Commit f2b300df authored by LysandreJik's avatar LysandreJik
Browse files

fix #976

parent 7df303f5
...@@ -925,7 +925,7 @@ class BertForSequenceClassification(BertPreTrainedModel): ...@@ -925,7 +925,7 @@ class BertForSequenceClassification(BertPreTrainedModel):
r""" r"""
**labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``: **labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``:
Labels for computing the sequence classification/regression loss. Labels for computing the sequence classification/regression loss.
Indices should be in ``[0, ..., config.num_labels]``. Indices should be in ``[0, ..., config.num_labels - 1]``.
If ``config.num_labels == 1`` a regression loss is computed (Mean-Square loss), If ``config.num_labels == 1`` a regression loss is computed (Mean-Square loss),
If ``config.num_labels > 1`` a classification loss is computed (Cross-Entropy). If ``config.num_labels > 1`` a classification loss is computed (Cross-Entropy).
...@@ -1099,7 +1099,7 @@ class BertForTokenClassification(BertPreTrainedModel): ...@@ -1099,7 +1099,7 @@ class BertForTokenClassification(BertPreTrainedModel):
r""" r"""
**labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``: **labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
Labels for computing the token classification loss. Labels for computing the token classification loss.
Indices should be in ``[0, ..., config.num_labels]``. Indices should be in ``[0, ..., config.num_labels - 1]``.
Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs: Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
**loss**: (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``: **loss**: (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
......
...@@ -784,7 +784,7 @@ class XLMForSequenceClassification(XLMPreTrainedModel): ...@@ -784,7 +784,7 @@ class XLMForSequenceClassification(XLMPreTrainedModel):
r""" r"""
**labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``: **labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``:
Labels for computing the sequence classification/regression loss. Labels for computing the sequence classification/regression loss.
Indices should be in ``[0, ..., config.num_labels]``. Indices should be in ``[0, ..., config.num_labels - 1]``.
If ``config.num_labels == 1`` a regression loss is computed (Mean-Square loss), If ``config.num_labels == 1`` a regression loss is computed (Mean-Square loss),
If ``config.num_labels > 1`` a classification loss is computed (Cross-Entropy). If ``config.num_labels > 1`` a classification loss is computed (Cross-Entropy).
......
...@@ -1075,7 +1075,7 @@ class XLNetForSequenceClassification(XLNetPreTrainedModel): ...@@ -1075,7 +1075,7 @@ class XLNetForSequenceClassification(XLNetPreTrainedModel):
r""" r"""
**labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``: **labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``:
Labels for computing the sequence classification/regression loss. Labels for computing the sequence classification/regression loss.
Indices should be in ``[0, ..., config.num_labels]``. Indices should be in ``[0, ..., config.num_labels - 1]``.
If ``config.num_labels == 1`` a regression loss is computed (Mean-Square loss), If ``config.num_labels == 1`` a regression loss is computed (Mean-Square loss),
If ``config.num_labels > 1`` a classification loss is computed (Cross-Entropy). If ``config.num_labels > 1`` a classification loss is computed (Cross-Entropy).
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment