".github/vscode:/vscode.git/clone" did not exist on "9b0fc65a8fc33d915a658139b660c79e27b01ea7"
modeling_xlnet.py 61.1 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
# coding=utf-8
# Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch XLNet model.
"""
from __future__ import (absolute_import, division, print_function,
                        unicode_literals)
from __future__ import absolute_import, division, print_function, unicode_literals

import json
import logging
import math
import os
import sys
from io import open

import torch
from torch import nn
thomwolf's avatar
thomwolf committed
31
from torch.nn import functional as F
32
from torch.nn import CrossEntropyLoss, MSELoss
thomwolf's avatar
thomwolf committed
33

34
from .file_utils import cached_path
thomwolf's avatar
thomwolf committed
35
36
from .model_utils import (CONFIG_NAME, WEIGHTS_NAME, PretrainedConfig, PreTrainedModel,
                          SequenceSummary, PoolerAnswerClass, PoolerEndLogits, PoolerStartLogits)
37

thomwolf's avatar
thomwolf committed
38
39
40
41
42
43
44
45
46
47

logger = logging.getLogger(__name__)

PRETRAINED_MODEL_ARCHIVE_MAP = {
    'xlnet-large-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/xlnet-large-cased-pytorch_model.bin",
}
PRETRAINED_CONFIG_ARCHIVE_MAP = {
    'xlnet-large-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/xlnet-large-cased-config.json",
}

thomwolf's avatar
thomwolf committed
48

49
def build_tf_xlnet_to_pytorch_map(model, config, tf_weights=None):
thomwolf's avatar
thomwolf committed
50
51
52
53
54
55
56
57
    """ A map of modules from TF to PyTorch.
        I use a map to keep the PyTorch model as
        identical to the original PyTorch model as possible.
    """

    tf_to_pt_map = {}

    if hasattr(model, 'transformer'):
58
59
60
        if hasattr(model, 'lm_loss'):
            # We will load also the output bias
            tf_to_pt_map['model/lm_loss/bias'] = model.lm_loss.bias
61
        if hasattr(model, 'sequence_summary') and 'model/sequnece_summary/summary/kernel' in tf_weights:
62
63
64
            # We will load also the sequence summary
            tf_to_pt_map['model/sequnece_summary/summary/kernel'] = model.sequence_summary.summary.weight
            tf_to_pt_map['model/sequnece_summary/summary/bias'] = model.sequence_summary.summary.bias
thomwolf's avatar
thomwolf committed
65
66
        if hasattr(model, 'logits_proj') and config.finetuning_task is not None \
                and 'model/regression_{}/logit/kernel'.format(config.finetuning_task) in tf_weights:
67
68
            tf_to_pt_map['model/regression_{}/logit/kernel'.format(config.finetuning_task)] = model.logits_proj.weight
            tf_to_pt_map['model/regression_{}/logit/bias'.format(config.finetuning_task)] = model.logits_proj.bias
69

thomwolf's avatar
thomwolf committed
70
71
72
73
74
        # Now load the rest of the transformer
        model = model.transformer

    # Embeddings and output
    tf_to_pt_map.update({'model/transformer/word_embedding/lookup_table': model.word_embedding.weight,
75
                         'model/transformer/mask_emb/mask_emb': model.mask_emb})
thomwolf's avatar
thomwolf committed
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118

    # Transformer blocks
    for i, b in enumerate(model.layer):
        layer_str = "model/transformer/layer_%d/" % i
        tf_to_pt_map.update({
            layer_str + "rel_attn/LayerNorm/gamma": b.rel_attn.layer_norm.weight,
            layer_str + "rel_attn/LayerNorm/beta": b.rel_attn.layer_norm.bias,
            layer_str + "rel_attn/o/kernel": b.rel_attn.o,
            layer_str + "rel_attn/q/kernel": b.rel_attn.q,
            layer_str + "rel_attn/k/kernel": b.rel_attn.k,
            layer_str + "rel_attn/r/kernel": b.rel_attn.r,
            layer_str + "rel_attn/v/kernel": b.rel_attn.v,
            layer_str + "ff/LayerNorm/gamma": b.ff.layer_norm.weight,
            layer_str + "ff/LayerNorm/beta": b.ff.layer_norm.bias,
            layer_str + "ff/layer_1/kernel": b.ff.layer_1.weight,
            layer_str + "ff/layer_1/bias": b.ff.layer_1.bias,
            layer_str + "ff/layer_2/kernel": b.ff.layer_2.weight,
            layer_str + "ff/layer_2/bias": b.ff.layer_2.bias,
        })

    # Relative positioning biases
    if config.untie_r:
        r_r_list = []
        r_w_list = []
        r_s_list = []
        seg_embed_list = []
        for b in model.layer:
            r_r_list.append(b.rel_attn.r_r_bias)
            r_w_list.append(b.rel_attn.r_w_bias)
            r_s_list.append(b.rel_attn.r_s_bias)
            seg_embed_list.append(b.rel_attn.seg_embed)
    else:
        r_r_list = [model.r_r_bias]
        r_w_list = [model.r_w_bias]
        r_s_list = [model.r_s_bias]
        seg_embed_list = [model.seg_embed]
    tf_to_pt_map.update({
        'model/transformer/r_r_bias': r_r_list,
        'model/transformer/r_w_bias': r_w_list,
        'model/transformer/r_s_bias': r_s_list,
        'model/transformer/seg_embed': seg_embed_list})
    return tf_to_pt_map

119
def load_tf_weights_in_xlnet(model, config, tf_path):
thomwolf's avatar
thomwolf committed
120
121
122
123
124
125
126
127
128
129
130
    """ Load tf checkpoints in a pytorch model
    """
    try:
        import numpy as np
        import tensorflow as tf
    except ImportError:
        print("Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see "
            "https://www.tensorflow.org/install/ for installation instructions.")
        raise
    # Load weights from TF model
    init_vars = tf.train.list_variables(tf_path)
thomwolf's avatar
thomwolf committed
131
    tf_weights = {}
thomwolf's avatar
thomwolf committed
132
133
134
    for name, shape in init_vars:
        print("Loading TF weight {} with shape {}".format(name, shape))
        array = tf.train.load_variable(tf_path, name)
thomwolf's avatar
thomwolf committed
135
        tf_weights[name] = array
thomwolf's avatar
thomwolf committed
136

137
    # Build TF to PyTorch weights loading map
138
    tf_to_pt_map = build_tf_xlnet_to_pytorch_map(model, config, tf_weights)
139

thomwolf's avatar
thomwolf committed
140
141
    for name, pointer in tf_to_pt_map.items():
        print("Importing {}".format(name))
142
143
144
        if name not in tf_weights:
            print("{} not in tf pre-trained weights, skipping".format(name))
            continue
thomwolf's avatar
thomwolf committed
145
        array = tf_weights[name]
thomwolf's avatar
thomwolf committed
146
147
        # adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
        # which are not required for using pretrained model
148
        if 'kernel' in name and ('ff' in name or 'summary' in name or 'logit' in name):
thomwolf's avatar
thomwolf committed
149
            print("Transposing")
thomwolf's avatar
thomwolf committed
150
            array = np.transpose(array)
thomwolf's avatar
thomwolf committed
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
        if isinstance(pointer, list):
            # Here we will split the TF weigths
            assert len(pointer) == array.shape[0]
            for i, p_i in enumerate(pointer):
                arr_i = array[i, ...]
                try:
                    assert p_i.shape == arr_i.shape
                except AssertionError as e:
                    e.args += (p_i.shape, arr_i.shape)
                    raise
                print("Initialize PyTorch weight {} for layer {}".format(name, i))
                p_i.data = torch.from_numpy(arr_i)
        else:
            try:
                assert pointer.shape == array.shape
            except AssertionError as e:
                e.args += (pointer.shape, array.shape)
                raise
            print("Initialize PyTorch weight {}".format(name))
            pointer.data = torch.from_numpy(array)
        tf_weights.pop(name, None)
        tf_weights.pop(name + '/Adam', None)
        tf_weights.pop(name + '/Adam_1', None)

    print("Weights not copied to PyTorch model: {}".format(', '.join(tf_weights.keys())))
thomwolf's avatar
thomwolf committed
176
177
178
179
    return model


def gelu(x):
180
181
    """ Implementation of the gelu activation function.
        XLNet is using OpenAI GPT's gelu (not exactly the same as BERT)
thomwolf's avatar
thomwolf committed
182
183
        Also see https://arxiv.org/abs/1606.08415
    """
184
185
    cdf = 0.5 * (1.0 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))
    return x * cdf
thomwolf's avatar
thomwolf committed
186
187
188
189
190
191
192
193
194


def swish(x):
    return x * torch.sigmoid(x)


ACT2FN = {"gelu": gelu, "relu": torch.nn.functional.relu, "swish": swish}


195
class XLNetConfig(PretrainedConfig):
thomwolf's avatar
thomwolf committed
196
197
    """Configuration class to store the configuration of a `XLNetModel`.
    """
198
199
    pretrained_config_archive_map = PRETRAINED_CONFIG_ARCHIVE_MAP

thomwolf's avatar
thomwolf committed
200
    def __init__(self,
thomwolf's avatar
thomwolf committed
201
                 vocab_size_or_config_json_file=32000,
thomwolf's avatar
thomwolf committed
202
203
204
205
                 d_model=1024,
                 n_layer=24,
                 n_head=16,
                 d_inner=4096,
thomwolf's avatar
thomwolf committed
206
207
                 ff_activation="gelu",
                 untie_r=True,
thomwolf's avatar
thomwolf committed
208
                 attn_type="bi",
thomwolf's avatar
thomwolf committed
209
210
211

                 max_position_embeddings=512,
                 initializer_range=0.02,
thomwolf's avatar
thomwolf committed
212
213
214
215
216
217
218
219
220
221
222
                 layer_norm_eps=1e-12,

                 dropout=0.1,
                 dropatt=0.1,
                 init="normal",
                 init_range=0.1,
                 init_std=0.02,
                 mem_len=None,
                 reuse_len=None,
                 bi_data=False,
                 clamp_len=-1,
223
                 same_length=False,
thomwolf's avatar
thomwolf committed
224

thomwolf's avatar
thomwolf committed
225
226
                 finetuning_task=None,
                 num_labels=2,
thomwolf's avatar
thomwolf committed
227
228
229
230
                 summary_type='last',
                 summary_use_proj=True,
                 summary_activation='tanh',
                 summary_dropout=0.1,
thomwolf's avatar
thomwolf committed
231
232
                 start_n_top=5,
                 end_n_top=5,
thomwolf's avatar
thomwolf committed
233
                 **kwargs):
thomwolf's avatar
thomwolf committed
234
235
236
237
238
239
240
241
242
243
244
245
246
        """Constructs XLNetConfig.

        Args:
            vocab_size_or_config_json_file: Vocabulary size of `inputs_ids` in `XLNetModel`.
            d_model: Size of the encoder layers and the pooler layer.
            n_layer: Number of hidden layers in the Transformer encoder.
            n_head: Number of attention heads for each attention layer in
                the Transformer encoder.
            d_inner: The size of the "intermediate" (i.e., feed-forward)
                layer in the Transformer encoder.
            ff_activation: The non-linear activation function (function or string) in the
                encoder and pooler. If string, "gelu", "relu" and "swish" are supported.
            untie_r: untie relative position biases
thomwolf's avatar
thomwolf committed
247
            attn_type: 'bi' for XLNet, 'uni' for Transformer-XL
thomwolf's avatar
thomwolf committed
248
249
250
251
252
253
254
255
256
257
258

            dropout: The dropout probabilitiy for all fully connected
                layers in the embeddings, encoder, and pooler.
            dropatt: The dropout ratio for the attention
                probabilities.
            max_position_embeddings: The maximum sequence length that this model might
                ever be used with. Typically set this to something large just in case
                (e.g., 512 or 1024 or 2048).
            initializer_range: The sttdev of the truncated_normal_initializer for
                initializing all weight matrices.
            layer_norm_eps: The epsilon used by LayerNorm.
thomwolf's avatar
thomwolf committed
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

            dropout: float, dropout rate.
            dropatt: float, dropout rate on attention probabilities.
            init: str, the initialization scheme, either "normal" or "uniform".
            init_range: float, initialize the parameters with a uniform distribution
                in [-init_range, init_range]. Only effective when init="uniform".
            init_std: float, initialize the parameters with a normal distribution
                with mean 0 and stddev init_std. Only effective when init="normal".
            mem_len: int, the number of tokens to cache.
            reuse_len: int, the number of tokens in the currect batch to be cached
                and reused in the future.
            bi_data: bool, whether to use bidirectional input pipeline.
                Usually set to True during pretraining and False during finetuning.
            clamp_len: int, clamp all relative distances larger than clamp_len.
                -1 means no clamping.
            same_length: bool, whether to use the same attention length for each token.
275
            finetuning_task: name of the glue task on which the model was fine-tuned if any
thomwolf's avatar
thomwolf committed
276
        """
thomwolf's avatar
thomwolf committed
277
278
        super(XLNetConfig, self).__init__(**kwargs)

thomwolf's avatar
thomwolf committed
279
280
281
282
283
284
285
        if isinstance(vocab_size_or_config_json_file, str) or (sys.version_info[0] == 2
                        and isinstance(vocab_size_or_config_json_file, unicode)):
            with open(vocab_size_or_config_json_file, "r", encoding='utf-8') as reader:
                json_config = json.loads(reader.read())
            for key, value in json_config.items():
                self.__dict__[key] = value
        elif isinstance(vocab_size_or_config_json_file, int):
thomwolf's avatar
thomwolf committed
286
            self.n_token = vocab_size_or_config_json_file
thomwolf's avatar
thomwolf committed
287
288
289
            self.d_model = d_model
            self.n_layer = n_layer
            self.n_head = n_head
thomwolf's avatar
thomwolf committed
290
291
            assert d_model % n_head == 0
            self.d_head = d_model // n_head
thomwolf's avatar
thomwolf committed
292
293
294
            self.ff_activation = ff_activation
            self.d_inner = d_inner
            self.untie_r = untie_r
thomwolf's avatar
thomwolf committed
295
            self.attn_type = attn_type
thomwolf's avatar
thomwolf committed
296

thomwolf's avatar
thomwolf committed
297
298
299
            self.max_position_embeddings = max_position_embeddings
            self.initializer_range = initializer_range
            self.layer_norm_eps = layer_norm_eps
thomwolf's avatar
thomwolf committed
300
301
302
303
304
305
306
307
308
309
310

            self.init = init
            self.init_range = init_range
            self.init_std = init_std
            self.dropout = dropout
            self.dropatt = dropatt
            self.mem_len = mem_len
            self.reuse_len = reuse_len
            self.bi_data = bi_data
            self.clamp_len = clamp_len
            self.same_length = same_length
thomwolf's avatar
thomwolf committed
311

312
            self.finetuning_task = finetuning_task
thomwolf's avatar
thomwolf committed
313
314
            self.num_labels = num_labels
            self.summary_type = summary_type
thomwolf's avatar
thomwolf committed
315
316
317
            self.summary_use_proj = summary_use_proj
            self.summary_activation = summary_activation
            self.summary_dropout = summary_dropout
thomwolf's avatar
thomwolf committed
318
319
            self.start_n_top = start_n_top
            self.end_n_top = end_n_top
thomwolf's avatar
thomwolf committed
320
321
322
323
        else:
            raise ValueError("First argument must be either a vocabulary size (int)"
                             "or the path to a pretrained model config file (str)")

thomwolf's avatar
thomwolf committed
324
325
326
327
328
329
330
331
332
333
334
335
    @property
    def hidden_size(self):
        return self.d_model

    @property
    def num_attention_heads(self):
        return self.n_head

    @property
    def num_hidden_layers(self):
        return self.n_layer

thomwolf's avatar
thomwolf committed
336
337
338
339
340
341

try:
    from apex.normalization.fused_layer_norm import FusedLayerNorm as XLNetLayerNorm
except ImportError:
    logger.info("Better speed can be achieved with apex installed from https://www.github.com/nvidia/apex .")
    class XLNetLayerNorm(nn.Module):
thomwolf's avatar
thomwolf committed
342
        def __init__(self, d_model, eps=1e-12):
thomwolf's avatar
thomwolf committed
343
344
345
            """Construct a layernorm module in the TF style (epsilon inside the square root).
            """
            super(XLNetLayerNorm, self).__init__()
thomwolf's avatar
thomwolf committed
346
347
            self.weight = nn.Parameter(torch.ones(d_model))
            self.bias = nn.Parameter(torch.zeros(d_model))
thomwolf's avatar
thomwolf committed
348
349
350
351
352
353
354
355
            self.variance_epsilon = eps

        def forward(self, x):
            u = x.mean(-1, keepdim=True)
            s = (x - u).pow(2).mean(-1, keepdim=True)
            x = (x - u) / torch.sqrt(s + self.variance_epsilon)
            return self.weight * x + self.bias

thomwolf's avatar
thomwolf committed
356
class XLNetRelativeAttention(nn.Module):
thomwolf's avatar
thomwolf committed
357
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
358
        super(XLNetRelativeAttention, self).__init__()
thomwolf's avatar
thomwolf committed
359
360
        self.output_attentions = config.output_attentions

thomwolf's avatar
thomwolf committed
361
        if config.d_model % config.n_head != 0:
thomwolf's avatar
thomwolf committed
362
363
            raise ValueError(
                "The hidden size (%d) is not a multiple of the number of attention "
thomwolf's avatar
thomwolf committed
364
                "heads (%d)" % (config.d_model, config.n_head))
thomwolf's avatar
thomwolf committed
365

thomwolf's avatar
thomwolf committed
366
        self.n_head = config.n_head
thomwolf's avatar
thomwolf committed
367
368
369
370
371
372
373
374
375
376
377
378
379
        self.d_head = config.d_head
        self.d_model = config.d_model
        self.scale = 1 / (config.d_head ** 0.5)

