_dict_in_generate and output_scores:
                    beam_indices[beam_group_idx] = tuple(
                        beam_indices[beam_group_idx][beam_idx[i]] + (beam_idx[i],) for i in range(len(beam_indices[0]))
                    )

                input_ids[batch_group_indices] = group_input_ids[beam_idx]
                group_input_ids = torch.cat([group_input_ids[beam_idx, :], beam_next_tokens.unsqueeze(-1)], dim=-1)
                current_tokens[batch_group_indices] = group_input_ids[:, -1]

                # (beam_idx // group_size) -> batch_idx
                # (beam_idx % group_size) -> offset of idx inside the group
                reordering_indices[batch_group_indices] = (
3871
3872
3873
                    num_beams * torch.div(beam_idx, group_size, rounding_mode="floor")
                    + group_start_idx
                    + (beam_idx % group_size)
3874
3875
3876
3877
3878
3879
                )

            # Store scores, attentions and hidden_states when required
            if return_dict_in_generate:
                if output_scores:
                    scores += (processed_score,)
3880
3881
                if output_logits:
                    raw_logits += (raw_logit_score,)
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
                if output_attentions:
                    decoder_attentions += (
                        (outputs.decoder_attentions,) if self.config.is_encoder_decoder else (outputs.attentions,)
                    )
                    if self.config.is_encoder_decoder:
                        cross_attentions += (outputs.cross_attentions,)

                if output_hidden_states:
                    decoder_hidden_states += (
                        (outputs.decoder_hidden_states,)
                        if self.config.is_encoder_decoder
                        else (outputs.hidden_states,)
                    )

            input_ids = torch.cat([input_ids, current_tokens.unsqueeze(-1)], dim=-1)

            model_kwargs = self._update_model_kwargs_for_generation(
3899
                outputs, model_kwargs, is_encoder_decoder=self.config.is_encoder_decoder, model_inputs=model_inputs
3900
            )
3901
            if model_kwargs["past_key_values"] is not None:
3902
                model_kwargs["past_key_values"] = self._temporary_reorder_cache(
3903
3904
                    model_kwargs["past_key_values"], reordering_indices
                )
3905
3906
3907
3908

            # increase cur_len
            cur_len = cur_len + 1

3909
            if beam_scorer.is_done or all(stopping_criteria(input_ids, scores)):
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
                if not synced_gpus:
                    break
                else:
                    this_peer_finished = True

        final_beam_indices = sum(beam_indices, ()) if beam_indices is not None else None
        sequence_outputs = beam_scorer.finalize(
            input_ids,
            beam_scores,
            next_tokens,
            next_indices,
            pad_token_id=pad_token_id,
            eos_token_id=eos_token_id,
            max_length=stopping_criteria.max_length,
            beam_indices=final_beam_indices,
3925
            decoder_prompt_len=decoder_prompt_len,
3926
3927
3928
3929
3930
3931
3932
        )

        if return_dict_in_generate:
            if not output_scores:
                sequence_outputs["sequence_scores"] = None

            if self.config.is_encoder_decoder:
3933
                return GenerateBeamEncoderDecoderOutput(
3934
3935
3936
                    sequences=sequence_outputs["sequences"],
                    sequences_scores=sequence_outputs["sequence_scores"],
                    scores=scores,
3937
                    logits=raw_logits,
3938
3939
3940
3941
3942
3943
                    beam_indices=sequence_outputs["beam_indices"],
                    encoder_attentions=encoder_attentions,
                    encoder_hidden_states=encoder_hidden_states,
                    decoder_attentions=decoder_attentions,
                    cross_attentions=cross_attentions,
                    decoder_hidden_states=decoder_hidden_states,
3944
                    past_key_values=model_kwargs.get("past_key_values"),
3945
3946
                )
            else:
3947
                return GenerateBeamDecoderOnlyOutput(
3948
3949
3950
                    sequences=sequence_outputs["sequences"],
                    sequences_scores=sequence_outputs["sequence_scores"],
                    scores=scores,
3951
                    logits=raw_logits,
3952
3953
3954
                    beam_indices=sequence_outputs["beam_indices"],
                    attentions=decoder_attentions,
                    hidden_states=decoder_hidden_states,
3955
                    past_key_values=model_kwargs.get("past_key_values"),
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
                )
        else:
            return sequence_outputs["sequences"]

    def constrained_beam_search(
        self,
        input_ids: torch.LongTensor,
        constrained_beam_scorer: ConstrainedBeamSearchScorer,
        logits_processor: Optional[LogitsProcessorList] = None,
        stopping_criteria: Optional[StoppingCriteriaList] = None,
        max_length: Optional[int] = None,
        pad_token_id: Optional[int] = None,
3968
        eos_token_id: Optional[Union[int, List[int]]] = None,
3969
3970
3971
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        output_scores: Optional[bool] = None,
3972
        output_logits: Optional[bool] = None,
3973
3974
3975
        return_dict_in_generate: Optional[bool] = None,
        synced_gpus: Optional[bool] = None,
        **model_kwargs,
3976
    ) -> Union[GenerateBeamOutput, torch.LongTensor]:
3977
3978
3979
3980
        r"""
        Generates sequences of token ids for models with a language modeling head using **constrained beam search
        decoding** and can be used for text-decoder, text-to-text, speech-to-text, and vision-to-text models.

3981
3982
3983
3984
        <Tip warning={true}>

        In most cases, you do not need to call [`~generation.GenerationMixin.constrained_beam_search`] directly. Use
        generate() instead. For an overview of generation strategies and code examples, check the [following
3985
        guide](../generation_strategies).
3986
3987
3988

        </Tip>

3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
        Parameters:
            input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
                The sequence used as a prompt for the generation.
            constrained_beam_scorer (`ConstrainedBeamSearchScorer`):
                A derived instance of [`BeamScorer`] that defines how beam hypotheses are constructed, stored and
                sorted during generation, while satisfying a list of positive constraints. For more information, the
                documentation of [`ConstrainedBeamSearchScorer`] should be read.
            logits_processor (`LogitsProcessorList`, *optional*):
                An instance of [`LogitsProcessorList`]. List of instances of class derived from [`LogitsProcessor`]
                used to modify the prediction scores of the language modeling head applied at each generation step.
            stopping_criteria (`StoppingCriteriaList`, *optional*):
                An instance of [`StoppingCriteriaList`]. List of instances of class derived from [`StoppingCriteria`]
                used to tell if the generation loop should stop.
            logits_warper (`LogitsProcessorList`, *optional*):
                An instance of [`LogitsProcessorList`]. List of instances of class derived from [`LogitsWarper`] used
                to warp the prediction score distribution of the language modeling head applied before multinomial
                sampling at each generation step.
            max_length (`int`, *optional*, defaults to 20):
                **DEPRECATED**. Use `logits_processor` or `stopping_criteria` directly to cap the number of generated
                tokens. The maximum length of the sequence to be generated.
            pad_token_id (`int`, *optional*):
                The id of the *padding* token.
4011
4012
            eos_token_id (`Union[int, List[int]]`, *optional*):
                The id of the *end-of-sequence* token. Optionally, use a list to set multiple *end-of-sequence* tokens.
4013
4014
4015
4016
4017
4018
4019
4020
            output_attentions (`bool`, *optional*, defaults to `False`):
                Whether or not to return the attentions tensors of all attention layers. See `attentions` under
                returned tensors for more details.
            output_hidden_states (`bool`, *optional*, defaults to `False`):
                Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
                for more details.
            output_scores (`bool`, *optional*, defaults to `False`):
                Whether or not to return the prediction scores. See `scores` under returned tensors for more details.
4021
4022
4023
            output_logits (`bool`, *optional*, defaults to `False`):
                Whether or not to return the raw prediction logit scores. See `logits` under returned tensors for
                more details.
4024
4025
4026
4027
4028
4029
4030
4031
4032
            return_dict_in_generate (`bool`, *optional*, defaults to `False`):
                Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
            synced_gpus (`bool`, *optional*, defaults to `False`):
                Whether to continue running the while loop until max_length (needed for ZeRO stage 3)
            model_kwargs:
                Additional model specific kwargs will be forwarded to the `forward` function of the model. If model is
                an encoder-decoder model the kwargs should include `encoder_outputs`.

        Return:
4033
            [`~generation.GenerateBeamDecoderOnlyOutput`], [`~generation.GenerateBeamEncoderDecoderOutput`] or
4034
            `torch.LongTensor`: A `torch.LongTensor` containing the generated tokens (default behaviour) or a
4035
4036
            [`~generation.GenerateBeamDecoderOnlyOutput`] if `model.config.is_encoder_decoder=False` and
            `return_dict_in_generate=True` or a [`~generation.GenerateBeamEncoderDecoderOutput`] if
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
            `model.config.is_encoder_decoder=True`.


        Examples:

        ```python
        >>> from transformers import (
        ...     AutoTokenizer,
        ...     AutoModelForSeq2SeqLM,
        ...     LogitsProcessorList,
        ...     MinLengthLogitsProcessor,
        ...     ConstrainedBeamSearchScorer,
        ...     PhrasalConstraint,
        ... )
        >>> import torch

4053
4054
        >>> tokenizer = AutoTokenizer.from_pretrained("google-t5/t5-base")
        >>> model = AutoModelForSeq2SeqLM.from_pretrained("google-t5/t5-base")
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102

        >>> encoder_input_str = "translate English to German: How old are you?"
        >>> encoder_input_ids = tokenizer(encoder_input_str, return_tensors="pt").input_ids


        >>> # lets run beam search using 3 beams
        >>> num_beams = 3
        >>> # define decoder start token ids
        >>> input_ids = torch.ones((num_beams, 1), device=model.device, dtype=torch.long)
        >>> input_ids = input_ids * model.config.decoder_start_token_id

        >>> # add encoder_outputs to model keyword arguments
        >>> model_kwargs = {
        ...     "encoder_outputs": model.get_encoder()(
        ...         encoder_input_ids.repeat_interleave(num_beams, dim=0), return_dict=True
        ...     )
        ... }

        >>> constraint_str = "Sie"
        >>> constraint_token_ids = tokenizer.encode(constraint_str)[:-1]  # slice to remove eos token
        >>> constraints = [PhrasalConstraint(token_ids=constraint_token_ids)]


        >>> # instantiate beam scorer
        >>> beam_scorer = ConstrainedBeamSearchScorer(
        ...     batch_size=1, num_beams=num_beams, device=model.device, constraints=constraints
        ... )

        >>> # instantiate logits processors
        >>> logits_processor = LogitsProcessorList(
        ...     [
        ...         MinLengthLogitsProcessor(5, eos_token_id=model.config.eos_token_id),
        ...     ]
        ... )

        >>> outputs = model.constrained_beam_search(
        ...     input_ids, beam_scorer, constraints=constraints, logits_processor=logits_processor, **model_kwargs
        ... )

        >>> tokenizer.batch_decode(outputs, skip_special_tokens=True)
        ['Wie alt sind Sie?']
        ```"""
        # init values
        logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList()
        stopping_criteria = stopping_criteria if stopping_criteria is not None else StoppingCriteriaList()
        if max_length is not None:
            warnings.warn(
                "`max_length` is deprecated in this function, use"
4103
                " `stopping_criteria=StoppingCriteriaList([MaxLengthCriteria(max_length=max_length)])` instead.",
4104
4105
4106
4107
4108
                UserWarning,
            )
            stopping_criteria = validate_stopping_criteria(stopping_criteria, max_length)
        if len(stopping_criteria) == 0:
            warnings.warn("You don't have defined any stopping_criteria, this will likely loop forever", UserWarning)
4109
4110
        pad_token_id = pad_token_id if pad_token_id is not None else self.generation_config.pad_token_id
        eos_token_id = eos_token_id if eos_token_id is not None else self.generation_config.eos_token_id
4111
4112
        if isinstance(eos_token_id, int):
            eos_token_id = [eos_token_id]
4113
        output_scores = output_scores if output_scores is not None else self.generation_config.output_scores
4114
        output_logits = output_logits if output_logits is not None else self.generation_config.output_logits
4115
4116
4117
        output_attentions = (
            output_attentions if output_attentions is not None else self.generation_config.output_attentions
        )
4118
        output_hidden_states = (
4119
            output_hidden_states if output_hidden_states is not None else self.generation_config.output_hidden_states
4120
4121
        )
        return_dict_in_generate = (
4122
4123
4124
            return_dict_in_generate
            if return_dict_in_generate is not None
            else self.generation_config.return_dict_in_generate
4125
4126
        )

4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
        batch_size = len(constrained_beam_scorer._beam_hyps)
        num_beams = constrained_beam_scorer.num_beams

        batch_beam_size, cur_len = input_ids.shape

        if num_beams * batch_size != batch_beam_size:
            raise ValueError(
                f"Batch dimension of `input_ids` should be {num_beams * batch_size}, but is {batch_beam_size}."
            )

