modeling_xlnet.py 60.3 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
# coding=utf-8
# Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch XLNet model.
"""
from __future__ import (absolute_import, division, print_function,
                        unicode_literals)
from __future__ import absolute_import, division, print_function, unicode_literals

import json
import logging
import math
import os
import sys
from io import open

import torch
from torch import nn
thomwolf's avatar
thomwolf committed
31
from torch.nn import functional as F
32
from torch.nn import CrossEntropyLoss, MSELoss
thomwolf's avatar
thomwolf committed
33

34
from .modeling_utils import (CONFIG_NAME, WEIGHTS_NAME, PretrainedConfig, PreTrainedModel,
35
                             SequenceSummary, PoolerAnswerClass, PoolerEndLogits, PoolerStartLogits)
36

thomwolf's avatar
thomwolf committed
37
38
39

logger = logging.getLogger(__name__)

40
XLNET_PRETRAINED_MODEL_ARCHIVE_MAP = {
thomwolf's avatar
thomwolf committed
41
42
    'xlnet-large-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/xlnet-large-cased-pytorch_model.bin",
}
43
XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP = {
thomwolf's avatar
thomwolf committed
44
45
46
    'xlnet-large-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/xlnet-large-cased-config.json",
}

thomwolf's avatar
thomwolf committed
47

48
def build_tf_xlnet_to_pytorch_map(model, config, tf_weights=None):
thomwolf's avatar
thomwolf committed
49
50
51
52
53
54
55
56
    """ A map of modules from TF to PyTorch.
        I use a map to keep the PyTorch model as
        identical to the original PyTorch model as possible.
    """

    tf_to_pt_map = {}

    if hasattr(model, 'transformer'):
57
58
59
        if hasattr(model, 'lm_loss'):
            # We will load also the output bias
            tf_to_pt_map['model/lm_loss/bias'] = model.lm_loss.bias
60
        if hasattr(model, 'sequence_summary') and 'model/sequnece_summary/summary/kernel' in tf_weights:
61
62
63
            # We will load also the sequence summary
            tf_to_pt_map['model/sequnece_summary/summary/kernel'] = model.sequence_summary.summary.weight
            tf_to_pt_map['model/sequnece_summary/summary/bias'] = model.sequence_summary.summary.bias
thomwolf's avatar
thomwolf committed
64
65
        if hasattr(model, 'logits_proj') and config.finetuning_task is not None \
                and 'model/regression_{}/logit/kernel'.format(config.finetuning_task) in tf_weights:
66
67
            tf_to_pt_map['model/regression_{}/logit/kernel'.format(config.finetuning_task)] = model.logits_proj.weight
            tf_to_pt_map['model/regression_{}/logit/bias'.format(config.finetuning_task)] = model.logits_proj.bias
68

thomwolf's avatar
thomwolf committed
69
70
71
72
73
        # Now load the rest of the transformer
        model = model.transformer

    # Embeddings and output
    tf_to_pt_map.update({'model/transformer/word_embedding/lookup_table': model.word_embedding.weight,
74
                         'model/transformer/mask_emb/mask_emb': model.mask_emb})
thomwolf's avatar
thomwolf committed
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117

    # Transformer blocks
    for i, b in enumerate(model.layer):
        layer_str = "model/transformer/layer_%d/" % i
        tf_to_pt_map.update({
            layer_str + "rel_attn/LayerNorm/gamma": b.rel_attn.layer_norm.weight,
            layer_str + "rel_attn/LayerNorm/beta": b.rel_attn.layer_norm.bias,
            layer_str + "rel_attn/o/kernel": b.rel_attn.o,
            layer_str + "rel_attn/q/kernel": b.rel_attn.q,
            layer_str + "rel_attn/k/kernel": b.rel_attn.k,
            layer_str + "rel_attn/r/kernel": b.rel_attn.r,
            layer_str + "rel_attn/v/kernel": b.rel_attn.v,
            layer_str + "ff/LayerNorm/gamma": b.ff.layer_norm.weight,
            layer_str + "ff/LayerNorm/beta": b.ff.layer_norm.bias,
            layer_str + "ff/layer_1/kernel": b.ff.layer_1.weight,
            layer_str + "ff/layer_1/bias": b.ff.layer_1.bias,
            layer_str + "ff/layer_2/kernel": b.ff.layer_2.weight,
            layer_str + "ff/layer_2/bias": b.ff.layer_2.bias,
        })

    # Relative positioning biases
    if config.untie_r:
        r_r_list = []
        r_w_list = []
        r_s_list = []
        seg_embed_list = []
        for b in model.layer:
            r_r_list.append(b.rel_attn.r_r_bias)
            r_w_list.append(b.rel_attn.r_w_bias)
            r_s_list.append(b.rel_attn.r_s_bias)
            seg_embed_list.append(b.rel_attn.seg_embed)
    else:
        r_r_list = [model.r_r_bias]
        r_w_list = [model.r_w_bias]
        r_s_list = [model.r_s_bias]
        seg_embed_list = [model.seg_embed]
    tf_to_pt_map.update({
        'model/transformer/r_r_bias': r_r_list,
        'model/transformer/r_w_bias': r_w_list,
        'model/transformer/r_s_bias': r_s_list,
        'model/transformer/seg_embed': seg_embed_list})
    return tf_to_pt_map

118
def load_tf_weights_in_xlnet(model, config, tf_path):
thomwolf's avatar
thomwolf committed
119
120
121
122
123
124
    """ Load tf checkpoints in a pytorch model
    """
    try:
        import numpy as np
        import tensorflow as tf
    except ImportError:
thomwolf's avatar
thomwolf committed
125
        logger.error("Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see "
thomwolf's avatar
thomwolf committed
126
127
128
129
            "https://www.tensorflow.org/install/ for installation instructions.")
        raise
    # Load weights from TF model
    init_vars = tf.train.list_variables(tf_path)
thomwolf's avatar
thomwolf committed
130
    tf_weights = {}
thomwolf's avatar
thomwolf committed
131
    for name, shape in init_vars:
thomwolf's avatar
thomwolf committed
132
        logger.info("Loading TF weight {} with shape {}".format(name, shape))
thomwolf's avatar
thomwolf committed
133
        array = tf.train.load_variable(tf_path, name)
thomwolf's avatar
thomwolf committed
134
        tf_weights[name] = array
thomwolf's avatar
thomwolf committed
135

136
    # Build TF to PyTorch weights loading map
137
    tf_to_pt_map = build_tf_xlnet_to_pytorch_map(model, config, tf_weights)
138

thomwolf's avatar
thomwolf committed
139
    for name, pointer in tf_to_pt_map.items():
thomwolf's avatar
thomwolf committed
140
        logger.info("Importing {}".format(name))
141
        if name not in tf_weights:
thomwolf's avatar
thomwolf committed
142
            logger.info("{} not in tf pre-trained weights, skipping".format(name))
143
            continue
thomwolf's avatar
thomwolf committed
144
        array = tf_weights[name]
thomwolf's avatar
thomwolf committed
145
146
        # adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
        # which are not required for using pretrained model
147
        if 'kernel' in name and ('ff' in name or 'summary' in name or 'logit' in name):
thomwolf's avatar
thomwolf committed
148
            logger.info("Transposing")
thomwolf's avatar
thomwolf committed
149
            array = np.transpose(array)
thomwolf's avatar
thomwolf committed
150
151
152
153
154
155
156
157
158
159
        if isinstance(pointer, list):
            # Here we will split the TF weigths
            assert len(pointer) == array.shape[0]
            for i, p_i in enumerate(pointer):
                arr_i = array[i, ...]
                try:
                    assert p_i.shape == arr_i.shape
                except AssertionError as e:
                    e.args += (p_i.shape, arr_i.shape)
                    raise
thomwolf's avatar
thomwolf committed
160
                logger.info("Initialize PyTorch weight {} for layer {}".format(name, i))
thomwolf's avatar
thomwolf committed
161
162
163
164
165
166
167
                p_i.data = torch.from_numpy(arr_i)
        else:
            try:
                assert pointer.shape == array.shape
            except AssertionError as e:
                e.args += (pointer.shape, array.shape)
                raise
thomwolf's avatar
thomwolf committed
168
            logger.info("Initialize PyTorch weight {}".format(name))
thomwolf's avatar
thomwolf committed
169
170
171
172
173
            pointer.data = torch.from_numpy(array)
        tf_weights.pop(name, None)
        tf_weights.pop(name + '/Adam', None)
        tf_weights.pop(name + '/Adam_1', None)

thomwolf's avatar
thomwolf committed
174
    logger.info("Weights not copied to PyTorch model: {}".format(', '.join(tf_weights.keys())))
thomwolf's avatar
thomwolf committed
175
176
177
178
    return model


def gelu(x):
179
180
    """ Implementation of the gelu activation function.
        XLNet is using OpenAI GPT's gelu (not exactly the same as BERT)
thomwolf's avatar
thomwolf committed
181
182
        Also see https://arxiv.org/abs/1606.08415
    """
183
184
    cdf = 0.5 * (1.0 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))
    return x * cdf
thomwolf's avatar
thomwolf committed
185
186
187
188
189
190
191
192
193


def swish(x):
    return x * torch.sigmoid(x)


ACT2FN = {"gelu": gelu, "relu": torch.nn.functional.relu, "swish": swish}


194
class XLNetConfig(PretrainedConfig):
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
    """Configuration class to store the configuration of a ``XLNetModel``.

    Args:
        vocab_size_or_config_json_file: Vocabulary size of ``inputs_ids`` in ``XLNetModel``.
        d_model: Size of the encoder layers and the pooler layer.
        n_layer: Number of hidden layers in the Transformer encoder.
        n_head: Number of attention heads for each attention layer in
            the Transformer encoder.
        d_inner: The size of the "intermediate" (i.e., feed-forward)
            layer in the Transformer encoder.
        ff_activation: The non-linear activation function (function or string) in the
            encoder and pooler. If string, "gelu", "relu" and "swish" are supported.
        untie_r: untie relative position biases
        attn_type: 'bi' for XLNet, 'uni' for Transformer-XL

        dropout: The dropout probabilitiy for all fully connected
            layers in the embeddings, encoder, and pooler.
        dropatt: The dropout ratio for the attention
            probabilities.
        max_position_embeddings: The maximum sequence length that this model might
            ever be used with. Typically set this to something large just in case
            (e.g., 512 or 1024 or 2048).
        initializer_range: The sttdev of the truncated_normal_initializer for
            initializing all weight matrices.
        layer_norm_eps: The epsilon used by LayerNorm.

        dropout: float, dropout rate.
        dropatt: float, dropout rate on attention probabilities.
        init: str, the initialization scheme, either "normal" or "uniform".
        init_range: float, initialize the parameters with a uniform distribution
            in [-init_range, init_range]. Only effective when init="uniform".
        init_std: float, initialize the parameters with a normal distribution
            with mean 0 and stddev init_std. Only effective when init="normal".
        mem_len: int, the number of tokens to cache.
        reuse_len: int, the number of tokens in the currect batch to be cached
            and reused in the future.
        bi_data: bool, whether to use bidirectional input pipeline.
            Usually set to True during pretraining and False during finetuning.
        clamp_len: int, clamp all relative distances larger than clamp_len.
            -1 means no clamping.
        same_length: bool, whether to use the same attention length for each token.
        finetuning_task: name of the glue task on which the model was fine-tuned if any
thomwolf's avatar
thomwolf committed
237
    """
238
    pretrained_config_archive_map = XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP
239

thomwolf's avatar
thomwolf committed
240
    def __init__(self,
thomwolf's avatar
thomwolf committed
241
                 vocab_size_or_config_json_file=32000,
thomwolf's avatar
thomwolf committed
242
243
244
245
                 d_model=1024,
                 n_layer=24,
                 n_head=16,
                 d_inner=4096,
thomwolf's avatar
thomwolf committed
246
247
                 ff_activation="gelu",
                 untie_r=True,
thomwolf's avatar
thomwolf committed
248
                 attn_type="bi",
thomwolf's avatar
thomwolf committed
249
250
251

                 max_position_embeddings=512,
                 initializer_range=0.02,
thomwolf's avatar
thomwolf committed
252
253
254
255
256
257
258
                 layer_norm_eps=1e-12,

                 dropout=0.1,
                 mem_len=None,
                 reuse_len=None,
                 bi_data=False,
                 clamp_len=-1,
259
                 same_length=False,
thomwolf's avatar
thomwolf committed
260

thomwolf's avatar
thomwolf committed
261
262
                 finetuning_task=None,
                 num_labels=2,
thomwolf's avatar
thomwolf committed
263
264
265
                 summary_type='last',
                 summary_use_proj=True,
                 summary_activation='tanh',
266
                 summary_last_dropout=0.1,
thomwolf's avatar
thomwolf committed
267
268
                 start_n_top=5,
                 end_n_top=5,
thomwolf's avatar
thomwolf committed
269
                 **kwargs):
thomwolf's avatar
thomwolf committed
270
271
        """Constructs XLNetConfig.
        """
thomwolf's avatar
thomwolf committed
272
273
        super(XLNetConfig, self).__init__(**kwargs)

thomwolf's avatar
thomwolf committed
274
275
276
277
278
279
280
        if isinstance(vocab_size_or_config_json_file, str) or (sys.version_info[0] == 2
                        and isinstance(vocab_size_or_config_json_file, unicode)):
            with open(vocab_size_or_config_json_file, "r", encoding='utf-8') as reader:
                json_config = json.loads(reader.read())
            for key, value in json_config.items():
                self.__dict__[key] = value
        elif isinstance(vocab_size_or_config_json_file, int):
thomwolf's avatar
thomwolf committed
281
            self.n_token = vocab_size_or_config_json_file
thomwolf's avatar
thomwolf committed
282
283
284
            self.d_model = d_model
            self.n_layer = n_layer
            self.n_head = n_head
thomwolf's avatar
thomwolf committed
285
286
            assert d_model % n_head == 0
            self.d_head = d_model // n_head
thomwolf's avatar
thomwolf committed
287
288
289
            self.ff_activation = ff_activation
            self.d_inner = d_inner
            self.untie_r = untie_r
thomwolf's avatar
thomwolf committed
290
            self.attn_type = attn_type
thomwolf's avatar
thomwolf committed
291

thomwolf's avatar
thomwolf committed
292
293
294
            self.max_position_embeddings = max_position_embeddings
            self.initializer_range = initializer_range
            self.layer_norm_eps = layer_norm_eps
thomwolf's avatar
thomwolf committed
295
296
297
298
299
300
301

            self.dropout = dropout
            self.mem_len = mem_len
            self.reuse_len = reuse_len
            self.bi_data = bi_data
            self.clamp_len = clamp_len
            self.same_length = same_length
thomwolf's avatar
thomwolf committed
302

303
            self.finetuning_task = finetuning_task
thomwolf's avatar
thomwolf committed
304
305
            self.num_labels = num_labels
            self.summary_type = summary_type
thomwolf's avatar
thomwolf committed
306
307
            self.summary_use_proj = summary_use_proj
            self.summary_activation = summary_activation
308
            self.summary_last_dropout = summary_last_dropout
thomwolf's avatar
thomwolf committed
309
310
            self.start_n_top = start_n_top
            self.end_n_top = end_n_top
thomwolf's avatar
thomwolf committed
311
312
313
314
        else:
            raise ValueError("First argument must be either a vocabulary size (int)"
                             "or the path to a pretrained model config file (str)")

thomwolf's avatar
thomwolf committed
315
316
317
318
319
320
321
322
323
324
325
326
    @property
    def hidden_size(self):
        return self.d_model

    @property
    def num_attention_heads(self):
        return self.n_head

    @property
    def num_hidden_layers(self):
        return self.n_layer

thomwolf's avatar
thomwolf committed
327
328
329
330
331
332

try:
    from apex.normalization.fused_layer_norm import FusedLayerNorm as XLNetLayerNorm
except ImportError:
    logger.info("Better speed can be achieved with apex installed from https://www.github.com/nvidia/apex .")
    class XLNetLayerNorm(nn.Module):
thomwolf's avatar
thomwolf committed
333
        def __init__(self, d_model, eps=1e-12):
thomwolf's avatar
thomwolf committed
334
335
336
            """Construct a layernorm module in the TF style (epsilon inside the square root).
            """
            super(XLNetLayerNorm, self).__init__()
thomwolf's avatar
thomwolf committed
337
338
            self.weight = nn.Parameter(torch.ones(d_model))
            self.bias = nn.Parameter(torch.zeros(d_model))
thomwolf's avatar
thomwolf committed
339
340
341
342
343
344
345
346
            self.variance_epsilon = eps

        def forward(self, x):
            u = x.mean(-1, keepdim=True)
            s = (x - u).pow(2).mean(-1, keepdim=True)
            x = (x - u) / torch.sqrt(s + self.variance_epsilon)
            return self.weight * x + self.bias

thomwolf's avatar
thomwolf committed
347
class XLNetRelativeAttention(nn.Module):
thomwolf's avatar
thomwolf committed
348
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
349
        super(XLNetRelativeAttention, self).__init__()
thomwolf's avatar
thomwolf committed
350
351
        self.output_attentions = config.output_attentions

thomwolf's avatar
thomwolf committed
352
        if config.d_model % config.n_head != 0:
thomwolf's avatar
thomwolf committed
353
354
            raise ValueError(
                "The hidden size (%d) is not a multiple of the number of attention "
thomwolf's avatar
thomwolf committed
355
                "heads (%d)" % (config.d_model, config.n_head))
thomwolf's avatar
thomwolf committed
356

thomwolf's avatar
thomwolf committed
357
        self.n_head = config.n_head
thomwolf's avatar
thomwolf committed
358
359
360
361
362
363
364
365
366
367
368
369
370
        self.d_head = config.d_head
        self.d_model = config.d_model
        self.scale = 1 / (config.d_head ** 0.5)