        self.q = nn.Parameter(torch.Tensor(config.d_model, self.n_head, self.d_head))
        self.k = nn.Parameter(torch.Tensor(config.d_model, self.n_head, self.d_head))
        self.v = nn.Parameter(torch.Tensor(config.d_model, self.n_head, self.d_head))
        self.o = nn.Parameter(torch.Tensor(config.d_model, self.n_head, self.d_head))
        self.r = nn.Parameter(torch.Tensor(config.d_model, self.n_head, self.d_head))

        self.r_r_bias = nn.Parameter(torch.Tensor(self.n_head, self.d_head))
        self.r_s_bias = nn.Parameter(torch.Tensor(self.n_head, self.d_head))
        self.r_w_bias = nn.Parameter(torch.Tensor(self.n_head, self.d_head))
thomwolf's avatar
thomwolf committed
380
        self.seg_embed = nn.Parameter(torch.Tensor(2, self.n_head, self.d_head))
thomwolf's avatar
thomwolf committed
381

thomwolf's avatar
thomwolf committed
382
        self.layer_norm = XLNetLayerNorm(config.d_model, eps=config.layer_norm_eps)
thomwolf's avatar
thomwolf committed
383
384
385
386
387
        self.dropout = nn.Dropout(config.dropout)

    def prune_heads(self, heads):
        raise NotImplementedError

thomwolf's avatar
thomwolf committed
388
389
390
391
392
393
394
395
    @staticmethod
    def rel_shift(x, klen=-1):
        """perform relative shift to form the relative attention score."""
        x_size = x.shape

        x = x.reshape(x_size[1], x_size[0], x_size[2], x_size[3])
        x = x[1:, ...]
        x = x.reshape(x_size[0], x_size[1] - 1, x_size[2], x_size[3])
396
397
        # x = x[:, 0:klen, :, :]
        x = torch.index_select(x, 1, torch.arange(klen))
thomwolf's avatar
thomwolf committed
398
399
400

        return x

401
    def rel_attn_core(self, q_head, k_head_h, v_head_h, k_head_r, seg_mat=None, attn_mask=None, head_mask=None):
thomwolf's avatar
thomwolf committed
402
403
404
405
406
407
408
        """Core relative positional attention operations."""

        # content based attention score
        ac = torch.einsum('ibnd,jbnd->ijbn', q_head + self.r_w_bias, k_head_h)

        # position based attention score
        bd = torch.einsum('ibnd,jbnd->ijbn', q_head + self.r_r_bias, k_head_r)
thomwolf's avatar
thomwolf committed
409
        bd = self.rel_shift(bd, klen=ac.shape[1])
thomwolf's avatar
thomwolf committed
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427

        # segment based attention score
        if seg_mat is None:
            ef = 0
        else:
            ef = torch.einsum('ibnd,snd->ibns', q_head + self.r_s_bias, self.seg_embed)
            ef = torch.einsum('ijbs,ibns->ijbn', seg_mat, ef)

        # merge attention scores and perform masking
        attn_score = (ac + bd + ef) * self.scale
        if attn_mask is not None:
            # attn_score = attn_score * (1 - attn_mask) - 1e30 * attn_mask
            attn_score = attn_score - 1e30 * attn_mask

        # attention probability
        attn_prob = F.softmax(attn_score, dim=1)
        attn_prob = self.dropout(attn_prob)

428
429
430
431
        # Mask heads if we want to
        if head_mask is not None:
            attn_prob = attn_prob * head_mask

thomwolf's avatar
thomwolf committed
432
433
434
        # attention output
        attn_vec = torch.einsum('ijbn,jbnd->ibnd', attn_prob, v_head_h)

435
436
437
        if self.output_attentions:
            return attn_vec, attn_prob

thomwolf's avatar
thomwolf committed
438
439
440
441
442
443
444
445
446
447
        return attn_vec

    def post_attention(self, h, attn_vec, residual=True):
        """Post-attention processing."""
        # post-attention projection (back to `d_model`)
        attn_out = torch.einsum('ibnd,hnd->ibh', attn_vec, self.o)

        attn_out = self.dropout(attn_out)
        if residual:
            attn_out = attn_out + h
thomwolf's avatar
thomwolf committed
448
        output = self.layer_norm(attn_out)
thomwolf's avatar
thomwolf committed
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478

        return output

    def forward(self, h, g,
                      attn_mask_h, attn_mask_g,
                      r, seg_mat,
                      mems=None, target_mapping=None, head_mask=None):
        if g is not None:
            ###### Two-stream attention with relative positional encoding.
            # content based attention score
            if mems is not None and mems.dim() > 1:
                cat = torch.cat([mems, h], dim=0)
            else:
                cat = h

            # content-based key head
            k_head_h = torch.einsum('ibh,hnd->ibnd', cat, self.k)

            # content-based value head
            v_head_h = torch.einsum('ibh,hnd->ibnd', cat, self.v)

            # position-based key head
            k_head_r = torch.einsum('ibh,hnd->ibnd', r, self.r)

            ##### h-stream
            # content-stream query head
            q_head_h = torch.einsum('ibh,hnd->ibnd', h, self.q)

            # core attention ops
            attn_vec_h = self.rel_attn_core(
479
480
481
482
                q_head_h, k_head_h, v_head_h, k_head_r, seg_mat=seg_mat, attn_mask=attn_mask_h, head_mask=head_mask)

            if self.output_attentions:
                attn_vec_h, attn_prob_h = attn_vec_h
thomwolf's avatar
thomwolf committed
483
484
485
486
487
488
489
490
491
492
493
494

            # post processing
            output_h = self.post_attention(h, attn_vec_h)

            ##### g-stream
            # query-stream query head
            q_head_g = torch.einsum('ibh,hnd->ibnd', g, self.q)

            # core attention ops
            if target_mapping is not None:
                q_head_g = torch.einsum('mbnd,mlb->lbnd', q_head_g, target_mapping)
                attn_vec_g = self.rel_attn_core(
495
496
497
498
499
                    q_head_g, k_head_h, v_head_h, k_head_r, seg_mat=seg_mat, attn_mask=attn_mask_g, head_mask=head_mask)

                if self.output_attentions:
                    attn_vec_g, attn_prob_g = attn_vec_g

thomwolf's avatar
thomwolf committed
500
501
502
                attn_vec_g = torch.einsum('lbnd,mlb->mbnd', attn_vec_g, target_mapping)
            else:
                attn_vec_g = self.rel_attn_core(
503
504
505
506
                    q_head_g, k_head_h, v_head_h, k_head_r, seg_mat=seg_mat, attn_mask=attn_mask_g, head_mask=head_mask)

                if self.output_attentions:
                    attn_vec_g, attn_prob_g = attn_vec_g
thomwolf's avatar
thomwolf committed
507
508
509

            # post processing
            output_g = self.post_attention(g, attn_vec_g)
510
511
512
513

            if self.output_attentions:
                attn_prob = attn_prob_h, attn_prob_g

thomwolf's avatar
thomwolf committed
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
        else:
            ###### Multi-head attention with relative positional encoding
            if mems is not None and mems.dim() > 1:
                cat = torch.cat([mems, h], dim=0)
            else:
                cat = h

            # content heads
            q_head_h = torch.einsum('ibh,hnd->ibnd', h, self.q)
            k_head_h = torch.einsum('ibh,hnd->ibnd', cat, self.k)
            v_head_h = torch.einsum('ibh,hnd->ibnd', cat, self.v)

            # positional heads
            k_head_r = torch.einsum('ibh,hnd->ibnd', r, self.r)

            # core attention ops
            attn_vec = self.rel_attn_core(
531
532
533
534
                q_head_h, k_head_h, v_head_h, k_head_r, seg_mat=seg_mat, attn_mask=attn_mask_h, head_mask=head_mask)

            if self.output_attentions:
                attn_vec, attn_prob = attn_vec
thomwolf's avatar
thomwolf committed
535
536

            # post processing
thomwolf's avatar
thomwolf committed
537
538
            output_h = self.post_attention(h, attn_vec)
            output_g = None
thomwolf's avatar
thomwolf committed
539

540
        outputs = (output_h, output_g)
541
        if self.output_attentions:
542
            outputs = outputs + (attn_prob,)
thomwolf's avatar
thomwolf committed
543
        return outputs
thomwolf's avatar
thomwolf committed
544
545
546
547

class XLNetFeedForward(nn.Module):
    def __init__(self, config):
        super(XLNetFeedForward, self).__init__()
thomwolf's avatar
thomwolf committed
548
        self.layer_norm = XLNetLayerNorm(config.d_model, eps=config.layer_norm_eps)
thomwolf's avatar
thomwolf committed
549
550
551
        self.layer_1 = nn.Linear(config.d_model, config.d_inner)
        self.layer_2 = nn.Linear(config.d_inner, config.d_model)
        self.dropout = nn.Dropout(config.dropout)
552
553
        if isinstance(config.ff_activation, str) or \
                (sys.version_info[0] == 2 and isinstance(config.ff_activation, unicode)):
thomwolf's avatar
thomwolf committed
554
555
556
557
            self.activation_function = ACT2FN[config.ff_activation]
        else:
            self.activation_function = config.ff_activation

thomwolf's avatar
thomwolf committed
558
559
560
561
562
563
564
    def forward(self, inp):
        output = inp
        output = self.layer_1(output)
        output = self.activation_function(output)
        output = self.dropout(output)
        output = self.layer_2(output)
        output = self.dropout(output)
thomwolf's avatar
thomwolf committed
565
        output = self.layer_norm(output + inp)
thomwolf's avatar
thomwolf committed
566
        return output
thomwolf's avatar
thomwolf committed
567
568

class XLNetLayer(nn.Module):
thomwolf's avatar
thomwolf committed
569
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
570
        super(XLNetLayer, self).__init__()
thomwolf's avatar
thomwolf committed
571
        self.rel_attn = XLNetRelativeAttention(config)
thomwolf's avatar
thomwolf committed
572
573
574
575
576
        self.ff = XLNetFeedForward(config)
        self.dropout = nn.Dropout(config.dropout)

    def forward(self, output_h, output_g,
                attn_mask_h, attn_mask_g,
577
578
579
580
581
582
                r, seg_mat, mems=None, target_mapping=None, head_mask=None):
        outputs = self.rel_attn(output_h, output_g, attn_mask_h, attn_mask_g,
                                r, seg_mat, mems=mems, target_mapping=target_mapping,
                                head_mask=head_mask)
        output_h, output_g = outputs[:2]

thomwolf's avatar
thomwolf committed
583
        if output_g is not None:
thomwolf's avatar
thomwolf committed
584
585
586
            output_g = self.ff(output_g)
        output_h = self.ff(output_h)

587
        outputs = (output_h, output_g) + outputs[2:]  # Add again attentions if there are there
588
        return outputs
thomwolf's avatar
thomwolf committed
589

590
591

class XLNetPreTrainedModel(PreTrainedModel):
thomwolf's avatar
thomwolf committed
592
593
594
    """ An abstract class to handle weights initialization and
        a simple interface for dowloading and loading pretrained models.
    """
595
596
597
598
599
600
601
    config_class = XLNetConfig
    pretrained_model_archive_map = PRETRAINED_MODEL_ARCHIVE_MAP
    load_tf_weights = load_tf_weights_in_xlnet
    base_model_prefix = "transformer"

    def __init__(self, *inputs, **kwargs):
        super(XLNetPreTrainedModel, self).__init__(*inputs, **kwargs)
thomwolf's avatar
thomwolf committed
602

thomwolf's avatar
thomwolf committed
603
    def init_weights(self, module):
thomwolf's avatar
thomwolf committed
604
605
606
607
608
609
        """ Initialize the weights.
        """
        if isinstance(module, (nn.Linear, nn.Embedding)):
            # Slightly different from the TF version which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
610
611
            if isinstance(module, nn.Linear) and module.bias is not None:
                module.bias.data.zero_()
thomwolf's avatar
thomwolf committed
612
613
614
        elif isinstance(module, XLNetLayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)
615
616
617
618
619
        elif isinstance(module, XLNetRelativeAttention):
            for param in [module.q, module.k, module.v, module.o, module.r,
                          module.r_r_bias, module.r_s_bias, module.r_w_bias,
                          module.seg_embed]:
                param.data.normal_(mean=0.0, std=self.config.initializer_range)
620
621
        elif isinstance(module, XLNetModel):
                module.mask_emb.data.normal_(mean=0.0, std=self.config.initializer_range)
thomwolf's avatar
thomwolf committed
622
623
624


class XLNetModel(XLNetPreTrainedModel):
thomwolf's avatar
thomwolf committed
625
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
626
        super(XLNetModel, self).__init__(config)
thomwolf's avatar
thomwolf committed
627
628
        self.output_attentions = config.output_attentions
        self.output_hidden_states = config.output_hidden_states
629

thomwolf's avatar
thomwolf committed
630
631
        self.mem_len = config.mem_len
        self.reuse_len = config.reuse_len
thomwolf's avatar
thomwolf committed
632
633
634
635
636
        self.d_model = config.d_model
        self.same_length = config.same_length
        self.attn_type = config.attn_type
        self.bi_data = config.bi_data
        self.clamp_len = config.clamp_len
thomwolf's avatar
thomwolf committed
637
        self.n_layer = config.n_layer
thomwolf's avatar
thomwolf committed
638

thomwolf's avatar
thomwolf committed
639
640
        self.word_embedding = nn.Embedding(config.n_token, config.d_model)
        self.mask_emb = nn.Parameter(torch.Tensor(1, 1, config.d_model))
641
        self.layer = nn.ModuleList([XLNetLayer(config) for _ in range(config.n_layer)])
thomwolf's avatar
thomwolf committed
642
        self.dropout = nn.Dropout(config.dropout)
thomwolf's avatar
thomwolf committed
643

644
645
        self.apply(self.init_weights)

thomwolf's avatar
thomwolf committed
646
647
648
    def _prune_heads(self, heads_to_prune):
        logger.info("Head pruning is not implemented for XLNet")
        pass
thomwolf's avatar
thomwolf committed
649

thomwolf's avatar
thomwolf committed
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
    def create_mask(self, qlen, mlen):
        """ create causal attention mask.
            float mask where 1.0 indicate masked, 0.0 indicated not-masked.
             same_length=False:      same_length=True:
             <mlen > <  qlen >       <mlen > <  qlen >
          ^ [0 0 0 0 0 1 1 1 1]     [0 0 0 0 0 1 1 1 1]
            [0 0 0 0 0 0 1 1 1]     [1 0 0 0 0 0 1 1 1]
       qlen [0 0 0 0 0 0 0 1 1]     [1 1 0 0 0 0 0 1 1]
            [0 0 0 0 0 0 0 0 1]     [1 1 1 0 0 0 0 0 1]
          v [0 0 0 0 0 0 0 0 0]     [1 1 1 1 0 0 0 0 0]
        """
        attn_mask = torch.ones([qlen, qlen])
        mask_up = torch.triu(attn_mask, diagonal=1)
        attn_mask_pad = torch.zeros([qlen, mlen])
        ret = torch.cat([attn_mask_pad, mask_up], dim=1)
        if self.same_length:
            mask_lo = torch.tril(attn_mask, diagonal=-1)
            ret = torch.cat([ret[:, :qlen] + mask_lo, ret[:, qlen:]], dim=1)

        ret = ret.to(next(self.parameters()))
thomwolf's avatar
thomwolf committed
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
        return ret

    def cache_mem(self, curr_out, prev_mem):
        """cache hidden states into memory."""
        if self.mem_len is None or self.mem_len == 0:
            return None
        else:
            if self.reuse_len is not None and self.reuse_len > 0:
                curr_out = curr_out[:self.reuse_len]

            if prev_mem is None:
                new_mem = curr_out[-self.mem_len:]
            else:
                new_mem = torch.cat([prev_mem, curr_out], dim=0)[-self.mem_len:]

        return new_mem.detach()

thomwolf's avatar
thomwolf committed
687
688
689
690
691
692
693
694
695
696
697
698
    @staticmethod
    def positional_embedding(pos_seq, inv_freq, bsz=None):
        sinusoid_inp = torch.einsum('i,d->id', pos_seq, inv_freq)
        pos_emb = torch.cat([torch.sin(sinusoid_inp), torch.cos(sinusoid_inp)], dim=-1)
        pos_emb = pos_emb[:, None, :]

        if bsz is not None:
            pos_emb = pos_emb.expand(-1, bsz, -1)

        return pos_emb

    def relative_positional_encoding(self, qlen, klen, bsz=None):
thomwolf's avatar
thomwolf committed
699
        """create relative positional encoding."""
thomwolf's avatar
thomwolf committed
700
        freq_seq = torch.arange(0, self.d_model, 2.0, dtype=torch.float)
701
        inv_freq = 1 / torch.pow(10000, (freq_seq / self.d_model))
thomwolf's avatar
thomwolf committed
702
703
704
705
706
707
708
709
710
711
712

        if self.attn_type == 'bi':
            # beg, end = klen - 1, -qlen
            beg, end = klen, -qlen
        elif self.attn_type == 'uni':
            # beg, end = klen - 1, -1
            beg, end = klen, -1
        else:
            raise ValueError('Unknown `attn_type` {}.'.format(self.attn_type))

        if self.bi_data:
thomwolf's avatar
thomwolf committed
713
714
            fwd_pos_seq = torch.arange(beg, end, -1.0, dtype=torch.float)
            bwd_pos_seq = torch.arange(-beg, -end, 1.0, dtype=torch.float)
thomwolf's avatar
thomwolf committed
715
716
717
718
719
720

            if self.clamp_len > 0:
                fwd_pos_seq = fwd_pos_seq.clamp(-self.clamp_len, self.clamp_len)
                bwd_pos_seq = bwd_pos_seq.clamp(-self.clamp_len, self.clamp_len)

            if bsz is not None:
thomwolf's avatar
thomwolf committed
721
722
                fwd_pos_emb = self.positional_embedding(fwd_pos_seq, inv_freq, bsz//2)
                bwd_pos_emb = self.positional_embedding(bwd_pos_seq, inv_freq, bsz//2)
thomwolf's avatar
thomwolf committed
723
            else:
thomwolf's avatar
thomwolf committed
724
725
                fwd_pos_emb = self.positional_embedding(fwd_pos_seq, inv_freq)
                bwd_pos_emb = self.positional_embedding(bwd_pos_seq, inv_freq)
thomwolf's avatar
thomwolf committed
726
727
728

