modeling_xlnet.py 62.3 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
# coding=utf-8
# Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch XLNet model.
"""
from __future__ import absolute_import, division, print_function, unicode_literals

import json
import logging
import math
import os
import sys
from io import open

import torch
from torch import nn
thomwolf's avatar
thomwolf committed
29
from torch.nn import functional as F
30
from torch.nn import CrossEntropyLoss, MSELoss
thomwolf's avatar
thomwolf committed
31

32
from .modeling_utils import (CONFIG_NAME, WEIGHTS_NAME, PretrainedConfig, PreTrainedModel,
thomwolf's avatar
thomwolf committed
33
34
                             SequenceSummary, PoolerAnswerClass, PoolerEndLogits, PoolerStartLogits,
                             add_start_docstrings)
35

thomwolf's avatar
thomwolf committed
36
37
38

logger = logging.getLogger(__name__)

39
XLNET_PRETRAINED_MODEL_ARCHIVE_MAP = {
40
    'xlnet-base-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/xlnet-base-cased-pytorch_model.bin",
thomwolf's avatar
thomwolf committed
41
42
    'xlnet-large-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/xlnet-large-cased-pytorch_model.bin",
}
43
XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP = {
44
    'xlnet-base-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/xlnet-base-cased-config.json",
thomwolf's avatar
thomwolf committed
45
46
47
    'xlnet-large-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/xlnet-large-cased-config.json",
}

thomwolf's avatar
thomwolf committed
48

49
def build_tf_xlnet_to_pytorch_map(model, config, tf_weights=None):
thomwolf's avatar
thomwolf committed
50
51
52
53
54
55
56
57
    """ A map of modules from TF to PyTorch.
        I use a map to keep the PyTorch model as
        identical to the original PyTorch model as possible.
    """

    tf_to_pt_map = {}

    if hasattr(model, 'transformer'):
58
59
60
        if hasattr(model, 'lm_loss'):
            # We will load also the output bias
            tf_to_pt_map['model/lm_loss/bias'] = model.lm_loss.bias
61
        if hasattr(model, 'sequence_summary') and 'model/sequnece_summary/summary/kernel' in tf_weights:
62
63
64
            # We will load also the sequence summary
            tf_to_pt_map['model/sequnece_summary/summary/kernel'] = model.sequence_summary.summary.weight
            tf_to_pt_map['model/sequnece_summary/summary/bias'] = model.sequence_summary.summary.bias
thomwolf's avatar
thomwolf committed
65
66
        if hasattr(model, 'logits_proj') and config.finetuning_task is not None \
                and 'model/regression_{}/logit/kernel'.format(config.finetuning_task) in tf_weights:
67
68
            tf_to_pt_map['model/regression_{}/logit/kernel'.format(config.finetuning_task)] = model.logits_proj.weight
            tf_to_pt_map['model/regression_{}/logit/bias'.format(config.finetuning_task)] = model.logits_proj.bias
69

thomwolf's avatar
thomwolf committed
70
71
72
73
74
        # Now load the rest of the transformer
        model = model.transformer

    # Embeddings and output
    tf_to_pt_map.update({'model/transformer/word_embedding/lookup_table': model.word_embedding.weight,
75
                         'model/transformer/mask_emb/mask_emb': model.mask_emb})
thomwolf's avatar
thomwolf committed
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118

    # Transformer blocks
    for i, b in enumerate(model.layer):
        layer_str = "model/transformer/layer_%d/" % i
        tf_to_pt_map.update({
            layer_str + "rel_attn/LayerNorm/gamma": b.rel_attn.layer_norm.weight,
            layer_str + "rel_attn/LayerNorm/beta": b.rel_attn.layer_norm.bias,
            layer_str + "rel_attn/o/kernel": b.rel_attn.o,
            layer_str + "rel_attn/q/kernel": b.rel_attn.q,
            layer_str + "rel_attn/k/kernel": b.rel_attn.k,
            layer_str + "rel_attn/r/kernel": b.rel_attn.r,
            layer_str + "rel_attn/v/kernel": b.rel_attn.v,
            layer_str + "ff/LayerNorm/gamma": b.ff.layer_norm.weight,
            layer_str + "ff/LayerNorm/beta": b.ff.layer_norm.bias,
            layer_str + "ff/layer_1/kernel": b.ff.layer_1.weight,
            layer_str + "ff/layer_1/bias": b.ff.layer_1.bias,
            layer_str + "ff/layer_2/kernel": b.ff.layer_2.weight,
            layer_str + "ff/layer_2/bias": b.ff.layer_2.bias,
        })

    # Relative positioning biases
    if config.untie_r:
        r_r_list = []
        r_w_list = []
        r_s_list = []
        seg_embed_list = []
        for b in model.layer:
            r_r_list.append(b.rel_attn.r_r_bias)
            r_w_list.append(b.rel_attn.r_w_bias)
            r_s_list.append(b.rel_attn.r_s_bias)
            seg_embed_list.append(b.rel_attn.seg_embed)
    else:
        r_r_list = [model.r_r_bias]
        r_w_list = [model.r_w_bias]
        r_s_list = [model.r_s_bias]
        seg_embed_list = [model.seg_embed]
    tf_to_pt_map.update({
        'model/transformer/r_r_bias': r_r_list,
        'model/transformer/r_w_bias': r_w_list,
        'model/transformer/r_s_bias': r_s_list,
        'model/transformer/seg_embed': seg_embed_list})
    return tf_to_pt_map

119
def load_tf_weights_in_xlnet(model, config, tf_path):
thomwolf's avatar
thomwolf committed
120
121
122
123
124
125
    """ Load tf checkpoints in a pytorch model
    """
    try:
        import numpy as np
        import tensorflow as tf
    except ImportError:
thomwolf's avatar
thomwolf committed
126
        logger.error("Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see "
thomwolf's avatar
thomwolf committed
127
128
129
130
            "https://www.tensorflow.org/install/ for installation instructions.")
        raise
    # Load weights from TF model
    init_vars = tf.train.list_variables(tf_path)
thomwolf's avatar
thomwolf committed
131
    tf_weights = {}
thomwolf's avatar
thomwolf committed
132
    for name, shape in init_vars:
thomwolf's avatar
thomwolf committed
133
        logger.info("Loading TF weight {} with shape {}".format(name, shape))
thomwolf's avatar
thomwolf committed
134
        array = tf.train.load_variable(tf_path, name)
thomwolf's avatar
thomwolf committed
135
        tf_weights[name] = array
thomwolf's avatar
thomwolf committed
136

137
    # Build TF to PyTorch weights loading map
138
    tf_to_pt_map = build_tf_xlnet_to_pytorch_map(model, config, tf_weights)
139

thomwolf's avatar
thomwolf committed
140
    for name, pointer in tf_to_pt_map.items():
thomwolf's avatar
thomwolf committed
141
        logger.info("Importing {}".format(name))
142
        if name not in tf_weights:
thomwolf's avatar
thomwolf committed
143
            logger.info("{} not in tf pre-trained weights, skipping".format(name))
144
            continue
thomwolf's avatar
thomwolf committed
145
        array = tf_weights[name]
thomwolf's avatar
thomwolf committed
146
147
        # adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
        # which are not required for using pretrained model
148
        if 'kernel' in name and ('ff' in name or 'summary' in name or 'logit' in name):
thomwolf's avatar
thomwolf committed
149
            logger.info("Transposing")
thomwolf's avatar
thomwolf committed
150
            array = np.transpose(array)
thomwolf's avatar
thomwolf committed
151
152
153
154
155
156
157
158
159
160
        if isinstance(pointer, list):
            # Here we will split the TF weigths
            assert len(pointer) == array.shape[0]
            for i, p_i in enumerate(pointer):
                arr_i = array[i, ...]
                try:
                    assert p_i.shape == arr_i.shape
                except AssertionError as e:
                    e.args += (p_i.shape, arr_i.shape)
                    raise
thomwolf's avatar
thomwolf committed
161
                logger.info("Initialize PyTorch weight {} for layer {}".format(name, i))
thomwolf's avatar
thomwolf committed
162
163
164
165
166
167
168
                p_i.data = torch.from_numpy(arr_i)
        else:
            try:
                assert pointer.shape == array.shape
            except AssertionError as e:
                e.args += (pointer.shape, array.shape)
                raise
thomwolf's avatar
thomwolf committed
169
            logger.info("Initialize PyTorch weight {}".format(name))
thomwolf's avatar
thomwolf committed
170
171
172
173
174
            pointer.data = torch.from_numpy(array)
        tf_weights.pop(name, None)
        tf_weights.pop(name + '/Adam', None)
        tf_weights.pop(name + '/Adam_1', None)

thomwolf's avatar
thomwolf committed
175
    logger.info("Weights not copied to PyTorch model: {}".format(', '.join(tf_weights.keys())))
thomwolf's avatar
thomwolf committed
176
177
178
179
    return model


def gelu(x):
180
181
    """ Implementation of the gelu activation function.
        XLNet is using OpenAI GPT's gelu (not exactly the same as BERT)
thomwolf's avatar
thomwolf committed
182
183
        Also see https://arxiv.org/abs/1606.08415
    """
184
185
    cdf = 0.5 * (1.0 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))
    return x * cdf
thomwolf's avatar
thomwolf committed
186
187
188
189
190
191
192
193
194


def swish(x):
    return x * torch.sigmoid(x)


ACT2FN = {"gelu": gelu, "relu": torch.nn.functional.relu, "swish": swish}


195
class XLNetConfig(PretrainedConfig):
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
    """Configuration class to store the configuration of a ``XLNetModel``.