        self.q = nn.Parameter(torch.Tensor(config.d_model, self.n_head, self.d_head))
        self.k = nn.Parameter(torch.Tensor(config.d_model, self.n_head, self.d_head))
        self.v = nn.Parameter(torch.Tensor(config.d_model, self.n_head, self.d_head))
        self.o = nn.Parameter(torch.Tensor(config.d_model, self.n_head, self.d_head))
        self.r = nn.Parameter(torch.Tensor(config.d_model, self.n_head, self.d_head))

        self.r_r_bias = nn.Parameter(torch.Tensor(self.n_head, self.d_head))
        self.r_s_bias = nn.Parameter(torch.Tensor(self.n_head, self.d_head))
        self.r_w_bias = nn.Parameter(torch.Tensor(self.n_head, self.d_head))
thomwolf's avatar
thomwolf committed
371
        self.seg_embed = nn.Parameter(torch.Tensor(2, self.n_head, self.d_head))
thomwolf's avatar
thomwolf committed
372

thomwolf's avatar
thomwolf committed
373
        self.layer_norm = XLNetLayerNorm(config.d_model, eps=config.layer_norm_eps)
thomwolf's avatar
thomwolf committed
374
375
376
377
378
        self.dropout = nn.Dropout(config.dropout)

    def prune_heads(self, heads):
        raise NotImplementedError

thomwolf's avatar
thomwolf committed
379
380
381
382
383
384
385
386
    @staticmethod
    def rel_shift(x, klen=-1):
        """perform relative shift to form the relative attention score."""
        x_size = x.shape

        x = x.reshape(x_size[1], x_size[0], x_size[2], x_size[3])
        x = x[1:, ...]
        x = x.reshape(x_size[0], x_size[1] - 1, x_size[2], x_size[3])
387
        # x = x[:, 0:klen, :, :]
thomwolf's avatar
thomwolf committed
388
        x = torch.index_select(x, 1, torch.arange(klen, device=x.device, dtype=torch.long))
thomwolf's avatar
thomwolf committed
389
390
391

        return x

392
    def rel_attn_core(self, q_head, k_head_h, v_head_h, k_head_r, seg_mat=None, attn_mask=None, head_mask=None):
thomwolf's avatar
thomwolf committed
393
394
395
396
397
398
399
        """Core relative positional attention operations."""

        # content based attention score
        ac = torch.einsum('ibnd,jbnd->ijbn', q_head + self.r_w_bias, k_head_h)

        # position based attention score
        bd = torch.einsum('ibnd,jbnd->ijbn', q_head + self.r_r_bias, k_head_r)
thomwolf's avatar
thomwolf committed
400
        bd = self.rel_shift(bd, klen=ac.shape[1])
thomwolf's avatar
thomwolf committed
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418

        # segment based attention score
        if seg_mat is None:
            ef = 0
        else:
            ef = torch.einsum('ibnd,snd->ibns', q_head + self.r_s_bias, self.seg_embed)
            ef = torch.einsum('ijbs,ibns->ijbn', seg_mat, ef)

        # merge attention scores and perform masking
        attn_score = (ac + bd + ef) * self.scale
        if attn_mask is not None:
            # attn_score = attn_score * (1 - attn_mask) - 1e30 * attn_mask
            attn_score = attn_score - 1e30 * attn_mask

        # attention probability
        attn_prob = F.softmax(attn_score, dim=1)
        attn_prob = self.dropout(attn_prob)

419
420
421
422
        # Mask heads if we want to
        if head_mask is not None:
            attn_prob = attn_prob * head_mask

thomwolf's avatar
thomwolf committed
423
424
425
        # attention output
        attn_vec = torch.einsum('ijbn,jbnd->ibnd', attn_prob, v_head_h)

426
427
428
        if self.output_attentions:
            return attn_vec, attn_prob

thomwolf's avatar
thomwolf committed
429
430
431
432
433
434
435
436
437
438
        return attn_vec

    def post_attention(self, h, attn_vec, residual=True):
        """Post-attention processing."""
        # post-attention projection (back to `d_model`)
        attn_out = torch.einsum('ibnd,hnd->ibh', attn_vec, self.o)

        attn_out = self.dropout(attn_out)
        if residual:
            attn_out = attn_out + h
thomwolf's avatar
thomwolf committed
439
        output = self.layer_norm(attn_out)
thomwolf's avatar
thomwolf committed
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469

        return output

    def forward(self, h, g,
                      attn_mask_h, attn_mask_g,
                      r, seg_mat,
                      mems=None, target_mapping=None, head_mask=None):
        if g is not None:
            ###### Two-stream attention with relative positional encoding.
            # content based attention score
            if mems is not None and mems.dim() > 1:
                cat = torch.cat([mems, h], dim=0)
            else:
                cat = h

            # content-based key head
            k_head_h = torch.einsum('ibh,hnd->ibnd', cat, self.k)

            # content-based value head
            v_head_h = torch.einsum('ibh,hnd->ibnd', cat, self.v)

            # position-based key head
            k_head_r = torch.einsum('ibh,hnd->ibnd', r, self.r)

            ##### h-stream
            # content-stream query head
            q_head_h = torch.einsum('ibh,hnd->ibnd', h, self.q)

            # core attention ops
            attn_vec_h = self.rel_attn_core(
470
471
472
473
                q_head_h, k_head_h, v_head_h, k_head_r, seg_mat=seg_mat, attn_mask=attn_mask_h, head_mask=head_mask)

            if self.output_attentions:
                attn_vec_h, attn_prob_h = attn_vec_h
thomwolf's avatar
thomwolf committed
474
475
476
477
478
479
480
481
482
483
484
485

            # post processing
            output_h = self.post_attention(h, attn_vec_h)

            ##### g-stream
            # query-stream query head
            q_head_g = torch.einsum('ibh,hnd->ibnd', g, self.q)

            # core attention ops
            if target_mapping is not None:
                q_head_g = torch.einsum('mbnd,mlb->lbnd', q_head_g, target_mapping)
                attn_vec_g = self.rel_attn_core(
486
487
488
489
490
                    q_head_g, k_head_h, v_head_h, k_head_r, seg_mat=seg_mat, attn_mask=attn_mask_g, head_mask=head_mask)

                if self.output_attentions:
                    attn_vec_g, attn_prob_g = attn_vec_g

thomwolf's avatar
thomwolf committed
491
492
493
                attn_vec_g = torch.einsum('lbnd,mlb->mbnd', attn_vec_g, target_mapping)
            else:
                attn_vec_g = self.rel_attn_core(
494
495
496
497
                    q_head_g, k_head_h, v_head_h, k_head_r, seg_mat=seg_mat, attn_mask=attn_mask_g, head_mask=head_mask)

                if self.output_attentions:
                    attn_vec_g, attn_prob_g = attn_vec_g
thomwolf's avatar
thomwolf committed
498
499
500

            # post processing
            output_g = self.post_attention(g, attn_vec_g)
501
502
503
504

            if self.output_attentions:
                attn_prob = attn_prob_h, attn_prob_g

thomwolf's avatar
thomwolf committed
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
        else:
            ###### Multi-head attention with relative positional encoding
            if mems is not None and mems.dim() > 1:
                cat = torch.cat([mems, h], dim=0)
            else:
                cat = h

            # content heads
            q_head_h = torch.einsum('ibh,hnd->ibnd', h, self.q)
            k_head_h = torch.einsum('ibh,hnd->ibnd', cat, self.k)
            v_head_h = torch.einsum('ibh,hnd->ibnd', cat, self.v)

            # positional heads
            k_head_r = torch.einsum('ibh,hnd->ibnd', r, self.r)

            # core attention ops
            attn_vec = self.rel_attn_core(
522
523
524
525
                q_head_h, k_head_h, v_head_h, k_head_r, seg_mat=seg_mat, attn_mask=attn_mask_h, head_mask=head_mask)

            if self.output_attentions:
                attn_vec, attn_prob = attn_vec
thomwolf's avatar
thomwolf committed
526
527

            # post processing
thomwolf's avatar
thomwolf committed
528
529
            output_h = self.post_attention(h, attn_vec)
            output_g = None
thomwolf's avatar
thomwolf committed
530

531
        outputs = (output_h, output_g)
532
        if self.output_attentions:
533
            outputs = outputs + (attn_prob,)
thomwolf's avatar
thomwolf committed
534
        return outputs
thomwolf's avatar
thomwolf committed
535
536
537
538

class XLNetFeedForward(nn.Module):
    def __init__(self, config):
        super(XLNetFeedForward, self).__init__()
thomwolf's avatar
thomwolf committed
539
        self.layer_norm = XLNetLayerNorm(config.d_model, eps=config.layer_norm_eps)
thomwolf's avatar
thomwolf committed
540
541
542
        self.layer_1 = nn.Linear(config.d_model, config.d_inner)
        self.layer_2 = nn.Linear(config.d_inner, config.d_model)
        self.dropout = nn.Dropout(config.dropout)
543
544
        if isinstance(config.ff_activation, str) or \
                (sys.version_info[0] == 2 and isinstance(config.ff_activation, unicode)):
thomwolf's avatar
thomwolf committed
545
546
547
548
            self.activation_function = ACT2FN[config.ff_activation]
        else:
            self.activation_function = config.ff_activation

thomwolf's avatar
thomwolf committed
549
550
551
552
553
554
555
    def forward(self, inp):
        output = inp
        output = self.layer_1(output)
        output = self.activation_function(output)
        output = self.dropout(output)
        output = self.layer_2(output)
        output = self.dropout(output)
thomwolf's avatar
thomwolf committed
556
        output = self.layer_norm(output + inp)
thomwolf's avatar
thomwolf committed
557
        return output
thomwolf's avatar
thomwolf committed
558
559

class XLNetLayer(nn.Module):
thomwolf's avatar
thomwolf committed
560
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
561
        super(XLNetLayer, self).__init__()
thomwolf's avatar
thomwolf committed
562
        self.rel_attn = XLNetRelativeAttention(config)
thomwolf's avatar
thomwolf committed
563
564
565
566
567
        self.ff = XLNetFeedForward(config)
        self.dropout = nn.Dropout(config.dropout)

    def forward(self, output_h, output_g,
                attn_mask_h, attn_mask_g,
568
569
570
571
572
573
                r, seg_mat, mems=None, target_mapping=None, head_mask=None):
        outputs = self.rel_attn(output_h, output_g, attn_mask_h, attn_mask_g,
                                r, seg_mat, mems=mems, target_mapping=target_mapping,
                                head_mask=head_mask)
        output_h, output_g = outputs[:2]

thomwolf's avatar
thomwolf committed
574
        if output_g is not None:
thomwolf's avatar
thomwolf committed
575
576
577
            output_g = self.ff(output_g)
        output_h = self.ff(output_h)

578
        outputs = (output_h, output_g) + outputs[2:]  # Add again attentions if there are there
579
        return outputs
thomwolf's avatar
thomwolf committed
580

581
582

class XLNetPreTrainedModel(PreTrainedModel):
thomwolf's avatar
thomwolf committed
583
584
585
    """ An abstract class to handle weights initialization and
        a simple interface for dowloading and loading pretrained models.
    """
586
    config_class = XLNetConfig
587
    pretrained_model_archive_map = XLNET_PRETRAINED_MODEL_ARCHIVE_MAP
588
589
590
591
592
    load_tf_weights = load_tf_weights_in_xlnet
    base_model_prefix = "transformer"

    def __init__(self, *inputs, **kwargs):
        super(XLNetPreTrainedModel, self).__init__(*inputs, **kwargs)
thomwolf's avatar
thomwolf committed
593

thomwolf's avatar
thomwolf committed
594
    def init_weights(self, module):
thomwolf's avatar
thomwolf committed
595
596
597
598
599
600
        """ Initialize the weights.
        """
        if isinstance(module, (nn.Linear, nn.Embedding)):
            # Slightly different from the TF version which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
601
602
            if isinstance(module, nn.Linear) and module.bias is not None:
                module.bias.data.zero_()
thomwolf's avatar
thomwolf committed
603
604
605
        elif isinstance(module, XLNetLayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)
606
607
608
609
610
        elif isinstance(module, XLNetRelativeAttention):
            for param in [module.q, module.k, module.v, module.o, module.r,
                          module.r_r_bias, module.r_s_bias, module.r_w_bias,
                          module.seg_embed]:
                param.data.normal_(mean=0.0, std=self.config.initializer_range)
611
612
        elif isinstance(module, XLNetModel):
                module.mask_emb.data.normal_(mean=0.0, std=self.config.initializer_range)
thomwolf's avatar
thomwolf committed
613
614
615


class XLNetModel(XLNetPreTrainedModel):
616
617
    """XLNet model ("XLNet: Generalized Autoregressive Pretraining for Language Understanding").

618
    TODO Lysandre filled: this was copied from the XLNetLMHeadModel, check that it's ok.
619
620
621
622
623
624
625

    Args:
        `config`: a XLNetConfig class instance with the configuration to build a new model
        `output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
        `keep_multihead_output`: If True, saves output of the multi-head attention module with its gradient.
            This can be used to compute head importance metrics. Default: False

626
627
628
629
630
631
632
633
634

    Example::

        config = modeling.XLNetConfig(vocab_size_or_config_json_file=32000, d_model=768,
            n_layer=12, num_attention_heads=12, intermediate_size=3072)

        model = modeling.XLNetModel(config=config)

    TODO Lysandre filled: Added example usage
635
    """
thomwolf's avatar
thomwolf committed
636
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
637
        super(XLNetModel, self).__init__(config)
thomwolf's avatar
thomwolf committed
638
639
        self.output_attentions = config.output_attentions
        self.output_hidden_states = config.output_hidden_states
640

thomwolf's avatar
thomwolf committed
641
642
        self.mem_len = config.mem_len
        self.reuse_len = config.reuse_len
thomwolf's avatar
thomwolf committed
643
644
645
646
647
        self.d_model = config.d_model
        self.same_length = config.same_length
        self.attn_type = config.attn_type
        self.bi_data = config.bi_data
        self.clamp_len = config.clamp_len
thomwolf's avatar
thomwolf committed
648
        self.n_layer = config.n_layer
thomwolf's avatar
thomwolf committed
649

thomwolf's avatar
thomwolf committed
650
651
        self.word_embedding = nn.Embedding(config.n_token, config.d_model)
        self.mask_emb = nn.Parameter(torch.Tensor(1, 1, config.d_model))
652
        self.layer = nn.ModuleList([XLNetLayer(config) for _ in range(config.n_layer)])
thomwolf's avatar
thomwolf committed
653
        self.dropout = nn.Dropout(config.dropout)
thomwolf's avatar
thomwolf committed
654

655
656
        self.apply(self.init_weights)

thomwolf's avatar
thomwolf committed
657
658
659
    def _prune_heads(self, heads_to_prune):
        logger.info("Head pruning is not implemented for XLNet")
        pass
thomwolf's avatar
thomwolf committed
660

thomwolf's avatar
thomwolf committed
661
    def create_mask(self, qlen, mlen):
662
663
664
665
        """
        Creates causal attention mask. Float mask where 1.0 indicates masked, 0.0 indicates not-masked.

        Args:
666
667
            qlen: TODO Lysandre didn't fill
            mlen: TODO Lysandre didn't fill
668
669
670
671
672
673
674
675
676
677
678

        ::

                  same_length=False:      same_length=True:
                  <mlen > <  qlen >       <mlen > <  qlen >
               ^ [0 0 0 0 0 1 1 1 1]     [0 0 0 0 0 1 1 1 1]
                 [0 0 0 0 0 0 1 1 1]     [1 0 0 0 0 0 1 1 1]
            qlen [0 0 0 0 0 0 0 1 1]     [1 1 0 0 0 0 0 1 1]
                 [0 0 0 0 0 0 0 0 1]     [1 1 1 0 0 0 0 0 1]
               v [0 0 0 0 0 0 0 0 0]     [1 1 1 1 0 0 0 0 0]

thomwolf's avatar
thomwolf committed
679
680
681
682
683
684
685
686
687
688
        """
        attn_mask = torch.ones([qlen, qlen])
        mask_up = torch.triu(attn_mask, diagonal=1)
        attn_mask_pad = torch.zeros([qlen, mlen])
        ret = torch.cat([attn_mask_pad, mask_up], dim=1)
        if self.same_length:
            mask_lo = torch.tril(attn_mask, diagonal=-1)
            ret = torch.cat([ret[:, :qlen] + mask_lo, ret[:, qlen:]], dim=1)

        ret = ret.to(next(self.parameters()))
thomwolf's avatar
thomwolf committed
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
        return ret

    def cache_mem(self, curr_out, prev_mem):
        """cache hidden states into memory."""
        if self.mem_len is None or self.mem_len == 0:
            return None
        else:
            if self.reuse_len is not None and self.reuse_len > 0:
                curr_out = curr_out[:self.reuse_len]

            if prev_mem is None:
                new_mem = curr_out[-self.mem_len:]
            else:
                new_mem = torch.cat([prev_mem, curr_out], dim=0)[-self.mem_len:]

        return new_mem.detach()

thomwolf's avatar
thomwolf committed
706
707
708
709
710
711
712
713
714
715
716
717
    @staticmethod
    def positional_embedding(pos_seq, inv_freq, bsz=None):
        sinusoid_inp = torch.einsum('i,d->id', pos_seq, inv_freq)
        pos_emb = torch.cat([torch.sin(sinusoid_inp), torch.cos(sinusoid_inp)], dim=-1)
        pos_emb = pos_emb[:, None, :]

        if bsz is not None:
            pos_emb = pos_emb.expand(-1, bsz, -1)

        return pos_emb

    def relative_positional_encoding(self, qlen, klen, bsz=None):
thomwolf's avatar
thomwolf committed
718
        """create relative positional encoding."""
thomwolf's avatar
thomwolf committed
719
        freq_seq = torch.arange(0, self.d_model, 2.0, dtype=torch.float)
720
        inv_freq = 1 / torch.pow(10000, (freq_seq / self.d_model))
thomwolf's avatar
thomwolf committed
721
722
723
724
725
726
727
728
729
730
731

