trainer.py 37.6 KB
Newer Older
Julien Chaumond's avatar
Julien Chaumond committed
1
import logging
2
import math
Julien Chaumond's avatar
Julien Chaumond committed
3
4
5
6
import os
import random
import re
import shutil
7
import warnings
Julien Chaumond's avatar
Julien Chaumond committed
8
9
from contextlib import contextmanager
from pathlib import Path
10
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
Julien Chaumond's avatar
Julien Chaumond committed
11
12
13

import numpy as np
import torch
14
from packaging import version
Julien Chaumond's avatar
Julien Chaumond committed
15
16
17
18
from torch import nn
from torch.utils.data.dataloader import DataLoader
from torch.utils.data.dataset import Dataset
from torch.utils.data.distributed import DistributedSampler
19
from torch.utils.data.sampler import RandomSampler, Sampler, SequentialSampler
20
from tqdm.auto import tqdm, trange
Julien Chaumond's avatar
Julien Chaumond committed
21

22
from .data.data_collator import DataCollator, default_data_collator
Patrick von Platen's avatar
Patrick von Platen committed
23
from .file_utils import is_apex_available, is_torch_tpu_available
Julien Chaumond's avatar
Julien Chaumond committed
24
25
from .modeling_utils import PreTrainedModel
from .optimization import AdamW, get_linear_schedule_with_warmup
26
from .trainer_utils import PREFIX_CHECKPOINT_DIR, EvalPrediction, PredictionOutput, TrainOutput, is_wandb_available
Patrick von Platen's avatar
Patrick von Platen committed
27
from .training_args import TrainingArguments
Julien Chaumond's avatar
Julien Chaumond committed
28
29


Patrick von Platen's avatar
Patrick von Platen committed
30
if is_apex_available():
Julien Chaumond's avatar
Julien Chaumond committed
31
32
33
    from apex import amp


34
if is_torch_tpu_available():
Lysandre Debut's avatar
Lysandre Debut committed
35
36
37
38
    import torch_xla.core.xla_model as xm
    import torch_xla.debug.metrics as met
    import torch_xla.distributed.parallel_loader as pl

Julien Chaumond's avatar
Julien Chaumond committed
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
try:
    from torch.utils.tensorboard import SummaryWriter

    _has_tensorboard = True
except ImportError:
    try:
        from tensorboardX import SummaryWriter

        _has_tensorboard = True
    except ImportError:
        _has_tensorboard = False


def is_tensorboard_available():
    return _has_tensorboard


56
if is_wandb_available():
57
58
59
    import wandb


Julien Chaumond's avatar
Julien Chaumond committed
60
61
62
63
logger = logging.getLogger(__name__)


def set_seed(seed: int):
64
65
66
67
68
69
    """
    Helper function for reproducible behavior to set the seed in ``random``, ``numpy`` and ``torch``.

    Args:
        seed (:obj:`int`): The seed to set.
    """
Julien Chaumond's avatar
Julien Chaumond committed
70
71
72
73
74
75
76
77
78
79
    random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)
    # ^^ safe to call this function even if cuda is not available


@contextmanager
def torch_distributed_zero_first(local_rank: int):
    """
80
    Decorator to make all processes in distributed training wait for each local_master to do something.
81
82
83

    Args:
        local_rank (:obj:`int`): The rank of the local process.
Julien Chaumond's avatar
Julien Chaumond committed
84
85
86
87
88
89
90
91
    """
    if local_rank not in [-1, 0]:
        torch.distributed.barrier()
    yield
    if local_rank == 0:
        torch.distributed.barrier()


92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
class SequentialDistributedSampler(Sampler):
    """
    Distributed Sampler that subsamples indicies sequentially,
    making it easier to collate all results at the end.