    Args:
        vocab_size_or_config_json_file: Vocabulary size of ``inputs_ids`` in ``XLNetModel``.
        d_model: Size of the encoder layers and the pooler layer.
        n_layer: Number of hidden layers in the Transformer encoder.
        n_head: Number of attention heads for each attention layer in
            the Transformer encoder.
        d_inner: The size of the "intermediate" (i.e., feed-forward)
            layer in the Transformer encoder.
        ff_activation: The non-linear activation function (function or string) in the
            encoder and pooler. If string, "gelu", "relu" and "swish" are supported.
        untie_r: untie relative position biases
        attn_type: 'bi' for XLNet, 'uni' for Transformer-XL

        dropout: The dropout probabilitiy for all fully connected
            layers in the embeddings, encoder, and pooler.
        dropatt: The dropout ratio for the attention
            probabilities.
        initializer_range: The sttdev of the truncated_normal_initializer for
            initializing all weight matrices.
        layer_norm_eps: The epsilon used by LayerNorm.

        dropout: float, dropout rate.
        dropatt: float, dropout rate on attention probabilities.
        init: str, the initialization scheme, either "normal" or "uniform".
        init_range: float, initialize the parameters with a uniform distribution
            in [-init_range, init_range]. Only effective when init="uniform".
        init_std: float, initialize the parameters with a normal distribution
            with mean 0 and stddev init_std. Only effective when init="normal".
        mem_len: int, the number of tokens to cache.
        reuse_len: int, the number of tokens in the currect batch to be cached
            and reused in the future.
        bi_data: bool, whether to use bidirectional input pipeline.
            Usually set to True during pretraining and False during finetuning.
        clamp_len: int, clamp all relative distances larger than clamp_len.
            -1 means no clamping.
        same_length: bool, whether to use the same attention length for each token.
        finetuning_task: name of the glue task on which the model was fine-tuned if any
thomwolf's avatar
thomwolf committed
235
    """
236
    pretrained_config_archive_map = XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP
237

thomwolf's avatar
thomwolf committed
238
    def __init__(self,
thomwolf's avatar
thomwolf committed
239
                 vocab_size_or_config_json_file=32000,
thomwolf's avatar
thomwolf committed
240
241
242
243
                 d_model=1024,
                 n_layer=24,
                 n_head=16,
                 d_inner=4096,
thomwolf's avatar
thomwolf committed
244
245
                 ff_activation="gelu",
                 untie_r=True,
thomwolf's avatar
thomwolf committed
246
                 attn_type="bi",
thomwolf's avatar
thomwolf committed
247
248

                 initializer_range=0.02,
thomwolf's avatar
thomwolf committed
249
250
251
252
253
254
255
                 layer_norm_eps=1e-12,

                 dropout=0.1,
                 mem_len=None,
                 reuse_len=None,
                 bi_data=False,
                 clamp_len=-1,
256
                 same_length=False,
thomwolf's avatar
thomwolf committed
257

thomwolf's avatar
thomwolf committed
258
259
                 finetuning_task=None,
                 num_labels=2,
thomwolf's avatar
thomwolf committed
260
261
262
                 summary_type='last',
                 summary_use_proj=True,
                 summary_activation='tanh',
263
                 summary_last_dropout=0.1,
thomwolf's avatar
thomwolf committed
264
265
                 start_n_top=5,
                 end_n_top=5,
thomwolf's avatar
thomwolf committed
266
                 **kwargs):
thomwolf's avatar
thomwolf committed
267
268
        """Constructs XLNetConfig.
        """
thomwolf's avatar
thomwolf committed
269
270
        super(XLNetConfig, self).__init__(**kwargs)

thomwolf's avatar
thomwolf committed
271
272
273
274
275
276
277
        if isinstance(vocab_size_or_config_json_file, str) or (sys.version_info[0] == 2
                        and isinstance(vocab_size_or_config_json_file, unicode)):
            with open(vocab_size_or_config_json_file, "r", encoding='utf-8') as reader:
                json_config = json.loads(reader.read())
            for key, value in json_config.items():
                self.__dict__[key] = value
        elif isinstance(vocab_size_or_config_json_file, int):
thomwolf's avatar
thomwolf committed
278
            self.n_token = vocab_size_or_config_json_file
thomwolf's avatar
thomwolf committed
279
280
281
            self.d_model = d_model
            self.n_layer = n_layer
            self.n_head = n_head
thomwolf's avatar
thomwolf committed
282
283
            assert d_model % n_head == 0
            self.d_head = d_model // n_head
thomwolf's avatar
thomwolf committed
284
285
286
            self.ff_activation = ff_activation
            self.d_inner = d_inner
            self.untie_r = untie_r
thomwolf's avatar
thomwolf committed
287
            self.attn_type = attn_type
thomwolf's avatar
thomwolf committed
288

thomwolf's avatar
thomwolf committed
289
290
            self.initializer_range = initializer_range
            self.layer_norm_eps = layer_norm_eps
thomwolf's avatar
thomwolf committed
291
292
293
294
295
296
297

            self.dropout = dropout
            self.mem_len = mem_len
            self.reuse_len = reuse_len
            self.bi_data = bi_data
            self.clamp_len = clamp_len
            self.same_length = same_length
thomwolf's avatar
thomwolf committed
298

299
            self.finetuning_task = finetuning_task
thomwolf's avatar
thomwolf committed
300
301
            self.num_labels = num_labels
            self.summary_type = summary_type
thomwolf's avatar
thomwolf committed
302
303
            self.summary_use_proj = summary_use_proj
            self.summary_activation = summary_activation
304
            self.summary_last_dropout = summary_last_dropout
thomwolf's avatar
thomwolf committed
305
306
            self.start_n_top = start_n_top
            self.end_n_top = end_n_top
thomwolf's avatar
thomwolf committed
307
308
309
310
        else:
            raise ValueError("First argument must be either a vocabulary size (int)"
                             "or the path to a pretrained model config file (str)")

311
312
313
314
    @property
    def max_position_embeddings(self):
        return -1

thomwolf's avatar
thomwolf committed
315
316
317
318
    @property
    def vocab_size(self):
        return self.n_token

thomwolf's avatar
thomwolf committed
319
320
321
322
    @vocab_size.setter
    def vocab_size(self, value):
        self.n_token = value

thomwolf's avatar
thomwolf committed
323
324
325
326
327
328
329
330
331
332
333
334
    @property
    def hidden_size(self):
        return self.d_model

    @property
    def num_attention_heads(self):
        return self.n_head

    @property
    def num_hidden_layers(self):
        return self.n_layer

thomwolf's avatar
thomwolf committed
335
336
337

try:
    from apex.normalization.fused_layer_norm import FusedLayerNorm as XLNetLayerNorm
雷打不动!'s avatar
雷打不动! committed
338
except (ImportError, AttributeError) as e:
thomwolf's avatar
thomwolf committed
339
340
    logger.info("Better speed can be achieved with apex installed from https://www.github.com/nvidia/apex .")
    class XLNetLayerNorm(nn.Module):
thomwolf's avatar
thomwolf committed
341
        def __init__(self, d_model, eps=1e-12):
thomwolf's avatar
thomwolf committed
342
343
344
            """Construct a layernorm module in the TF style (epsilon inside the square root).
            """
            super(XLNetLayerNorm, self).__init__()
thomwolf's avatar
thomwolf committed
345
346
            self.weight = nn.Parameter(torch.ones(d_model))
            self.bias = nn.Parameter(torch.zeros(d_model))
thomwolf's avatar
thomwolf committed
347
348
349
350
351
352
353
354
            self.variance_epsilon = eps

        def forward(self, x):
            u = x.mean(-1, keepdim=True)
            s = (x - u).pow(2).mean(-1, keepdim=True)
            x = (x - u) / torch.sqrt(s + self.variance_epsilon)
            return self.weight * x + self.bias

thomwolf's avatar
thomwolf committed
355
class XLNetRelativeAttention(nn.Module):
thomwolf's avatar
thomwolf committed
356
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
357
        super(XLNetRelativeAttention, self).__init__()
thomwolf's avatar
thomwolf committed
358
359
        self.output_attentions = config.output_attentions

thomwolf's avatar
thomwolf committed
360
        if config.d_model % config.n_head != 0:
thomwolf's avatar
thomwolf committed
361
362
            raise ValueError(
                "The hidden size (%d) is not a multiple of the number of attention "
thomwolf's avatar
thomwolf committed
363
                "heads (%d)" % (config.d_model, config.n_head))
thomwolf's avatar
thomwolf committed
364

thomwolf's avatar
thomwolf committed
365
        self.n_head = config.n_head
thomwolf's avatar
thomwolf committed
366
367
368
369
        self.d_head = config.d_head
        self.d_model = config.d_model
        self.scale = 1 / (config.d_head ** 0.5)