4137
4138
        # init attention / hidden states / scores tuples
        scores = () if (return_dict_in_generate and output_scores) else None
4139
        raw_logits = () if (return_dict_in_generate and output_logits) else None
4140
4141
4142
        beam_indices = (
            tuple(() for _ in range(batch_beam_size)) if (return_dict_in_generate and output_scores) else None
        )
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
        decoder_attentions = () if (return_dict_in_generate and output_attentions) else None
        cross_attentions = () if (return_dict_in_generate and output_attentions) else None
        decoder_hidden_states = () if (return_dict_in_generate and output_hidden_states) else None

        # if model is an encoder-decoder, retrieve encoder attention weights and hidden states
        if return_dict_in_generate and self.config.is_encoder_decoder:
            encoder_attentions = model_kwargs["encoder_outputs"].get("attentions") if output_attentions else None
            encoder_hidden_states = (
                model_kwargs["encoder_outputs"].get("hidden_states") if output_hidden_states else None
            )

        # initialise score of first beam with 0 and the rest with -1e9. This makes sure that only tokens
        # of the first beam are considered to avoid sampling the exact same tokens across all beams.
        beam_scores = torch.zeros((batch_size, num_beams), dtype=torch.float, device=input_ids.device)
        beam_scores[:, 1:] = -1e9
        beam_scores = beam_scores.view((batch_size * num_beams,))

        this_peer_finished = False  # used by synced_gpus only
4161
4162

        decoder_prompt_len = input_ids.shape[-1]  # record the prompt length of decoder
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
        while True:
            if synced_gpus:
                # Under synced_gpus the `forward` call must continue until all gpus complete their sequence.
                # The following logic allows an early break if all peers finished generating their sequence
                this_peer_finished_flag = torch.tensor(0.0 if this_peer_finished else 1.0).to(input_ids.device)
                # send 0.0 if we finished, 1.0 otherwise
                dist.all_reduce(this_peer_finished_flag, op=dist.ReduceOp.SUM)
                # did all peers finish? the reduced sum will be 0.0 then
                if this_peer_finished_flag.item() == 0.0:
                    break

            model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)

            outputs = self(
                **model_inputs,
                return_dict=True,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
            )

            if synced_gpus and this_peer_finished:
                cur_len = cur_len + 1
                continue  # don't waste resources running the code we don't need

            next_token_logits = outputs.logits[:, -1, :]
            next_token_scores = nn.functional.log_softmax(
                next_token_logits, dim=-1
            )  # (batch_size * num_beams, vocab_size)

            next_token_scores_processed = logits_processor(input_ids, next_token_scores)

4194
4195
4196
            next_token_scores = next_token_scores_processed + beam_scores[:, None].expand_as(
                next_token_scores_processed
            )
4197
4198
4199
4200
4201
4202
4203

            scores_for_all_vocab = next_token_scores.clone()

            # Store scores, attentions and hidden_states when required
            if return_dict_in_generate:
                if output_scores:
                    scores += (next_token_scores,)
4204
4205
                if output_logits:
                    raw_logits += (next_token_logits,)
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
                if output_attentions:
                    decoder_attentions += (
                        (outputs.decoder_attentions,) if self.config.is_encoder_decoder else (outputs.attentions,)
                    )
                    if self.config.is_encoder_decoder:
                        cross_attentions += (outputs.cross_attentions,)

                if output_hidden_states:
                    decoder_hidden_states += (
                        (outputs.decoder_hidden_states,)
                        if self.config.is_encoder_decoder
                        else (outputs.hidden_states,)
                    )

            # reshape for beam search
            vocab_size = next_token_scores.shape[-1]
            next_token_scores = next_token_scores.view(batch_size, num_beams * vocab_size)

4224
4225
            # Sample 1 + len(eos_token_id) next tokens for each beam so we have at least 1 non eos token per beam.
            n_eos_tokens = len(eos_token_id) if eos_token_id else 0
4226
            next_token_scores, next_tokens = torch.topk(
4227
                next_token_scores, max(2, 1 + n_eos_tokens) * num_beams, dim=1, largest=True, sorted=True
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
            )

            next_indices = (next_tokens / vocab_size).long()
            next_tokens = next_tokens % vocab_size

            # stateless
            beam_outputs = constrained_beam_scorer.process(
                input_ids,
                next_token_scores,
                next_tokens,
                next_indices,
                scores_for_all_vocab,
                pad_token_id=pad_token_id,
                eos_token_id=eos_token_id,
4242
                beam_indices=beam_indices,
4243
                decoder_prompt_len=decoder_prompt_len,
4244
4245
4246
4247
4248
4249
4250
            )
            beam_scores = beam_outputs["next_beam_scores"]
            beam_next_tokens = beam_outputs["next_beam_tokens"]
            beam_idx = beam_outputs["next_beam_indices"]

            input_ids = torch.cat([input_ids[beam_idx, :], beam_next_tokens.unsqueeze(-1)], dim=-1)
            model_kwargs = self._update_model_kwargs_for_generation(
4251
                outputs, model_kwargs, is_encoder_decoder=self.config.is_encoder_decoder, model_inputs=model_inputs
4252
            )
4253
            if model_kwargs["past_key_values"] is not None:
4254
4255
4256
                model_kwargs["past_key_values"] = self._temporary_reorder_cache(
                    model_kwargs["past_key_values"], beam_idx
                )
4257

4258
4259
4260
            if return_dict_in_generate and output_scores:
                beam_indices = tuple((beam_indices[beam_idx[i]] + (beam_idx[i],) for i in range(len(beam_indices))))

4261
4262
4263
            # increase cur_len
            cur_len = cur_len + 1

4264
            if constrained_beam_scorer.is_done or all(stopping_criteria(input_ids, scores)):
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
                if not synced_gpus:
                    break
                else:
                    this_peer_finished = True

        sequence_outputs = constrained_beam_scorer.finalize(
            input_ids,
            beam_scores,
            next_tokens,
            next_indices,
            pad_token_id=pad_token_id,
            eos_token_id=eos_token_id,
            max_length=stopping_criteria.max_length,
4278
            beam_indices=beam_indices,
4279
            decoder_prompt_len=decoder_prompt_len,
4280
4281
4282
4283
4284
4285
        )

        if return_dict_in_generate:
            if not output_scores:
                sequence_outputs["sequence_scores"] = None
            if self.config.is_encoder_decoder:
4286
                return GenerateBeamEncoderDecoderOutput(
4287
4288
4289
                    sequences=sequence_outputs["sequences"],
                    sequences_scores=sequence_outputs["sequence_scores"],
                    scores=scores,
4290
                    logits=raw_logits,
4291
                    beam_indices=sequence_outputs["beam_indices"],
4292
4293
4294
4295
4296
                    encoder_attentions=encoder_attentions,
                    encoder_hidden_states=encoder_hidden_states,
                    decoder_attentions=decoder_attentions,
                    cross_attentions=cross_attentions,
                    decoder_hidden_states=decoder_hidden_states,
4297
                    past_key_values=model_kwargs.get("past_key_values"),
4298
4299
                )
            else:
4300
                return GenerateBeamDecoderOnlyOutput(
4301
4302
4303
                    sequences=sequence_outputs["sequences"],
                    sequences_scores=sequence_outputs["sequence_scores"],
                    scores=scores,
4304
                    logits=raw_logits,
4305
                    beam_indices=sequence_outputs["beam_indices"],
4306
4307
                    attentions=decoder_attentions,
                    hidden_states=decoder_hidden_states,
4308
                    past_key_values=model_kwargs.get("past_key_values"),
4309
4310
4311
4312
                )
        else:
            return sequence_outputs["sequences"]

4313
    def assisted_decoding(
4314
4315
        self,
        input_ids: torch.LongTensor,
4316
        candidate_generator: Optional["CandidateGenerator"] = None,
4317
        do_sample: bool = False,
4318
        logits_processor: Optional[LogitsProcessorList] = None,
4319
        logits_warper: Optional[LogitsProcessorList] = None,
4320
4321
4322
4323
4324
4325
        stopping_criteria: Optional[StoppingCriteriaList] = None,
        pad_token_id: Optional[int] = None,
        eos_token_id: Optional[Union[int, List[int]]] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        output_scores: Optional[bool] = None,
4326
        output_logits: Optional[bool] = None,
4327
4328
4329
4330
        return_dict_in_generate: Optional[bool] = None,
        synced_gpus: bool = False,
        streamer: Optional["BaseStreamer"] = None,
        **model_kwargs,
4331
    ) -> Union[GenerateNonBeamOutput, torch.LongTensor]:
4332
        r"""
4333
        Generates sequences of token ids for models with a language modeling head using **greedy decoding** or
4334
4335
4336
        **sample** (depending on `do_sample`), assisted by candidate sequences. Assisted generation is an example of a
        candidate decoding strategy. Can be used for text-decoder, text-to-text, speech-to-text, and vision-to-text
        models.
4337
4338
4339

        <Tip warning={true}>

4340
        In most cases, you do not need to call [`~generation.GenerationMixin.candidate_decoding`] directly. Use
4341
4342
4343
4344
4345
4346
4347
4348
        generate() instead. For an overview of generation strategies and code examples, check the [following
        guide](../generation_strategies).

        </Tip>

        Parameters:
            input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
                The sequence used as a prompt for the generation.
4349
4350
            candidate_generator (`CandidateGenerator`, *optional*):
                A derived instance of [`CandidateGenerator`] that defines how candidate sequences are generated. For
4351
                more information, the documentation of [`CandidateGenerator`] should be read.
4352
4353
            do_sample (`bool`, *optional*, defaults to `False`):
                Whether or not to use sampling ; use greedy decoding otherwise.
4354
4355
4356
            logits_processor (`LogitsProcessorList`, *optional*):
                An instance of [`LogitsProcessorList`]. List of instances of class derived from [`LogitsProcessor`]
                used to modify the prediction scores of the language modeling head applied at each generation step.
4357
4358
4359
4360
            logits_warper (`LogitsProcessorList`, *optional*):
                An instance of [`LogitsProcessorList`]. List of instances of class derived from [`LogitsWarper`] used
                to warp the prediction score distribution of the language modeling head applied before multinomial
                sampling at each generation step.
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
            stopping_criteria (`StoppingCriteriaList`, *optional*):
                An instance of [`StoppingCriteriaList`]. List of instances of class derived from [`StoppingCriteria`]
                used to tell if the generation loop should stop.
            pad_token_id (`int`, *optional*):
                The id of the *padding* token.
            eos_token_id (`Union[int, List[int]]`, *optional*):
                The id of the *end-of-sequence* token. Optionally, use a list to set multiple *end-of-sequence* tokens.
            output_attentions (`bool`, *optional*, defaults to `False`):
                Whether or not to return the attentions tensors of all attention layers. See `attentions` under
                returned tensors for more details.
            output_hidden_states (`bool`, *optional*, defaults to `False`):
                Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
                for more details.
            output_scores (`bool`, *optional*, defaults to `False`):
                Whether or not to return the prediction scores. See `scores` under returned tensors for more details.
4376
4377
4378
            output_logits (`bool`, *optional*, defaults to `False`):
                Whether or not to return the raw prediction logit scores. See `logits` under returned tensors for
                more details.
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
            return_dict_in_generate (`bool`, *optional*, defaults to `False`):
                Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
            synced_gpus (`bool`, *optional*, defaults to `False`):
                Whether to continue running the while loop until max_length (needed for ZeRO stage 3)
            streamer (`BaseStreamer`, *optional*):
                Streamer object that will be used to stream the generated sequences. Generated tokens are passed
                through `streamer.put(token_ids)` and the streamer is responsible for any further processing.
            model_kwargs:
                Additional model specific keyword arguments will be forwarded to the `forward` function of the model.
                If model is an encoder-decoder model the kwargs should include `encoder_outputs`.

        Return:
4391
            [`~generation.GenerateDecoderOnlyOutput`], [`~generation.GenerateEncoderDecoderOutput`] or
4392
            `torch.LongTensor`: A `torch.LongTensor` containing the generated tokens (default behaviour) or a
4393
4394
            [`~generation.GenerateDecoderOnlyOutput`] if `model.config.is_encoder_decoder=False` and
            `return_dict_in_generate=True` or a [`~generation.GenerateEncoderDecoderOutput`] if
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
            `model.config.is_encoder_decoder=True`.

        Examples:

        ```python
        >>> from transformers import (
        ...     AutoTokenizer,
        ...     AutoModelForCausalLM,
        ...     LogitsProcessorList,
        ...     MinLengthLogitsProcessor,
        ...     StoppingCriteriaList,
        ...     MaxLengthCriteria,
        ... )
4408
        >>> from transformers.generation import AssistedCandidateGenerator
4409