        if self.attn_type == 'bi':
            # beg, end = klen - 1, -qlen
            beg, end = klen, -qlen
        elif self.attn_type == 'uni':
            # beg, end = klen - 1, -1
            beg, end = klen, -1
        else:
            raise ValueError('Unknown `attn_type` {}.'.format(self.attn_type))

        if self.bi_data:
thomwolf's avatar
thomwolf committed
732
733
            fwd_pos_seq = torch.arange(beg, end, -1.0, dtype=torch.float)
            bwd_pos_seq = torch.arange(-beg, -end, 1.0, dtype=torch.float)
thomwolf's avatar
thomwolf committed
734
735
736
737
738
739

            if self.clamp_len > 0:
                fwd_pos_seq = fwd_pos_seq.clamp(-self.clamp_len, self.clamp_len)
                bwd_pos_seq = bwd_pos_seq.clamp(-self.clamp_len, self.clamp_len)

            if bsz is not None:
thomwolf's avatar
thomwolf committed
740
741
                fwd_pos_emb = self.positional_embedding(fwd_pos_seq, inv_freq, bsz//2)
                bwd_pos_emb = self.positional_embedding(bwd_pos_seq, inv_freq, bsz//2)
thomwolf's avatar
thomwolf committed
742
            else:
thomwolf's avatar
thomwolf committed
743
744
                fwd_pos_emb = self.positional_embedding(fwd_pos_seq, inv_freq)
                bwd_pos_emb = self.positional_embedding(bwd_pos_seq, inv_freq)
thomwolf's avatar
thomwolf committed
745
746
747

            pos_emb = torch.cat([fwd_pos_emb, bwd_pos_emb], dim=1)
        else:
thomwolf's avatar
thomwolf committed
748
            fwd_pos_seq = torch.arange(beg, end, -1.0)
thomwolf's avatar
thomwolf committed
749
750
            if self.clamp_len > 0:
                fwd_pos_seq = fwd_pos_seq.clamp(-self.clamp_len, self.clamp_len)
thomwolf's avatar
thomwolf committed
751
            pos_emb = self.positional_embedding(fwd_pos_seq, inv_freq, bsz)
thomwolf's avatar
thomwolf committed
752

thomwolf's avatar
thomwolf committed
753
        pos_emb = pos_emb.to(next(self.parameters()))
thomwolf's avatar
thomwolf committed
754
755
        return pos_emb

thomwolf's avatar
thomwolf committed
756
    def forward(self, input_ids, token_type_ids=None, input_mask=None, attention_mask=None,
757
                mems=None, perm_mask=None, target_mapping=None, inp_q=None, head_mask=None):
thomwolf's avatar
thomwolf committed
758
        """
759
760
        Performs a model forward pass. **Can be called by calling the class directly, once it has been instantiated.**

thomwolf's avatar
thomwolf committed
761
        Args:
thomwolf's avatar
thomwolf committed
762
            input_ids: int32 Tensor in shape [bsz, len], the input token IDs.
thomwolf's avatar
thomwolf committed
763
            token_type_ids: int32 Tensor in shape [bsz, len], the input segment IDs.
764
            input_mask: [optional] float32 Tensor in shape [bsz, len], the input mask.
thomwolf's avatar
thomwolf committed
765
                0 for real tokens and 1 for padding.
766
767
768
769
            attention_mask: [optional] float32 Tensor, SAME FUNCTION as `input_mask`
                but with 1 for real tokens and 0 for padding.
                Added for easy compatibility with the BERT model (which uses this negative masking).
                You can only uses one among `input_mask` and `attention_mask`
thomwolf's avatar
thomwolf committed
770
            mems: [optional] a list of float32 Tensors in shape [mem_len, bsz, d_model], memory
thomwolf's avatar
thomwolf committed
771
772
                from previous batches. The length of the list equals n_layer.
                If None, no memory is used.
773
774
775
            perm_mask: [optional] float32 Tensor in shape [bsz, len, len].
                If perm_mask[k, i, j] = 0, i attend to j in batch k;
                if perm_mask[k, i, j] = 1, i does not attend to j in batch k.
thomwolf's avatar
thomwolf committed
776
                If None, each position attends to all the others.
777
778
            target_mapping: [optional] float32 Tensor in shape [bsz, num_predict, len].
                If target_mapping[k, i, j] = 1, the i-th predict in batch k is
thomwolf's avatar
thomwolf committed
779
780
781
                on the j-th token.
                Only used during pretraining for partial prediction.
                Set to None during finetuning.
782
            inp_q: [optional] float32 Tensor in shape [bsz, len].
thomwolf's avatar
thomwolf committed
783
784
785
                1 for tokens with losses and 0 for tokens without losses.
                Only used during pretraining for two-stream attention.
                Set to None during finetuning.
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
            head_mask: TODO Lysandre didn't fill


        Returns:
            TODO Lysandre didn't fill: Missing returns!

        Example::

            # Already been converted into WordPiece token ids
            input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
            input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
            token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])

            all_encoder_layers, pooled_output = model(input_ids, token_type_ids, input_mask)
            # or
            all_encoder_layers, pooled_output = model.forward(input_ids, token_type_ids, input_mask)

        TODO Lysandre filled: Filled with the LMHead example, is probably different since it has a different output
thomwolf's avatar
thomwolf committed
804
805

        """
806
807
808
        # the original code for XLNet uses shapes [len, bsz] with the batch dimension at the end
        # but we want a unified interface in the library with the batch size on the first dimension
        # so we move here the first dimension (batch) to the end
thomwolf's avatar
thomwolf committed
809
        input_ids = input_ids.transpose(0, 1).contiguous()
thomwolf's avatar
thomwolf committed
810
        token_type_ids = token_type_ids.transpose(0, 1).contiguous() if token_type_ids is not None else None
811
        input_mask = input_mask.transpose(0, 1).contiguous() if input_mask is not None else None
thomwolf's avatar
thomwolf committed
812
        attention_mask = attention_mask.transpose(0, 1).contiguous() if attention_mask is not None else None
813
814
815
816
        perm_mask = perm_mask.permute(1, 2, 0).contiguous() if perm_mask is not None else None
        target_mapping = target_mapping.permute(1, 2, 0).contiguous() if target_mapping is not None else None
        inp_q = inp_q.transpose(0, 1).contiguous() if inp_q is not None else None

thomwolf's avatar
thomwolf committed
817
        qlen, bsz = input_ids.shape[0], input_ids.shape[1]
thomwolf's avatar
thomwolf committed
818
819
        mlen = mems[0].shape[0] if mems is not None else 0
        klen = mlen + qlen
thomwolf's avatar
thomwolf committed
820
821
822

        dtype_float = next(self.parameters()).dtype
        device = next(self.parameters()).device
thomwolf's avatar
thomwolf committed
823
824
825
826

        ##### Attention mask
        # causal attention mask
        if self.attn_type == 'uni':
thomwolf's avatar
thomwolf committed
827
            attn_mask = self.create_mask(qlen, mlen)
thomwolf's avatar
thomwolf committed
828
829
830
831
832
833
834
            attn_mask = attn_mask[:, :, None, None]
        elif self.attn_type == 'bi':
            attn_mask = None
        else:
            raise ValueError('Unsupported attention type: {}'.format(self.attn_type))

        # data mask: input mask & perm mask
835
836
837
838
839
840
841
842
843
        assert input_mask is None or attention_mask is None, "You can only use one of input_mask (uses 1 for padding) "
        "or attention_mask (uses 0 for padding, added for compatbility with BERT). Please choose one."
        if input_mask is None and attention_mask is not None:
            input_mask = 1.0 - attention_mask
        if input_mask is not None and perm_mask is not None:
            data_mask = input_mask[None] + perm_mask
        elif input_mask is not None and perm_mask is None:
            data_mask = input_mask[None]
        elif input_mask is None and perm_mask is not None:
thomwolf's avatar
thomwolf committed
844
845
846
847
848
849
            data_mask = perm_mask
        else:
            data_mask = None

        if data_mask is not None:
            # all mems can be attended to
thomwolf's avatar
thomwolf committed
850
            mems_mask = torch.zeros([data_mask.shape[0], mlen, bsz]).to(data_mask)
thomwolf's avatar
thomwolf committed
851
852
853
854
855
856
857
            data_mask = torch.cat([mems_mask, data_mask], dim=1)
            if attn_mask is None:
                attn_mask = data_mask[:, :, :, None]
            else:
                attn_mask += data_mask[:, :, :, None]

        if attn_mask is not None:
thomwolf's avatar
thomwolf committed
858
            attn_mask = (attn_mask > 0).to(dtype_float)
thomwolf's avatar
thomwolf committed
859
860

        if attn_mask is not None:
thomwolf's avatar
thomwolf committed
861
862
863
            non_tgt_mask = -torch.eye(qlen).to(attn_mask)
            non_tgt_mask = torch.cat([torch.zeros([qlen, mlen]).to(attn_mask), non_tgt_mask], dim=-1)
            non_tgt_mask = ((attn_mask + non_tgt_mask[:, :, None, None]) > 0).to(attn_mask)
thomwolf's avatar
thomwolf committed
864
865
866
        else:
            non_tgt_mask = None

thomwolf's avatar
thomwolf committed
867
        ##### Word embeddings and prepare h & g hidden states
thomwolf's avatar
thomwolf committed
868
        word_emb_k = self.word_embedding(input_ids)
thomwolf's avatar
thomwolf committed
869
870
871
        output_h = self.dropout(word_emb_k)
        if inp_q is not None:
            if target_mapping is not None:
872
                word_emb_q = self.mask_emb.expand(target_mapping.shape[0], bsz, -1)
thomwolf's avatar
thomwolf committed
873
874
            else:
                inp_q_ext = inp_q[:, :, None]
875
                word_emb_q = inp_q_ext * self.mask_emb + (1 - inp_q_ext) * word_emb_k
thomwolf's avatar
thomwolf committed
876
877
878
879
880
            output_g = self.dropout(word_emb_q)
        else:
            output_g = None