    Even though we only use this sampler for eval and predict (no training),
    which means that the model params won't have to be synced (i.e. will not hang
    for synchronization even if varied number of forward passes), we still add extra
    samples to the sampler to make it evenly divisible (like in `DistributedSampler`)
    to make it easy to `gather` or `reduce` resulting tensors at the end of the loop.
    """

    def __init__(self, dataset, num_replicas=None, rank=None):
        if num_replicas is None:
            if not torch.distributed.is_available():
                raise RuntimeError("Requires distributed package to be available")
            num_replicas = torch.distributed.get_world_size()
        if rank is None:
            if not torch.distributed.is_available():
                raise RuntimeError("Requires distributed package to be available")
            rank = torch.distributed.get_rank()
        self.dataset = dataset
        self.num_replicas = num_replicas
        self.rank = rank
        self.num_samples = int(math.ceil(len(self.dataset) * 1.0 / self.num_replicas))
        self.total_size = self.num_samples * self.num_replicas

    def __iter__(self):
        indices = list(range(len(self.dataset)))

        # add extra samples to make it evenly divisible
        indices += indices[: (self.total_size - len(indices))]
        assert len(indices) == self.total_size

        # subsample
        indices = indices[self.rank * self.num_samples : (self.rank + 1) * self.num_samples]
        assert len(indices) == self.num_samples

        return iter(indices)

    def __len__(self):
        return self.num_samples


Lysandre Debut's avatar
Lysandre Debut committed
136
137
138
139
140
141
def get_tpu_sampler(dataset: Dataset):
    if xm.xrt_world_size() <= 1:
        return RandomSampler(dataset)
    return DistributedSampler(dataset, num_replicas=xm.xrt_world_size(), rank=xm.get_ordinal())


Julien Chaumond's avatar
Julien Chaumond committed
142
143
144
class Trainer:
    """
    Trainer is a simple but feature-complete training and eval loop for PyTorch,
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
    optimized for 馃 Transformers.

    Args:
        model (:class:`~transformers.PreTrainedModel`):
            The model to train, evaluate or use for predictions.
        args (:class:`~transformers.TrainingArguments`):
            The arguments to tweak training.
        data_collator (:obj:`DataCollator`, `optional`, defaults to :func:`~transformers.default_data_collator`):
            The function to use to from a batch from a list of elements of :obj:`train_dataset` or
            :obj:`eval_dataset`.
        train_dataset (:obj:`Dataset`, `optional`):
            The dataset to use for training.
        eval_dataset (:obj:`Dataset`, `optional`):
            The dataset to use for evaluation.
        compute_metrics (:obj:`Callable[[EvalPrediction], Dict]`, `optional`):
            The function that will be used to compute metrics at evaluation. Must take a
            :class:`~transformers.EvalPrediction` and return a dictionary string to metric values.
        prediction_loss_only (:obj:`bool`, `optional`, defaults to `False`):
            When performing evaluation and predictions, only returns the loss.
        tb_writer (:obj:`SummaryWriter`, `optional`):
            Object to write to TensorBoard.
        optimizers (:obj:`Tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR`, `optional`):
            A tuple containing the optimizer and the scheduler to use. Will default to an instance of
            :class:`~transformers.AdamW` on your model and a scheduler given by
            :func:`~transformers.get_linear_schedule_with_warmup` controlled by :obj:`args`.
Julien Chaumond's avatar
Julien Chaumond committed
170
171
172
173
174
175
176
177
178
179
    """

    model: PreTrainedModel
    args: TrainingArguments
    data_collator: DataCollator
    train_dataset: Optional[Dataset]
    eval_dataset: Optional[Dataset]
    compute_metrics: Optional[Callable[[EvalPrediction], Dict]] = None
    prediction_loss_only: bool
    tb_writer: Optional["SummaryWriter"] = None
180
    optimizers: Tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR] = None
181
182
    global_step: Optional[int] = None
    epoch: Optional[float] = None
Julien Chaumond's avatar
Julien Chaumond committed
183
184
185
186
187
188
189
190
191
192

    def __init__(
        self,
        model: PreTrainedModel,
        args: TrainingArguments,
        data_collator: Optional[DataCollator] = None,
        train_dataset: Optional[Dataset] = None,
        eval_dataset: Optional[Dataset] = None,
        compute_metrics: Optional[Callable[[EvalPrediction], Dict]] = None,
        prediction_loss_only=False,
193
        tb_writer: Optional["SummaryWriter"] = None,
194
        optimizers: Tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR] = None,
Julien Chaumond's avatar
Julien Chaumond committed
195
    ):
196
        self.model = model.to(args.device)
Julien Chaumond's avatar
Julien Chaumond committed
197
        self.args = args
198
        self.data_collator = data_collator if data_collator is not None else default_data_collator
Julien Chaumond's avatar
Julien Chaumond committed
199
200
201
202
        self.train_dataset = train_dataset
        self.eval_dataset = eval_dataset
        self.compute_metrics = compute_metrics
        self.prediction_loss_only = prediction_loss_only
203
        self.optimizers = optimizers
204
205
        if tb_writer is not None:
            self.tb_writer = tb_writer
206
        elif is_tensorboard_available() and self.is_world_master():
Julien Chaumond's avatar
Julien Chaumond committed
207
208
209
210
211
            self.tb_writer = SummaryWriter(log_dir=self.args.logging_dir)
        if not is_tensorboard_available():
            logger.warning(
                "You are instantiating a Trainer but Tensorboard is not installed. You should consider installing it."
            )
212
213
214
        if is_wandb_available():
            self._setup_wandb()
        else:
215
            logger.info(
216
217
                "You are instantiating a Trainer but W&B is not installed. To use wandb logging, "
                "run `pip install wandb; wandb login` see https://docs.wandb.com/huggingface."
218
            )
Julien Chaumond's avatar
Julien Chaumond committed
219
220
        set_seed(self.args.seed)
        # Create output directory if needed
221
        if self.is_world_master():
Julien Chaumond's avatar
Julien Chaumond committed
222
            os.makedirs(self.args.output_dir, exist_ok=True)
223
        if is_torch_tpu_available():
Lysandre Debut's avatar
Lysandre Debut committed
224
225
226
            # Set an xla_device flag on the model's config.
            # We'll find a more elegant and not need to do this in the future.
            self.model.config.xla_device = True
227
228
229
230
231
232
233
234
235
        if not callable(self.data_collator) and callable(getattr(self.data_collator, "collate_batch", None)):
            self.data_collator = self.data_collator.collate_batch
            warnings.warn(
                (
                    "The `data_collator` should now be a simple callable (function, class with `__call__`), classes "
                    + "with a `collate_batch` are deprecated and won't be supported in a future version."
                ),
                FutureWarning,
            )
Julien Chaumond's avatar
Julien Chaumond committed
236
237

    def get_train_dataloader(self) -> DataLoader:
238
239
240
        """
        Returns the training :class:`~torch.utils.data.DataLoader`.
        """
Julien Chaumond's avatar
Julien Chaumond committed
241
242
        if self.train_dataset is None:
            raise ValueError("Trainer: training requires a train_dataset.")
243
        if is_torch_tpu_available():
Lysandre Debut's avatar
Lysandre Debut committed
244
245
246
247
248
249
250
251
252
            train_sampler = get_tpu_sampler(self.train_dataset)
        else:
            train_sampler = (
                RandomSampler(self.train_dataset)
                if self.args.local_rank == -1
                else DistributedSampler(self.train_dataset)
            )

        data_loader = DataLoader(
Julien Chaumond's avatar
Julien Chaumond committed
253
254
255
            self.train_dataset,
            batch_size=self.args.train_batch_size,
            sampler=train_sampler,
256
            collate_fn=self.data_collator,
Setu Shah's avatar
Setu Shah committed
257
            drop_last=self.args.dataloader_drop_last,
Julien Chaumond's avatar
Julien Chaumond committed
258
259
        )

Lysandre Debut's avatar
Lysandre Debut committed
260
261
        return data_loader

Julien Chaumond's avatar
Julien Chaumond committed
262
    def get_eval_dataloader(self, eval_dataset: Optional[Dataset] = None) -> DataLoader:
263
264
265
266
267
268
269
        """
        Returns the evaluation :class:`~torch.utils.data.DataLoader`.