4410
4411
4412
        >>> tokenizer = AutoTokenizer.from_pretrained("openai-community/gpt2")
        >>> model = AutoModelForCausalLM.from_pretrained("openai-community/gpt2")
        >>> assistant_model = AutoModelForCausalLM.from_pretrained("distilbert/distilgpt2")
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
        >>> # set pad_token_id to eos_token_id because GPT2 does not have a PAD token
        >>> model.generation_config.pad_token_id = model.generation_config.eos_token_id
        >>> input_prompt = "It might be possible to"
        >>> input_ids = tokenizer(input_prompt, return_tensors="pt").input_ids
        >>> # instantiate logits processors
        >>> logits_processor = LogitsProcessorList(
        ...     [
        ...         MinLengthLogitsProcessor(10, eos_token_id=model.generation_config.eos_token_id),
        ...     ]
        ... )
        >>> stopping_criteria = StoppingCriteriaList([MaxLengthCriteria(max_length=20)])
4424
4425
4426
4427
4428
4429
4430
        >>> candidate_generator = AssistedCandidateGenerator(
        ...     input_ids=input_ids,
        ...     assistant_model=assistant_model,
        ...     generation_config=model.generation_config,
        ...     logits_processor=logits_processor,
        ...     model_kwargs={},
        ... )
4431
        >>> outputs = model.assisted_decoding(
4432
        ...     input_ids,
4433
        ...     candidate_generator=candidate_generator,
4434
4435
4436
4437
4438
4439
4440
4441
        ...     logits_processor=logits_processor,
        ...     stopping_criteria=stopping_criteria,
        ... )
        >>> tokenizer.batch_decode(outputs, skip_special_tokens=True)
        ["It might be possible to get a better understanding of the nature of the problem, but it's not"]
        ```"""
        # init values
        logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList()
4442
        logits_warper = logits_warper if logits_warper is not None else LogitsProcessorList()
4443
4444
4445
4446
4447
4448
4449
4450
4451
        stopping_criteria = stopping_criteria if stopping_criteria is not None else StoppingCriteriaList()
        pad_token_id = pad_token_id if pad_token_id is not None else self.generation_config.pad_token_id
        eos_token_id = eos_token_id if eos_token_id is not None else self.generation_config.eos_token_id
        if eos_token_id is not None and pad_token_id is None:
            raise ValueError("If `eos_token_id` is defined, make sure that `pad_token_id` is defined.")
        if isinstance(eos_token_id, int):
            eos_token_id = [eos_token_id]
        eos_token_id_tensor = torch.tensor(eos_token_id).to(input_ids.device) if eos_token_id is not None else None
        output_scores = output_scores if output_scores is not None else self.generation_config.output_scores
4452
        output_logits = output_logits if output_logits is not None else self.generation_config.output_logits
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
        output_attentions = (
            output_attentions if output_attentions is not None else self.generation_config.output_attentions
        )
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.generation_config.output_hidden_states
        )
        return_dict_in_generate = (
            return_dict_in_generate
            if return_dict_in_generate is not None
            else self.generation_config.return_dict_in_generate
        )

        # init attention / hidden states / scores tuples
        scores = () if (return_dict_in_generate and output_scores) else None
4467
        raw_logits = () if (return_dict_in_generate and output_logits) else None
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
        decoder_attentions = () if (return_dict_in_generate and output_attentions) else None
        cross_attentions = () if (return_dict_in_generate and output_attentions) else None
        decoder_hidden_states = () if (return_dict_in_generate and output_hidden_states) else None

        # if model is an encoder-decoder, retrieve encoder attention weights and hidden states
        if return_dict_in_generate and self.config.is_encoder_decoder:
            encoder_attentions = model_kwargs["encoder_outputs"].get("attentions") if output_attentions else None
            encoder_hidden_states = (
                model_kwargs["encoder_outputs"].get("hidden_states") if output_hidden_states else None
            )

        # keep track of which sequences are already finished
        unfinished_sequences = input_ids.new(input_ids.shape[0]).fill_(1)

4482
4483
4484
        # other auxiliary variables
        max_len = stopping_criteria[0].max_length

4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
        this_peer_finished = False  # used by synced_gpus only
        while True:
            if synced_gpus:
                # Under synced_gpus the `forward` call must continue until all gpus complete their sequence.
                # The following logic allows an early break if all peers finished generating their sequence
                this_peer_finished_flag = torch.tensor(0.0 if this_peer_finished else 1.0).to(input_ids.device)
                # send 0.0 if we finished, 1.0 otherwise
                dist.all_reduce(this_peer_finished_flag, op=dist.ReduceOp.SUM)
                # did all peers finish? the reduced sum will be 0.0 then
                if this_peer_finished_flag.item() == 0.0:
                    break

            cur_len = input_ids.shape[-1]

4499
            #  1. Fetch candidate sequences from a `CandidateGenerator`
4500
            candidate_input_ids, candidate_logits = candidate_generator.get_candidates(input_ids)
4501
            candidate_input_ids = candidate_input_ids.to(self.device)
4502
4503
            if candidate_logits is not None:
                candidate_logits = candidate_logits.to(self.device)
4504

4505
            candidate_length = candidate_input_ids.shape[1] - input_ids.shape[1]
4506
4507
4508
4509
4510
4511
4512
            last_assistant_token_is_eos = (
                ~candidate_input_ids[:, -1]
                .tile(eos_token_id_tensor.shape[0], 1)
                .ne(eos_token_id_tensor.unsqueeze(1))
                .prod(dim=0)
                .bool()
            )
4513
4514

            # 2. Use the original model to obtain the next token logits given the candidate sequence. We obtain
4515
4516
            # `candidate_length + 1` relevant logits from this process: in the event that all candidates are correct,
            # we use this forward pass to also pick the subsequent logits in the original model.
4517

4518
4519
            # 2.1. Prepare the model inputs
            candidate_kwargs = copy.copy(model_kwargs)
4520
4521
4522
4523
            candidate_kwargs = _prepare_attention_mask(
                candidate_kwargs, candidate_input_ids.shape[1], self.config.is_encoder_decoder
            )
            candidate_kwargs = _prepare_token_type_ids(candidate_kwargs, candidate_input_ids.shape[1])
4524
4525
4526
4527
4528
4529
4530
4531
4532

            model_inputs = self.prepare_inputs_for_generation(candidate_input_ids, **candidate_kwargs)

            # 2.2. Run a forward pass on the candidate sequence
            outputs = self(
                **model_inputs,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
            )
4533

4534
            # 2.3. Process the new logits
4535
            new_logits = outputs.logits[:, -candidate_length - 1 :]  # excludes the input prompt if present
4536
            next_token_logits = new_logits.clone()
4537
            if len(logits_processor) > 0:
4538
                for i in range(candidate_length + 1):
4539
                    new_logits[:, i, :] = logits_processor(candidate_input_ids[:, : cur_len + i], new_logits[:, i, :])
4540
            if len(logits_warper) > 0:
4541
                for i in range(candidate_length + 1):
4542
4543
                    new_logits[:, i, :] = logits_warper(candidate_input_ids[:, : cur_len + i], new_logits[:, i, :])