        ##### Segment embedding
thomwolf's avatar
thomwolf committed
881
882
        if token_type_ids is not None:
            # Convert `token_type_ids` to one-hot `seg_mat`
thomwolf's avatar
thomwolf committed
883
            mem_pad = torch.zeros([mlen, bsz], dtype=torch.long, device=device)
thomwolf's avatar
thomwolf committed
884
            cat_ids = torch.cat([mem_pad, token_type_ids], dim=0)
thomwolf's avatar
thomwolf committed
885
886

            # `1` indicates not in the same segment [qlen x klen x bsz]
thomwolf's avatar
thomwolf committed
887
            seg_mat = (token_type_ids[:, None] != cat_ids[None, :]).long()
thomwolf's avatar
thomwolf committed
888
            seg_mat = F.one_hot(seg_mat, num_classes=2).to(dtype_float)
thomwolf's avatar
thomwolf committed
889
890
891
892
        else:
            seg_mat = None

        ##### Positional encoding
thomwolf's avatar
thomwolf committed
893
        pos_emb = self.relative_positional_encoding(qlen, klen, bsz=bsz)
thomwolf's avatar
thomwolf committed
894
895
        pos_emb = self.dropout(pos_emb)

thomwolf's avatar
thomwolf committed
896
        # Prepare head mask if needed
thomwolf's avatar
thomwolf committed
897
898
        # 1.0 in head_mask indicate we keep the head
        # attention_probs has shape bsz x n_heads x N x N
thomwolf's avatar
thomwolf committed
899
900
        # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] (a head_mask for each layer)
        # and head_mask is converted to shape [num_hidden_layers x qlen x klen x bsz x n_head]
thomwolf's avatar
thomwolf committed
901
902
        if head_mask is not None:
            if head_mask.dim() == 1:
thomwolf's avatar
thomwolf committed
903
904
                head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(0).unsqueeze(0)
                head_mask = head_mask.expand(self.n_layer, -1, -1, -1, -1)
thomwolf's avatar
thomwolf committed
905
            elif head_mask.dim() == 2:
thomwolf's avatar
thomwolf committed
906
                head_mask = head_mask.unsqueeze(1).unsqueeze(1).unsqueeze(1)
thomwolf's avatar
thomwolf committed
907
908
            head_mask = head_mask.to(dtype=next(self.parameters()).dtype) # switch to fload if need + fp16 compatibility
        else:
thomwolf's avatar
thomwolf committed
909
            head_mask = [None] * self.n_layer
thomwolf's avatar
thomwolf committed
910

911
        new_mems = ()
thomwolf's avatar
thomwolf committed
912
913
914
        if mems is None:
            mems = [None] * len(self.layer)

915
        attentions = []
916
        hidden_states = []
thomwolf's avatar
thomwolf committed
917
918
        for i, layer_module in enumerate(self.layer):
            # cache new mems
919
            new_mems = new_mems + (self.cache_mem(output_h, mems[i]),)
920
921
922
923
924
            if self.output_hidden_states:
                hidden_states.append((output_h, output_g) if output_g is not None else output_h)

            outputs = layer_module(output_h, output_g, attn_mask_h=non_tgt_mask, attn_mask_g=attn_mask,
                                   r=pos_emb, seg_mat=seg_mat, mems=mems[i], target_mapping=target_mapping,
thomwolf's avatar
thomwolf committed
925
                                   head_mask=head_mask[i])
926
927
            output_h, output_g = outputs[:2]
            if self.output_attentions:
thomwolf's avatar
thomwolf committed
928
                attentions.append(outputs[2])
929
930
931

        # Add last hidden state
        if self.output_hidden_states:
thomwolf's avatar
thomwolf committed
932
            hidden_states.append((output_h, output_g) if output_g is not None else output_h)
thomwolf's avatar
thomwolf committed
933
934
935

        output = self.dropout(output_g if output_g is not None else output_h)

936
        # Prepare outputs, we transpose back here to shape [bsz, len, hidden_dim] (cf. beginning of forward() method)
937
        outputs = (output.permute(1, 0, 2).contiguous(), new_mems)
938
939
        if self.output_hidden_states:
            if output_g is not None:
940
                hidden_states = tuple(h.permute(1, 0, 2).contiguous() for hs in hidden_states for h in hs)
941
            else:
942
                hidden_states = tuple(hs.permute(1, 0, 2).contiguous() for hs in hidden_states)
943
            outputs = outputs + (hidden_states,)
944
        if self.output_attentions:
945
            attentions = tuple(t.permute(2, 3, 0, 1).contiguous() for t in attentions)
946
            outputs = outputs + (attentions,)
947

948
        return outputs  # outputs, new_mems, (hidden_states), (attentions)
thomwolf's avatar
thomwolf committed
949
950
951


class XLNetLMHeadModel(XLNetPreTrainedModel):
thomwolf's avatar
thomwolf committed
952
953
    """XLNet model ("XLNet: Generalized Autoregressive Pretraining for Language Understanding").

954
    Args:
thomwolf's avatar
thomwolf committed
955
956
957
958
959
        `config`: a XLNetConfig class instance with the configuration to build a new model
        `output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
        `keep_multihead_output`: If True, saves output of the multi-head attention module with its gradient.
            This can be used to compute head importance metrics. Default: False

960
961
962
963
964
    Example::

        config = modeling.XLNetConfig(vocab_size_or_config_json_file=32000, d_model=768,
            n_layer=12, num_attention_heads=12, intermediate_size=3072)

965
966
967
        model = modeling.XLNetLMHeadModel(config=config)

    TODO Lysandre modified: Changed XLNetModel to XLNetLMHeadModel in the example
thomwolf's avatar
thomwolf committed
968
    """
thomwolf's avatar
thomwolf committed
969
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
970
        super(XLNetLMHeadModel, self).__init__(config)
thomwolf's avatar
thomwolf committed
971
972
        self.attn_type = config.attn_type
        self.same_length = config.same_length
973
        self.torchscript = config.torchscript
thomwolf's avatar
thomwolf committed
974

thomwolf's avatar
thomwolf committed
975
        self.transformer = XLNetModel(config)
thomwolf's avatar
thomwolf committed
976
        self.lm_loss = nn.Linear(config.d_model, config.n_token, bias=True)
thomwolf's avatar
thomwolf committed
977

thomwolf's avatar
thomwolf committed
978
979
        # Tie weights

thomwolf's avatar
thomwolf committed
980
        self.apply(self.init_weights)
thomwolf's avatar
thomwolf committed
981
        self.tie_weights()
thomwolf's avatar
thomwolf committed
982

thomwolf's avatar
thomwolf committed
983
984
    def tie_weights(self):
        """ Make sure we are sharing the embeddings
thomwolf's avatar
thomwolf committed
985
        """
986
987
988
989
        if self.torchscript:
            self.lm_loss.weight = nn.Parameter(self.transformer.word_embedding.weight.clone())
        else:
            self.lm_loss.weight = self.transformer.word_embedding.weight
thomwolf's avatar
thomwolf committed
990

thomwolf's avatar
thomwolf committed
991
    def forward(self, input_ids, token_type_ids=None, input_mask=None, attention_mask=None,
thomwolf's avatar
thomwolf committed
992
                mems=None, perm_mask=None, target_mapping=None, inp_q=None,
993
                labels=None, head_mask=None):
thomwolf's avatar
thomwolf committed
994
        """
995
996
         all_encoder_layers, pooled_output = model(input_ids, token_type_ids, input_mask)