thomwolf's avatar
thomwolf committed
370
371
372
373
374
        self.q = nn.Parameter(torch.FloatTensor(config.d_model, self.n_head, self.d_head))
        self.k = nn.Parameter(torch.FloatTensor(config.d_model, self.n_head, self.d_head))
        self.v = nn.Parameter(torch.FloatTensor(config.d_model, self.n_head, self.d_head))
        self.o = nn.Parameter(torch.FloatTensor(config.d_model, self.n_head, self.d_head))
        self.r = nn.Parameter(torch.FloatTensor(config.d_model, self.n_head, self.d_head))
thomwolf's avatar
thomwolf committed
375

thomwolf's avatar
thomwolf committed
376
377
378
379
        self.r_r_bias = nn.Parameter(torch.FloatTensor(self.n_head, self.d_head))
        self.r_s_bias = nn.Parameter(torch.FloatTensor(self.n_head, self.d_head))
        self.r_w_bias = nn.Parameter(torch.FloatTensor(self.n_head, self.d_head))
        self.seg_embed = nn.Parameter(torch.FloatTensor(2, self.n_head, self.d_head))
thomwolf's avatar
thomwolf committed
380

thomwolf's avatar
thomwolf committed
381
        self.layer_norm = XLNetLayerNorm(config.d_model, eps=config.layer_norm_eps)
thomwolf's avatar
thomwolf committed
382
383
384
385
386
        self.dropout = nn.Dropout(config.dropout)

    def prune_heads(self, heads):
        raise NotImplementedError

thomwolf's avatar
thomwolf committed
387
388
389
390
391
392
393
394
    @staticmethod
    def rel_shift(x, klen=-1):
        """perform relative shift to form the relative attention score."""
        x_size = x.shape

        x = x.reshape(x_size[1], x_size[0], x_size[2], x_size[3])
        x = x[1:, ...]
        x = x.reshape(x_size[0], x_size[1] - 1, x_size[2], x_size[3])
395
        # x = x[:, 0:klen, :, :]
thomwolf's avatar
thomwolf committed
396
        x = torch.index_select(x, 1, torch.arange(klen, device=x.device, dtype=torch.long))
thomwolf's avatar
thomwolf committed
397
398
399

        return x

400
    def rel_attn_core(self, q_head, k_head_h, v_head_h, k_head_r, seg_mat=None, attn_mask=None, head_mask=None):
thomwolf's avatar
thomwolf committed
401
402
403
404
405
406
407
        """Core relative positional attention operations."""

        # content based attention score
        ac = torch.einsum('ibnd,jbnd->ijbn', q_head + self.r_w_bias, k_head_h)

        # position based attention score
        bd = torch.einsum('ibnd,jbnd->ijbn', q_head + self.r_r_bias, k_head_r)
thomwolf's avatar
thomwolf committed
408
        bd = self.rel_shift(bd, klen=ac.shape[1])
thomwolf's avatar
thomwolf committed
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426

        # segment based attention score
        if seg_mat is None:
            ef = 0
        else:
            ef = torch.einsum('ibnd,snd->ibns', q_head + self.r_s_bias, self.seg_embed)
            ef = torch.einsum('ijbs,ibns->ijbn', seg_mat, ef)

        # merge attention scores and perform masking
        attn_score = (ac + bd + ef) * self.scale
        if attn_mask is not None:
            # attn_score = attn_score * (1 - attn_mask) - 1e30 * attn_mask
            attn_score = attn_score - 1e30 * attn_mask

        # attention probability
        attn_prob = F.softmax(attn_score, dim=1)
        attn_prob = self.dropout(attn_prob)

427
428
429
430
        # Mask heads if we want to
        if head_mask is not None:
            attn_prob = attn_prob * head_mask

thomwolf's avatar
thomwolf committed
431
432
433
        # attention output
        attn_vec = torch.einsum('ijbn,jbnd->ibnd', attn_prob, v_head_h)

434
435
436
        if self.output_attentions:
            return attn_vec, attn_prob

thomwolf's avatar
thomwolf committed
437
438
439
440
441
442
443
444
445
446
        return attn_vec

    def post_attention(self, h, attn_vec, residual=True):
        """Post-attention processing."""
        # post-attention projection (back to `d_model`)
        attn_out = torch.einsum('ibnd,hnd->ibh', attn_vec, self.o)

        attn_out = self.dropout(attn_out)
        if residual:
            attn_out = attn_out + h
thomwolf's avatar
thomwolf committed
447
        output = self.layer_norm(attn_out)
thomwolf's avatar
thomwolf committed
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477

        return output

    def forward(self, h, g,
                      attn_mask_h, attn_mask_g,
                      r, seg_mat,
                      mems=None, target_mapping=None, head_mask=None):
        if g is not None:
            ###### Two-stream attention with relative positional encoding.
            # content based attention score
            if mems is not None and mems.dim() > 1:
                cat = torch.cat([mems, h], dim=0)
            else:
                cat = h

            # content-based key head
            k_head_h = torch.einsum('ibh,hnd->ibnd', cat, self.k)

            # content-based value head
            v_head_h = torch.einsum('ibh,hnd->ibnd', cat, self.v)

            # position-based key head
            k_head_r = torch.einsum('ibh,hnd->ibnd', r, self.r)

            ##### h-stream
            # content-stream query head
            q_head_h = torch.einsum('ibh,hnd->ibnd', h, self.q)

            # core attention ops
            attn_vec_h = self.rel_attn_core(
478
479
480
481
                q_head_h, k_head_h, v_head_h, k_head_r, seg_mat=seg_mat, attn_mask=attn_mask_h, head_mask=head_mask)

            if self.output_attentions:
                attn_vec_h, attn_prob_h = attn_vec_h
thomwolf's avatar
thomwolf committed
482
483
484
485
486
487
488
489
490
491
492
493

            # post processing
            output_h = self.post_attention(h, attn_vec_h)

            ##### g-stream
            # query-stream query head
            q_head_g = torch.einsum('ibh,hnd->ibnd', g, self.q)

            # core attention ops
            if target_mapping is not None:
                q_head_g = torch.einsum('mbnd,mlb->lbnd', q_head_g, target_mapping)
                attn_vec_g = self.rel_attn_core(
494
495
496
497
498
                    q_head_g, k_head_h, v_head_h, k_head_r, seg_mat=seg_mat, attn_mask=attn_mask_g, head_mask=head_mask)

                if self.output_attentions:
                    attn_vec_g, attn_prob_g = attn_vec_g

thomwolf's avatar
thomwolf committed
499
500
501
                attn_vec_g = torch.einsum('lbnd,mlb->mbnd', attn_vec_g, target_mapping)
            else:
                attn_vec_g = self.rel_attn_core(
502
503
504
505
                    q_head_g, k_head_h, v_head_h, k_head_r, seg_mat=seg_mat, attn_mask=attn_mask_g, head_mask=head_mask)

                if self.output_attentions:
                    attn_vec_g, attn_prob_g = attn_vec_g
thomwolf's avatar
thomwolf committed
506
507
508

            # post processing
            output_g = self.post_attention(g, attn_vec_g)
509
510
511
512

            if self.output_attentions:
                attn_prob = attn_prob_h, attn_prob_g

thomwolf's avatar
thomwolf committed
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
        else:
            ###### Multi-head attention with relative positional encoding
            if mems is not None and mems.dim() > 1:
                cat = torch.cat([mems, h], dim=0)
            else:
                cat = h

            # content heads
            q_head_h = torch.einsum('ibh,hnd->ibnd', h, self.q)
            k_head_h = torch.einsum('ibh,hnd->ibnd', cat, self.k)
            v_head_h = torch.einsum('ibh,hnd->ibnd', cat, self.v)

            # positional heads
            k_head_r = torch.einsum('ibh,hnd->ibnd', r, self.r)

            # core attention ops
            attn_vec = self.rel_attn_core(
530
531
532
533
                q_head_h, k_head_h, v_head_h, k_head_r, seg_mat=seg_mat, attn_mask=attn_mask_h, head_mask=head_mask)

            if self.output_attentions:
                attn_vec, attn_prob = attn_vec
thomwolf's avatar
thomwolf committed
534
535

            # post processing
thomwolf's avatar
thomwolf committed
536
537
            output_h = self.post_attention(h, attn_vec)
            output_g = None
thomwolf's avatar
thomwolf committed
538

539
        outputs = (output_h, output_g)
540
        if self.output_attentions:
541
            outputs = outputs + (attn_prob,)
thomwolf's avatar
thomwolf committed
542
        return outputs
thomwolf's avatar
thomwolf committed
543
544
545
546

class XLNetFeedForward(nn.Module):
    def __init__(self, config):
        super(XLNetFeedForward, self).__init__()
thomwolf's avatar
thomwolf committed
547
        self.layer_norm = XLNetLayerNorm(config.d_model, eps=config.layer_norm_eps)
thomwolf's avatar
thomwolf committed
548
549
550
        self.layer_1 = nn.Linear(config.d_model, config.d_inner)
        self.layer_2 = nn.Linear(config.d_inner, config.d_model)
        self.dropout = nn.Dropout(config.dropout)
551
552
        if isinstance(config.ff_activation, str) or \
                (sys.version_info[0] == 2 and isinstance(config.ff_activation, unicode)):
thomwolf's avatar
thomwolf committed
553
554
555
556
            self.activation_function = ACT2FN[config.ff_activation]
        else:
            self.activation_function = config.ff_activation

thomwolf's avatar
thomwolf committed
557
558
559
560
561
562
563
    def forward(self, inp):
        output = inp
        output = self.layer_1(output)
        output = self.activation_function(output)
        output = self.dropout(output)
        output = self.layer_2(output)
        output = self.dropout(output)
thomwolf's avatar
thomwolf committed
564
        output = self.layer_norm(output + inp)
thomwolf's avatar
thomwolf committed
565
        return output
thomwolf's avatar
thomwolf committed
566
567

class XLNetLayer(nn.Module):
thomwolf's avatar
thomwolf committed
568
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
569
        super(XLNetLayer, self).__init__()
thomwolf's avatar
thomwolf committed
570
        self.rel_attn = XLNetRelativeAttention(config)
thomwolf's avatar
thomwolf committed
571
572
573
574
575
        self.ff = XLNetFeedForward(config)
        self.dropout = nn.Dropout(config.dropout)

    def forward(self, output_h, output_g,
                attn_mask_h, attn_mask_g,
576
577
578
579
580
581
                r, seg_mat, mems=None, target_mapping=None, head_mask=None):
        outputs = self.rel_attn(output_h, output_g, attn_mask_h, attn_mask_g,
                                r, seg_mat, mems=mems, target_mapping=target_mapping,
                                head_mask=head_mask)
        output_h, output_g = outputs[:2]

thomwolf's avatar
thomwolf committed
582
        if output_g is not None:
thomwolf's avatar
thomwolf committed
583
584
585
            output_g = self.ff(output_g)
        output_h = self.ff(output_h)

586
        outputs = (output_h, output_g) + outputs[2:]  # Add again attentions if there are there
587
        return outputs
thomwolf's avatar
thomwolf committed
588

589
590

class XLNetPreTrainedModel(PreTrainedModel):
thomwolf's avatar
thomwolf committed
591
592
593
    """ An abstract class to handle weights initialization and
        a simple interface for dowloading and loading pretrained models.
    """
594
    config_class = XLNetConfig
595
    pretrained_model_archive_map = XLNET_PRETRAINED_MODEL_ARCHIVE_MAP
596
597
598
599
600
    load_tf_weights = load_tf_weights_in_xlnet
    base_model_prefix = "transformer"

    def __init__(self, *inputs, **kwargs):
        super(XLNetPreTrainedModel, self).__init__(*inputs, **kwargs)
thomwolf's avatar
thomwolf committed
601

thomwolf's avatar
thomwolf committed
602
    def init_weights(self, module):
thomwolf's avatar
thomwolf committed
603
604
605
606
607
608
        """ Initialize the weights.
        """
        if isinstance(module, (nn.Linear, nn.Embedding)):
            # Slightly different from the TF version which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
609
610
            if isinstance(module, nn.Linear) and module.bias is not None:
                module.bias.data.zero_()
thomwolf's avatar
thomwolf committed
611
612
613
        elif isinstance(module, XLNetLayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)
614
615
616
617
618
        elif isinstance(module, XLNetRelativeAttention):
            for param in [module.q, module.k, module.v, module.o, module.r,
                          module.r_r_bias, module.r_s_bias, module.r_w_bias,
                          module.seg_embed]:
                param.data.normal_(mean=0.0, std=self.config.initializer_range)
619
620
        elif isinstance(module, XLNetModel):
                module.mask_emb.data.normal_(mean=0.0, std=self.config.initializer_range)
thomwolf's avatar
thomwolf committed
621
622


thomwolf's avatar
thomwolf committed
623
624
625
626
627
628
XLNET_START_DOCSTRING = r"""    The XLNet model was proposed in
    `XLNet: Generalized Autoregressive Pretraining for Language Understanding`_
    by Zhilin Yang*, Zihang Dai*, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, Quoc V. Le.
    XLnet is an extension of the Transformer-XL model pre-trained using an autoregressive method
    to learn bidirectional contexts by maximizing the expected likelihood over all permutations
    of the input sequence factorization order.
629

thomwolf's avatar
thomwolf committed
630
    The specific attention pattern can be controlled at training and test time using the `perm_mask` input.
631

thomwolf's avatar
thomwolf committed
632
633
634
635
636
637
    Do to the difficulty of training a fully auto-regressive model over various factorization order,
    XLNet is pretrained using only a sub-set of the output tokens as target which are selected
    with the `target_mapping` input.

    To use XLNet for sequential decoding (i.e. not in fully bi-directional setting), use the `perm_mask` and
    `target_mapping` inputs to control the attention span and outputs (see examples in `examples/run_generation.py`)
638

thomwolf's avatar
thomwolf committed
639
640
    This model is a PyTorch `torch.nn.Module`_ sub-class. Use it as a regular PyTorch Module and
    refer to the PyTorch documentation for all matter related to general usage and behavior.
641

thomwolf's avatar
thomwolf committed
642
643
    .. _`XLNet: Generalized Autoregressive Pretraining for Language Understanding`:
        http://arxiv.org/abs/1906.08237
644

thomwolf's avatar
thomwolf committed
645
646
    .. _`torch.nn.Module`:
        https://pytorch.org/docs/stable/nn.html#module
647

thomwolf's avatar
thomwolf committed
648
649
    Parameters:
        config (:class:`~pytorch_transformers.XLNetConfig`): Model configuration class with all the parameters of the model.
650
651
            Initializing with a config file does not load the weights associated with the model, only the configuration.
            Check out the :meth:`~pytorch_transformers.PreTrainedModel.from_pretrained` method to load the model weights.
thomwolf's avatar
thomwolf committed
652
653
654
655
656
657
658
659
660
661
662
663
664
"""

XLNET_INPUTS_DOCSTRING = r"""
    Inputs:
        **input_ids**: ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            Indices of input sequence tokens in the vocabulary.
            Indices can be obtained using :class:`pytorch_transformers.XLNetTokenizer`.
            See :func:`pytorch_transformers.PreTrainedTokenizer.encode` and
            :func:`pytorch_transformers.PreTrainedTokenizer.convert_tokens_to_ids` for details.
        **token_type_ids**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            A parallel sequence of tokens (can be used to indicate various portions of the inputs).
            The embeddings from these tokens will be summed with the respective token embeddings.
            Indices are selected in the vocabulary (unlike BERT which has a specific vocabulary for segment indices).
thomwolf's avatar
thomwolf committed
665
        **attention_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(batch_size, sequence_length)``:
thomwolf's avatar
thomwolf committed
666
667
668
            Mask to avoid performing attention on padding token indices.
            Mask values selected in ``[0, 1]``:
            ``1`` for tokens that are NOT MASKED, ``0`` for MASKED tokens.
thomwolf's avatar
thomwolf committed
669
        **input_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(batch_size, sequence_length)``:
thomwolf's avatar
thomwolf committed
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
            Mask to avoid performing attention on padding token indices.
            Negative of `attention_mask`, i.e. with 0 for real tokens and 1 for padding.
            Kept for compatibility with the original code base.
            You can only uses one of `input_mask` and `attention_mask`
            Mask values selected in ``[0, 1]``:
            ``1`` for tokens that are MASKED, ``0`` for tokens that are NOT MASKED.
        **mems**: (`optional`)
            list of ``torch.FloatTensor`` (one for each layer):
            that contains pre-computed hidden-states (key and values in the attention blocks) as computed by the model
            (see `mems` output below). Can be used to speed up sequential decoding and attend to longer context.
        **perm_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, sequence_length)``:
            Mask to indicate the attention pattern for each input token with values selected in ``[0, 1]``:
            If ``perm_mask[k, i, j] = 0``, i attend to j in batch k;
            if ``perm_mask[k, i, j] = 1``, i does not attend to j in batch k.
            If None, each token attends to all the others (full bidirectional attention).
            Only used during pretraining (to define factorization order) or for sequential decoding (generation).
        **target_mapping**: (`optional`) ``torch.FloatTensor`` of shape ``(batch_size, num_predict, sequence_length)``:
            Mask to indicate the output tokens to use.
            If ``target_mapping[k, i, j] = 1``, the i-th predict in batch k is on the j-th token.
            Only used during pretraining for partial prediction or for sequential decoding (generation).
thomwolf's avatar
thomwolf committed
690
        **head_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(num_heads,)`` or ``(num_layers, num_heads)``:
thomwolf's avatar
thomwolf committed
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
            Mask to nullify selected heads of the self-attention modules.
            Mask values selected in ``[0, 1]``:
            ``1`` indicates the head is **not masked**, ``0`` indicates the head is **masked**.
"""

@add_start_docstrings("The bare XLNet Model transformer outputing raw hidden-states without any specific head on top.",
                      XLNET_START_DOCSTRING, XLNET_INPUTS_DOCSTRING)
class XLNetModel(XLNetPreTrainedModel):
    r"""
    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
        **last_hidden_state**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, hidden_size)``
            Sequence of hidden-states at the last layer of the model.
        **mems**:
            list of ``torch.FloatTensor`` (one for each layer):
            that contains pre-computed hidden-states (key and values in the attention blocks) as computed by the model
            (see `mems` input above). Can be used to speed up sequential decoding and attend to longer context.
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
thomwolf's avatar
thomwolf committed
711
712
713
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
thomwolf's avatar
thomwolf committed
714
715
716

    Examples::

wangfei's avatar
wangfei committed
717
718
719
720
721
        tokenizer = XLNetTokenizer.from_pretrained('xlnet-large-cased')
        model = XLNetModel.from_pretrained('xlnet-large-cased')
        input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0)  # Batch size 1
        outputs = model(input_ids)
        last_hidden_states = outputs[0]  # The last hidden-state is the first element of the output tuple
722

723
    """
thomwolf's avatar
thomwolf committed
724
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
725
        super(XLNetModel, self).__init__(config)
thomwolf's avatar
thomwolf committed
726
727
        self.output_attentions = config.output_attentions
        self.output_hidden_states = config.output_hidden_states
728

thomwolf's avatar
thomwolf committed
729
730
        self.mem_len = config.mem_len
        self.reuse_len = config.reuse_len
thomwolf's avatar
thomwolf committed
731
732
733
734
735
        self.d_model = config.d_model
        self.same_length = config.same_length
        self.attn_type = config.attn_type
        self.bi_data = config.bi_data
        self.clamp_len = config.clamp_len
thomwolf's avatar
thomwolf committed
736
        self.n_layer = config.n_layer
thomwolf's avatar
thomwolf committed
737

thomwolf's avatar
thomwolf committed
738
        self.word_embedding = nn.Embedding(config.n_token, config.d_model)
thomwolf's avatar
thomwolf committed
739
        self.mask_emb = nn.Parameter(torch.FloatTensor(1, 1, config.d_model))
740
        self.layer = nn.ModuleList([XLNetLayer(config) for _ in range(config.n_layer)])
thomwolf's avatar
thomwolf committed
741
        self.dropout = nn.Dropout(config.dropout)
thomwolf's avatar
thomwolf committed
742

743
744
        self.apply(self.init_weights)

thomwolf's avatar
thomwolf committed
745
746
    def _resize_token_embeddings(self, new_num_tokens):
        self.word_embedding = self._get_resized_embeddings(self.word_embedding, new_num_tokens)
thomwolf's avatar
thomwolf committed
747
        return self.word_embedding
thomwolf's avatar
thomwolf committed
748

thomwolf's avatar
thomwolf committed
749
    def _prune_heads(self, heads_to_prune):
thomwolf's avatar
thomwolf committed
750
        raise NotImplementedError
thomwolf's avatar
thomwolf committed
751

thomwolf's avatar
thomwolf committed
752
    def create_mask(self, qlen, mlen):
753
754
755
756
        """
        Creates causal attention mask. Float mask where 1.0 indicates masked, 0.0 indicates not-masked.

        Args:
757
758
            qlen: TODO Lysandre didn't fill
            mlen: TODO Lysandre didn't fill
759
760
761
762
763
764
765
766
767
768
769

        ::

                  same_length=False:      same_length=True:
                  <mlen > <  qlen >       <mlen > <  qlen >
               ^ [0 0 0 0 0 1 1 1 1]     [0 0 0 0 0 1 1 1 1]
                 [0 0 0 0 0 0 1 1 1]     [1 0 0 0 0 0 1 1 1]
            qlen [0 0 0 0 0 0 0 1 1]     [1 1 0 0 0 0 0 1 1]
                 [0 0 0 0 0 0 0 0 1]     [1 1 1 0 0 0 0 0 1]
               v [0 0 0 0 0 0 0 0 0]     [1 1 1 1 0 0 0 0 0]

thomwolf's avatar
thomwolf committed
770
771
772
773
774
775
776
777
778
779
        """
        attn_mask = torch.ones([qlen, qlen])
        mask_up = torch.triu(attn_mask, diagonal=1)
        attn_mask_pad = torch.zeros([qlen, mlen])
        ret = torch.cat([attn_mask_pad, mask_up], dim=1)
        if self.same_length:
            mask_lo = torch.tril(attn_mask, diagonal=-1)
            ret = torch.cat([ret[:, :qlen] + mask_lo, ret[:, qlen:]], dim=1)

        ret = ret.to(next(self.parameters()))
thomwolf's avatar
thomwolf committed
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
        return ret

    def cache_mem(self, curr_out, prev_mem):
        """cache hidden states into memory."""
        if self.mem_len is None or self.mem_len == 0:
            return None
        else:
            if self.reuse_len is not None and self.reuse_len > 0:
                curr_out = curr_out[:self.reuse_len]

            if prev_mem is None:
                new_mem = curr_out[-self.mem_len:]
            else:
                new_mem = torch.cat([prev_mem, curr_out], dim=0)[-self.mem_len:]

        return new_mem.detach()

thomwolf's avatar
thomwolf committed
797
798
799
800
801
802
803
804
805
806
807
808
    @staticmethod
    def positional_embedding(pos_seq, inv_freq, bsz=None):
        sinusoid_inp = torch.einsum('i,d->id', pos_seq, inv_freq)
        pos_emb = torch.cat([torch.sin(sinusoid_inp), torch.cos(sinusoid_inp)], dim=-1)
        pos_emb = pos_emb[:, None, :]

        if bsz is not None:
            pos_emb = pos_emb.expand(-1, bsz, -1)

        return pos_emb

    def relative_positional_encoding(self, qlen, klen, bsz=None):
thomwolf's avatar
thomwolf committed
809
        """create relative positional encoding."""
thomwolf's avatar
thomwolf committed
810
        freq_seq = torch.arange(0, self.d_model, 2.0, dtype=torch.float)
811
        inv_freq = 1 / torch.pow(10000, (freq_seq / self.d_model))
thomwolf's avatar
thomwolf committed
812
813
814
815
816
817
818
819
820
821
822

        if self.attn_type == 'bi':
            # beg, end = klen - 1, -qlen
            beg, end = klen, -qlen
        elif self.attn_type == 'uni':
            # beg, end = klen - 1, -1
            beg, end = klen, -1
        else:
            raise ValueError('Unknown `attn_type` {}.'.format(self.attn_type))

        if self.bi_data:
thomwolf's avatar
thomwolf committed
823
824
            fwd_pos_seq = torch.arange(beg, end, -1.0, dtype=torch.float)
            bwd_pos_seq = torch.arange(-beg, -end, 1.0, dtype=torch.float)
thomwolf's avatar
thomwolf committed
825
826
827
828
829
830

            if self.clamp_len > 0:
                fwd_pos_seq = fwd_pos_seq.clamp(-self.clamp_len, self.clamp_len)
                bwd_pos_seq = bwd_pos_seq.clamp(-self.clamp_len, self.clamp_len)

            if bsz is not None:
thomwolf's avatar
thomwolf committed
831
832
                fwd_pos_emb = self.positional_embedding(fwd_pos_seq, inv_freq, bsz//2)
                bwd_pos_emb = self.positional_embedding(bwd_pos_seq, inv_freq, bsz//2)
thomwolf's avatar
thomwolf committed
833
            else:
thomwolf's avatar
thomwolf committed
834
835
                fwd_pos_emb = self.positional_embedding(fwd_pos_seq, inv_freq)
                bwd_pos_emb = self.positional_embedding(bwd_pos_seq, inv_freq)
thomwolf's avatar
thomwolf committed
836
837
838

            pos_emb = torch.cat([fwd_pos_emb, bwd_pos_emb], dim=1)
        else:
thomwolf's avatar
thomwolf committed
839
            fwd_pos_seq = torch.arange(beg, end, -1.0)
thomwolf's avatar
thomwolf committed
840
841
            if self.clamp_len > 0:
                fwd_pos_seq = fwd_pos_seq.clamp(-self.clamp_len, self.clamp_len)
thomwolf's avatar
thomwolf committed
842
            pos_emb = self.positional_embedding(fwd_pos_seq, inv_freq, bsz)
thomwolf's avatar
thomwolf committed
843

thomwolf's avatar
thomwolf committed
844
        pos_emb = pos_emb.to(next(self.parameters()))
thomwolf's avatar
thomwolf committed
845
846
        return pos_emb

thomwolf's avatar
thomwolf committed
847
    def forward(self, input_ids, token_type_ids=None, input_mask=None, attention_mask=None,
848
                mems=None, perm_mask=None, target_mapping=None, head_mask=None):
849
850
851
        # the original code for XLNet uses shapes [len, bsz] with the batch dimension at the end
        # but we want a unified interface in the library with the batch size on the first dimension
        # so we move here the first dimension (batch) to the end
thomwolf's avatar
thomwolf committed
852
        input_ids = input_ids.transpose(0, 1).contiguous()
thomwolf's avatar
thomwolf committed
853
        token_type_ids = token_type_ids.transpose(0, 1).contiguous() if token_type_ids is not None else None
854
        input_mask = input_mask.transpose(0, 1).contiguous() if input_mask is not None else None
thomwolf's avatar
thomwolf committed
855
        attention_mask = attention_mask.transpose(0, 1).contiguous() if attention_mask is not None else None
856
857
858
        perm_mask = perm_mask.permute(1, 2, 0).contiguous() if perm_mask is not None else None
        target_mapping = target_mapping.permute(1, 2, 0).contiguous() if target_mapping is not None else None

thomwolf's avatar
thomwolf committed
859
        qlen, bsz = input_ids.shape[0], input_ids.shape[1]
thomwolf's avatar
thomwolf committed
860
861
        mlen = mems[0].shape[0] if mems is not None else 0
        klen = mlen + qlen
thomwolf's avatar
thomwolf committed
862
863
864

        dtype_float = next(self.parameters()).dtype
        device = next(self.parameters()).device
thomwolf's avatar
thomwolf committed
865
866
867
868