4544
4545
4546
4547
4548
            # 3. Select the accepted tokens. There are two possible cases:
            # Case 1: `do_sample=True` and we have logits for the candidates (originally from speculative decoding)
            # 👉 Apply algorithm 1 from the speculative decoding paper (https://arxiv.org/pdf/2211.17192.pdf).
            max_matches = max_len - cur_len - 1
            if do_sample and candidate_logits is not None:
4549
                valid_tokens, n_matches = _speculative_sampling(
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
                    candidate_input_ids,
                    candidate_logits,
                    candidate_length,
                    new_logits,
                    last_assistant_token_is_eos,
                    max_matches,
                )

            # Case 2: all other cases (originally from assisted generation) 👉 Compare the tokens selected from the
            # original model logits with the candidate tokens. We can keep the candidate tokens until the first
            # mismatch, or until the max length is reached.
4561
            else:
4562
4563
4564
4565
4566
                if do_sample:
                    probs = new_logits.softmax(dim=-1)
                    selected_tokens = torch.multinomial(probs[0, :, :], num_samples=1).squeeze(1)[None, :]
                else:
                    selected_tokens = new_logits.argmax(dim=-1)
4567

4568
                candidate_new_tokens = candidate_input_ids[:, cur_len:]
4569
                n_matches = ((~(candidate_new_tokens == selected_tokens[:, :-1])).cumsum(dim=-1) < 1).sum()
4570

4571
4572
4573
4574
                # Ensure we don't generate beyond max_len or an EOS token
                if last_assistant_token_is_eos and n_matches == candidate_length:
                    n_matches -= 1
                n_matches = min(n_matches, max_matches)
4575
                valid_tokens = selected_tokens[:, : n_matches + 1]
4576
4577

            # 4. Update variables according to the number of matching assistant tokens. Remember: the token generated
4578
4579
4580
            # by the model after the last candidate match is also valid, as it is generated from a correct sequence.
            # Because of this last token, assisted generation search reduces to a normal greedy search/sample if there
            # is no match.
4581

4582
            # 4.1. Get the valid continuation, after the matching tokens
4583
            input_ids = torch.cat((input_ids, valid_tokens), dim=-1)
4584
            if streamer is not None:
4585
4586
                streamer.put(valid_tokens.cpu())
            new_cur_len = input_ids.shape[-1]
4587

4588
            # 4.2. Discard past key values relative to unused assistant tokens
4589
4590
            new_cache_size = new_cur_len - 1
            outputs.past_key_values = _crop_past_key_values(self, outputs.past_key_values, new_cache_size)
4591

4592
            # 5. Update the candidate generation strategy if needed
4593
4594
            candidate_generator.update_candidate_strategy(input_ids, new_logits, n_matches)

4595
4596
4597
4598
4599
4600
4601
4602
            if synced_gpus and this_peer_finished:
                continue  # don't waste resources running the code we don't need

            # Store scores, attentions and hidden_states when required
            # Assistant: modified to append one tuple element per token, as in the other generation methods.
            if return_dict_in_generate:
                if output_scores:
                    scores += tuple(new_logits[:, i, :] for i in range(n_matches + 1))
4603
4604
                if output_logits:
                    raw_logits += (next_token_logits,)
4605
4606

                if "past_key_values" not in model_kwargs:
4607
                    added_len = new_cur_len
4608
                else:
4609
                    added_len = n_matches + 1
4610
4611
4612
4613

                if output_attentions:
                    if self.config.is_encoder_decoder:
                        cross_attentions = _split_model_outputs(
4614
                            cross_attentions, outputs.cross_attentions, cur_len, added_len
4615
4616
4617
4618
                        )
                        decoder_attentions = _split_model_outputs(
                            decoder_attentions,
                            outputs.decoder_attentions,
4619
                            cur_len,
4620
                            added_len,
4621
4622
4623
4624
4625
4626
                            is_decoder_attention=True,
                        )
                    else:
                        decoder_attentions = _split_model_outputs(
                            decoder_attentions,
                            outputs.attentions,
4627
                            cur_len,
4628
                            added_len,
4629
4630
4631
4632
4633
                            is_decoder_attention=True,
                        )
                if output_hidden_states:
                    if self.config.is_encoder_decoder:
                        decoder_hidden_states = _split_model_outputs(
4634
                            decoder_hidden_states, outputs.decoder_hidden_states, cur_len, added_len
4635
4636
4637
                        )
                    else:
                        decoder_hidden_states = _split_model_outputs(
4638
                            decoder_hidden_states, outputs.hidden_states, cur_len, added_len
4639
4640
4641
                        )

            model_kwargs = self._update_model_kwargs_for_generation(
4642
                outputs, model_kwargs, is_encoder_decoder=self.config.is_encoder_decoder, model_inputs=model_inputs
4643
4644
4645
4646
4647
            )

            # if eos_token was found in one sentence, set sentence to finished
            if eos_token_id_tensor is not None:
                unfinished_sequences = unfinished_sequences.mul(
4648
4649
4650
4651
                    input_ids[:, -1]
                    .tile(eos_token_id_tensor.shape[0], 1)
                    .ne(eos_token_id_tensor.unsqueeze(1))
                    .prod(dim=0)
4652
4653
                )

4654
            unfinished_sequences = unfinished_sequences & ~stopping_criteria(input_ids, scores)
4655

4656
4657
            # stop when each sentence is finished
            if unfinished_sequences.max() == 0:
4658
4659
4660
4661
4662
                this_peer_finished = True

            if this_peer_finished and not synced_gpus:
                break

4663
4664
4665
        if streamer is not None:
            streamer.end()

4666
4667
4668
4669
4670
4671
4672
        if (
            hasattr(candidate_generator, "assistant_model")
            and candidate_generator.assistant_model.generation_config.num_assistant_tokens_schedule == "heuristic"
        ):
            candidate_generator.assistant_model.generation_config.num_assistant_tokens = (
                candidate_generator.num_assistant_tokens
            )
4673
4674
        if return_dict_in_generate:
            if self.config.is_encoder_decoder:
4675
                return GenerateEncoderDecoderOutput(
4676
4677
                    sequences=input_ids,
                    scores=scores,
4678
                    logits=raw_logits,
4679
4680
4681
4682
4683
                    encoder_attentions=encoder_attentions,
                    encoder_hidden_states=encoder_hidden_states,
                    decoder_attentions=decoder_attentions,
                    cross_attentions=cross_attentions,
                    decoder_hidden_states=decoder_hidden_states,
4684
                    past_key_values=model_kwargs.get("past_key_values"),
4685
4686
                )
            else:
4687
                return GenerateDecoderOnlyOutput(
4688
4689
                    sequences=input_ids,
                    scores=scores,
4690
                    logits=raw_logits,
4691
4692
                    attentions=decoder_attentions,
                    hidden_states=decoder_hidden_states,
4693
                    past_key_values=model_kwargs.get("past_key_values"),
4694
4695
4696
4697
4698
                )
        else:
            return input_ids