        Args:
            eval_dataset (:obj:`Dataset`, `optional`):
                If provided, will override `self.eval_dataset`.
        """
Julien Chaumond's avatar
Julien Chaumond committed
270
271
        if eval_dataset is None and self.eval_dataset is None:
            raise ValueError("Trainer: evaluation requires an eval_dataset.")
Lysandre Debut's avatar
Lysandre Debut committed
272

273
274
        eval_dataset = eval_dataset if eval_dataset is not None else self.eval_dataset

275
        if is_torch_tpu_available():
276
277
278
279
280
281
282
            sampler = SequentialDistributedSampler(
                eval_dataset, num_replicas=xm.xrt_world_size(), rank=xm.get_ordinal()
            )
        elif self.args.local_rank != -1:
            sampler = SequentialDistributedSampler(eval_dataset)
        else:
            sampler = SequentialSampler(eval_dataset)
Lysandre Debut's avatar
Lysandre Debut committed
283
284

        data_loader = DataLoader(
285
            eval_dataset,
Lysandre Debut's avatar
Lysandre Debut committed
286
            sampler=sampler,
Julien Chaumond's avatar
Julien Chaumond committed
287
            batch_size=self.args.eval_batch_size,
288
            collate_fn=self.data_collator,
Setu Shah's avatar
Setu Shah committed
289
            drop_last=self.args.dataloader_drop_last,
Julien Chaumond's avatar
Julien Chaumond committed
290
291
        )

Lysandre Debut's avatar
Lysandre Debut committed
292
293
        return data_loader

Julien Chaumond's avatar
Julien Chaumond committed
294
    def get_test_dataloader(self, test_dataset: Dataset) -> DataLoader:
295
296
297
298
299
300
        """
        Returns the test :class:`~torch.utils.data.DataLoader`.

        Args:
            test_dataset (obj:`Dataset`): The test dataset to use.
        """
Julien Chaumond's avatar
Julien Chaumond committed
301
        # We use the same batch_size as for eval.
302
        if is_torch_tpu_available():
303
304
305
306
307
308
309
            sampler = SequentialDistributedSampler(
                test_dataset, num_replicas=xm.xrt_world_size(), rank=xm.get_ordinal()
            )
        elif self.args.local_rank != -1:
            sampler = SequentialDistributedSampler(test_dataset)
        else:
            sampler = SequentialSampler(test_dataset)
Lysandre Debut's avatar
Lysandre Debut committed
310
311

        data_loader = DataLoader(
Julien Chaumond's avatar
Julien Chaumond committed
312
            test_dataset,
Lysandre Debut's avatar
Lysandre Debut committed
313
            sampler=sampler,
Julien Chaumond's avatar
Julien Chaumond committed
314
            batch_size=self.args.eval_batch_size,
315
            collate_fn=self.data_collator,
316
            drop_last=self.args.dataloader_drop_last,
Julien Chaumond's avatar
Julien Chaumond committed
317
318
        )

Lysandre Debut's avatar
Lysandre Debut committed
319
320
        return data_loader

Julien Chaumond's avatar
Julien Chaumond committed
321
322
323
    def get_optimizers(
        self, num_training_steps: int
    ) -> Tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR]:
324
325
326
        """
        Setup the optimizer and the learning rate scheduler.

327
328
        We provide a reasonable default that works well. If you want to use something else, you can pass a tuple in the
        Trainer's init through :obj:`optimizers`, or override this method in a subclass.
329
330
331
        """
        if self.optimizers is not None:
            return self.optimizers
Julien Chaumond's avatar
Julien Chaumond committed
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
        # Prepare optimizer and schedule (linear warmup and decay)
        no_decay = ["bias", "LayerNorm.weight"]
        optimizer_grouped_parameters = [
            {
                "params": [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay)],
                "weight_decay": self.args.weight_decay,
            },
            {
                "params": [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay)],
                "weight_decay": 0.0,
            },
        ]
        optimizer = AdamW(optimizer_grouped_parameters, lr=self.args.learning_rate, eps=self.args.adam_epsilon)
        scheduler = get_linear_schedule_with_warmup(
            optimizer, num_warmup_steps=self.args.warmup_steps, num_training_steps=num_training_steps
        )
        return optimizer, scheduler

350
    def _setup_wandb(self):
351
352
353
        """
        Setup the optional Weights & Biases (`wandb`) integration.