        ##### Attention mask
        # causal attention mask
        if self.attn_type == 'uni':
thomwolf's avatar
thomwolf committed
869
            attn_mask = self.create_mask(qlen, mlen)
thomwolf's avatar
thomwolf committed
870
871
872
873
874
875
876
            attn_mask = attn_mask[:, :, None, None]
        elif self.attn_type == 'bi':
            attn_mask = None
        else:
            raise ValueError('Unsupported attention type: {}'.format(self.attn_type))

        # data mask: input mask & perm mask
877
878
879
880
881
882
883
884
885
        assert input_mask is None or attention_mask is None, "You can only use one of input_mask (uses 1 for padding) "
        "or attention_mask (uses 0 for padding, added for compatbility with BERT). Please choose one."
        if input_mask is None and attention_mask is not None:
            input_mask = 1.0 - attention_mask
        if input_mask is not None and perm_mask is not None:
            data_mask = input_mask[None] + perm_mask
        elif input_mask is not None and perm_mask is None:
            data_mask = input_mask[None]
        elif input_mask is None and perm_mask is not None:
thomwolf's avatar
thomwolf committed
886
887
888
889
890
891
            data_mask = perm_mask
        else:
            data_mask = None

        if data_mask is not None:
            # all mems can be attended to
thomwolf's avatar
thomwolf committed
892
            mems_mask = torch.zeros([data_mask.shape[0], mlen, bsz]).to(data_mask)
thomwolf's avatar
thomwolf committed
893
894
895
896
897
898
899
            data_mask = torch.cat([mems_mask, data_mask], dim=1)
            if attn_mask is None:
                attn_mask = data_mask[:, :, :, None]
            else:
                attn_mask += data_mask[:, :, :, None]

        if attn_mask is not None:
thomwolf's avatar
thomwolf committed
900
            attn_mask = (attn_mask > 0).to(dtype_float)
thomwolf's avatar
thomwolf committed
901
902

        if attn_mask is not None:
thomwolf's avatar
thomwolf committed
903
904
905
            non_tgt_mask = -torch.eye(qlen).to(attn_mask)
            non_tgt_mask = torch.cat([torch.zeros([qlen, mlen]).to(attn_mask), non_tgt_mask], dim=-1)
            non_tgt_mask = ((attn_mask + non_tgt_mask[:, :, None, None]) > 0).to(attn_mask)
thomwolf's avatar
thomwolf committed
906
907
908
        else:
            non_tgt_mask = None

thomwolf's avatar
thomwolf committed
909
        ##### Word embeddings and prepare h & g hidden states
thomwolf's avatar
thomwolf committed
910
        word_emb_k = self.word_embedding(input_ids)
thomwolf's avatar
thomwolf committed
911
        output_h = self.dropout(word_emb_k)
912
913
914
915
916
        if target_mapping is not None:
            word_emb_q = self.mask_emb.expand(target_mapping.shape[0], bsz, -1)
        # else:  # We removed the inp_q input which was same as target mapping
        #     inp_q_ext = inp_q[:, :, None]
        #     word_emb_q = inp_q_ext * self.mask_emb + (1 - inp_q_ext) * word_emb_k
thomwolf's avatar
thomwolf committed
917
918
919
920
921
            output_g = self.dropout(word_emb_q)
        else:
            output_g = None

        ##### Segment embedding
thomwolf's avatar
thomwolf committed
922
923
        if token_type_ids is not None:
            # Convert `token_type_ids` to one-hot `seg_mat`
thomwolf's avatar
thomwolf committed
924
            mem_pad = torch.zeros([mlen, bsz], dtype=torch.long, device=device)
thomwolf's avatar
thomwolf committed
925
            cat_ids = torch.cat([mem_pad, token_type_ids], dim=0)
thomwolf's avatar
thomwolf committed
926
927

            # `1` indicates not in the same segment [qlen x klen x bsz]
thomwolf's avatar
thomwolf committed
928
            seg_mat = (token_type_ids[:, None] != cat_ids[None, :]).long()
thomwolf's avatar
thomwolf committed
929
            seg_mat = F.one_hot(seg_mat, num_classes=2).to(dtype_float)
thomwolf's avatar
thomwolf committed
930
931
932
933
        else:
            seg_mat = None

        ##### Positional encoding
thomwolf's avatar
thomwolf committed
934
        pos_emb = self.relative_positional_encoding(qlen, klen, bsz=bsz)
thomwolf's avatar
thomwolf committed
935
936
        pos_emb = self.dropout(pos_emb)

thomwolf's avatar
thomwolf committed
937
        # Prepare head mask if needed
thomwolf's avatar
thomwolf committed
938
939
        # 1.0 in head_mask indicate we keep the head
        # attention_probs has shape bsz x n_heads x N x N
thomwolf's avatar
thomwolf committed
940
941
        # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] (a head_mask for each layer)
        # and head_mask is converted to shape [num_hidden_layers x qlen x klen x bsz x n_head]
thomwolf's avatar
thomwolf committed
942
943
        if head_mask is not None:
            if head_mask.dim() == 1:
thomwolf's avatar
thomwolf committed
944
945
                head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(0).unsqueeze(0)
                head_mask = head_mask.expand(self.n_layer, -1, -1, -1, -1)
thomwolf's avatar
thomwolf committed
946
            elif head_mask.dim() == 2:
thomwolf's avatar
thomwolf committed
947
                head_mask = head_mask.unsqueeze(1).unsqueeze(1).unsqueeze(1)
thomwolf's avatar
thomwolf committed
948
949
            head_mask = head_mask.to(dtype=next(self.parameters()).dtype) # switch to fload if need + fp16 compatibility
        else:
thomwolf's avatar
thomwolf committed
950
            head_mask = [None] * self.n_layer
thomwolf's avatar
thomwolf committed
951

952
        new_mems = ()
thomwolf's avatar
thomwolf committed
953
954
955
        if mems is None:
            mems = [None] * len(self.layer)

956
        attentions = []
957
        hidden_states = []
thomwolf's avatar
thomwolf committed
958
959
        for i, layer_module in enumerate(self.layer):
            # cache new mems
960
            new_mems = new_mems + (self.cache_mem(output_h, mems[i]),)
961
962
963
964
965
            if self.output_hidden_states:
                hidden_states.append((output_h, output_g) if output_g is not None else output_h)

            outputs = layer_module(output_h, output_g, attn_mask_h=non_tgt_mask, attn_mask_g=attn_mask,
                                   r=pos_emb, seg_mat=seg_mat, mems=mems[i], target_mapping=target_mapping,
thomwolf's avatar
thomwolf committed
966
                                   head_mask=head_mask[i])
967
968
            output_h, output_g = outputs[:2]
            if self.output_attentions:
thomwolf's avatar
thomwolf committed
969
                attentions.append(outputs[2])
970
971
972

        # Add last hidden state
        if self.output_hidden_states:
thomwolf's avatar
thomwolf committed
973
            hidden_states.append((output_h, output_g) if output_g is not None else output_h)
thomwolf's avatar
thomwolf committed
974
975
976

        output = self.dropout(output_g if output_g is not None else output_h)

977
        # Prepare outputs, we transpose back here to shape [bsz, len, hidden_dim] (cf. beginning of forward() method)
978
        outputs = (output.permute(1, 0, 2).contiguous(), new_mems)
979
980
        if self.output_hidden_states:
            if output_g is not None:
981
                hidden_states = tuple(h.permute(1, 0, 2).contiguous() for hs in hidden_states for h in hs)
982
            else:
983
                hidden_states = tuple(hs.permute(1, 0, 2).contiguous() for hs in hidden_states)
984
            outputs = outputs + (hidden_states,)
985
        if self.output_attentions:
986
            attentions = tuple(t.permute(2, 3, 0, 1).contiguous() for t in attentions)
987
            outputs = outputs + (attentions,)
988

989
        return outputs  # outputs, new_mems, (hidden_states), (attentions)
thomwolf's avatar
thomwolf committed
990
991


thomwolf's avatar
thomwolf committed
992
993
994
@add_start_docstrings("""XLNet Model with a language modeling head on top
    (linear layer with weights tied to the input embeddings). """,
    XLNET_START_DOCSTRING, XLNET_INPUTS_DOCSTRING)
thomwolf's avatar
thomwolf committed
995
class XLNetLMHeadModel(XLNetPreTrainedModel):
thomwolf's avatar
thomwolf committed
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
    r"""
        **labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            Labels for language modeling.
            Note that the labels **are shifted** inside the model, i.e. you can set ``lm_labels = input_ids``
            Indices are selected in ``[-1, 0, ..., config.vocab_size]``
            All labels set to ``-1`` are ignored (masked), the loss is only
            computed for labels in ``[0, ..., config.vocab_size]``