thomwolf's avatar
thomwolf committed
997
        Args:
thomwolf's avatar
thomwolf committed
998
            input_ids: int32 Tensor in shape [bsz, len], the input token IDs.
thomwolf's avatar
thomwolf committed
999
            token_type_ids: int32 Tensor in shape [bsz, len], the input segment IDs.
1000
            input_mask: [optional] float32 Tensor in shape [bsz, len], the input mask.
thomwolf's avatar
thomwolf committed
1001
                0 for real tokens and 1 for padding.
1002
1003
1004
1005
            attention_mask: [optional] float32 Tensor, SAME FUNCTION as `input_mask`
                but with 1 for real tokens and 0 for padding.
                Added for easy compatibility with the BERT model (which uses this negative masking).
                You can only uses one among `input_mask` and `attention_mask`
1006
            mems: [optional] a list of float32 Tensors in shape [mem_len, bsz, d_model], memory
thomwolf's avatar
thomwolf committed
1007
1008
                from previous batches. The length of the list equals n_layer.
                If None, no memory is used.
1009
            perm_mask: [optional] float32 Tensor in shape [bsz, len, len].
1010
1011
                If perm_mask[k, i, j] = 0, i attend to j in batch k;
                if perm_mask[k, i, j] = 1, i does not attend to j in batch k.
thomwolf's avatar
thomwolf committed
1012
                If None, each position attends to all the others.
1013
            target_mapping: [optional] float32 Tensor in shape [bsz, num_predict, len].
1014
                If target_mapping[k, i, j] = 1, the i-th predict in batch k is
thomwolf's avatar
thomwolf committed
1015
1016
1017
                on the j-th token.
                Only used during pretraining for partial prediction.
                Set to None during finetuning.
1018
            inp_q: [optional] float32 Tensor in shape [bsz, len].
thomwolf's avatar
thomwolf committed
1019
1020
1021
1022
                1 for tokens with losses and 0 for tokens without losses.
                Only used during pretraining for two-stream attention.
                Set to None during finetuning.

1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049

        Returns:
            A ``tuple(encoded_layers, pooled_output)``, with

                ``encoded_layers``: controlled by ``output_all_encoded_layers`` argument:

                    - ``output_all_encoded_layers=True``: outputs a list of the full sequences of encoded-hidden-states \
                    at the end of each attention block (i.e. 12 full sequences for XLNet-base, 24 for XLNet-large), \
                    each encoded-hidden-state is a ``torch.FloatTensor`` of size [batch_size, sequence_length, d_model],

                    - ``output_all_encoded_layers=False``: outputs only the full sequence of hidden-states corresponding \
                    to the last attention block of shape [batch_size, sequence_length, d_model],

                ``pooled_output``: a ``torch.FloatTensor`` of size [batch_size, d_model] which is the output of a \
                classifier pretrained on top of the hidden state associated to the first character of the \
                input (`CLS`) to train on the Next-Sentence task (see XLNet's paper).

        Example::

            # Already been converted into WordPiece token ids
            input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
            input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
            token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])

            all_encoder_layers, pooled_output = model(input_ids, token_type_ids, input_mask)
            # or
            all_encoder_layers, pooled_output = model.forward(input_ids, token_type_ids, input_mask)
thomwolf's avatar
thomwolf committed
1050
        """
thomwolf's avatar
thomwolf committed
1051
        transformer_outputs = self.transformer(input_ids, token_type_ids, input_mask, attention_mask,
1052
1053
1054
                                               mems, perm_mask, target_mapping, inp_q, head_mask)

        logits = self.lm_loss(transformer_outputs[0])
1055

1056
        outputs = (logits,) + transformer_outputs[1:]  # Keep mems, hidden states, attentions if there are in it
1057

1058
        if labels is not None:
1059
1060
1061
            # Flatten the tokens
            loss_fct = CrossEntropyLoss(ignore_index=-1)
            loss = loss_fct(logits.view(-1, logits.size(-1)),
1062
                            labels.view(-1))
1063
            outputs = (loss,) + outputs
1064

1065
        return outputs  # return (loss), logits, (mems), (hidden states), (attentions)
1066
1067
1068
1069
1070


class XLNetForSequenceClassification(XLNetPreTrainedModel):
    """XLNet model ("XLNet: Generalized Autoregressive Pretraining for Language Understanding").

1071
    Args:
1072
1073
1074
1075
1076
1077
1078
        `config`: a XLNetConfig class instance with the configuration to build a new model
        `output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
        `keep_multihead_output`: If True, saves output of the multi-head attention module with its gradient.
            This can be used to compute head importance metrics. Default: False
        `summary_type`: str, "last", "first", "mean", or "attn". The method
            to pool the input to get a vector representation. Default: last

1079
1080
1081
1082
1083
1084
1085
1086
1087
1088


    Example::

        # Already been converted into WordPiece token ids
        input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
        input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
        token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])

        all_encoder_layers, pooled_output = model(input_ids, token_type_ids, input_mask)
1089
    """
thomwolf's avatar
thomwolf committed
1090
    def __init__(self, config):
1091
        super(XLNetForSequenceClassification, self).__init__(config)
thomwolf's avatar
thomwolf committed
1092
        self.num_labels = config.num_labels
1093

thomwolf's avatar
thomwolf committed
1094
        self.transformer = XLNetModel(config)
thomwolf's avatar
thomwolf committed
1095
        self.sequence_summary = SequenceSummary(config)
thomwolf's avatar
thomwolf committed
1096
        self.logits_proj = nn.Linear(config.d_model, config.num_labels)
1097

thomwolf's avatar
thomwolf committed
1098
        self.apply(self.init_weights)
1099

thomwolf's avatar
thomwolf committed
1100
    def forward(self, input_ids, token_type_ids=None, input_mask=None, attention_mask=None,
1101
                mems=None, perm_mask=None, target_mapping=None, inp_q=None,
1102
                labels=None, head_mask=None):
1103
        """
1104
1105
        Performs a model forward pass. **Can be called by calling the class directly, once it has been instantiated.**

1106
        Args:
thomwolf's avatar
thomwolf committed
1107
            input_ids: int32 Tensor in shape [bsz, len], the input token IDs.
thomwolf's avatar
thomwolf committed
1108
            token_type_ids: int32 Tensor in shape [bsz, len], the input segment IDs.
1109
            input_mask: float32 Tensor in shape [bsz, len], the input mask.
1110
                0 for real tokens and 1 for padding.
1111
1112
1113
1114
            attention_mask: [optional] float32 Tensor, SAME FUNCTION as `input_mask`
                but with 1 for real tokens and 0 for padding.
                Added for easy compatibility with the BERT model (which uses this negative masking).
                You can only uses one among `input_mask` and `attention_mask`
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
            mems: a list of float32 Tensors in shape [mem_len, bsz, d_model], memory
                from previous batches. The length of the list equals n_layer.
                If None, no memory is used.
            perm_mask: float32 Tensor in shape [bsz, len, len].
                If perm_mask[k, i, j] = 0, i attend to j in batch k;
                if perm_mask[k, i, j] = 1, i does not attend to j in batch k.
                If None, each position attends to all the others.
            target_mapping: float32 Tensor in shape [bsz, num_predict, len].
                If target_mapping[k, i, j] = 1, the i-th predict in batch k is
                on the j-th token.
1125
1126
                Only used during pre-training for partial prediction.
                Set to None during fine-tuning.
1127
1128
            inp_q: float32 Tensor in shape [bsz, len].
                1 for tokens with losses and 0 for tokens without losses.
1129
1130
                Only used during pre-training for two-stream attention.
                Set to None during fine-tuning.
1131
            labels: TODO Lysandre didn't fill
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
            head_mask: an optional ``torch.Tensor`` of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1.
                It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked.


        Returns:
            A ``tuple(logits_or_loss, mems)``

                ``logits_or_loss``: if ``labels`` is ``None``, ``logits_or_loss`` corresponds to token logits with shape \
                [batch_size, sequence_length]. If it is not ``None``, it corresponds to the ``CrossEntropy`` loss \
                with the targets.