            pos_emb = torch.cat([fwd_pos_emb, bwd_pos_emb], dim=1)
        else:
thomwolf's avatar
thomwolf committed
729
            fwd_pos_seq = torch.arange(beg, end, -1.0)
thomwolf's avatar
thomwolf committed
730
731
            if self.clamp_len > 0:
                fwd_pos_seq = fwd_pos_seq.clamp(-self.clamp_len, self.clamp_len)
thomwolf's avatar
thomwolf committed
732
            pos_emb = self.positional_embedding(fwd_pos_seq, inv_freq, bsz)
thomwolf's avatar
thomwolf committed
733

thomwolf's avatar
thomwolf committed
734
        pos_emb = pos_emb.to(next(self.parameters()))
thomwolf's avatar
thomwolf committed
735
736
        return pos_emb

thomwolf's avatar
thomwolf committed
737
    def forward(self, input_ids, token_type_ids=None, input_mask=None, attention_mask=None,
738
                mems=None, perm_mask=None, target_mapping=None, inp_q=None, head_mask=None):
thomwolf's avatar
thomwolf committed
739
740
        """
        Args:
thomwolf's avatar
thomwolf committed
741
            input_ids: int32 Tensor in shape [bsz, len], the input token IDs.
thomwolf's avatar
thomwolf committed
742
            token_type_ids: int32 Tensor in shape [bsz, len], the input segment IDs.
743
            input_mask: [optional] float32 Tensor in shape [bsz, len], the input mask.
thomwolf's avatar
thomwolf committed
744
                0 for real tokens and 1 for padding.
745
746
747
748
            attention_mask: [optional] float32 Tensor, SAME FUNCTION as `input_mask`
                but with 1 for real tokens and 0 for padding.
                Added for easy compatibility with the BERT model (which uses this negative masking).
                You can only uses one among `input_mask` and `attention_mask`
thomwolf's avatar
thomwolf committed
749
            mems: [optional] a list of float32 Tensors in shape [mem_len, bsz, d_model], memory
thomwolf's avatar
thomwolf committed
750
751
                from previous batches. The length of the list equals n_layer.
                If None, no memory is used.
752
753
754
            perm_mask: [optional] float32 Tensor in shape [bsz, len, len].
                If perm_mask[k, i, j] = 0, i attend to j in batch k;
                if perm_mask[k, i, j] = 1, i does not attend to j in batch k.
thomwolf's avatar
thomwolf committed
755
                If None, each position attends to all the others.
756
757
            target_mapping: [optional] float32 Tensor in shape [bsz, num_predict, len].
                If target_mapping[k, i, j] = 1, the i-th predict in batch k is
thomwolf's avatar
thomwolf committed
758
759
760
                on the j-th token.
                Only used during pretraining for partial prediction.
                Set to None during finetuning.
761
            inp_q: [optional] float32 Tensor in shape [bsz, len].
thomwolf's avatar
thomwolf committed
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
                1 for tokens with losses and 0 for tokens without losses.
                Only used during pretraining for two-stream attention.
                Set to None during finetuning.

            mem_len: int, the number of tokens to cache.
            reuse_len: int, the number of tokens in the currect batch to be cached
                and reused in the future.
            bi_data: bool, whether to use bidirectional input pipeline.
                Usually set to True during pretraining and False during finetuning.
            clamp_len: int, clamp all relative distances larger than clamp_len.
                -1 means no clamping.
            same_length: bool, whether to use the same attention length for each token.
            summary_type: str, "last", "first", "mean", or "attn". The method
                to pool the input to get a vector representation.
        """
777
778
779
        # the original code for XLNet uses shapes [len, bsz] with the batch dimension at the end
        # but we want a unified interface in the library with the batch size on the first dimension
        # so we move here the first dimension (batch) to the end
thomwolf's avatar
thomwolf committed
780
        input_ids = input_ids.transpose(0, 1).contiguous()
thomwolf's avatar
thomwolf committed
781
        token_type_ids = token_type_ids.transpose(0, 1).contiguous() if token_type_ids is not None else None
782
        input_mask = input_mask.transpose(0, 1).contiguous() if input_mask is not None else None
thomwolf's avatar
thomwolf committed
783
        attention_mask = attention_mask.transpose(0, 1).contiguous() if attention_mask is not None else None
784
785
786
787
        perm_mask = perm_mask.permute(1, 2, 0).contiguous() if perm_mask is not None else None
        target_mapping = target_mapping.permute(1, 2, 0).contiguous() if target_mapping is not None else None
        inp_q = inp_q.transpose(0, 1).contiguous() if inp_q is not None else None

thomwolf's avatar
thomwolf committed
788
        qlen, bsz = input_ids.shape[0], input_ids.shape[1]
thomwolf's avatar
thomwolf committed
789
790
        mlen = mems[0].shape[0] if mems is not None else 0
        klen = mlen + qlen
thomwolf's avatar
thomwolf committed
791
792
793

        dtype_float = next(self.parameters()).dtype
        device = next(self.parameters()).device
thomwolf's avatar
thomwolf committed
794
795
796
797

        ##### Attention mask
        # causal attention mask
        if self.attn_type == 'uni':
thomwolf's avatar
thomwolf committed
798
            attn_mask = self.create_mask(qlen, mlen)
thomwolf's avatar
thomwolf committed
799
800
801
802
803
804
805
            attn_mask = attn_mask[:, :, None, None]
        elif self.attn_type == 'bi':
            attn_mask = None
        else:
            raise ValueError('Unsupported attention type: {}'.format(self.attn_type))

        # data mask: input mask & perm mask
806
807
808
809
810
811
812
813
814
        assert input_mask is None or attention_mask is None, "You can only use one of input_mask (uses 1 for padding) "
        "or attention_mask (uses 0 for padding, added for compatbility with BERT). Please choose one."
        if input_mask is None and attention_mask is not None:
            input_mask = 1.0 - attention_mask
        if input_mask is not None and perm_mask is not None:
            data_mask = input_mask[None] + perm_mask
        elif input_mask is not None and perm_mask is None:
            data_mask = input_mask[None]
        elif input_mask is None and perm_mask is not None:
thomwolf's avatar
thomwolf committed
815
816
817
818
819
820
            data_mask = perm_mask
        else:
            data_mask = None

        if data_mask is not None:
            # all mems can be attended to
thomwolf's avatar
thomwolf committed
821
            mems_mask = torch.zeros([data_mask.shape[0], mlen, bsz]).to(data_mask)
thomwolf's avatar
thomwolf committed
822
823
824
825
826
827
828
            data_mask = torch.cat([mems_mask, data_mask], dim=1)
            if attn_mask is None:
                attn_mask = data_mask[:, :, :, None]
            else:
                attn_mask += data_mask[:, :, :, None]

        if attn_mask is not None:
thomwolf's avatar
thomwolf committed
829
            attn_mask = (attn_mask > 0).to(dtype_float)
thomwolf's avatar
thomwolf committed
830
831

        if attn_mask is not None:
thomwolf's avatar
thomwolf committed
832
833
834
            non_tgt_mask = -torch.eye(qlen).to(attn_mask)
            non_tgt_mask = torch.cat([torch.zeros([qlen, mlen]).to(attn_mask), non_tgt_mask], dim=-1)
            non_tgt_mask = ((attn_mask + non_tgt_mask[:, :, None, None]) > 0).to(attn_mask)
thomwolf's avatar
thomwolf committed
835
836
837
        else:
            non_tgt_mask = None

thomwolf's avatar
thomwolf committed
838
        ##### Word embeddings and prepare h & g hidden states
thomwolf's avatar
thomwolf committed
839
        word_emb_k = self.word_embedding(input_ids)
thomwolf's avatar
thomwolf committed
840
841
842
        output_h = self.dropout(word_emb_k)
        if inp_q is not None:
            if target_mapping is not None:
843
                word_emb_q = self.mask_emb.expand(target_mapping.shape[0], bsz, -1)
thomwolf's avatar
thomwolf committed
844
845
            else:
                inp_q_ext = inp_q[:, :, None]
846
                word_emb_q = inp_q_ext * self.mask_emb + (1 - inp_q_ext) * word_emb_k
thomwolf's avatar
thomwolf committed
847
848
849
850
851
            output_g = self.dropout(word_emb_q)
        else:
            output_g = None

        ##### Segment embedding
thomwolf's avatar
thomwolf committed
852
853
        if token_type_ids is not None:
            # Convert `token_type_ids` to one-hot `seg_mat`
thomwolf's avatar
thomwolf committed
854
            mem_pad = torch.zeros([mlen, bsz], dtype=torch.long, device=device)
thomwolf's avatar
thomwolf committed
855
            cat_ids = torch.cat([mem_pad, token_type_ids], dim=0)
thomwolf's avatar
thomwolf committed
856
857