354
355
356
357
358
359
360
361
362
363
364
        One can override this method to customize the setup if needed.  Find more information at https://docs.wandb.com/huggingface
        You can also override the following environment variables:

        Environment:
            WANDB_WATCH:
                (Optional, ["gradients", "all", "false"]) "gradients" by default, set to "false" to disable gradient logging
                or "all" to log gradients and parameters
            WANDB_PROJECT:
                (Optional): str - "huggingface" by default, set this to a custom string to store results in a different project
            WANDB_DISABLED:
                (Optional): boolean - defaults to false, set to "true" to disable wandb entirely
365
        """
366
367
368
        if self.is_world_master():
            logger.info(
                'Automatic Weights & Biases logging enabled, to disable set os.environ["WANDB_DISABLED"] = "true"'
369
            )
370
            wandb.init(project=os.getenv("WANDB_PROJECT", "huggingface"), config=vars(self.args))
371
372
            # keep track of model topology and gradients, unsupported on TPU
            if not is_torch_tpu_available() and os.getenv("WANDB_WATCH") != "false":
373
374
375
                wandb.watch(
                    self.model, log=os.getenv("WANDB_WATCH", "gradients"), log_freq=max(100, self.args.logging_steps)
                )
376

377
    def num_examples(self, dataloader: DataLoader) -> int:
378
        """
379
        Helper to get number of samples in a :class:`~torch.utils.data.DataLoader` by accessing its Dataset.
380
        """
381
        return len(dataloader.dataset)
382

Julien Chaumond's avatar
Julien Chaumond committed
383
384
385
386
387
    def train(self, model_path: Optional[str] = None):
        """
        Main training entry point.

        Args:
388
389
390
            model_path (:obj:`str`, `optional`):
                Local path to the model if the model to train has been instantiated from a local path. If present,
                training will resume from the optimizer/scheduler states loaded here.
Julien Chaumond's avatar
Julien Chaumond committed
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
        """
        train_dataloader = self.get_train_dataloader()
        if self.args.max_steps > 0:
            t_total = self.args.max_steps
            num_train_epochs = (
                self.args.max_steps // (len(train_dataloader) // self.args.gradient_accumulation_steps) + 1
            )
        else:
            t_total = int(len(train_dataloader) // self.args.gradient_accumulation_steps * self.args.num_train_epochs)
            num_train_epochs = self.args.num_train_epochs

        optimizer, scheduler = self.get_optimizers(num_training_steps=t_total)

        # Check if saved optimizer or scheduler states exist
        if (
            model_path is not None
            and os.path.isfile(os.path.join(model_path, "optimizer.pt"))
            and os.path.isfile(os.path.join(model_path, "scheduler.pt"))
        ):
            # Load in optimizer and scheduler states
411
412
413
            optimizer.load_state_dict(
                torch.load(os.path.join(model_path, "optimizer.pt"), map_location=self.args.device)
            )
Julien Chaumond's avatar
Julien Chaumond committed
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
            scheduler.load_state_dict(torch.load(os.path.join(model_path, "scheduler.pt")))

        model = self.model
        if self.args.fp16:
            if not is_apex_available():
                raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
            model, optimizer = amp.initialize(model, optimizer, opt_level=self.args.fp16_opt_level)

        # multi-gpu training (should be after apex fp16 initialization)
        if self.args.n_gpu > 1:
            model = torch.nn.DataParallel(model)

        # Distributed training (should be after apex fp16 initialization)
        if self.args.local_rank != -1:
            model = torch.nn.parallel.DistributedDataParallel(
                model,
                device_ids=[self.args.local_rank],
                output_device=self.args.local_rank,
                find_unused_parameters=True,
            )

        if self.tb_writer is not None:
            self.tb_writer.add_text("args", self.args.to_json_string())
437
            self.tb_writer.add_hparams(self.args.to_sanitized_dict(), metric_dict={})
Julien Chaumond's avatar
Julien Chaumond committed
438
439