    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
        **loss**: (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
            Language modeling loss.
        **prediction_scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, config.vocab_size)``
            Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
        **mems**:
            list of ``torch.FloatTensor`` (one for each layer):
            that contains pre-computed hidden-states (key and values in the attention blocks) as computed by the model
            (see `mems` input above). Can be used to speed up sequential decoding and attend to longer context.
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
thomwolf's avatar
thomwolf committed
1017
1018
1019
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
thomwolf's avatar
thomwolf committed
1020
1021
1022

    Examples::

wangfei's avatar
wangfei committed
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
        tokenizer = XLNetTokenizer.from_pretrained('xlnet-large-cased')
        model = XLNetLMHeadModel.from_pretrained('xlnet-large-cased')
        # We show how to setup inputs to predict a next token using a bi-directional context.
        input_ids = torch.tensor(tokenizer.encode("Hello, my dog is very <mask>")).unsqueeze(0)  # We will predict the masked token
        perm_mask = torch.zeros((1, input_ids.shape[1], input_ids.shape[1]), dtype=torch.float)
        perm_mask[:, :, -1] = 1.0  # Previous tokens don't see last token
        target_mapping = torch.zeros((1, 1, input_ids.shape[1]), dtype=torch.float)  # Shape [1, 1, seq_length] => let's predict one token
        target_mapping[0, 0, -1] = 1.0  # Our first (and only) prediction will be the last token of the sequence (the masked token)
        outputs = model(input_ids, perm_mask=perm_mask, target_mapping=target_mapping)
        next_token_logits = outputs[0]  # Output has shape [target_mapping.size(0), target_mapping.size(1), config.vocab_size]
1033

thomwolf's avatar
thomwolf committed
1034
    """
thomwolf's avatar
thomwolf committed
1035
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
1036
        super(XLNetLMHeadModel, self).__init__(config)
thomwolf's avatar
thomwolf committed
1037
1038
        self.attn_type = config.attn_type
        self.same_length = config.same_length
thomwolf's avatar
thomwolf committed
1039

thomwolf's avatar
thomwolf committed
1040
        self.transformer = XLNetModel(config)
thomwolf's avatar
thomwolf committed
1041
        self.lm_loss = nn.Linear(config.d_model, config.n_token, bias=True)
thomwolf's avatar
thomwolf committed
1042

thomwolf's avatar
thomwolf committed
1043
        self.apply(self.init_weights)
thomwolf's avatar
thomwolf committed
1044
        self.tie_weights()
thomwolf's avatar
thomwolf committed
1045

thomwolf's avatar
thomwolf committed
1046
1047
    def tie_weights(self):
        """ Make sure we are sharing the embeddings
thomwolf's avatar
thomwolf committed
1048
        """
thomwolf's avatar
thomwolf committed
1049
        self._tie_or_clone_weights(self.lm_loss, self.transformer.word_embedding)
thomwolf's avatar
thomwolf committed
1050

thomwolf's avatar
thomwolf committed
1051
    def forward(self, input_ids, token_type_ids=None, input_mask=None, attention_mask=None,
1052
                mems=None, perm_mask=None, target_mapping=None,
1053
                labels=None, head_mask=None):
thomwolf's avatar
thomwolf committed
1054
1055
1056
1057
        transformer_outputs = self.transformer(input_ids, token_type_ids=token_type_ids,
                                               input_mask=input_mask, attention_mask=attention_mask,
                                               mems=mems, perm_mask=perm_mask, target_mapping=target_mapping,
                                               head_mask=head_mask)
1058
1059

        logits = self.lm_loss(transformer_outputs[0])
1060

1061
        outputs = (logits,) + transformer_outputs[1:]  # Keep mems, hidden states, attentions if there are in it
1062

1063
        if labels is not None:
1064
1065
1066
            # Flatten the tokens
            loss_fct = CrossEntropyLoss(ignore_index=-1)
            loss = loss_fct(logits.view(-1, logits.size(-1)),
1067
                            labels.view(-1))
1068
            outputs = (loss,) + outputs
1069

thomwolf's avatar
thomwolf committed
1070
        return outputs  # return (loss), logits, mems, (hidden states), (attentions)
1071
1072


thomwolf's avatar
thomwolf committed
1073
1074
1075
@add_start_docstrings("""XLNet Model with a sequence classification/regression head on top (a linear layer on top of
    the pooled output) e.g. for GLUE tasks. """,
    XLNET_START_DOCSTRING, XLNET_INPUTS_DOCSTRING)
1076
class XLNetForSequenceClassification(XLNetPreTrainedModel):
thomwolf's avatar
thomwolf committed
1077
1078
1079
    r"""
        **labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``:
            Labels for computing the sequence classification/regression loss.
LysandreJik's avatar
LysandreJik committed
1080
            Indices should be in ``[0, ..., config.num_labels - 1]``.
thomwolf's avatar
thomwolf committed
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
            If ``config.num_labels == 1`` a regression loss is computed (Mean-Square loss),
            If ``config.num_labels > 1`` a classification loss is computed (Cross-Entropy).

    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
        **loss**: (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
            Classification (or regression if config.num_labels==1) loss.
        **logits**: ``torch.FloatTensor`` of shape ``(batch_size, config.num_labels)``
            Classification (or regression if config.num_labels==1) scores (before SoftMax).
        **mems**:
            list of ``torch.FloatTensor`` (one for each layer):
            that contains pre-computed hidden-states (key and values in the attention blocks) as computed by the model
            (see `mems` input above). Can be used to speed up sequential decoding and attend to longer context.
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
thomwolf's avatar
thomwolf committed
1097
1098
1099
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
thomwolf's avatar
thomwolf committed
1100
1101
1102

    Examples::

wangfei's avatar
wangfei committed
1103
1104
1105
1106
1107
1108
        tokenizer = XLNetTokenizer.from_pretrained('xlnet-large-cased')
        model = XLNetForSequenceClassification.from_pretrained('xlnet-large-cased')
        input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0)  # Batch size 1
        labels = torch.tensor([1]).unsqueeze(0)  # Batch size 1
        outputs = model(input_ids, labels=labels)
        loss, logits = outputs[:2]
1109
1110

    """
thomwolf's avatar
thomwolf committed
1111
    def __init__(self, config):
1112
        super(XLNetForSequenceClassification, self).__init__(config)
thomwolf's avatar
thomwolf committed
1113
        self.num_labels = config.num_labels
1114

thomwolf's avatar
thomwolf committed
1115
        self.transformer = XLNetModel(config)
thomwolf's avatar
thomwolf committed
1116
        self.sequence_summary = SequenceSummary(config)
thomwolf's avatar
thomwolf committed
1117
        self.logits_proj = nn.Linear(config.d_model, config.num_labels)
1118

thomwolf's avatar
thomwolf committed
1119
        self.apply(self.init_weights)
1120

thomwolf's avatar
thomwolf committed
1121
    def forward(self, input_ids, token_type_ids=None, input_mask=None, attention_mask=None,
1122
                mems=None, perm_mask=None, target_mapping=None,
1123
                labels=None, head_mask=None):
thomwolf's avatar
thomwolf committed
1124
1125
1126
1127
        transformer_outputs = self.transformer(input_ids, token_type_ids=token_type_ids,
                                               input_mask=input_mask, attention_mask=attention_mask,
                                               mems=mems, perm_mask=perm_mask, target_mapping=target_mapping,
                                               head_mask=head_mask)
1128
        output = transformer_outputs[0]
thomwolf's avatar
thomwolf committed
1129

1130
        output = self.sequence_summary(output)
1131
        logits = self.logits_proj(output)
thomwolf's avatar
thomwolf committed
1132

1133
        outputs = (logits,) + transformer_outputs[1:]  # Keep mems, hidden states, attentions if there are in it
1134

1135
1136
1137
        if labels is not None:
            if self.num_labels == 1:
                #  We are doing regression
1138
                loss_fct = MSELoss()
1139
                loss = loss_fct(logits.view(-1), labels.view(-1))
1140
            else:
1141
1142
                loss_fct = CrossEntropyLoss()
                loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
1143
            outputs = (loss,) + outputs
1144

thomwolf's avatar
thomwolf committed
1145
        return outputs  # return (loss), logits, mems, (hidden states), (attentions)
thomwolf's avatar
thomwolf committed
1146

thomwolf's avatar
thomwolf committed
1147

thomwolf's avatar
thomwolf committed
1148
1149
1150
@add_start_docstrings("""XLNet Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of
    the hidden-states output to compute `span start logits` and `span end logits`). """,
    XLNET_START_DOCSTRING, XLNET_INPUTS_DOCSTRING)
thomwolf's avatar
thomwolf committed
1151
class XLNetForQuestionAnswering(XLNetPreTrainedModel):
thomwolf's avatar
thomwolf committed
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
    r"""
        **start_positions**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``:
            Labels for position (index) of the start of the labelled span for computing the token classification loss.
            Positions are clamped to the length of the sequence (`sequence_length`).
            Position outside of the sequence are not taken into account for computing the loss.
        **end_positions**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``:
            Labels for position (index) of the end of the labelled span for computing the token classification loss.
            Positions are clamped to the length of the sequence (`sequence_length`).
            Position outside of the sequence are not taken into account for computing the loss.
        **is_impossible**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``:
            Labels whether a question has an answer or no answer (SQuAD 2.0)
        **cls_index**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``:
            Labels for position (index) of the classification token to use as input for computing plausibility of the answer.
1165
1166
1167
        **p_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(batch_size, sequence_length)``:
            Optional mask of tokens which can't be in answers (e.g. [CLS], [PAD], ...).
            1.0 means token should be masked. 0.0 mean token is not masked.
thomwolf's avatar
thomwolf committed
1168
1169