            # `1` indicates not in the same segment [qlen x klen x bsz]
thomwolf's avatar
thomwolf committed
858
            seg_mat = (token_type_ids[:, None] != cat_ids[None, :]).long()
thomwolf's avatar
thomwolf committed
859
            seg_mat = F.one_hot(seg_mat, num_classes=2).to(dtype_float)
thomwolf's avatar
thomwolf committed
860
861
862
863
        else:
            seg_mat = None

        ##### Positional encoding
thomwolf's avatar
thomwolf committed
864
        pos_emb = self.relative_positional_encoding(qlen, klen, bsz=bsz)
thomwolf's avatar
thomwolf committed
865
866
        pos_emb = self.dropout(pos_emb)

thomwolf's avatar
thomwolf committed
867
        # Prepare head mask if needed
thomwolf's avatar
thomwolf committed
868
869
        # 1.0 in head_mask indicate we keep the head
        # attention_probs has shape bsz x n_heads x N x N
thomwolf's avatar
thomwolf committed
870
871
        # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] (a head_mask for each layer)
        # and head_mask is converted to shape [num_hidden_layers x qlen x klen x bsz x n_head]
thomwolf's avatar
thomwolf committed
872
873
        if head_mask is not None:
            if head_mask.dim() == 1:
thomwolf's avatar
thomwolf committed
874
875
                head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(0).unsqueeze(0)
                head_mask = head_mask.expand(self.n_layer, -1, -1, -1, -1)
thomwolf's avatar
thomwolf committed
876
            elif head_mask.dim() == 2:
thomwolf's avatar
thomwolf committed
877
                head_mask = head_mask.unsqueeze(1).unsqueeze(1).unsqueeze(1)
thomwolf's avatar
thomwolf committed
878
879
            head_mask = head_mask.to(dtype=next(self.parameters()).dtype) # switch to fload if need + fp16 compatibility
        else:
thomwolf's avatar
thomwolf committed
880
            head_mask = [None] * self.n_layer
thomwolf's avatar
thomwolf committed
881

882
        new_mems = ()
thomwolf's avatar
thomwolf committed
883
884
885
        if mems is None:
            mems = [None] * len(self.layer)

886
        attentions = []
887
        hidden_states = []
thomwolf's avatar
thomwolf committed
888
889
        for i, layer_module in enumerate(self.layer):
            # cache new mems
890
            new_mems = new_mems + (self.cache_mem(output_h, mems[i]),)
891
892
893
894
895
            if self.output_hidden_states:
                hidden_states.append((output_h, output_g) if output_g is not None else output_h)

            outputs = layer_module(output_h, output_g, attn_mask_h=non_tgt_mask, attn_mask_g=attn_mask,
                                   r=pos_emb, seg_mat=seg_mat, mems=mems[i], target_mapping=target_mapping,
thomwolf's avatar
thomwolf committed
896
                                   head_mask=head_mask[i])
897
898
            output_h, output_g = outputs[:2]
            if self.output_attentions:
thomwolf's avatar
thomwolf committed
899
                attentions.append(outputs[2])
900
901
902

        # Add last hidden state
        if self.output_hidden_states:
thomwolf's avatar
thomwolf committed
903
            hidden_states.append((output_h, output_g) if output_g is not None else output_h)
thomwolf's avatar
thomwolf committed
904
905
906

        output = self.dropout(output_g if output_g is not None else output_h)

907
        # Prepare outputs, we transpose back here to shape [bsz, len, hidden_dim] (cf. beginning of forward() method)
908
        outputs = (output.permute(1, 0, 2).contiguous(), new_mems)
909
910
        if self.output_hidden_states:
            if output_g is not None:
911
                hidden_states = tuple(h.permute(1, 0, 2).contiguous() for hs in hidden_states for h in hs)
912
            else:
913
                hidden_states = tuple(hs.permute(1, 0, 2).contiguous() for hs in hidden_states)
914
            outputs = outputs + (hidden_states,)
915
        if self.output_attentions:
916
            attentions = tuple(t.permute(2, 3, 0, 1).contiguous() for t in attentions)
917
            outputs = outputs + (attentions,)
918

919
        return outputs  # outputs, new_mems, (hidden_states), (attentions)
thomwolf's avatar
thomwolf committed
920
921
922


class XLNetLMHeadModel(XLNetPreTrainedModel):
thomwolf's avatar
thomwolf committed
923
924
925
926
927
928
929
930
931
    """XLNet model ("XLNet: Generalized Autoregressive Pretraining for Language Understanding").

    Params:
        `config`: a XLNetConfig class instance with the configuration to build a new model
        `output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
        `keep_multihead_output`: If True, saves output of the multi-head attention module with its gradient.
            This can be used to compute head importance metrics. Default: False

    Inputs:
thomwolf's avatar
thomwolf committed
932
        input_ids: int32 Tensor in shape [bsz, len], the input token IDs.
thomwolf's avatar
thomwolf committed
933
        token_type_ids: int32 Tensor in shape [bsz, len], the input segment IDs.
934
        input_mask: [optional] float32 Tensor in shape [bsz, len], the input mask.
935
            0 for real tokens and 1 for padding.
936
937
938
939
        attention_mask: [optional] float32 Tensor, SAME FUNCTION as `input_mask`
            but with 1 for real tokens and 0 for padding.
            Added for easy compatibility with the BERT model (which uses this negative masking).
            You can only uses one among `input_mask` and `attention_mask`
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
        mems: [optional] a list of float32 Tensors in shape [mem_len, bsz, d_model], memory
            from previous batches. The length of the list equals n_layer.
            If None, no memory is used.
        perm_mask: [optional] float32 Tensor in shape [bsz, len, len].
            If perm_mask[k, i, j] = 0, i attend to j in batch k;
            if perm_mask[k, i, j] = 1, i does not attend to j in batch k.
            If None, each position attends to all the others.
        target_mapping: [optional] float32 Tensor in shape [bsz, num_predict, len].
            If target_mapping[k, i, j] = 1, the i-th predict in batch k is
            on the j-th token.
            Only used during pretraining for partial prediction.
            Set to None during finetuning.
        inp_q: [optional] float32 Tensor in shape [bsz, len].
            1 for tokens with losses and 0 for tokens without losses.
            Only used during pretraining for two-stream attention.
            Set to None during finetuning.
thomwolf's avatar
thomwolf committed
956
957
958
959
960
961


    Outputs: Tuple of (encoded_layers, pooled_output)
        `encoded_layers`: controled by `output_all_encoded_layers` argument:
            - `output_all_encoded_layers=True`: outputs a list of the full sequences of encoded-hidden-states at the end
                of each attention block (i.e. 12 full sequences for XLNet-base, 24 for XLNet-large), each
thomwolf's avatar
thomwolf committed
962
                encoded-hidden-state is a torch.FloatTensor of size [batch_size, sequence_length, d_model],
thomwolf's avatar
thomwolf committed
963
            - `output_all_encoded_layers=False`: outputs only the full sequence of hidden-states corresponding
thomwolf's avatar
thomwolf committed
964
965
                to the last attention block of shape [batch_size, sequence_length, d_model],
        `pooled_output`: a torch.FloatTensor of size [batch_size, d_model] which is the output of a
thomwolf's avatar
thomwolf committed
966
967
968
969
970
971
972
            classifier pretrained on top of the hidden state associated to the first character of the
            input (`CLS`) to train on the Next-Sentence task (see XLNet's paper).

    Example usage:
    ```python
    # Already been converted into WordPiece token ids
    input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
973
    input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
thomwolf's avatar
thomwolf committed
974
975
    token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])

thomwolf's avatar
thomwolf committed
976
    config = modeling.XLNetConfig(vocab_size_or_config_json_file=32000, d_model=768,
thomwolf's avatar
thomwolf committed
977
        n_layer=12, num_attention_heads=12, intermediate_size=3072)
thomwolf's avatar
thomwolf committed
978
979

    model = modeling.XLNetModel(config=config)
980
    all_encoder_layers, pooled_output = model(input_ids, token_type_ids, input_mask)
thomwolf's avatar
thomwolf committed
981
982
    ```
    """
thomwolf's avatar
thomwolf committed
983
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
984
        super(XLNetLMHeadModel, self).__init__(config)
thomwolf's avatar
thomwolf committed
985
986
        self.attn_type = config.attn_type
        self.same_length = config.same_length
987
        self.torchscript = config.torchscript
thomwolf's avatar
thomwolf committed
988

thomwolf's avatar
thomwolf committed
989
        self.transformer = XLNetModel(config)
thomwolf's avatar
thomwolf committed
990
        self.lm_loss = nn.Linear(config.d_model, config.n_token, bias=True)
thomwolf's avatar
thomwolf committed
991

thomwolf's avatar
thomwolf committed
992
993
        # Tie weights

thomwolf's avatar
thomwolf committed
994
        self.apply(self.init_weights)
thomwolf's avatar
thomwolf committed
995
        self.tie_weights()
thomwolf's avatar
thomwolf committed
996

thomwolf's avatar
thomwolf committed
997
998
    def tie_weights(self):
        """ Make sure we are sharing the embeddings
thomwolf's avatar
thomwolf committed
999
        """
1000
1001
1002
1003
        if self.torchscript:
            self.lm_loss.weight = nn.Parameter(self.transformer.word_embedding.weight.clone())
        else:
            self.lm_loss.weight = self.transformer.word_embedding.weight
thomwolf's avatar
thomwolf committed
1004