                ``new_mems``: list (num layers) of updated mem states at the entry of each layer \
                each mem state is a ``torch.FloatTensor`` of size [self.config.mem_len, batch_size, self.config.d_model] \
                Note that the first two dimensions are transposed in ``mems`` with regards to ``input_ids`` and ``labels``

        Example::

            # Already been converted into WordPiece token ids
            input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
            input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
            token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])

            all_encoder_layers, pooled_output = model(input_ids, token_type_ids, input_mask)
            # or
            all_encoder_layers, pooled_output = model.forward(input_ids, token_type_ids, input_mask)
1157
        """
thomwolf's avatar
thomwolf committed
1158
        transformer_outputs = self.transformer(input_ids, token_type_ids, input_mask, attention_mask,
1159
                                               mems, perm_mask, target_mapping, inp_q, head_mask)
1160
        output = transformer_outputs[0]
thomwolf's avatar
thomwolf committed
1161

1162
        output = self.sequence_summary(output)
1163
        logits = self.logits_proj(output)
thomwolf's avatar
thomwolf committed
1164

1165
        outputs = (logits,) + transformer_outputs[1:]  # Keep mems, hidden states, attentions if there are in it
1166

1167
1168
1169
        if labels is not None:
            if self.num_labels == 1:
                #  We are doing regression
1170
                loss_fct = MSELoss()
1171
                loss = loss_fct(logits.view(-1), labels.view(-1))
1172
            else:
1173
1174
                loss_fct = CrossEntropyLoss()
                loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
1175
            outputs = (loss,) + outputs
1176
1177

        return outputs  # return (loss), logits, (mems), (hidden states), (attentions)
thomwolf's avatar
thomwolf committed
1178

thomwolf's avatar
thomwolf committed
1179
1180

class XLNetForQuestionAnswering(XLNetPreTrainedModel):
1181
1182
1183
    """
    XLNet model for Question Answering (span extraction).

thomwolf's avatar
thomwolf committed
1184
    This module is composed of the XLNet model with a linear layer on top of
1185
    the sequence output that computes ``start_logits`` and ``end_logits``
thomwolf's avatar
thomwolf committed
1186

1187
    Args:
thomwolf's avatar
thomwolf committed
1188
1189
1190
1191
1192
        `config`: a XLNetConfig class instance with the configuration to build a new model
        `output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
        `keep_multihead_output`: If True, saves output of the multi-head attention module with its gradient.
            This can be used to compute head importance metrics. Default: False

1193
1194
1195
1196
1197
1198
    Example::

        config = XLNetConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
            num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)

        model = XLNetForQuestionAnswering(config)
thomwolf's avatar
thomwolf committed
1199
    """
thomwolf's avatar
thomwolf committed
1200
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
1201
        super(XLNetForQuestionAnswering, self).__init__(config)
thomwolf's avatar
thomwolf committed
1202
1203
        self.start_n_top = config.start_n_top
        self.end_n_top = config.end_n_top
1204

thomwolf's avatar
thomwolf committed
1205
        self.transformer = XLNetModel(config)
thomwolf's avatar
thomwolf committed
1206
1207
1208
        self.start_logits = PoolerStartLogits(config)
        self.end_logits = PoolerEndLogits(config)
        self.answer_class = PoolerAnswerClass(config)
thomwolf's avatar
thomwolf committed
1209

thomwolf's avatar
thomwolf committed
1210
1211
        self.apply(self.init_weights)

thomwolf's avatar
thomwolf committed
1212
    def forward(self, input_ids, token_type_ids=None, input_mask=None, attention_mask=None,
thomwolf's avatar
thomwolf committed
1213
                mems=None, perm_mask=None, target_mapping=None, inp_q=None,
thomwolf's avatar
thomwolf committed
1214
1215
                start_positions=None, end_positions=None, cls_index=None, is_impossible=None, p_mask=None,
                head_mask=None):
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262

        """
        Performs a model forward pass. **Can be called by calling the class directly, once it has been instantiated.**

        Args:
            `input_ids`: a ``torch.LongTensor`` of shape [batch_size, sequence_length]
                with the word token indices in the vocabulary(see the tokens pre-processing logic in the scripts
                `run_bert_extract_features.py`, `run_bert_classifier.py` and `run_bert_squad.py`)
            `token_type_ids`: an optional ``torch.LongTensor`` of shape [batch_size, sequence_length] with the token
                types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
                a `sentence B` token (see XLNet paper for more details).
            `attention_mask`: [optional] float32 Tensor, SAME FUNCTION as `input_mask`
                but with 1 for real tokens and 0 for padding.
                Added for easy compatibility with the BERT model (which uses this negative masking).
                You can only uses one among ``input_mask`` and ``attention_mask``
            `input_mask`: an optional ``torch.LongTensor`` of shape [batch_size, sequence_length] with indices
                selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
                input sequence length in the current batch. It's the mask that we typically use for attention when
                a batch has varying length sentences.
            `start_positions`: position of the first token for the labeled span: ``torch.LongTensor`` of shape [batch_size].
                Positions are clamped to the length of the sequence and position outside of the sequence are not taken
                into account for computing the loss.
            `end_positions`: position of the last token for the labeled span: ``torch.LongTensor`` of shape [batch_size].
                Positions are clamped to the length of the sequence and position outside of the sequence are not taken
                into account for computing the loss.
            `head_mask`: an optional ``torch.Tensor`` of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1.
                It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked.

        Returns:
            if ``start_positions`` and ``end_positions`` are not ``None``, outputs the total_loss which is the sum of the \
            ``CrossEntropy`` loss for the start and end token positions.

            if ``start_positions`` or ``end_positions`` is ``None``, outputs a tuple of ``start_logits``, ``end_logits``
            which are the logits respectively for the start and end position tokens of shape \
            [batch_size, sequence_length].

        Example::

            # Already been converted into WordPiece token ids
            input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
            input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
            token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])

            start_logits, end_logits = model(input_ids, token_type_ids, input_mask)
            # or
            start_logits, end_logits = model.forward(input_ids, token_type_ids, input_mask)
        """
thomwolf's avatar
thomwolf committed
1263
        transformer_outputs = self.transformer(input_ids, token_type_ids, input_mask, attention_mask,
thomwolf's avatar
thomwolf committed
1264
1265
1266
                                               mems, perm_mask, target_mapping, inp_q, head_mask)
        hidden_states = transformer_outputs[0]
        start_logits = self.start_logits(hidden_states, p_mask)
thomwolf's avatar
thomwolf committed
1267

thomwolf's avatar
thomwolf committed
1268
        outputs = transformer_outputs[1:]  # Keep mems, hidden states, attentions if there are in it
1269

thomwolf's avatar
thomwolf committed
1270
1271
1272
1273
1274
        if start_positions is not None and end_positions is not None:
            # If we are on multi-GPU, let's remove the dimension added by batch splitting
            for x in (start_positions, end_positions, cls_index, is_impossible):
                if x is not None and x.dim() > 1:
                    x.squeeze_(-1)
thomwolf's avatar
thomwolf committed
1275

thomwolf's avatar
thomwolf committed
1276
1277
            # during training, compute the end logits based on the ground truth of the start position
            end_logits = self.end_logits(hidden_states, start_positions=start_positions, p_mask=p_mask)
1278

thomwolf's avatar
thomwolf committed
1279
            loss_fct = CrossEntropyLoss()
thomwolf's avatar
thomwolf committed
1280
1281
1282
            start_loss = loss_fct(start_logits, start_positions)
            end_loss = loss_fct(end_logits, end_positions)
            total_loss = (start_loss + end_loss) / 2
1283

thomwolf's avatar
thomwolf committed
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
            if cls_index is not None and is_impossible is not None:
                # Predict answerability from the representation of CLS and START
                cls_logits = self.answer_class(hidden_states, start_positions=start_positions, cls_index=cls_index)
                loss_fct_cls = nn.BCEWithLogitsLoss()
                cls_loss = loss_fct_cls(cls_logits, is_impossible)

                # note(zhiliny): by default multiply the loss by 0.5 so that the scale is
                # comparable to start_loss and end_loss
                total_loss += cls_loss * 0.5
                outputs = (total_loss, start_logits, end_logits, cls_logits) + outputs
            else:
                outputs = (total_loss, start_logits, end_logits) + outputs

        else:
            # during inference, compute the end logits based on beam search
            bsz, slen, hsz = hidden_states.size()
            start_log_probs = F.softmax(start_logits, dim=-1) # shape (bsz, slen)

            start_top_log_probs, start_top_index = torch.topk(start_log_probs, self.start_n_top, dim=-1) # shape (bsz, start_n_top)
            start_top_index = start_top_index.unsqueeze(-1).expand(-1, -1, hsz) # shape (bsz, start_n_top, hsz)
            start_states = torch.gather(hidden_states, -2, start_top_index) # shape (bsz, start_n_top, hsz)
            start_states = start_states.unsqueeze(1).expand(-1, slen, -1, -1) # shape (bsz, slen, start_n_top, hsz)

            hidden_states_expanded = hidden_states.unsqueeze(2).expand_as(start_states) # shape (bsz, slen, start_n_top, hsz)
            p_mask = p_mask.unsqueeze(-1) if p_mask is not None else None
            end_logits = self.end_logits(hidden_states_expanded, start_states=start_states, p_mask=p_mask)
            end_log_probs = F.softmax(end_logits, dim=1) # shape (bsz, slen, start_n_top)

            end_top_log_probs, end_top_index = torch.topk(end_log_probs, self.end_n_top, dim=1) # shape (bsz, end_n_top, start_n_top)
            end_top_log_probs = end_top_log_probs.view(-1, self.start_n_top * self.end_n_top)
            end_top_index = end_top_index.view(-1, self.start_n_top * self.end_n_top)

            start_states = torch.einsum("blh,bl->bh", hidden_states, start_log_probs)
            cls_logits = self.answer_class(hidden_states, start_states=start_states, cls_index=cls_index)

            outputs = (start_top_log_probs, start_top_index, end_top_log_probs, end_top_index, cls_logits) + outputs

        # return start_top_log_probs, start_top_index, end_top_log_probs, end_top_index, cls_logits, mems, (hidden states), (attentions)
        # or (if labels are provided) total_loss, start_logits, end_logits, (cls_logits), mems, (hidden states), (attentions)
        return outputs