    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
1170
1171
        **loss**: (`optional`, returned if both ``start_positions`` and ``end_positions`` are provided) ``torch.FloatTensor`` of shape ``(1,)``:
            Classification loss as the sum of start token, end token (and is_impossible if provided) classification losses.
thomwolf's avatar
thomwolf committed
1172
        **start_top_log_probs**: (`optional`, returned if ``start_positions`` or ``end_positions`` is not provided)
1173
1174
            ``torch.FloatTensor`` of shape ``(batch_size, config.start_n_top)``
            Log probabilities for the top config.start_n_top start token possibilities (beam-search).
thomwolf's avatar
thomwolf committed
1175
        **start_top_index**: (`optional`, returned if ``start_positions`` or ``end_positions`` is not provided)
1176
1177
            ``torch.LongTensor`` of shape ``(batch_size, config.start_n_top)``
            Indices for the top config.start_n_top start token possibilities (beam-search).
thomwolf's avatar
thomwolf committed
1178
        **end_top_log_probs**: (`optional`, returned if ``start_positions`` or ``end_positions`` is not provided)
1179
1180
            ``torch.FloatTensor`` of shape ``(batch_size, config.start_n_top * config.end_n_top)``
            Log probabilities for the top ``config.start_n_top * config.end_n_top`` end token possibilities (beam-search).
thomwolf's avatar
thomwolf committed
1181
        **end_top_index**: (`optional`, returned if ``start_positions`` or ``end_positions`` is not provided)
1182
1183
            ``torch.LongTensor`` of shape ``(batch_size, config.start_n_top * config.end_n_top)``
            Indices for the top ``config.start_n_top * config.end_n_top`` end token possibilities (beam-search).
thomwolf's avatar
thomwolf committed
1184
        **cls_logits**: (`optional`, returned if ``start_positions`` or ``end_positions`` is not provided)
1185
1186
            ``torch.FloatTensor`` of shape ``(batch_size,)``
            Log probabilities for the ``is_impossible`` label of the answers.
thomwolf's avatar
thomwolf committed
1187
1188
1189
1190
1191
1192
1193
1194
        **mems**:
            list of ``torch.FloatTensor`` (one for each layer):
            that contains pre-computed hidden-states (key and values in the attention blocks) as computed by the model
            (see `mems` input above). Can be used to speed up sequential decoding and attend to longer context.
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
thomwolf's avatar
thomwolf committed
1195
1196
1197
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
thomwolf's avatar
thomwolf committed
1198
1199
1200

    Examples::

wangfei's avatar
wangfei committed
1201
1202
1203
1204
1205
1206
1207
        tokenizer = XLMTokenizer.from_pretrained('xlm-mlm-en-2048')
        model = XLMForQuestionAnswering.from_pretrained('xlnet-large-cased')
        input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0)  # Batch size 1
        start_positions = torch.tensor([1])
        end_positions = torch.tensor([3])
        outputs = model(input_ids, start_positions=start_positions, end_positions=end_positions)
        loss, start_scores, end_scores = outputs[:2]
1208

thomwolf's avatar
thomwolf committed
1209
    """
thomwolf's avatar
thomwolf committed
1210
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
1211
        super(XLNetForQuestionAnswering, self).__init__(config)
thomwolf's avatar
thomwolf committed
1212
1213
        self.start_n_top = config.start_n_top
        self.end_n_top = config.end_n_top
1214

thomwolf's avatar
thomwolf committed
1215
        self.transformer = XLNetModel(config)
thomwolf's avatar
thomwolf committed
1216
1217
1218
        self.start_logits = PoolerStartLogits(config)
        self.end_logits = PoolerEndLogits(config)
        self.answer_class = PoolerAnswerClass(config)
thomwolf's avatar
thomwolf committed
1219

thomwolf's avatar
thomwolf committed
1220
1221
        self.apply(self.init_weights)

thomwolf's avatar
thomwolf committed
1222
    def forward(self, input_ids, token_type_ids=None, input_mask=None, attention_mask=None,
1223
                mems=None, perm_mask=None, target_mapping=None,
thomwolf's avatar
thomwolf committed
1224
1225
                start_positions=None, end_positions=None, cls_index=None, is_impossible=None, p_mask=None,
                head_mask=None):
thomwolf's avatar
thomwolf committed
1226
1227
1228
1229
        transformer_outputs = self.transformer(input_ids, token_type_ids=token_type_ids,
                                               input_mask=input_mask, attention_mask=attention_mask,
                                               mems=mems, perm_mask=perm_mask, target_mapping=target_mapping,
                                               head_mask=head_mask)
thomwolf's avatar
thomwolf committed
1230
        hidden_states = transformer_outputs[0]
thomwolf's avatar
thomwolf committed
1231
        start_logits = self.start_logits(hidden_states, p_mask=p_mask)
thomwolf's avatar
thomwolf committed
1232

thomwolf's avatar
thomwolf committed
1233
        outputs = transformer_outputs[1:]  # Keep mems, hidden states, attentions if there are in it
1234

thomwolf's avatar
thomwolf committed
1235
1236
1237
1238
1239
        if start_positions is not None and end_positions is not None:
            # If we are on multi-GPU, let's remove the dimension added by batch splitting
            for x in (start_positions, end_positions, cls_index, is_impossible):
                if x is not None and x.dim() > 1:
                    x.squeeze_(-1)
thomwolf's avatar
thomwolf committed
1240

thomwolf's avatar
thomwolf committed
1241
1242
            # during training, compute the end logits based on the ground truth of the start position
            end_logits = self.end_logits(hidden_states, start_positions=start_positions, p_mask=p_mask)
1243

thomwolf's avatar
thomwolf committed
1244
            loss_fct = CrossEntropyLoss()
thomwolf's avatar
thomwolf committed
1245
1246
1247
            start_loss = loss_fct(start_logits, start_positions)
            end_loss = loss_fct(end_logits, end_positions)
            total_loss = (start_loss + end_loss) / 2
1248

thomwolf's avatar
thomwolf committed
1249
1250
1251
1252
1253
1254
            if cls_index is not None and is_impossible is not None:
                # Predict answerability from the representation of CLS and START
                cls_logits = self.answer_class(hidden_states, start_positions=start_positions, cls_index=cls_index)
                loss_fct_cls = nn.BCEWithLogitsLoss()
                cls_loss = loss_fct_cls(cls_logits, is_impossible)

1255
                # note(zhiliny): by default multiply the loss by 0.5 so that the scale is comparable to start_loss and end_loss
thomwolf's avatar
thomwolf committed
1256
                total_loss += cls_loss * 0.5
1257
1258

            outputs = (total_loss,) + outputs
thomwolf's avatar
thomwolf committed
1259
1260
1261
1262
1263
1264
1265

        else:
            # during inference, compute the end logits based on beam search
            bsz, slen, hsz = hidden_states.size()
            start_log_probs = F.softmax(start_logits, dim=-1) # shape (bsz, slen)

            start_top_log_probs, start_top_index = torch.topk(start_log_probs, self.start_n_top, dim=-1) # shape (bsz, start_n_top)
1266
1267
            start_top_index_exp = start_top_index.unsqueeze(-1).expand(-1, -1, hsz) # shape (bsz, start_n_top, hsz)
            start_states = torch.gather(hidden_states, -2, start_top_index_exp) # shape (bsz, start_n_top, hsz)
thomwolf's avatar
thomwolf committed
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
            start_states = start_states.unsqueeze(1).expand(-1, slen, -1, -1) # shape (bsz, slen, start_n_top, hsz)

            hidden_states_expanded = hidden_states.unsqueeze(2).expand_as(start_states) # shape (bsz, slen, start_n_top, hsz)
            p_mask = p_mask.unsqueeze(-1) if p_mask is not None else None
            end_logits = self.end_logits(hidden_states_expanded, start_states=start_states, p_mask=p_mask)
            end_log_probs = F.softmax(end_logits, dim=1) # shape (bsz, slen, start_n_top)

            end_top_log_probs, end_top_index = torch.topk(end_log_probs, self.end_n_top, dim=1) # shape (bsz, end_n_top, start_n_top)
            end_top_log_probs = end_top_log_probs.view(-1, self.start_n_top * self.end_n_top)
            end_top_index = end_top_index.view(-1, self.start_n_top * self.end_n_top)

1279
1280
            start_states = torch.einsum("blh,bl->bh", hidden_states, start_log_probs)  # get the representation of START as weighted sum of hidden states
            cls_logits = self.answer_class(hidden_states, start_states=start_states, cls_index=cls_index)  # Shape (batch size,): one single `cls_logits` for each sample
thomwolf's avatar
thomwolf committed
1281
1282
1283

            outputs = (start_top_log_probs, start_top_index, end_top_log_probs, end_top_index, cls_logits) + outputs

1284
1285
        # return start_top_log_probs, start_top_index, end_top_log_probs, end_top_index, cls_logits
        # or (if labels are provided) (total_loss,)
thomwolf's avatar
thomwolf committed
1286
        return outputs