modeling_xlnet.py 60 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
# coding=utf-8
# Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch XLNet model.
"""
from __future__ import (absolute_import, division, print_function,
                        unicode_literals)
from __future__ import absolute_import, division, print_function, unicode_literals

import json
import logging
import math
import os
import sys
from io import open

import torch
from torch import nn
thomwolf's avatar
thomwolf committed
31
from torch.nn import functional as F
32
from torch.nn import CrossEntropyLoss, MSELoss
thomwolf's avatar
thomwolf committed
33

34
from .modeling_utils import (CONFIG_NAME, WEIGHTS_NAME, PretrainedConfig, PreTrainedModel,
35
                             SequenceSummary, PoolerAnswerClass, PoolerEndLogits, PoolerStartLogits)
36

thomwolf's avatar
thomwolf committed
37
38
39

logger = logging.getLogger(__name__)

40
XLNET_PRETRAINED_MODEL_ARCHIVE_MAP = {
thomwolf's avatar
thomwolf committed
41
42
    'xlnet-large-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/xlnet-large-cased-pytorch_model.bin",
}
43
XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP = {
thomwolf's avatar
thomwolf committed
44
45
46
    'xlnet-large-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/xlnet-large-cased-config.json",
}

thomwolf's avatar
thomwolf committed
47

48
def build_tf_xlnet_to_pytorch_map(model, config, tf_weights=None):
thomwolf's avatar
thomwolf committed
49
50
51
52
53
54
55
56
    """ A map of modules from TF to PyTorch.
        I use a map to keep the PyTorch model as
        identical to the original PyTorch model as possible.
    """

    tf_to_pt_map = {}

    if hasattr(model, 'transformer'):
57
58
59
        if hasattr(model, 'lm_loss'):
            # We will load also the output bias
            tf_to_pt_map['model/lm_loss/bias'] = model.lm_loss.bias
60
        if hasattr(model, 'sequence_summary') and 'model/sequnece_summary/summary/kernel' in tf_weights:
61
62
63
            # We will load also the sequence summary
            tf_to_pt_map['model/sequnece_summary/summary/kernel'] = model.sequence_summary.summary.weight
            tf_to_pt_map['model/sequnece_summary/summary/bias'] = model.sequence_summary.summary.bias
thomwolf's avatar
thomwolf committed
64
65
        if hasattr(model, 'logits_proj') and config.finetuning_task is not None \
                and 'model/regression_{}/logit/kernel'.format(config.finetuning_task) in tf_weights:
66
67
            tf_to_pt_map['model/regression_{}/logit/kernel'.format(config.finetuning_task)] = model.logits_proj.weight
            tf_to_pt_map['model/regression_{}/logit/bias'.format(config.finetuning_task)] = model.logits_proj.bias
68

thomwolf's avatar
thomwolf committed
69
70
71
72
73
        # Now load the rest of the transformer
        model = model.transformer

    # Embeddings and output
    tf_to_pt_map.update({'model/transformer/word_embedding/lookup_table': model.word_embedding.weight,
74
                         'model/transformer/mask_emb/mask_emb': model.mask_emb})
thomwolf's avatar
thomwolf committed
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117

    # Transformer blocks
    for i, b in enumerate(model.layer):
        layer_str = "model/transformer/layer_%d/" % i
        tf_to_pt_map.update({
            layer_str + "rel_attn/LayerNorm/gamma": b.rel_attn.layer_norm.weight,
            layer_str + "rel_attn/LayerNorm/beta": b.rel_attn.layer_norm.bias,
            layer_str + "rel_attn/o/kernel": b.rel_attn.o,
            layer_str + "rel_attn/q/kernel": b.rel_attn.q,
            layer_str + "rel_attn/k/kernel": b.rel_attn.k,
            layer_str + "rel_attn/r/kernel": b.rel_attn.r,
            layer_str + "rel_attn/v/kernel": b.rel_attn.v,
            layer_str + "ff/LayerNorm/gamma": b.ff.layer_norm.weight,
            layer_str + "ff/LayerNorm/beta": b.ff.layer_norm.bias,
            layer_str + "ff/layer_1/kernel": b.ff.layer_1.weight,
            layer_str + "ff/layer_1/bias": b.ff.layer_1.bias,
            layer_str + "ff/layer_2/kernel": b.ff.layer_2.weight,
            layer_str + "ff/layer_2/bias": b.ff.layer_2.bias,
        })

    # Relative positioning biases
    if config.untie_r:
        r_r_list = []
        r_w_list = []
        r_s_list = []
        seg_embed_list = []
        for b in model.layer:
            r_r_list.append(b.rel_attn.r_r_bias)
            r_w_list.append(b.rel_attn.r_w_bias)
            r_s_list.append(b.rel_attn.r_s_bias)
            seg_embed_list.append(b.rel_attn.seg_embed)
    else:
        r_r_list = [model.r_r_bias]
        r_w_list = [model.r_w_bias]
        r_s_list = [model.r_s_bias]
        seg_embed_list = [model.seg_embed]
    tf_to_pt_map.update({
        'model/transformer/r_r_bias': r_r_list,
        'model/transformer/r_w_bias': r_w_list,
        'model/transformer/r_s_bias': r_s_list,
        'model/transformer/seg_embed': seg_embed_list})
    return tf_to_pt_map

118
def load_tf_weights_in_xlnet(model, config, tf_path):
thomwolf's avatar
thomwolf committed
119
120
121
122
123
124
125
126
127
128
129
    """ Load tf checkpoints in a pytorch model
    """
    try:
        import numpy as np
        import tensorflow as tf
    except ImportError:
        print("Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see "
            "https://www.tensorflow.org/install/ for installation instructions.")
        raise
    # Load weights from TF model
    init_vars = tf.train.list_variables(tf_path)
thomwolf's avatar
thomwolf committed
130
    tf_weights = {}
thomwolf's avatar
thomwolf committed
131
132
133
    for name, shape in init_vars:
        print("Loading TF weight {} with shape {}".format(name, shape))
        array = tf.train.load_variable(tf_path, name)
thomwolf's avatar
thomwolf committed
134
        tf_weights[name] = array
thomwolf's avatar
thomwolf committed
135

136
    # Build TF to PyTorch weights loading map
137
    tf_to_pt_map = build_tf_xlnet_to_pytorch_map(model, config, tf_weights)
138

thomwolf's avatar
thomwolf committed
139
140
    for name, pointer in tf_to_pt_map.items():
        print("Importing {}".format(name))
141
142
143
        if name not in tf_weights:
            print("{} not in tf pre-trained weights, skipping".format(name))
            continue
thomwolf's avatar
thomwolf committed
144
        array = tf_weights[name]
thomwolf's avatar
thomwolf committed
145
146
        # adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
        # which are not required for using pretrained model
147
        if 'kernel' in name and ('ff' in name or 'summary' in name or 'logit' in name):
thomwolf's avatar
thomwolf committed
148
            print("Transposing")
thomwolf's avatar
thomwolf committed
149
            array = np.transpose(array)
thomwolf's avatar
thomwolf committed
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
        if isinstance(pointer, list):
            # Here we will split the TF weigths
            assert len(pointer) == array.shape[0]
            for i, p_i in enumerate(pointer):
                arr_i = array[i, ...]
                try:
                    assert p_i.shape == arr_i.shape
                except AssertionError as e:
                    e.args += (p_i.shape, arr_i.shape)
                    raise
                print("Initialize PyTorch weight {} for layer {}".format(name, i))
                p_i.data = torch.from_numpy(arr_i)
        else:
            try:
                assert pointer.shape == array.shape
            except AssertionError as e:
                e.args += (pointer.shape, array.shape)
                raise
            print("Initialize PyTorch weight {}".format(name))
            pointer.data = torch.from_numpy(array)
        tf_weights.pop(name, None)
        tf_weights.pop(name + '/Adam', None)
        tf_weights.pop(name + '/Adam_1', None)

    print("Weights not copied to PyTorch model: {}".format(', '.join(tf_weights.keys())))
thomwolf's avatar
thomwolf committed
175
176
177
178
    return model


def gelu(x):
179
180
    """ Implementation of the gelu activation function.
        XLNet is using OpenAI GPT's gelu (not exactly the same as BERT)
thomwolf's avatar
thomwolf committed
181
182
        Also see https://arxiv.org/abs/1606.08415
    """
183
184
    cdf = 0.5 * (1.0 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))
    return x * cdf
thomwolf's avatar
thomwolf committed
185
186
187
188
189
190
191
192
193


def swish(x):
    return x * torch.sigmoid(x)


ACT2FN = {"gelu": gelu, "relu": torch.nn.functional.relu, "swish": swish}


194
class XLNetConfig(PretrainedConfig):
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
    """Configuration class to store the configuration of a ``XLNetModel``.

    Args:
        vocab_size_or_config_json_file: Vocabulary size of ``inputs_ids`` in ``XLNetModel``.
        d_model: Size of the encoder layers and the pooler layer.
        n_layer: Number of hidden layers in the Transformer encoder.
        n_head: Number of attention heads for each attention layer in
            the Transformer encoder.
        d_inner: The size of the "intermediate" (i.e., feed-forward)
            layer in the Transformer encoder.
        ff_activation: The non-linear activation function (function or string) in the
            encoder and pooler. If string, "gelu", "relu" and "swish" are supported.
        untie_r: untie relative position biases
        attn_type: 'bi' for XLNet, 'uni' for Transformer-XL

        dropout: The dropout probabilitiy for all fully connected
            layers in the embeddings, encoder, and pooler.
        dropatt: The dropout ratio for the attention
            probabilities.
        max_position_embeddings: The maximum sequence length that this model might
            ever be used with. Typically set this to something large just in case
            (e.g., 512 or 1024 or 2048).
        initializer_range: The sttdev of the truncated_normal_initializer for
            initializing all weight matrices.
        layer_norm_eps: The epsilon used by LayerNorm.

        dropout: float, dropout rate.
        dropatt: float, dropout rate on attention probabilities.
        init: str, the initialization scheme, either "normal" or "uniform".
        init_range: float, initialize the parameters with a uniform distribution
            in [-init_range, init_range]. Only effective when init="uniform".
        init_std: float, initialize the parameters with a normal distribution
            with mean 0 and stddev init_std. Only effective when init="normal".
        mem_len: int, the number of tokens to cache.
        reuse_len: int, the number of tokens in the currect batch to be cached
            and reused in the future.
        bi_data: bool, whether to use bidirectional input pipeline.
            Usually set to True during pretraining and False during finetuning.
        clamp_len: int, clamp all relative distances larger than clamp_len.
            -1 means no clamping.
        same_length: bool, whether to use the same attention length for each token.
        finetuning_task: name of the glue task on which the model was fine-tuned if any
thomwolf's avatar
thomwolf committed
237
    """
238
    pretrained_config_archive_map = XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP
239

thomwolf's avatar
thomwolf committed
240
    def __init__(self,
thomwolf's avatar
thomwolf committed
241
                 vocab_size_or_config_json_file=32000,
thomwolf's avatar
thomwolf committed
242
243
244
245
                 d_model=1024,
                 n_layer=24,
                 n_head=16,
                 d_inner=4096,
thomwolf's avatar
thomwolf committed
246
247
                 ff_activation="gelu",
                 untie_r=True,
thomwolf's avatar
thomwolf committed
248
                 attn_type="bi",
thomwolf's avatar
thomwolf committed
249
250
251

                 max_position_embeddings=512,
                 initializer_range=0.02,
thomwolf's avatar
thomwolf committed
252
253
254
255
256
257
258
259
260
261
262
                 layer_norm_eps=1e-12,

                 dropout=0.1,
                 dropatt=0.1,
                 init="normal",
                 init_range=0.1,
                 init_std=0.02,
                 mem_len=None,
                 reuse_len=None,
                 bi_data=False,
                 clamp_len=-1,
263
                 same_length=False,
thomwolf's avatar
thomwolf committed
264

thomwolf's avatar
thomwolf committed
265
266
                 finetuning_task=None,
                 num_labels=2,
thomwolf's avatar
thomwolf committed
267
268
269
                 summary_type='last',
                 summary_use_proj=True,
                 summary_activation='tanh',
270
                 summary_last_dropout=0.1,
thomwolf's avatar
thomwolf committed
271
272
                 start_n_top=5,
                 end_n_top=5,
thomwolf's avatar
thomwolf committed
273
                 **kwargs):
thomwolf's avatar
thomwolf committed
274
275
        """Constructs XLNetConfig.
        """
thomwolf's avatar
thomwolf committed
276
277
        super(XLNetConfig, self).__init__(**kwargs)

thomwolf's avatar
thomwolf committed
278
279
280
281
282
283
284
        if isinstance(vocab_size_or_config_json_file, str) or (sys.version_info[0] == 2
                        and isinstance(vocab_size_or_config_json_file, unicode)):
            with open(vocab_size_or_config_json_file, "r", encoding='utf-8') as reader:
                json_config = json.loads(reader.read())
            for key, value in json_config.items():
                self.__dict__[key] = value
        elif isinstance(vocab_size_or_config_json_file, int):
thomwolf's avatar
thomwolf committed
285
            self.n_token = vocab_size_or_config_json_file
thomwolf's avatar
thomwolf committed
286
287
288
            self.d_model = d_model
            self.n_layer = n_layer
            self.n_head = n_head
thomwolf's avatar
thomwolf committed
289
290
            assert d_model % n_head == 0
            self.d_head = d_model // n_head
thomwolf's avatar
thomwolf committed
291
292
293
            self.ff_activation = ff_activation
            self.d_inner = d_inner
            self.untie_r = untie_r
thomwolf's avatar
thomwolf committed
294
            self.attn_type = attn_type
thomwolf's avatar
thomwolf committed
295

thomwolf's avatar
thomwolf committed
296
297
298
            self.max_position_embeddings = max_position_embeddings
            self.initializer_range = initializer_range
            self.layer_norm_eps = layer_norm_eps
thomwolf's avatar
thomwolf committed
299
300
301
302
303
304
305
306
307
308
309

            self.init = init
            self.init_range = init_range
            self.init_std = init_std
            self.dropout = dropout
            self.dropatt = dropatt
            self.mem_len = mem_len
            self.reuse_len = reuse_len
            self.bi_data = bi_data
            self.clamp_len = clamp_len
            self.same_length = same_length
thomwolf's avatar
thomwolf committed
310

311
            self.finetuning_task = finetuning_task
thomwolf's avatar
thomwolf committed
312
313
            self.num_labels = num_labels
            self.summary_type = summary_type
thomwolf's avatar
thomwolf committed
314
315
            self.summary_use_proj = summary_use_proj
            self.summary_activation = summary_activation
316
            self.summary_last_dropout = summary_last_dropout
thomwolf's avatar
thomwolf committed
317
318
            self.start_n_top = start_n_top
            self.end_n_top = end_n_top
thomwolf's avatar
thomwolf committed
319
320
321
322
        else:
            raise ValueError("First argument must be either a vocabulary size (int)"
                             "or the path to a pretrained model config file (str)")

thomwolf's avatar
thomwolf committed
323
324
325
326
327
328
329
330
331
332
333
334
    @property
    def hidden_size(self):
        return self.d_model

    @property
    def num_attention_heads(self):
        return self.n_head

    @property
    def num_hidden_layers(self):
        return self.n_layer

thomwolf's avatar
thomwolf committed
335
336
337
338
339
340

try:
    from apex.normalization.fused_layer_norm import FusedLayerNorm as XLNetLayerNorm
except ImportError:
    logger.info("Better speed can be achieved with apex installed from https://www.github.com/nvidia/apex .")
    class XLNetLayerNorm(nn.Module):
thomwolf's avatar
thomwolf committed
341
        def __init__(self, d_model, eps=1e-12):
thomwolf's avatar
thomwolf committed
342
343
344
            """Construct a layernorm module in the TF style (epsilon inside the square root).
            """
            super(XLNetLayerNorm, self).__init__()
thomwolf's avatar
thomwolf committed
345
346
            self.weight = nn.Parameter(torch.ones(d_model))
            self.bias = nn.Parameter(torch.zeros(d_model))
thomwolf's avatar
thomwolf committed
347
348
349
350
351
352
353
354
            self.variance_epsilon = eps

        def forward(self, x):
            u = x.mean(-1, keepdim=True)
            s = (x - u).pow(2).mean(-1, keepdim=True)
            x = (x - u) / torch.sqrt(s + self.variance_epsilon)
            return self.weight * x + self.bias

thomwolf's avatar
thomwolf committed
355
class XLNetRelativeAttention(nn.Module):
thomwolf's avatar
thomwolf committed
356
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
357
        super(XLNetRelativeAttention, self).__init__()
thomwolf's avatar
thomwolf committed
358
359
        self.output_attentions = config.output_attentions

thomwolf's avatar
thomwolf committed
360
        if config.d_model % config.n_head != 0:
thomwolf's avatar
thomwolf committed
361
362
            raise ValueError(
                "The hidden size (%d) is not a multiple of the number of attention "
thomwolf's avatar
thomwolf committed
363
                "heads (%d)" % (config.d_model, config.n_head))
thomwolf's avatar
thomwolf committed
364

thomwolf's avatar
thomwolf committed
365
        self.n_head = config.n_head
thomwolf's avatar
thomwolf committed
366
367
368
369
370
371
372
373
374
375
376
377
378
        self.d_head = config.d_head
        self.d_model = config.d_model
        self.scale = 1 / (config.d_head ** 0.5)

        self.q = nn.Parameter(torch.Tensor(config.d_model, self.n_head, self.d_head))
        self.k = nn.Parameter(torch.Tensor(config.d_model, self.n_head, self.d_head))
        self.v = nn.Parameter(torch.Tensor(config.d_model, self.n_head, self.d_head))
        self.o = nn.Parameter(torch.Tensor(config.d_model, self.n_head, self.d_head))
        self.r = nn.Parameter(torch.Tensor(config.d_model, self.n_head, self.d_head))

        self.r_r_bias = nn.Parameter(torch.Tensor(self.n_head, self.d_head))
        self.r_s_bias = nn.Parameter(torch.Tensor(self.n_head, self.d_head))
        self.r_w_bias = nn.Parameter(torch.Tensor(self.n_head, self.d_head))
thomwolf's avatar
thomwolf committed
379
        self.seg_embed = nn.Parameter(torch.Tensor(2, self.n_head, self.d_head))
thomwolf's avatar
thomwolf committed
380

thomwolf's avatar
thomwolf committed
381
        self.layer_norm = XLNetLayerNorm(config.d_model, eps=config.layer_norm_eps)
thomwolf's avatar
thomwolf committed
382
383
384
385
386
        self.dropout = nn.Dropout(config.dropout)

    def prune_heads(self, heads):
        raise NotImplementedError

thomwolf's avatar
thomwolf committed
387
388
389
390
391
392
393
394
    @staticmethod
    def rel_shift(x, klen=-1):
        """perform relative shift to form the relative attention score."""
        x_size = x.shape

        x = x.reshape(x_size[1], x_size[0], x_size[2], x_size[3])
        x = x[1:, ...]
        x = x.reshape(x_size[0], x_size[1] - 1, x_size[2], x_size[3])
395
396
        # x = x[:, 0:klen, :, :]
        x = torch.index_select(x, 1, torch.arange(klen))
thomwolf's avatar
thomwolf committed
397
398
399

        return x

400
    def rel_attn_core(self, q_head, k_head_h, v_head_h, k_head_r, seg_mat=None, attn_mask=None, head_mask=None):
thomwolf's avatar
thomwolf committed
401
402
403
404
405
406
407
        """Core relative positional attention operations."""

        # content based attention score
        ac = torch.einsum('ibnd,jbnd->ijbn', q_head + self.r_w_bias, k_head_h)

        # position based attention score
        bd = torch.einsum('ibnd,jbnd->ijbn', q_head + self.r_r_bias, k_head_r)
thomwolf's avatar
thomwolf committed
408
        bd = self.rel_shift(bd, klen=ac.shape[1])
thomwolf's avatar
thomwolf committed
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426

        # segment based attention score
        if seg_mat is None:
            ef = 0
        else:
            ef = torch.einsum('ibnd,snd->ibns', q_head + self.r_s_bias, self.seg_embed)
            ef = torch.einsum('ijbs,ibns->ijbn', seg_mat, ef)

        # merge attention scores and perform masking
        attn_score = (ac + bd + ef) * self.scale
        if attn_mask is not None:
            # attn_score = attn_score * (1 - attn_mask) - 1e30 * attn_mask
            attn_score = attn_score - 1e30 * attn_mask

        # attention probability
        attn_prob = F.softmax(attn_score, dim=1)
        attn_prob = self.dropout(attn_prob)

427
428
429
430
        # Mask heads if we want to
        if head_mask is not None:
            attn_prob = attn_prob * head_mask

thomwolf's avatar
thomwolf committed
431
432
433
        # attention output
        attn_vec = torch.einsum('ijbn,jbnd->ibnd', attn_prob, v_head_h)

434
435
436
        if self.output_attentions:
            return attn_vec, attn_prob

thomwolf's avatar
thomwolf committed
437
438
439
440
441
442
443
444
445
446
        return attn_vec

    def post_attention(self, h, attn_vec, residual=True):
        """Post-attention processing."""
        # post-attention projection (back to `d_model`)
        attn_out = torch.einsum('ibnd,hnd->ibh', attn_vec, self.o)

        attn_out = self.dropout(attn_out)
        if residual:
            attn_out = attn_out + h
thomwolf's avatar
thomwolf committed
447
        output = self.layer_norm(attn_out)
thomwolf's avatar
thomwolf committed
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477

        return output

    def forward(self, h, g,
                      attn_mask_h, attn_mask_g,
                      r, seg_mat,
                      mems=None, target_mapping=None, head_mask=None):
        if g is not None:
            ###### Two-stream attention with relative positional encoding.
            # content based attention score
            if mems is not None and mems.dim() > 1:
                cat = torch.cat([mems, h], dim=0)
            else:
                cat = h

            # content-based key head
            k_head_h = torch.einsum('ibh,hnd->ibnd', cat, self.k)

            # content-based value head
            v_head_h = torch.einsum('ibh,hnd->ibnd', cat, self.v)

            # position-based key head
            k_head_r = torch.einsum('ibh,hnd->ibnd', r, self.r)

            ##### h-stream
            # content-stream query head
            q_head_h = torch.einsum('ibh,hnd->ibnd', h, self.q)

            # core attention ops
            attn_vec_h = self.rel_attn_core(
478
479
480
481
                q_head_h, k_head_h, v_head_h, k_head_r, seg_mat=seg_mat, attn_mask=attn_mask_h, head_mask=head_mask)

            if self.output_attentions:
                attn_vec_h, attn_prob_h = attn_vec_h
thomwolf's avatar
thomwolf committed
482
483
484
485
486
487
488
489
490
491
492
493

            # post processing
            output_h = self.post_attention(h, attn_vec_h)

            ##### g-stream
            # query-stream query head
            q_head_g = torch.einsum('ibh,hnd->ibnd', g, self.q)

            # core attention ops
            if target_mapping is not None:
                q_head_g = torch.einsum('mbnd,mlb->lbnd', q_head_g, target_mapping)
                attn_vec_g = self.rel_attn_core(
494
495
496
497
498
                    q_head_g, k_head_h, v_head_h, k_head_r, seg_mat=seg_mat, attn_mask=attn_mask_g, head_mask=head_mask)

                if self.output_attentions:
                    attn_vec_g, attn_prob_g = attn_vec_g

thomwolf's avatar
thomwolf committed
499
500
501
                attn_vec_g = torch.einsum('lbnd,mlb->mbnd', attn_vec_g, target_mapping)
            else:
                attn_vec_g = self.rel_attn_core(
502
503
504
505
                    q_head_g, k_head_h, v_head_h, k_head_r, seg_mat=seg_mat, attn_mask=attn_mask_g, head_mask=head_mask)

                if self.output_attentions:
                    attn_vec_g, attn_prob_g = attn_vec_g
thomwolf's avatar
thomwolf committed
506
507
508

            # post processing
            output_g = self.post_attention(g, attn_vec_g)
509
510
511
512

            if self.output_attentions:
                attn_prob = attn_prob_h, attn_prob_g

thomwolf's avatar
thomwolf committed
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
        else:
            ###### Multi-head attention with relative positional encoding
            if mems is not None and mems.dim() > 1:
                cat = torch.cat([mems, h], dim=0)
            else:
                cat = h

            # content heads
            q_head_h = torch.einsum('ibh,hnd->ibnd', h, self.q)
            k_head_h = torch.einsum('ibh,hnd->ibnd', cat, self.k)
            v_head_h = torch.einsum('ibh,hnd->ibnd', cat, self.v)

            # positional heads
            k_head_r = torch.einsum('ibh,hnd->ibnd', r, self.r)

            # core attention ops
            attn_vec = self.rel_attn_core(
530
531
532
533
                q_head_h, k_head_h, v_head_h, k_head_r, seg_mat=seg_mat, attn_mask=attn_mask_h, head_mask=head_mask)

            if self.output_attentions:
                attn_vec, attn_prob = attn_vec
thomwolf's avatar
thomwolf committed
534
535

            # post processing
thomwolf's avatar
thomwolf committed
536
537
            output_h = self.post_attention(h, attn_vec)
            output_g = None
thomwolf's avatar
thomwolf committed
538