        # Train!
440
        if is_torch_tpu_available():
Lysandre Debut's avatar
Lysandre Debut committed
441
442
443
444
445
            total_train_batch_size = self.args.train_batch_size * xm.xrt_world_size()
        else:
            total_train_batch_size = (
                self.args.train_batch_size
                * self.args.gradient_accumulation_steps
446
                * (torch.distributed.get_world_size() if self.args.local_rank != -1 else 1)
Lysandre Debut's avatar
Lysandre Debut committed
447
            )
Julien Chaumond's avatar
Julien Chaumond committed
448
        logger.info("***** Running training *****")
449
        logger.info("  Num examples = %d", self.num_examples(train_dataloader))
Julien Chaumond's avatar
Julien Chaumond committed
450
        logger.info("  Num Epochs = %d", num_train_epochs)
451
        logger.info("  Instantaneous batch size per device = %d", self.args.per_device_train_batch_size)
Lysandre Debut's avatar
Lysandre Debut committed
452
        logger.info("  Total train batch size (w. parallel, distributed & accumulation) = %d", total_train_batch_size)
Julien Chaumond's avatar
Julien Chaumond committed
453
454
455
        logger.info("  Gradient Accumulation steps = %d", self.args.gradient_accumulation_steps)
        logger.info("  Total optimization steps = %d", t_total)

456
457
        self.global_step = 0
        self.epoch = 0
Julien Chaumond's avatar
Julien Chaumond committed
458
459
460
461
462
463
        epochs_trained = 0
        steps_trained_in_current_epoch = 0
        # Check if continuing training from a checkpoint
        if model_path is not None:
            # set global_step to global_step of last saved checkpoint from model path
            try:
464
465
466
                self.global_step = int(model_path.split("-")[-1].split("/")[0])
                epochs_trained = self.global_step // (len(train_dataloader) // self.args.gradient_accumulation_steps)
                steps_trained_in_current_epoch = self.global_step % (
Julien Chaumond's avatar
Julien Chaumond committed
467
468
469
470
471
                    len(train_dataloader) // self.args.gradient_accumulation_steps
                )

                logger.info("  Continuing training from checkpoint, will skip to saved global_step")
                logger.info("  Continuing training from epoch %d", epochs_trained)
472
                logger.info("  Continuing training from global step %d", self.global_step)
Julien Chaumond's avatar
Julien Chaumond committed
473
474
                logger.info("  Will skip the first %d steps in the first epoch", steps_trained_in_current_epoch)
            except ValueError:
475
                self.global_step = 0
Julien Chaumond's avatar
Julien Chaumond committed
476
477
478
479
480
481
                logger.info("  Starting fine-tuning.")

        tr_loss = 0.0
        logging_loss = 0.0
        model.zero_grad()
        train_iterator = trange(
Lysandre Debut's avatar
Lysandre Debut committed
482
            epochs_trained, int(num_train_epochs), desc="Epoch", disable=not self.is_local_master()
Julien Chaumond's avatar
Julien Chaumond committed
483
484
        )
        for epoch in train_iterator:
485
486
487
            if isinstance(train_dataloader, DataLoader) and isinstance(train_dataloader.sampler, DistributedSampler):
                train_dataloader.sampler.set_epoch(epoch)

488
            if is_torch_tpu_available():
489
490
491
492
493
494
495
                parallel_loader = pl.ParallelLoader(train_dataloader, [self.args.device]).per_device_loader(
                    self.args.device
                )
                epoch_iterator = tqdm(parallel_loader, desc="Iteration", disable=not self.is_local_master())
            else:
                epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=not self.is_local_master())

496
497
498
499
            # Reset the past mems state at the beginning of each epoch if necessary.
            if self.args.past_index >= 0:
                self._past = None

Julien Chaumond's avatar
Julien Chaumond committed
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
            for step, inputs in enumerate(epoch_iterator):

                # Skip past any already trained steps if resuming training
                if steps_trained_in_current_epoch > 0:
                    steps_trained_in_current_epoch -= 1
                    continue

                tr_loss += self._training_step(model, inputs, optimizer)

                if (step + 1) % self.args.gradient_accumulation_steps == 0 or (
                    # last step in epoch but step is always smaller than gradient_accumulation_steps
                    len(epoch_iterator) <= self.args.gradient_accumulation_steps
                    and (step + 1) == len(epoch_iterator)
                ):
                    if self.args.fp16:
                        torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), self.args.max_grad_norm)
                    else:
                        torch.nn.utils.clip_grad_norm_(model.parameters(), self.args.max_grad_norm)