4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
def _speculative_sampling(
    candidate_input_ids,
    candidate_logits,
    candidate_length,
    new_logits,
    last_assistant_token_is_eos,
    max_matches,
):
    """
    Applies sampling as in the speculative decoding paper (https://arxiv.org/pdf/2211.17192.pdf, algorithm 1). Returns
4709
    the selected tokens, as well as the number of candidate matches.
4710
4711
4712

    NOTE: Unless otherwise stated, the variable names match those in the paper.
    """
4713
    new_candidate_input_ids = candidate_input_ids[:, -candidate_length:]
4714
4715
4716
    # Gets the probabilities from the logits. q_i and p_i denote the assistant and model probabilities of the tokens
    # selected by the assistant, respectively.
    q = candidate_logits.softmax(dim=-1)
4717
    q_i = q[:, torch.arange(candidate_length), new_candidate_input_ids].squeeze(0, 1)
4718
    p = new_logits.softmax(dim=-1)
4719
    p_i = p[:, torch.arange(candidate_length), new_candidate_input_ids].squeeze(0, 1)
4720
4721
4722
4723
4724
4725
4726
    probability_ratio = p_i / q_i

    # When probability_ratio > 1 (i.e. q_i(x) < p_i(x), or "assistant probability of the candidate token is smaller
    # than the model probability for the same token"), keep the token. Otherwise reject with p = 1 - probability_ratio
    # (= keep with p = probability_ratio). Keep all the tokens until the first rejection
    r_i = torch.rand_like(probability_ratio)
    is_accepted = r_i <= probability_ratio
4727
    n_matches = ((~is_accepted).cumsum(dim=-1) < 1).sum()  # this is `n` in algorithm 1
4728
4729
4730

    # Ensure we don't generate beyond max_len or an EOS token (not in algorithm 1, but needed for correct behavior)
    if last_assistant_token_is_eos and n_matches == candidate_length:
4731
4732
        # Output length is assumed to be `n_matches + 1`. Since we won't generate another token with the target model
        # due to acceptance on EOS we fix `n_matches`
4733
        n_matches -= 1
4734
        valid_tokens = new_candidate_input_ids[:, : n_matches + 1]
4735
    else:
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
        n_matches = min(n_matches, max_matches)

        # Next token selection: if there is a rejection, adjust the distribution from the main model before sampling.
        gamma = min(candidate_logits.shape[1], max_matches)
        p_n_plus_1 = p[:, n_matches, :]
        if n_matches < gamma:
            q_n_plus_1 = q[:, n_matches, :]
            p_prime = torch.clamp((p_n_plus_1 - q_n_plus_1), min=0)
            p_prime.div_(p_prime.sum())
        else:
            p_prime = p_n_plus_1
        t = torch.multinomial(p_prime, num_samples=1).squeeze(1)[None, :]
4748

4749
4750
4751
4752
4753
        # The selected tokens include the matches (if any) plus the next sampled tokens
        if n_matches > 0:
            valid_tokens = torch.cat((new_candidate_input_ids[:, :n_matches], t), dim=-1)
        else:
            valid_tokens = t
4754
4755

    return valid_tokens, n_matches
4756
4757


4758
def _split_model_outputs(outputs, new_outputs, cur_len, added_len, is_decoder_attention=False):
4759
4760
4761
4762
4763
4764
    """
    Given the (decoder/cross attentions)/(decoder hidden states) for multiple generated tokens, splits it into a tuple
    where each member corresponds to a single generated token.
    """
    # Retrocompatibility: in our generation functions, the first iteration includes the attention/hidden states for the
    # prompt.
4765
    if len(outputs) == 0:
4766
4767
        new_tuple = ()
        for layer in new_outputs:
4768
4769
            last_dim_size = cur_len if is_decoder_attention else layer.shape[-1]
            new_tuple += (layer[..., :cur_len, :last_dim_size],)
4770
        outputs += (new_tuple,)
4771
4772
4773
        # The first iteration contains the prompt + 1 generated token, let's update the length variables accordingly
        cur_len += 1
        added_len -= cur_len
4774

4775
    for i in range(added_len):
4776
4777
        new_tuple = ()
        for layer in new_outputs:
4778
            last_dim_size = cur_len + i if is_decoder_attention else layer.shape[-1]
4779
4780
4781
4782
            new_tuple += (layer[..., i : i + 1, :last_dim_size],)
        outputs += (new_tuple,)
    return outputs

4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805

def top_k_top_p_filtering(
    logits: torch.FloatTensor,
    top_k: int = 0,
    top_p: float = 1.0,
    filter_value: float = -float("Inf"),
    min_tokens_to_keep: int = 1,
) -> torch.FloatTensor:
    """
    Filter a distribution of logits using top-k and/or nucleus (top-p) filtering

    Args:
        logits: logits distribution shape (batch size, vocabulary size)
        top_k (`int`, *optional*, defaults to 0):
            If > 0, only keep the top k tokens with highest probability (top-k filtering)
        top_p (`float`, *optional*, defaults to 1.0):
            If < 1.0, only keep the top tokens with cumulative probability >= top_p (nucleus filtering). Nucleus
            filtering is described in Holtzman et al. (http://arxiv.org/abs/1904.09751)
        min_tokens_to_keep (`int`, *optional*, defaults to 1):
            Minimumber of tokens we keep per batch example in the output.

    From: https://gist.github.com/thomwolf/1a5a29f6962089e871b94cbd09daf317
    """
4806
4807
4808
4809
4810
4811
    warnings.warn(
        "`top_k_top_p_filtering` is scheduled for deletion in v4.39. Use `TopKLogitsWarper` and `TopPLogitsWarper` "
        "instead.",
        DeprecationWarning,
    )