539
        outputs = (output_h, output_g)
540
        if self.output_attentions:
541
            outputs = outputs + (attn_prob,)
thomwolf's avatar
thomwolf committed
542
        return outputs
thomwolf's avatar
thomwolf committed
543
544
545
546

class XLNetFeedForward(nn.Module):
    def __init__(self, config):
        super(XLNetFeedForward, self).__init__()
thomwolf's avatar
thomwolf committed
547
        self.layer_norm = XLNetLayerNorm(config.d_model, eps=config.layer_norm_eps)
thomwolf's avatar
thomwolf committed
548
549
550
        self.layer_1 = nn.Linear(config.d_model, config.d_inner)
        self.layer_2 = nn.Linear(config.d_inner, config.d_model)
        self.dropout = nn.Dropout(config.dropout)
551
552
        if isinstance(config.ff_activation, str) or \
                (sys.version_info[0] == 2 and isinstance(config.ff_activation, unicode)):
thomwolf's avatar
thomwolf committed
553
554
555
556
            self.activation_function = ACT2FN[config.ff_activation]
        else:
            self.activation_function = config.ff_activation

thomwolf's avatar
thomwolf committed
557
558
559
560
561
562
563
    def forward(self, inp):
        output = inp
        output = self.layer_1(output)
        output = self.activation_function(output)
        output = self.dropout(output)
        output = self.layer_2(output)
        output = self.dropout(output)
thomwolf's avatar
thomwolf committed
564
        output = self.layer_norm(output + inp)
thomwolf's avatar
thomwolf committed
565
        return output
thomwolf's avatar
thomwolf committed
566
567

class XLNetLayer(nn.Module):
thomwolf's avatar
thomwolf committed
568
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
569
        super(XLNetLayer, self).__init__()
thomwolf's avatar
thomwolf committed
570
        self.rel_attn = XLNetRelativeAttention(config)
thomwolf's avatar
thomwolf committed
571
572
573
574
575
        self.ff = XLNetFeedForward(config)
        self.dropout = nn.Dropout(config.dropout)

    def forward(self, output_h, output_g,
                attn_mask_h, attn_mask_g,
576
577
578
579
580
581
                r, seg_mat, mems=None, target_mapping=None, head_mask=None):
        outputs = self.rel_attn(output_h, output_g, attn_mask_h, attn_mask_g,
                                r, seg_mat, mems=mems, target_mapping=target_mapping,
                                head_mask=head_mask)
        output_h, output_g = outputs[:2]

thomwolf's avatar
thomwolf committed
582
        if output_g is not None:
thomwolf's avatar
thomwolf committed
583
584
585
            output_g = self.ff(output_g)
        output_h = self.ff(output_h)

586
        outputs = (output_h, output_g) + outputs[2:]  # Add again attentions if there are there
587
        return outputs
thomwolf's avatar
thomwolf committed
588

589
590

class XLNetPreTrainedModel(PreTrainedModel):
thomwolf's avatar
thomwolf committed
591
592
593
    """ An abstract class to handle weights initialization and
        a simple interface for dowloading and loading pretrained models.
    """
594
    config_class = XLNetConfig
595
    pretrained_model_archive_map = XLNET_PRETRAINED_MODEL_ARCHIVE_MAP
596
597
598
599
600
    load_tf_weights = load_tf_weights_in_xlnet
    base_model_prefix = "transformer"

    def __init__(self, *inputs, **kwargs):
        super(XLNetPreTrainedModel, self).__init__(*inputs, **kwargs)
thomwolf's avatar
thomwolf committed
601

thomwolf's avatar
thomwolf committed
602
    def init_weights(self, module):
thomwolf's avatar
thomwolf committed
603
604
605
606
607
608
        """ Initialize the weights.
        """
        if isinstance(module, (nn.Linear, nn.Embedding)):
            # Slightly different from the TF version which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
609
610
            if isinstance(module, nn.Linear) and module.bias is not None:
                module.bias.data.zero_()
thomwolf's avatar
thomwolf committed
611
612
613
        elif isinstance(module, XLNetLayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)
614
615
616
617
618
        elif isinstance(module, XLNetRelativeAttention):
            for param in [module.q, module.k, module.v, module.o, module.r,
                          module.r_r_bias, module.r_s_bias, module.r_w_bias,
                          module.seg_embed]:
                param.data.normal_(mean=0.0, std=self.config.initializer_range)
619
620
        elif isinstance(module, XLNetModel):
                module.mask_emb.data.normal_(mean=0.0, std=self.config.initializer_range)
thomwolf's avatar
thomwolf committed
621
622
623


class XLNetModel(XLNetPreTrainedModel):
624
625
626
627
628
629
630
631
632
633
634
635
    """XLNet model ("XLNet: Generalized Autoregressive Pretraining for Language Understanding").

    TODO: this was copied from the XLNetLMHeadModel, check that it's ok.

    Args:
        `config`: a XLNetConfig class instance with the configuration to build a new model
        `output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
        `keep_multihead_output`: If True, saves output of the multi-head attention module with its gradient.
            This can be used to compute head importance metrics. Default: False

    TODO: Add usage
    """
thomwolf's avatar
thomwolf committed
636
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
637
        super(XLNetModel, self).__init__(config)
thomwolf's avatar
thomwolf committed
638
639
        self.output_attentions = config.output_attentions
        self.output_hidden_states = config.output_hidden_states
640

thomwolf's avatar
thomwolf committed
641
642
        self.mem_len = config.mem_len
        self.reuse_len = config.reuse_len
thomwolf's avatar
thomwolf committed
643
644
645
646
647
        self.d_model = config.d_model
        self.same_length = config.same_length
        self.attn_type = config.attn_type
        self.bi_data = config.bi_data
        self.clamp_len = config.clamp_len
thomwolf's avatar
thomwolf committed
648
        self.n_layer = config.n_layer
thomwolf's avatar
thomwolf committed
649

thomwolf's avatar
thomwolf committed
650
651
        self.word_embedding = nn.Embedding(config.n_token, config.d_model)
        self.mask_emb = nn.Parameter(torch.Tensor(1, 1, config.d_model))
652
        self.layer = nn.ModuleList([XLNetLayer(config) for _ in range(config.n_layer)])
thomwolf's avatar
thomwolf committed
653
        self.dropout = nn.Dropout(config.dropout)
thomwolf's avatar
thomwolf committed
654

655
656
        self.apply(self.init_weights)

thomwolf's avatar
thomwolf committed
657
658
659
    def _prune_heads(self, heads_to_prune):
        logger.info("Head pruning is not implemented for XLNet")
        pass
thomwolf's avatar
thomwolf committed
660

thomwolf's avatar
thomwolf committed
661
    def create_mask(self, qlen, mlen):
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
        """
        Creates causal attention mask. Float mask where 1.0 indicates masked, 0.0 indicates not-masked.

        Args:
            qlen: TODO
            mlen: TODO

        ::

                  same_length=False:      same_length=True:
                  <mlen > <  qlen >       <mlen > <  qlen >
               ^ [0 0 0 0 0 1 1 1 1]     [0 0 0 0 0 1 1 1 1]
                 [0 0 0 0 0 0 1 1 1]     [1 0 0 0 0 0 1 1 1]
            qlen [0 0 0 0 0 0 0 1 1]     [1 1 0 0 0 0 0 1 1]
                 [0 0 0 0 0 0 0 0 1]     [1 1 1 0 0 0 0 0 1]
               v [0 0 0 0 0 0 0 0 0]     [1 1 1 1 0 0 0 0 0]

thomwolf's avatar
thomwolf committed
679
680
681
682
683
684
685
686
687
688
        """
        attn_mask = torch.ones([qlen, qlen])
        mask_up = torch.triu(attn_mask, diagonal=1)
        attn_mask_pad = torch.zeros([qlen, mlen])
        ret = torch.cat([attn_mask_pad, mask_up], dim=1)
        if self.same_length:
            mask_lo = torch.tril(attn_mask, diagonal=-1)
            ret = torch.cat([ret[:, :qlen] + mask_lo, ret[:, qlen:]], dim=1)

        ret = ret.to(next(self.parameters()))
thomwolf's avatar
thomwolf committed
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
        return ret

    def cache_mem(self, curr_out, prev_mem):
        """cache hidden states into memory."""
        if self.mem_len is None or self.mem_len == 0:
            return None
        else:
            if self.reuse_len is not None and self.reuse_len > 0:
                curr_out = curr_out[:self.reuse_len]

            if prev_mem is None:
                new_mem = curr_out[-self.mem_len:]
            else:
                new_mem = torch.cat([prev_mem, curr_out], dim=0)[-self.mem_len:]

        return new_mem.detach()

thomwolf's avatar
thomwolf committed
706
707
708
709
710
711
712
713
714
715
716
717
    @staticmethod
    def positional_embedding(pos_seq, inv_freq, bsz=None):
        sinusoid_inp = torch.einsum('i,d->id', pos_seq, inv_freq)
        pos_emb = torch.cat([torch.sin(sinusoid_inp), torch.cos(sinusoid_inp)], dim=-1)
        pos_emb = pos_emb[:, None, :]

        if bsz is not None:
            pos_emb = pos_emb.expand(-1, bsz, -1)

        return pos_emb

    def relative_positional_encoding(self, qlen, klen, bsz=None):
thomwolf's avatar
thomwolf committed
718
        """create relative positional encoding."""
thomwolf's avatar
thomwolf committed
719
        freq_seq = torch.arange(0, self.d_model, 2.0, dtype=torch.float)
720
        inv_freq = 1 / torch.pow(10000, (freq_seq / self.d_model))
thomwolf's avatar
thomwolf committed
721
722
723
724
725
726
727
728
729
730
731

        if self.attn_type == 'bi':
            # beg, end = klen - 1, -qlen
            beg, end = klen, -qlen
        elif self.attn_type == 'uni':
            # beg, end = klen - 1, -1
            beg, end = klen, -1
        else:
            raise ValueError('Unknown `attn_type` {}.'.format(self.attn_type))