519
                    if is_torch_tpu_available():
Lysandre Debut's avatar
Lysandre Debut committed
520
521
522
523
                        xm.optimizer_step(optimizer)
                    else:
                        optimizer.step()

Julien Chaumond's avatar
Julien Chaumond committed
524
525
                    scheduler.step()
                    model.zero_grad()
526
527
                    self.global_step += 1
                    self.epoch = epoch + (step + 1) / len(epoch_iterator)
Julien Chaumond's avatar
Julien Chaumond committed
528

529
530
531
532
533
                    if (self.args.logging_steps > 0 and self.global_step % self.args.logging_steps == 0) or (
                        self.global_step == 1 and self.args.logging_first_step
                    ):
                        logs: Dict[str, float] = {}
                        logs["loss"] = (tr_loss - logging_loss) / self.args.logging_steps
534
535
536
537
538
539
                        # backward compatibility for pytorch schedulers
                        logs["learning_rate"] = (
                            scheduler.get_last_lr()[0]
                            if version.parse(torch.__version__) >= version.parse("1.4")
                            else scheduler.get_lr()[0]
                        )
540
541
542
543
544
545
546
                        logging_loss = tr_loss

                        self._log(logs)

                        if self.args.evaluate_during_training:
                            self.evaluate()

547
548
549
550
551
552
553
554
555
556
557
558
559
                    if self.args.save_steps > 0 and self.global_step % self.args.save_steps == 0:
                        # In all cases (even distributed/parallel), self.model is always a reference
                        # to the model we want to save.
                        if hasattr(model, "module"):
                            assert model.module is self.model
                        else:
                            assert model is self.model
                        # Save model checkpoint
                        output_dir = os.path.join(self.args.output_dir, f"{PREFIX_CHECKPOINT_DIR}-{self.global_step}")

                        self.save_model(output_dir)

                        if self.is_world_master():
Julien Chaumond's avatar
Julien Chaumond committed
560
                            self._rotate_checkpoints()
561

562
                        if is_torch_tpu_available():
563
564
565
566
                            xm.rendezvous("saving_optimizer_states")
                            xm.save(optimizer.state_dict(), os.path.join(output_dir, "optimizer.pt"))
                            xm.save(scheduler.state_dict(), os.path.join(output_dir, "scheduler.pt"))
                        elif self.is_world_master():
Julien Chaumond's avatar
Julien Chaumond committed
567
568
569
                            torch.save(optimizer.state_dict(), os.path.join(output_dir, "optimizer.pt"))
                            torch.save(scheduler.state_dict(), os.path.join(output_dir, "scheduler.pt"))

570
                if self.args.max_steps > 0 and self.global_step > self.args.max_steps:
Julien Chaumond's avatar
Julien Chaumond committed
571
572
                    epoch_iterator.close()
                    break
573
            if self.args.max_steps > 0 and self.global_step > self.args.max_steps:
Julien Chaumond's avatar
Julien Chaumond committed
574
575
                train_iterator.close()
                break
Lysandre Debut's avatar
Lysandre Debut committed
576
577
578
            if self.args.tpu_metrics_debug:
                # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.)
                xm.master_print(met.metrics_report())
Julien Chaumond's avatar
Julien Chaumond committed
579
580
581

        if self.tb_writer:
            self.tb_writer.close()
582
583
584
        if self.args.past_index and hasattr(self, "_past"):
            # Clean the state at the end of training
            delattr(self, "_past")
Julien Chaumond's avatar
Julien Chaumond committed
585
586

        logger.info("\n\nTraining completed. Do not forget to share your model on huggingface.co/models =)\n\n")
587
588
589
590
591
        return TrainOutput(self.global_step, tr_loss / self.global_step)