thomwolf's avatar
thomwolf committed
1005
    def forward(self, input_ids, token_type_ids=None, input_mask=None, attention_mask=None,
thomwolf's avatar
thomwolf committed
1006
                mems=None, perm_mask=None, target_mapping=None, inp_q=None,
1007
                labels=None, head_mask=None):
thomwolf's avatar
thomwolf committed
1008
1009
        """
        Args:
thomwolf's avatar
thomwolf committed
1010
            input_ids: int32 Tensor in shape [bsz, len], the input token IDs.
thomwolf's avatar
thomwolf committed
1011
            token_type_ids: int32 Tensor in shape [bsz, len], the input segment IDs.
1012
            input_mask: float32 Tensor in shape [bsz, len], the input mask.
thomwolf's avatar
thomwolf committed
1013
                0 for real tokens and 1 for padding.
1014
1015
1016
1017
            attention_mask: [optional] float32 Tensor, SAME FUNCTION as `input_mask`
                but with 1 for real tokens and 0 for padding.
                Added for easy compatibility with the BERT model (which uses this negative masking).
                You can only uses one among `input_mask` and `attention_mask`
thomwolf's avatar
thomwolf committed
1018
1019
1020
            mems: a list of float32 Tensors in shape [mem_len, bsz, d_model], memory
                from previous batches. The length of the list equals n_layer.
                If None, no memory is used.
1021
1022
1023
            perm_mask: float32 Tensor in shape [bsz, len, len].
                If perm_mask[k, i, j] = 0, i attend to j in batch k;
                if perm_mask[k, i, j] = 1, i does not attend to j in batch k.
thomwolf's avatar
thomwolf committed
1024
                If None, each position attends to all the others.
1025
1026
            target_mapping: float32 Tensor in shape [bsz, num_predict, len].
                If target_mapping[k, i, j] = 1, the i-th predict in batch k is
thomwolf's avatar
thomwolf committed
1027
1028
1029
                on the j-th token.
                Only used during pretraining for partial prediction.
                Set to None during finetuning.
1030
            inp_q: float32 Tensor in shape [bsz, len].
thomwolf's avatar
thomwolf committed
1031
1032
1033
1034
1035
1036
1037
                1 for tokens with losses and 0 for tokens without losses.
                Only used during pretraining for two-stream attention.
                Set to None during finetuning.

            summary_type: str, "last", "first", "mean", or "attn". The method
                to pool the input to get a vector representation.
        """
thomwolf's avatar
thomwolf committed
1038
        transformer_outputs = self.transformer(input_ids, token_type_ids, input_mask, attention_mask,
1039
1040
1041
                                               mems, perm_mask, target_mapping, inp_q, head_mask)

        logits = self.lm_loss(transformer_outputs[0])
1042

1043
        outputs = (logits,) + transformer_outputs[1:]  # Keep mems, hidden states, attentions if there are in it
1044

1045
        if labels is not None:
1046
1047
1048
            # Flatten the tokens
            loss_fct = CrossEntropyLoss(ignore_index=-1)
            loss = loss_fct(logits.view(-1, logits.size(-1)),
1049
                            labels.view(-1))
1050
            outputs = (loss,) + outputs
1051

1052
        return outputs  # return (loss), logits, (mems), (hidden states), (attentions)
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066


class XLNetForSequenceClassification(XLNetPreTrainedModel):
    """XLNet model ("XLNet: Generalized Autoregressive Pretraining for Language Understanding").

    Params:
        `config`: a XLNetConfig class instance with the configuration to build a new model
        `output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
        `keep_multihead_output`: If True, saves output of the multi-head attention module with its gradient.
            This can be used to compute head importance metrics. Default: False
        `summary_type`: str, "last", "first", "mean", or "attn". The method
            to pool the input to get a vector representation. Default: last

    Inputs:
thomwolf's avatar
thomwolf committed
1067
        input_ids: int32 Tensor in shape [bsz, len], the input token IDs.
thomwolf's avatar
thomwolf committed
1068
        token_type_ids: int32 Tensor in shape [bsz, len], the input segment IDs.
1069
        input_mask: float32 Tensor in shape [bsz, len], the input mask.
1070
            0 for real tokens and 1 for padding.
1071
1072
1073
1074
        attention_mask: [optional] float32 Tensor, SAME FUNCTION as `input_mask`
            but with 1 for real tokens and 0 for padding.
            Added for easy compatibility with the BERT model (which uses this negative masking).
            You can only uses one among `input_mask` and `attention_mask`
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
        mems: a list of float32 Tensors in shape [mem_len, bsz, d_model], memory
            from previous batches. The length of the list equals n_layer.
            If None, no memory is used.
        perm_mask: float32 Tensor in shape [bsz, len, len].
            If perm_mask[k, i, j] = 0, i attend to j in batch k;
            if perm_mask[k, i, j] = 1, i does not attend to j in batch k.
            If None, each position attends to all the others.
        target_mapping: float32 Tensor in shape [bsz, num_predict, len].
            If target_mapping[k, i, j] = 1, the i-th predict in batch k is
            on the j-th token.
            Only used during pretraining for partial prediction.
            Set to None during finetuning.
        inp_q: float32 Tensor in shape [bsz, len].
            1 for tokens with losses and 0 for tokens without losses.
            Only used during pretraining for two-stream attention.
            Set to None during finetuning.
        `head_mask`: an optional torch.Tensor of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1.
            It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked.


    Outputs: Tuple of (logits or loss, mems)
        `logits or loss`:
1097
            if labels is None:
1098
1099
1100
1101
1102
                Token logits with shape [batch_size, sequence_length] 
            else:
                CrossEntropy loss with the targets
        `new_mems`: list (num layers) of updated mem states at the entry of each layer
            each mem state is a torch.FloatTensor of size [self.config.mem_len, batch_size, self.config.d_model]
1103
            Note that the first two dimensions are transposed in `mems` with regards to `input_ids` and `labels`
1104
1105
1106
1107
1108

    Example usage:
    ```python
    # Already been converted into WordPiece token ids
    input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
1109
    input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
1110
1111
1112
1113
1114
1115
    token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])

    config = modeling.XLNetConfig(vocab_size_or_config_json_file=32000, d_model=768,
        n_layer=12, num_attention_heads=12, intermediate_size=3072)

    model = modeling.XLNetModel(config=config)
1116
    all_encoder_layers, pooled_output = model(input_ids, token_type_ids, input_mask)
1117
1118
    ```
    """
thomwolf's avatar
thomwolf committed
1119
    def __init__(self, config):
1120
        super(XLNetForSequenceClassification, self).__init__(config)
thomwolf's avatar
thomwolf committed
1121
        self.num_labels = config.num_labels
1122

thomwolf's avatar
thomwolf committed
1123
        self.transformer = XLNetModel(config)
thomwolf's avatar
thomwolf committed
1124
        self.sequence_summary = SequenceSummary(config)
thomwolf's avatar
thomwolf committed
1125
        self.logits_proj = nn.Linear(config.d_model, config.num_labels)
1126

thomwolf's avatar
thomwolf committed
1127
        self.apply(self.init_weights)
1128

thomwolf's avatar
thomwolf committed
1129
    def forward(self, input_ids, token_type_ids=None, input_mask=None, attention_mask=None,
1130
                mems=None, perm_mask=None, target_mapping=None, inp_q=None,
1131
                labels=None, head_mask=None):
1132
1133
        """
        Args:
thomwolf's avatar
thomwolf committed
1134
            input_ids: int32 Tensor in shape [bsz, len], the input token IDs.
thomwolf's avatar
thomwolf committed
1135
            token_type_ids: int32 Tensor in shape [bsz, len], the input segment IDs.
1136
            input_mask: float32 Tensor in shape [bsz, len], the input mask.
1137
                0 for real tokens and 1 for padding.
1138
1139
1140
1141
            attention_mask: [optional] float32 Tensor, SAME FUNCTION as `input_mask`
                but with 1 for real tokens and 0 for padding.
                Added for easy compatibility with the BERT model (which uses this negative masking).
                You can only uses one among `input_mask` and `attention_mask`
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
            mems: a list of float32 Tensors in shape [mem_len, bsz, d_model], memory
                from previous batches. The length of the list equals n_layer.
                If None, no memory is used.
            perm_mask: float32 Tensor in shape [bsz, len, len].
                If perm_mask[k, i, j] = 0, i attend to j in batch k;
                if perm_mask[k, i, j] = 1, i does not attend to j in batch k.
                If None, each position attends to all the others.
            target_mapping: float32 Tensor in shape [bsz, num_predict, len].
                If target_mapping[k, i, j] = 1, the i-th predict in batch k is
                on the j-th token.
                Only used during pretraining for partial prediction.
                Set to None during finetuning.
            inp_q: float32 Tensor in shape [bsz, len].
                1 for tokens with losses and 0 for tokens without losses.
                Only used during pretraining for two-stream attention.
                Set to None during finetuning.
        """
thomwolf's avatar
thomwolf committed
1159
        transformer_outputs = self.transformer(input_ids, token_type_ids, input_mask, attention_mask,
1160
                                               mems, perm_mask, target_mapping, inp_q, head_mask)
1161
        output = transformer_outputs[0]
thomwolf's avatar
thomwolf committed
1162

1163
        output = self.sequence_summary(output)
1164
        logits = self.logits_proj(output)
thomwolf's avatar
thomwolf committed
1165

1166
        outputs = (logits,) + transformer_outputs[1:]  # Keep mems, hidden states, attentions if there are in it
1167

1168
1169
1170
        if labels is not None:
            if self.num_labels == 1:
                #  We are doing regression
1171
                loss_fct = MSELoss()
1172
                loss = loss_fct(logits.view(-1), labels.view(-1))
1173
            else:
1174
1175
                loss_fct = CrossEntropyLoss()
                loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
1176
            outputs = (loss,) + outputs
1177
1178

        return outputs  # return (loss), logits, (mems), (hidden states), (attentions)
thomwolf's avatar
thomwolf committed
1179

thomwolf's avatar
thomwolf committed
1180
1181

class XLNetForQuestionAnswering(XLNetPreTrainedModel):
thomwolf's avatar
thomwolf committed
1182
    """ XLNet model for Question Answering (span extraction).
thomwolf's avatar
thomwolf committed
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
    This module is composed of the XLNet model with a linear layer on top of
    the sequence output that computes start_logits and end_logits

    Params:
        `config`: a XLNetConfig class instance with the configuration to build a new model
        `output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
        `keep_multihead_output`: If True, saves output of the multi-head attention module with its gradient.
            This can be used to compute head importance metrics. Default: False

    Inputs:
        `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
            with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts
1195
            `run_bert_extract_features.py`, `run_bert_classifier.py` and `run_bert_squad.py`)
thomwolf's avatar
thomwolf committed
1196
1197
1198
        `token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
            types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
            a `sentence B` token (see XLNet paper for more details).
1199
1200
1201
1202
1203
        `attention_mask`: [optional] float32 Tensor, SAME FUNCTION as `input_mask`
            but with 1 for real tokens and 0 for padding.
            Added for easy compatibility with the BERT model (which uses this negative masking).
            You can only uses one among `input_mask` and `attention_mask`
        `input_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
thomwolf's avatar
thomwolf committed
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
            selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
            input sequence length in the current batch. It's the mask that we typically use for attention when
            a batch has varying length sentences.
        `start_positions`: position of the first token for the labeled span: torch.LongTensor of shape [batch_size].
            Positions are clamped to the length of the sequence and position outside of the sequence are not taken
            into account for computing the loss.
        `end_positions`: position of the last token for the labeled span: torch.LongTensor of shape [batch_size].
            Positions are clamped to the length of the sequence and position outside of the sequence are not taken
            into account for computing the loss.
        `head_mask`: an optional torch.Tensor of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1.
            It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked.

    Outputs:
        if `start_positions` and `end_positions` are not `None`:
            Outputs the total_loss which is the sum of the CrossEntropy loss for the start and end token positions.
        if `start_positions` or `end_positions` is `None`:
            Outputs a tuple of start_logits, end_logits which are the logits respectively for the start and end
            position tokens of shape [batch_size, sequence_length].

    Example usage:
    ```python
    # Already been converted into WordPiece token ids
    input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
1227
    input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
thomwolf's avatar
thomwolf committed
1228
1229
1230
1231
1232
1233
    token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])

    config = XLNetConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
        num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)

    model = XLNetForQuestionAnswering(config)
1234
    start_logits, end_logits = model(input_ids, token_type_ids, input_mask)
thomwolf's avatar
thomwolf committed
1235
1236
    ```
    """
thomwolf's avatar
thomwolf committed
1237
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
1238
        super(XLNetForQuestionAnswering, self).__init__(config)
thomwolf's avatar
thomwolf committed
1239
1240
        self.start_n_top = config.start_n_top
        self.end_n_top = config.end_n_top
1241

thomwolf's avatar
thomwolf committed
1242
        self.transformer = XLNetModel(config)
thomwolf's avatar
thomwolf committed
1243
1244
1245
        self.start_logits = PoolerStartLogits(config)
        self.end_logits = PoolerEndLogits(config)
        self.answer_class = PoolerAnswerClass(config)
thomwolf's avatar
thomwolf committed
1246

thomwolf's avatar
thomwolf committed
1247
1248
        self.apply(self.init_weights)

thomwolf's avatar
thomwolf committed
1249
    def forward(self, input_ids, token_type_ids=None, input_mask=None, attention_mask=None,
thomwolf's avatar
thomwolf committed
1250
                mems=None, perm_mask=None, target_mapping=None, inp_q=None,
thomwolf's avatar
thomwolf committed
1251
1252
                start_positions=None, end_positions=None, cls_index=None, is_impossible=None, p_mask=None,
                head_mask=None):
thomwolf's avatar
thomwolf committed
1253
        transformer_outputs = self.transformer(input_ids, token_type_ids, input_mask, attention_mask,
thomwolf's avatar
thomwolf committed
1254
1255
1256
                                               mems, perm_mask, target_mapping, inp_q, head_mask)
        hidden_states = transformer_outputs[0]
        start_logits = self.start_logits(hidden_states, p_mask)
thomwolf's avatar
thomwolf committed
1257

thomwolf's avatar
thomwolf committed
1258
        outputs = transformer_outputs[1:]  # Keep mems, hidden states, attentions if there are in it
1259

thomwolf's avatar
thomwolf committed
1260
1261
1262
1263
1264
        if start_positions is not None and end_positions is not None:
            # If we are on multi-GPU, let's remove the dimension added by batch splitting
            for x in (start_positions, end_positions, cls_index, is_impossible):
                if x is not None and x.dim() > 1:
                    x.squeeze_(-1)
thomwolf's avatar
thomwolf committed
1265

thomwolf's avatar
thomwolf committed
1266
1267
            # during training, compute the end logits based on the ground truth of the start position
            end_logits = self.end_logits(hidden_states, start_positions=start_positions, p_mask=p_mask)
1268

thomwolf's avatar
thomwolf committed
1269
            loss_fct = CrossEntropyLoss()
thomwolf's avatar
thomwolf committed
1270
1271
1272
            start_loss = loss_fct(start_logits, start_positions)
            end_loss = loss_fct(end_logits, end_positions)
            total_loss = (start_loss + end_loss) / 2
1273

thomwolf's avatar
thomwolf committed
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
            if cls_index is not None and is_impossible is not None:
                # Predict answerability from the representation of CLS and START
                cls_logits = self.answer_class(hidden_states, start_positions=start_positions, cls_index=cls_index)
                loss_fct_cls = nn.BCEWithLogitsLoss()
                cls_loss = loss_fct_cls(cls_logits, is_impossible)

                # note(zhiliny): by default multiply the loss by 0.5 so that the scale is
                # comparable to start_loss and end_loss
                total_loss += cls_loss * 0.5
                outputs = (total_loss, start_logits, end_logits, cls_logits) + outputs
            else:
                outputs = (total_loss, start_logits, end_logits) + outputs

        else:
            # during inference, compute the end logits based on beam search
            bsz, slen, hsz = hidden_states.size()
            start_log_probs = F.softmax(start_logits, dim=-1) # shape (bsz, slen)

            start_top_log_probs, start_top_index = torch.topk(start_log_probs, self.start_n_top, dim=-1) # shape (bsz, start_n_top)
            start_top_index = start_top_index.unsqueeze(-1).expand(-1, -1, hsz) # shape (bsz, start_n_top, hsz)
            start_states = torch.gather(hidden_states, -2, start_top_index) # shape (bsz, start_n_top, hsz)
            start_states = start_states.unsqueeze(1).expand(-1, slen, -1, -1) # shape (bsz, slen, start_n_top, hsz)

            hidden_states_expanded = hidden_states.unsqueeze(2).expand_as(start_states) # shape (bsz, slen, start_n_top, hsz)
            p_mask = p_mask.unsqueeze(-1) if p_mask is not None else None
            end_logits = self.end_logits(hidden_states_expanded, start_states=start_states, p_mask=p_mask)
            end_log_probs = F.softmax(end_logits, dim=1) # shape (bsz, slen, start_n_top)

            end_top_log_probs, end_top_index = torch.topk(end_log_probs, self.end_n_top, dim=1) # shape (bsz, end_n_top, start_n_top)
            end_top_log_probs = end_top_log_probs.view(-1, self.start_n_top * self.end_n_top)
            end_top_index = end_top_index.view(-1, self.start_n_top * self.end_n_top)

            start_states = torch.einsum("blh,bl->bh", hidden_states, start_log_probs)
            cls_logits = self.answer_class(hidden_states, start_states=start_states, cls_index=cls_index)

            outputs = (start_top_log_probs, start_top_index, end_top_log_probs, end_top_index, cls_logits) + outputs

        # return start_top_log_probs, start_top_index, end_top_log_probs, end_top_index, cls_logits, mems, (hidden states), (attentions)
        # or (if labels are provided) total_loss, start_logits, end_logits, (cls_logits), mems, (hidden states), (attentions)
        return outputs