        if self.bi_data:
thomwolf's avatar
thomwolf committed
732
733
            fwd_pos_seq = torch.arange(beg, end, -1.0, dtype=torch.float)
            bwd_pos_seq = torch.arange(-beg, -end, 1.0, dtype=torch.float)
thomwolf's avatar
thomwolf committed
734
735
736
737
738
739

            if self.clamp_len > 0:
                fwd_pos_seq = fwd_pos_seq.clamp(-self.clamp_len, self.clamp_len)
                bwd_pos_seq = bwd_pos_seq.clamp(-self.clamp_len, self.clamp_len)

            if bsz is not None:
thomwolf's avatar
thomwolf committed
740
741
                fwd_pos_emb = self.positional_embedding(fwd_pos_seq, inv_freq, bsz//2)
                bwd_pos_emb = self.positional_embedding(bwd_pos_seq, inv_freq, bsz//2)
thomwolf's avatar
thomwolf committed
742
            else:
thomwolf's avatar
thomwolf committed
743
744
                fwd_pos_emb = self.positional_embedding(fwd_pos_seq, inv_freq)
                bwd_pos_emb = self.positional_embedding(bwd_pos_seq, inv_freq)
thomwolf's avatar
thomwolf committed
745
746
747

            pos_emb = torch.cat([fwd_pos_emb, bwd_pos_emb], dim=1)
        else:
thomwolf's avatar
thomwolf committed
748
            fwd_pos_seq = torch.arange(beg, end, -1.0)
thomwolf's avatar
thomwolf committed
749
750
            if self.clamp_len > 0:
                fwd_pos_seq = fwd_pos_seq.clamp(-self.clamp_len, self.clamp_len)
thomwolf's avatar
thomwolf committed
751
            pos_emb = self.positional_embedding(fwd_pos_seq, inv_freq, bsz)
thomwolf's avatar
thomwolf committed
752

thomwolf's avatar
thomwolf committed
753
        pos_emb = pos_emb.to(next(self.parameters()))
thomwolf's avatar
thomwolf committed
754
755
        return pos_emb

thomwolf's avatar
thomwolf committed
756
    def forward(self, input_ids, token_type_ids=None, input_mask=None, attention_mask=None,
757
                mems=None, perm_mask=None, target_mapping=None, inp_q=None, head_mask=None):
thomwolf's avatar
thomwolf committed
758
        """
759
760
        Performs a model forward pass. **Can be called by calling the class directly, once it has been instantiated.**

thomwolf's avatar
thomwolf committed
761
        Args:
thomwolf's avatar
thomwolf committed
762
            input_ids: int32 Tensor in shape [bsz, len], the input token IDs.
thomwolf's avatar
thomwolf committed
763
            token_type_ids: int32 Tensor in shape [bsz, len], the input segment IDs.
764
            input_mask: [optional] float32 Tensor in shape [bsz, len], the input mask.
thomwolf's avatar
thomwolf committed
765
                0 for real tokens and 1 for padding.
766
767
768
769
            attention_mask: [optional] float32 Tensor, SAME FUNCTION as `input_mask`
                but with 1 for real tokens and 0 for padding.
                Added for easy compatibility with the BERT model (which uses this negative masking).
                You can only uses one among `input_mask` and `attention_mask`
thomwolf's avatar
thomwolf committed
770
            mems: [optional] a list of float32 Tensors in shape [mem_len, bsz, d_model], memory
thomwolf's avatar
thomwolf committed
771
772
                from previous batches. The length of the list equals n_layer.
                If None, no memory is used.
773
774
775
            perm_mask: [optional] float32 Tensor in shape [bsz, len, len].
                If perm_mask[k, i, j] = 0, i attend to j in batch k;
                if perm_mask[k, i, j] = 1, i does not attend to j in batch k.
thomwolf's avatar
thomwolf committed
776
                If None, each position attends to all the others.
777
778
            target_mapping: [optional] float32 Tensor in shape [bsz, num_predict, len].
                If target_mapping[k, i, j] = 1, the i-th predict in batch k is
thomwolf's avatar
thomwolf committed
779
780
781
                on the j-th token.
                Only used during pretraining for partial prediction.
                Set to None during finetuning.
782
            inp_q: [optional] float32 Tensor in shape [bsz, len].
thomwolf's avatar
thomwolf committed
783
784
785
786
787
788
789
790
791
792
793
794
795
796
                1 for tokens with losses and 0 for tokens without losses.
                Only used during pretraining for two-stream attention.
                Set to None during finetuning.

            mem_len: int, the number of tokens to cache.
            reuse_len: int, the number of tokens in the currect batch to be cached
                and reused in the future.
            bi_data: bool, whether to use bidirectional input pipeline.
                Usually set to True during pretraining and False during finetuning.
            clamp_len: int, clamp all relative distances larger than clamp_len.
                -1 means no clamping.
            same_length: bool, whether to use the same attention length for each token.
            summary_type: str, "last", "first", "mean", or "attn". The method
                to pool the input to get a vector representation.
797
798

        TODO: Add usage
thomwolf's avatar
thomwolf committed
799
        """
800
801
802
        # the original code for XLNet uses shapes [len, bsz] with the batch dimension at the end
        # but we want a unified interface in the library with the batch size on the first dimension
        # so we move here the first dimension (batch) to the end
thomwolf's avatar
thomwolf committed
803
        input_ids = input_ids.transpose(0, 1).contiguous()
thomwolf's avatar
thomwolf committed
804
        token_type_ids = token_type_ids.transpose(0, 1).contiguous() if token_type_ids is not None else None
805
        input_mask = input_mask.transpose(0, 1).contiguous() if input_mask is not None else None
thomwolf's avatar
thomwolf committed
806
        attention_mask = attention_mask.transpose(0, 1).contiguous() if attention_mask is not None else None
807
808
809
810
        perm_mask = perm_mask.permute(1, 2, 0).contiguous() if perm_mask is not None else None
        target_mapping = target_mapping.permute(1, 2, 0).contiguous() if target_mapping is not None else None
        inp_q = inp_q.transpose(0, 1).contiguous() if inp_q is not None else None

thomwolf's avatar
thomwolf committed
811
        qlen, bsz = input_ids.shape[0], input_ids.shape[1]
thomwolf's avatar
thomwolf committed
812
813
        mlen = mems[0].shape[0] if mems is not None else 0
        klen = mlen + qlen
thomwolf's avatar
thomwolf committed
814
815
816

        dtype_float = next(self.parameters()).dtype
        device = next(self.parameters()).device
thomwolf's avatar
thomwolf committed
817
818
819
820

        ##### Attention mask
        # causal attention mask
        if self.attn_type == 'uni':
thomwolf's avatar
thomwolf committed
821
            attn_mask = self.create_mask(qlen, mlen)
thomwolf's avatar
thomwolf committed
822
823
824
825
826
827
828
            attn_mask = attn_mask[:, :, None, None]
        elif self.attn_type == 'bi':
            attn_mask = None
        else:
            raise ValueError('Unsupported attention type: {}'.format(self.attn_type))

        # data mask: input mask & perm mask
829
830
831
832
833
834
835
836
837
        assert input_mask is None or attention_mask is None, "You can only use one of input_mask (uses 1 for padding) "
        "or attention_mask (uses 0 for padding, added for compatbility with BERT). Please choose one."
        if input_mask is None and attention_mask is not None:
            input_mask = 1.0 - attention_mask
        if input_mask is not None and perm_mask is not None:
            data_mask = input_mask[None] + perm_mask
        elif input_mask is not None and perm_mask is None:
            data_mask = input_mask[None]
        elif input_mask is None and perm_mask is not None:
thomwolf's avatar
thomwolf committed
838
839
840
841
842
843
            data_mask = perm_mask
        else:
            data_mask = None

        if data_mask is not None:
            # all mems can be attended to
thomwolf's avatar
thomwolf committed
844
            mems_mask = torch.zeros([data_mask.shape[0], mlen, bsz]).to(data_mask)
thomwolf's avatar
thomwolf committed
845
846
847
848
849
850
851
            data_mask = torch.cat([mems_mask, data_mask], dim=1)
            if attn_mask is None:
                attn_mask = data_mask[:, :, :, None]
            else:
                attn_mask += data_mask[:, :, :, None]

        if attn_mask is not None:
thomwolf's avatar
thomwolf committed
852
            attn_mask = (attn_mask > 0).to(dtype_float)
thomwolf's avatar
thomwolf committed
853
854

        if attn_mask is not None:
thomwolf's avatar
thomwolf committed
855
856
857
            non_tgt_mask = -torch.eye(qlen).to(attn_mask)
            non_tgt_mask = torch.cat([torch.zeros([qlen, mlen]).to(attn_mask), non_tgt_mask], dim=-1)
            non_tgt_mask = ((attn_mask + non_tgt_mask[:, :, None, None]) > 0).to(attn_mask)
thomwolf's avatar
thomwolf committed
858
859
860
        else:
            non_tgt_mask = None

thomwolf's avatar
thomwolf committed
861
        ##### Word embeddings and prepare h & g hidden states
thomwolf's avatar
thomwolf committed
862
        word_emb_k = self.word_embedding(input_ids)
thomwolf's avatar
thomwolf committed
863
864
865
        output_h = self.dropout(word_emb_k)
        if inp_q is not None:
            if target_mapping is not None:
866
                word_emb_q = self.mask_emb.expand(target_mapping.shape[0], bsz, -1)
thomwolf's avatar
thomwolf committed
867
868
            else:
                inp_q_ext = inp_q[:, :, None]
869
                word_emb_q = inp_q_ext * self.mask_emb + (1 - inp_q_ext) * word_emb_k
thomwolf's avatar
thomwolf committed
870
871
872
873
874
            output_g = self.dropout(word_emb_q)
        else:
            output_g = None

        ##### Segment embedding
thomwolf's avatar
thomwolf committed
875
876
        if token_type_ids is not None:
            # Convert `token_type_ids` to one-hot `seg_mat`
thomwolf's avatar
thomwolf committed
877
            mem_pad = torch.zeros([mlen, bsz], dtype=torch.long, device=device)
thomwolf's avatar
thomwolf committed
878
            cat_ids = torch.cat([mem_pad, token_type_ids], dim=0)
thomwolf's avatar
thomwolf committed
879
880

            # `1` indicates not in the same segment [qlen x klen x bsz]
thomwolf's avatar
thomwolf committed
881
            seg_mat = (token_type_ids[:, None] != cat_ids[None, :]).long()
thomwolf's avatar
thomwolf committed
882
            seg_mat = F.one_hot(seg_mat, num_classes=2).to(dtype_float)
thomwolf's avatar
thomwolf committed
883
884
885
886
        else:
            seg_mat = None

        ##### Positional encoding
thomwolf's avatar
thomwolf committed
887
        pos_emb = self.relative_positional_encoding(qlen, klen, bsz=bsz)
thomwolf's avatar
thomwolf committed
888
889
        pos_emb = self.dropout(pos_emb)

thomwolf's avatar
thomwolf committed
890
        # Prepare head mask if needed
thomwolf's avatar
thomwolf committed
891
892
        # 1.0 in head_mask indicate we keep the head
        # attention_probs has shape bsz x n_heads x N x N
thomwolf's avatar
thomwolf committed
893
894
        # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] (a head_mask for each layer)
        # and head_mask is converted to shape [num_hidden_layers x qlen x klen x bsz x n_head]
thomwolf's avatar
thomwolf committed
895
896
        if head_mask is not None:
            if head_mask.dim() == 1:
thomwolf's avatar
thomwolf committed
897
898
                head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(0).unsqueeze(0)
                head_mask = head_mask.expand(self.n_layer, -1, -1, -1, -1)
thomwolf's avatar
thomwolf committed
899
            elif head_mask.dim() == 2:
thomwolf's avatar
thomwolf committed
900
                head_mask = head_mask.unsqueeze(1).unsqueeze(1).unsqueeze(1)
thomwolf's avatar
thomwolf committed
901
902
            head_mask = head_mask.to(dtype=next(self.parameters()).dtype) # switch to fload if need + fp16 compatibility
        else:
thomwolf's avatar
thomwolf committed
903
            head_mask = [None] * self.n_layer
thomwolf's avatar
thomwolf committed
904

905
        new_mems = ()
thomwolf's avatar
thomwolf committed
906
907
908
        if mems is None:
            mems = [None] * len(self.layer)

909
        attentions = []
910
        hidden_states = []
thomwolf's avatar
thomwolf committed
911
912
        for i, layer_module in enumerate(self.layer):
            # cache new mems
913
            new_mems = new_mems + (self.cache_mem(output_h, mems[i]),)
914
915
916
917
918
            if self.output_hidden_states:
                hidden_states.append((output_h, output_g) if output_g is not None else output_h)

            outputs = layer_module(output_h, output_g, attn_mask_h=non_tgt_mask, attn_mask_g=attn_mask,
                                   r=pos_emb, seg_mat=seg_mat, mems=mems[i], target_mapping=target_mapping,
thomwolf's avatar
thomwolf committed
919
                                   head_mask=head_mask[i])
920
921
            output_h, output_g = outputs[:2]
            if self.output_attentions:
thomwolf's avatar
thomwolf committed
922
                attentions.append(outputs[2])
923
924
925

        # Add last hidden state
        if self.output_hidden_states:
thomwolf's avatar
thomwolf committed
926
            hidden_states.append((output_h, output_g) if output_g is not None else output_h)
thomwolf's avatar
thomwolf committed
927
928
929

        output = self.dropout(output_g if output_g is not None else output_h)

930
        # Prepare outputs, we transpose back here to shape [bsz, len, hidden_dim] (cf. beginning of forward() method)
931
        outputs = (output.permute(1, 0, 2).contiguous(), new_mems)
932
933
        if self.output_hidden_states:
            if output_g is not None:
934
                hidden_states = tuple(h.permute(1, 0, 2).contiguous() for hs in hidden_states for h in hs)
935
            else:
936
                hidden_states = tuple(hs.permute(1, 0, 2).contiguous() for hs in hidden_states)
937
            outputs = outputs + (hidden_states,)
938
        if self.output_attentions:
939
            attentions = tuple(t.permute(2, 3, 0, 1).contiguous() for t in attentions)
940
            outputs = outputs + (attentions,)
941

942
        return outputs  # outputs, new_mems, (hidden_states), (attentions)
thomwolf's avatar
thomwolf committed
943
944
945


class XLNetLMHeadModel(XLNetPreTrainedModel):
thomwolf's avatar
thomwolf committed
946
947
    """XLNet model ("XLNet: Generalized Autoregressive Pretraining for Language Understanding").

948
    Args:
thomwolf's avatar
thomwolf committed
949
950
951
952
953
        `config`: a XLNetConfig class instance with the configuration to build a new model
        `output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
        `keep_multihead_output`: If True, saves output of the multi-head attention module with its gradient.
            This can be used to compute head importance metrics. Default: False

954
955
956
957
958
959
960
961


    Example::

        config = modeling.XLNetConfig(vocab_size_or_config_json_file=32000, d_model=768,
            n_layer=12, num_attention_heads=12, intermediate_size=3072)

        model = modeling.XLNetModel(config=config)
thomwolf's avatar
thomwolf committed
962
    """
thomwolf's avatar
thomwolf committed
963
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
964
        super(XLNetLMHeadModel, self).__init__(config)
thomwolf's avatar
thomwolf committed
965
966
        self.attn_type = config.attn_type
        self.same_length = config.same_length
967
        self.torchscript = config.torchscript
thomwolf's avatar
thomwolf committed
968

thomwolf's avatar
thomwolf committed
969
        self.transformer = XLNetModel(config)
thomwolf's avatar
thomwolf committed
970
        self.lm_loss = nn.Linear(config.d_model, config.n_token, bias=True)
thomwolf's avatar
thomwolf committed
971

thomwolf's avatar
thomwolf committed
972
973
        # Tie weights

thomwolf's avatar
thomwolf committed
974
        self.apply(self.init_weights)
thomwolf's avatar
thomwolf committed
975
        self.tie_weights()
thomwolf's avatar
thomwolf committed
976

thomwolf's avatar
thomwolf committed
977
978
    def tie_weights(self):
        """ Make sure we are sharing the embeddings
thomwolf's avatar
thomwolf committed
979
        """
980
981
982
983
        if self.torchscript:
            self.lm_loss.weight = nn.Parameter(self.transformer.word_embedding.weight.clone())
        else:
            self.lm_loss.weight = self.transformer.word_embedding.weight
thomwolf's avatar
thomwolf committed
984

thomwolf's avatar
thomwolf committed
985
    def forward(self, input_ids, token_type_ids=None, input_mask=None, attention_mask=None,
thomwolf's avatar
thomwolf committed
986
                mems=None, perm_mask=None, target_mapping=None, inp_q=None,
987
                labels=None, head_mask=None):
thomwolf's avatar
thomwolf committed
988
        """
989
990
         all_encoder_layers, pooled_output = model(input_ids, token_type_ids, input_mask)