4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
    if top_k > 0:
        logits = TopKLogitsWarper(top_k=top_k, filter_value=filter_value, min_tokens_to_keep=min_tokens_to_keep)(
            None, logits
        )

    if 0 <= top_p <= 1.0:
        logits = TopPLogitsWarper(top_p=top_p, filter_value=filter_value, min_tokens_to_keep=min_tokens_to_keep)(
            None, logits
        )

    return logits


def _ranking_fast(
    context_hidden: torch.FloatTensor,
    next_hidden: torch.FloatTensor,
    next_top_k_probs: torch.FloatTensor,
    alpha: float,
    beam_width: int,
) -> torch.FloatTensor:
    """
    Reranks the top_k candidates based on a degeneration penalty (cosine similarity with previous tokens), as described
    in the paper "A Contrastive Framework for Neural Text Generation". Returns the index of the best candidate for each
    row in the batch.
    """
    norm_context_hidden = context_hidden / context_hidden.norm(dim=2, keepdim=True)
    norm_next_hidden = next_hidden / next_hidden.norm(dim=2, keepdim=True)
    cosine_matrix = torch.matmul(norm_context_hidden, norm_next_hidden.transpose(1, 2)).squeeze(-1)  # [B*K, S]
    degeneration_penalty, _ = torch.max(cosine_matrix, dim=-1)  # [B*K]
    next_top_k_probs = next_top_k_probs.view(-1)  # [B*K]
    contrastive_score = (1.0 - alpha) * next_top_k_probs - alpha * degeneration_penalty
    contrastive_score = torch.stack(torch.split(contrastive_score, beam_width))  # [B, K]
    _, selected_idx = contrastive_score.max(dim=-1)  # [B]
    return selected_idx
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909


def _split(data, full_batch_size: int, split_size: int = None):
    """
    Takes care of three cases:
    1. data is a tensor: e.g. last_hidden_state, pooler_output etc. split them on the batch_size dim
    2. data is a tuple: e.g. hidden_states, attentions etc. Keep the tuple as it is and split each tensor in it and
       return a list of tuples
    3. data is a tuple of tuples, e.g. past_key_values. Keep the tuple as it is and split each tuple in it and
       return a list of tuples of tuples
    (see documentation of ModelOutput)
    """
    if data is None:
        return [None] * (full_batch_size // split_size)
    if isinstance(data, torch.Tensor):
        return [data[i : i + split_size] for i in range(0, full_batch_size, split_size)]
    elif isinstance(data, tuple):
        # If the elements of the tuple are also tuples (e.g., past_key_values in our earlier example)
        if isinstance(data[0], tuple):
            return [
                tuple(tuple(tensor[i : i + split_size] for tensor in inner_tuple) for inner_tuple in data)
                for i in range(0, full_batch_size, split_size)
            ]

        else:
            return [
                tuple(sub_tensor[i : i + split_size] for sub_tensor in data)
                for i in range(0, full_batch_size, split_size)
            ]
    else:
        raise ValueError(f"Unexpected attribute type: {type(data)}")


def _split_model_inputs(
    model_input: Union[ModelOutput, Dict], split_size: int, full_batch_size: int
) -> List[Union[ModelOutput, Dict]]:
    """
    Split a ModelOutput object (or its subclasses) or Dict into a list of same-class objects based on a specified split
    size. The input object is dict when it was prepared for forward pass and ModelOutput when it was returned from
    previous forward pass.
    """
    # Edge case: if model_input is None, return a list of Nones
    # this happens with Whisper where encoder_outputs is None
    if model_input is None:
        return [model_input] * (full_batch_size // split_size)
    # Infer the class from the object
    model_output_cls = type(model_input)
    if (full_batch_size % split_size) != 0:
        raise ValueError("`full_batch_size` must be divisible by `split_size`")

    if split_size > full_batch_size:
        raise ValueError("`split_size` must be smaller or equal to `full_batch_size`")

    # Helper function to split tensors or tuples of tensors

    # Find all the dataclass fields (e.g., last_hidden_state, pooler_output etc.) and split them
    keys = (
        model_input.__dataclass_fields__.keys() if hasattr(model_input, "__dataclass_fields__") else model_input.keys()
    )
    # We only keep keys that are in the model_input
    keys = [k for k in keys if k in model_input]
    # Here we can have four types of values: tensors, tuples of tensors and booleans, and encoder_outputs which is a
    # ModelOutput object.
    # bool should not be split but replicated for each split
4910
4911
4912
    bool_keys = [k for k in keys if isinstance(model_input[k], bool) or k == "cache_position"]
    keys_to_ignore = ["cache_position", "encoder_outputs"]
    non_bool_keys = [k for k in keys if not isinstance(model_input[k], bool) and k not in keys_to_ignore]
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982

    # we split the tensors and tuples of tensors
    data_split_list = [
        {k: _split(model_input[k], full_batch_size, split_size)[i] for k in non_bool_keys}
        for i in range(full_batch_size // split_size)
    ]
    # bool values are the same and replicated for each split
    bool_data = {k: model_input[k] for k in bool_keys}
    # encoder_outputs is a ModelOutput object and should be split by its own
    if "encoder_outputs" in model_input:
        encoder_outputs_split = _split_model_inputs(model_input["encoder_outputs"], split_size, full_batch_size)
        data_split_list = [
            {**data_split, "encoder_outputs": encoder_outputs_split[i]} for i, data_split in enumerate(data_split_list)
        ]

    # Convert each dictionary in the list to an object of the inferred class
    split_model_inputs: List[Union[ModelOutput, Dict]] = [
        model_output_cls(**data_split, **bool_data) for data_split in data_split_list
    ]

    return split_model_inputs


def stack_model_outputs(model_outputs: List[ModelOutput]) -> ModelOutput:
    """
    Stack a list of ModelOutput objects (or its subclasses) along the batch_size dimension. The function infers the
    specific ModelOutput subclass from the list provided.
    """
    if not model_outputs:
        raise ValueError("Input list is empty.")

    # Infer the class from the first object in the list
    model_output_cls = type(model_outputs[0])

    # Ensure all objects are of the same type
    if not all(isinstance(obj, model_output_cls) for obj in model_outputs):
        raise ValueError("All elements in the list should be of the same type.")

    # Helper function to concat tensors or tuples of tensors
    def _concat(data):
        """
        Reverse of `_split` function above.
        """
        if any(data is None for data in data):
            return None
        if isinstance(data[0], torch.Tensor):
            return torch.cat(data, dim=0)
        elif isinstance(data[0], tuple):
            # If the elements of the tuple are also tuples (e.g., past_key_values in our earlier example)
            if isinstance(data[0][0], tuple):
                return tuple(
                    tuple(torch.cat([attr[i][j] for attr in data], dim=0) for j in range(len(data[0][0])))
                    for i in range(len(data[0]))
                )
            else:
                return tuple(torch.cat([attr[i] for attr in data], dim=0) for i in range(len(data[0])))
        elif isinstance(data[0], (int, float)):
            # If the elements are integers or floats, return a tensor
            return torch.tensor(data)
        else:
            raise ValueError(f"Unexpected attribute type: {type(data[0])}")

    # Use a dictionary comprehension to gather attributes from all objects and concatenate them
    concatenated_data = {
        k: _concat([getattr(model_output, k) for model_output in model_outputs])
        for k in model_output_cls.__dataclass_fields__.keys()
    }

    # Return a new object of the inferred class with the concatenated attributes
    return model_output_cls(**concatenated_data)