thomwolf's avatar
thomwolf committed
991
        Args:
thomwolf's avatar
thomwolf committed
992
            input_ids: int32 Tensor in shape [bsz, len], the input token IDs.
thomwolf's avatar
thomwolf committed
993
            token_type_ids: int32 Tensor in shape [bsz, len], the input segment IDs.
994
            input_mask: [optional] float32 Tensor in shape [bsz, len], the input mask.
thomwolf's avatar
thomwolf committed
995
                0 for real tokens and 1 for padding.
996
997
998
999
            attention_mask: [optional] float32 Tensor, SAME FUNCTION as `input_mask`
                but with 1 for real tokens and 0 for padding.
                Added for easy compatibility with the BERT model (which uses this negative masking).
                You can only uses one among `input_mask` and `attention_mask`
1000
            mems: [optional] a list of float32 Tensors in shape [mem_len, bsz, d_model], memory
thomwolf's avatar
thomwolf committed
1001
1002
                from previous batches. The length of the list equals n_layer.
                If None, no memory is used.
1003
            perm_mask: [optional] float32 Tensor in shape [bsz, len, len].
1004
1005
                If perm_mask[k, i, j] = 0, i attend to j in batch k;
                if perm_mask[k, i, j] = 1, i does not attend to j in batch k.
thomwolf's avatar
thomwolf committed
1006
                If None, each position attends to all the others.
1007
            target_mapping: [optional] float32 Tensor in shape [bsz, num_predict, len].
1008
                If target_mapping[k, i, j] = 1, the i-th predict in batch k is
thomwolf's avatar
thomwolf committed
1009
1010
1011
                on the j-th token.
                Only used during pretraining for partial prediction.
                Set to None during finetuning.
1012
            inp_q: [optional] float32 Tensor in shape [bsz, len].
thomwolf's avatar
thomwolf committed
1013
1014
1015
1016
                1 for tokens with losses and 0 for tokens without losses.
                Only used during pretraining for two-stream attention.
                Set to None during finetuning.

1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043

        Returns:
            A ``tuple(encoded_layers, pooled_output)``, with

                ``encoded_layers``: controlled by ``output_all_encoded_layers`` argument:

                    - ``output_all_encoded_layers=True``: outputs a list of the full sequences of encoded-hidden-states \
                    at the end of each attention block (i.e. 12 full sequences for XLNet-base, 24 for XLNet-large), \
                    each encoded-hidden-state is a ``torch.FloatTensor`` of size [batch_size, sequence_length, d_model],

                    - ``output_all_encoded_layers=False``: outputs only the full sequence of hidden-states corresponding \
                    to the last attention block of shape [batch_size, sequence_length, d_model],

                ``pooled_output``: a ``torch.FloatTensor`` of size [batch_size, d_model] which is the output of a \
                classifier pretrained on top of the hidden state associated to the first character of the \
                input (`CLS`) to train on the Next-Sentence task (see XLNet's paper).

        Example::

            # Already been converted into WordPiece token ids
            input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
            input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
            token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])

            all_encoder_layers, pooled_output = model(input_ids, token_type_ids, input_mask)
            # or
            all_encoder_layers, pooled_output = model.forward(input_ids, token_type_ids, input_mask)
thomwolf's avatar
thomwolf committed
1044
        """
thomwolf's avatar
thomwolf committed
1045
        transformer_outputs = self.transformer(input_ids, token_type_ids, input_mask, attention_mask,
1046
1047
1048
                                               mems, perm_mask, target_mapping, inp_q, head_mask)

        logits = self.lm_loss(transformer_outputs[0])
1049

1050
        outputs = (logits,) + transformer_outputs[1:]  # Keep mems, hidden states, attentions if there are in it
1051

1052
        if labels is not None:
1053
1054
1055
            # Flatten the tokens
            loss_fct = CrossEntropyLoss(ignore_index=-1)
            loss = loss_fct(logits.view(-1, logits.size(-1)),
1056
                            labels.view(-1))
1057
            outputs = (loss,) + outputs
1058

1059
        return outputs  # return (loss), logits, (mems), (hidden states), (attentions)
1060
1061
1062
1063
1064


class XLNetForSequenceClassification(XLNetPreTrainedModel):
    """XLNet model ("XLNet: Generalized Autoregressive Pretraining for Language Understanding").

1065
    Args:
1066
1067
1068
1069
1070
1071
1072
        `config`: a XLNetConfig class instance with the configuration to build a new model
        `output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
        `keep_multihead_output`: If True, saves output of the multi-head attention module with its gradient.
            This can be used to compute head importance metrics. Default: False
        `summary_type`: str, "last", "first", "mean", or "attn". The method
            to pool the input to get a vector representation. Default: last

1073
1074
1075
1076
1077
1078
1079
1080
1081
1082


    Example::

        # Already been converted into WordPiece token ids
        input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
        input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
        token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])

        all_encoder_layers, pooled_output = model(input_ids, token_type_ids, input_mask)
1083
    """
thomwolf's avatar
thomwolf committed
1084
    def __init__(self, config):
1085
        super(XLNetForSequenceClassification, self).__init__(config)
thomwolf's avatar
thomwolf committed
1086
        self.num_labels = config.num_labels
1087

thomwolf's avatar
thomwolf committed
1088
        self.transformer = XLNetModel(config)
thomwolf's avatar
thomwolf committed
1089
        self.sequence_summary = SequenceSummary(config)
thomwolf's avatar
thomwolf committed
1090
        self.logits_proj = nn.Linear(config.d_model, config.num_labels)
1091

thomwolf's avatar
thomwolf committed
1092
        self.apply(self.init_weights)
1093

thomwolf's avatar
thomwolf committed
1094
    def forward(self, input_ids, token_type_ids=None, input_mask=None, attention_mask=None,
1095
                mems=None, perm_mask=None, target_mapping=None, inp_q=None,
1096
                labels=None, head_mask=None):
1097
        """
1098
1099
        Performs a model forward pass. **Can be called by calling the class directly, once it has been instantiated.**

1100
        Args:
thomwolf's avatar
thomwolf committed
1101
            input_ids: int32 Tensor in shape [bsz, len], the input token IDs.
thomwolf's avatar
thomwolf committed
1102
            token_type_ids: int32 Tensor in shape [bsz, len], the input segment IDs.
1103
            input_mask: float32 Tensor in shape [bsz, len], the input mask.
1104
                0 for real tokens and 1 for padding.
1105
1106
1107
1108
            attention_mask: [optional] float32 Tensor, SAME FUNCTION as `input_mask`
                but with 1 for real tokens and 0 for padding.
                Added for easy compatibility with the BERT model (which uses this negative masking).
                You can only uses one among `input_mask` and `attention_mask`
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
            mems: a list of float32 Tensors in shape [mem_len, bsz, d_model], memory
                from previous batches. The length of the list equals n_layer.
                If None, no memory is used.
            perm_mask: float32 Tensor in shape [bsz, len, len].
                If perm_mask[k, i, j] = 0, i attend to j in batch k;
                if perm_mask[k, i, j] = 1, i does not attend to j in batch k.
                If None, each position attends to all the others.
            target_mapping: float32 Tensor in shape [bsz, num_predict, len].
                If target_mapping[k, i, j] = 1, the i-th predict in batch k is
                on the j-th token.
1119
1120
                Only used during pre-training for partial prediction.
                Set to None during fine-tuning.
1121
1122
            inp_q: float32 Tensor in shape [bsz, len].
                1 for tokens with losses and 0 for tokens without losses.
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
                Only used during pre-training for two-stream attention.
                Set to None during fine-tuning.
            labels: TODO
            head_mask: an optional ``torch.Tensor`` of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1.
                It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked.


        Returns:
            A ``tuple(logits_or_loss, mems)``

                ``logits_or_loss``: if ``labels`` is ``None``, ``logits_or_loss`` corresponds to token logits with shape \
                [batch_size, sequence_length]. If it is not ``None``, it corresponds to the ``CrossEntropy`` loss \
                with the targets.

                ``new_mems``: list (num layers) of updated mem states at the entry of each layer \
                each mem state is a ``torch.FloatTensor`` of size [self.config.mem_len, batch_size, self.config.d_model] \
                Note that the first two dimensions are transposed in ``mems`` with regards to ``input_ids`` and ``labels``

        Example::

            # Already been converted into WordPiece token ids
            input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
            input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
            token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])

            all_encoder_layers, pooled_output = model(input_ids, token_type_ids, input_mask)
            # or
            all_encoder_layers, pooled_output = model.forward(input_ids, token_type_ids, input_mask)
1151
        """
thomwolf's avatar
thomwolf committed
1152
        transformer_outputs = self.transformer(input_ids, token_type_ids, input_mask, attention_mask,
1153
                                               mems, perm_mask, target_mapping, inp_q, head_mask)
1154
        output = transformer_outputs[0]
thomwolf's avatar
thomwolf committed
1155

1156
        output = self.sequence_summary(output)
1157
        logits = self.logits_proj(output)
thomwolf's avatar
thomwolf committed
1158

1159
        outputs = (logits,) + transformer_outputs[1:]  # Keep mems, hidden states, attentions if there are in it
1160

1161
1162
1163
        if labels is not None:
            if self.num_labels == 1:
                #  We are doing regression
1164
                loss_fct = MSELoss()
1165
                loss = loss_fct(logits.view(-1), labels.view(-1))
1166
            else:
1167
1168
                loss_fct = CrossEntropyLoss()
                loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
1169
            outputs = (loss,) + outputs
1170
1171

        return outputs  # return (loss), logits, (mems), (hidden states), (attentions)
thomwolf's avatar
thomwolf committed
1172

thomwolf's avatar
thomwolf committed
1173
1174

class XLNetForQuestionAnswering(XLNetPreTrainedModel):
1175
1176
1177
    """
    XLNet model for Question Answering (span extraction).

thomwolf's avatar
thomwolf committed
1178
    This module is composed of the XLNet model with a linear layer on top of
1179
    the sequence output that computes ``start_logits`` and ``end_logits``
thomwolf's avatar
thomwolf committed
1180

1181
    Args:
thomwolf's avatar
thomwolf committed
1182
1183
1184
1185
1186
        `config`: a XLNetConfig class instance with the configuration to build a new model
        `output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
        `keep_multihead_output`: If True, saves output of the multi-head attention module with its gradient.
            This can be used to compute head importance metrics. Default: False

1187
1188
1189
1190
1191
1192
    Example::

        config = XLNetConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
            num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)

        model = XLNetForQuestionAnswering(config)
thomwolf's avatar
thomwolf committed
1193
    """
thomwolf's avatar
thomwolf committed
1194
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
1195
        super(XLNetForQuestionAnswering, self).__init__(config)
thomwolf's avatar
thomwolf committed
1196
1197
        self.start_n_top = config.start_n_top
        self.end_n_top = config.end_n_top
1198

thomwolf's avatar
thomwolf committed
1199
        self.transformer = XLNetModel(config)
thomwolf's avatar
thomwolf committed
1200
1201
1202
        self.start_logits = PoolerStartLogits(config)
        self.end_logits = PoolerEndLogits(config)
        self.answer_class = PoolerAnswerClass(config)
thomwolf's avatar
thomwolf committed
1203

thomwolf's avatar
thomwolf committed
1204
1205
        self.apply(self.init_weights)

thomwolf's avatar
thomwolf committed
1206
    def forward(self, input_ids, token_type_ids=None, input_mask=None, attention_mask=None,
thomwolf's avatar
thomwolf committed
1207
                mems=None, perm_mask=None, target_mapping=None, inp_q=None,
thomwolf's avatar
thomwolf committed
1208
1209
                start_positions=None, end_positions=None, cls_index=None, is_impossible=None, p_mask=None,
                head_mask=None):
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256

        """
        Performs a model forward pass. **Can be called by calling the class directly, once it has been instantiated.**

        Args:
            `input_ids`: a ``torch.LongTensor`` of shape [batch_size, sequence_length]
                with the word token indices in the vocabulary(see the tokens pre-processing logic in the scripts
                `run_bert_extract_features.py`, `run_bert_classifier.py` and `run_bert_squad.py`)
            `token_type_ids`: an optional ``torch.LongTensor`` of shape [batch_size, sequence_length] with the token
                types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
                a `sentence B` token (see XLNet paper for more details).
            `attention_mask`: [optional] float32 Tensor, SAME FUNCTION as `input_mask`
                but with 1 for real tokens and 0 for padding.
                Added for easy compatibility with the BERT model (which uses this negative masking).
                You can only uses one among ``input_mask`` and ``attention_mask``
            `input_mask`: an optional ``torch.LongTensor`` of shape [batch_size, sequence_length] with indices
                selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
                input sequence length in the current batch. It's the mask that we typically use for attention when
                a batch has varying length sentences.
            `start_positions`: position of the first token for the labeled span: ``torch.LongTensor`` of shape [batch_size].
                Positions are clamped to the length of the sequence and position outside of the sequence are not taken
                into account for computing the loss.
            `end_positions`: position of the last token for the labeled span: ``torch.LongTensor`` of shape [batch_size].
                Positions are clamped to the length of the sequence and position outside of the sequence are not taken
                into account for computing the loss.
            `head_mask`: an optional ``torch.Tensor`` of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1.
                It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked.

        Returns:
            if ``start_positions`` and ``end_positions`` are not ``None``, outputs the total_loss which is the sum of the \
            ``CrossEntropy`` loss for the start and end token positions.

            if ``start_positions`` or ``end_positions`` is ``None``, outputs a tuple of ``start_logits``, ``end_logits``
            which are the logits respectively for the start and end position tokens of shape \
            [batch_size, sequence_length].

        Example::

            # Already been converted into WordPiece token ids
            input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
            input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
            token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])

            start_logits, end_logits = model(input_ids, token_type_ids, input_mask)
            # or
            start_logits, end_logits = model.forward(input_ids, token_type_ids, input_mask)
        """
thomwolf's avatar
thomwolf committed
1257
        transformer_outputs = self.transformer(input_ids, token_type_ids, input_mask, attention_mask,
thomwolf's avatar
thomwolf committed
1258
1259
1260
                                               mems, perm_mask, target_mapping, inp_q, head_mask)
        hidden_states = transformer_outputs[0]
        start_logits = self.start_logits(hidden_states, p_mask)
thomwolf's avatar
thomwolf committed
1261

thomwolf's avatar
thomwolf committed
1262
        outputs = transformer_outputs[1:]  # Keep mems, hidden states, attentions if there are in it
1263

thomwolf's avatar
thomwolf committed
1264
1265
1266
1267
1268
        if start_positions is not None and end_positions is not None:
            # If we are on multi-GPU, let's remove the dimension added by batch splitting
            for x in (start_positions, end_positions, cls_index, is_impossible):
                if x is not None and x.dim() > 1:
                    x.squeeze_(-1)
thomwolf's avatar
thomwolf committed
1269

thomwolf's avatar
thomwolf committed
1270
1271
            # during training, compute the end logits based on the ground truth of the start position
            end_logits = self.end_logits(hidden_states, start_positions=start_positions, p_mask=p_mask)
1272

thomwolf's avatar
thomwolf committed
1273
            loss_fct = CrossEntropyLoss()
thomwolf's avatar
thomwolf committed
1274
1275
1276
            start_loss = loss_fct(start_logits, start_positions)
            end_loss = loss_fct(end_logits, end_positions)
            total_loss = (start_loss + end_loss) / 2
1277

thomwolf's avatar
thomwolf committed
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
            if cls_index is not None and is_impossible is not None:
                # Predict answerability from the representation of CLS and START
                cls_logits = self.answer_class(hidden_states, start_positions=start_positions, cls_index=cls_index)
                loss_fct_cls = nn.BCEWithLogitsLoss()
                cls_loss = loss_fct_cls(cls_logits, is_impossible)

                # note(zhiliny): by default multiply the loss by 0.5 so that the scale is
                # comparable to start_loss and end_loss
                total_loss += cls_loss * 0.5
                outputs = (total_loss, start_logits, end_logits, cls_logits) + outputs
            else:
                outputs = (total_loss, start_logits, end_logits) + outputs

        else:
            # during inference, compute the end logits based on beam search
            bsz, slen, hsz = hidden_states.size()
            start_log_probs = F.softmax(start_logits, dim=-1) # shape (bsz, slen)

            start_top_log_probs, start_top_index = torch.topk(start_log_probs, self.start_n_top, dim=-1) # shape (bsz, start_n_top)
            start_top_index = start_top_index.unsqueeze(-1).expand(-1, -1, hsz) # shape (bsz, start_n_top, hsz)
            start_states = torch.gather(hidden_states, -2, start_top_index) # shape (bsz, start_n_top, hsz)
            start_states = start_states.unsqueeze(1).expand(-1, slen, -1, -1) # shape (bsz, slen, start_n_top, hsz)

            hidden_states_expanded = hidden_states.unsqueeze(2).expand_as(start_states) # shape (bsz, slen, start_n_top, hsz)
            p_mask = p_mask.unsqueeze(-1) if p_mask is not None else None
            end_logits = self.end_logits(hidden_states_expanded, start_states=start_states, p_mask=p_mask)
            end_log_probs = F.softmax(end_logits, dim=1) # shape (bsz, slen, start_n_top)

            end_top_log_probs, end_top_index = torch.topk(end_log_probs, self.end_n_top, dim=1) # shape (bsz, end_n_top, start_n_top)
            end_top_log_probs = end_top_log_probs.view(-1, self.start_n_top * self.end_n_top)
            end_top_index = end_top_index.view(-1, self.start_n_top * self.end_n_top)

            start_states = torch.einsum("blh,bl->bh", hidden_states, start_log_probs)
            cls_logits = self.answer_class(hidden_states, start_states=start_states, cls_index=cls_index)

            outputs = (start_top_log_probs, start_top_index, end_top_log_probs, end_top_index, cls_logits) + outputs

        # return start_top_log_probs, start_top_index, end_top_log_probs, end_top_index, cls_logits, mems, (hidden states), (attentions)
        # or (if labels are provided) total_loss, start_logits, end_logits, (cls_logits), mems, (hidden states), (attentions)
        return outputs