    def _log(self, logs: Dict[str, float], iterator: Optional[tqdm] = None) -> None:
        if self.epoch is not None:
            logs["epoch"] = self.epoch
592
593
594
        if self.global_step is None:
            # when logging evaluation metrics without training
            self.global_step = 0
595
596
        if self.tb_writer:
            for k, v in logs.items():
597
598
599
600
601
602
603
604
605
606
607
608
                if isinstance(v, (int, float)):
                    self.tb_writer.add_scalar(k, v, self.global_step)
                else:
                    logger.warning(
                        "Trainer is attempting to log a value of "
                        '"%s" of type %s for key "%s" as a scalar. '
                        "This invocation of Tensorboard's writer.add_scalar() "
                        "is incorrect so we dropped this attribute.",
                        v,
                        type(v),
                        k,
                    )
609
            self.tb_writer.flush()
610
        if is_wandb_available():
611
612
            if self.is_world_master():
                wandb.log(logs, step=self.global_step)
613
        output = {**logs, **{"step": self.global_step}}
614
615
616
        if iterator is not None:
            iterator.write(output)
        else:
617
            logger.info(output)
Julien Chaumond's avatar
Julien Chaumond committed
618
619

    def _training_step(
620
        self, model: nn.Module, inputs: Dict[str, Union[torch.Tensor, Any]], optimizer: torch.optim.Optimizer
Julien Chaumond's avatar
Julien Chaumond committed
621
622
623
    ) -> float:
        model.train()
        for k, v in inputs.items():
624
625
            if isinstance(v, torch.Tensor):
                inputs[k] = v.to(self.args.device)
Julien Chaumond's avatar
Julien Chaumond committed
626

627
628
629
        if self.args.past_index >= 0 and self._past is not None:
            inputs["mems"] = self._past

Julien Chaumond's avatar
Julien Chaumond committed
630
631
632
        outputs = model(**inputs)
        loss = outputs[0]  # model outputs are always tuple in transformers (see doc)

633
634
635
        if self.args.past_index >= 0:
            self._past = outputs[self.args.past_index]

Julien Chaumond's avatar
Julien Chaumond committed
636
637
638
639
640
641
642
643
644
645
646
647
648
        if self.args.n_gpu > 1:
            loss = loss.mean()  # mean() to average on multi-gpu parallel training
        if self.args.gradient_accumulation_steps > 1:
            loss = loss / self.args.gradient_accumulation_steps

        if self.args.fp16:
            with amp.scale_loss(loss, optimizer) as scaled_loss:
                scaled_loss.backward()
        else:
            loss.backward()

        return loss.item()

Lysandre Debut's avatar
Lysandre Debut committed
649
    def is_local_master(self) -> bool:
650
        if is_torch_tpu_available():
Lysandre Debut's avatar
Lysandre Debut committed
651
652
653
654
            return xm.is_master_ordinal(local=True)
        else:
            return self.args.local_rank in [-1, 0]

Julien Chaumond's avatar
Julien Chaumond committed
655
656
657
658
659
    def is_world_master(self) -> bool:
        """
        This will be True only in one process, even in distributed mode,
        even when training on multiple machines.
        """
660
        if is_torch_tpu_available():
Lysandre Debut's avatar
Lysandre Debut committed
661
662
663
            return xm.is_master_ordinal(local=False)
        else:
            return self.args.local_rank == -1 or torch.distributed.get_rank() == 0
Julien Chaumond's avatar
Julien Chaumond committed
664
665
666

    def save_model(self, output_dir: Optional[str] = None):
        """
667
        Will save the model, so you can reload it using :obj:`from_pretrained()`.
Julien Chaumond's avatar
Julien Chaumond committed
668

669
        Will only save from the world_master process (unless in TPUs).
Julien Chaumond's avatar
Julien Chaumond committed
670
        """
671

672
        if is_torch_tpu_available():
673
674
            self._save_tpu(output_dir)
        elif self.is_world_master():
Julien Chaumond's avatar
Julien Chaumond committed
675
676
            self._save(output_dir)

677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
    def _save_tpu(self, output_dir: Optional[str] = None):
        output_dir = output_dir if output_dir is not None else self.args.output_dir
        logger.info("Saving model checkpoint to %s", output_dir)

        if xm.is_master_ordinal():
            os.makedirs(output_dir, exist_ok=True)
            torch.save(self.args, os.path.join(output_dir, "training_args.bin"))

        # Save a trained model and configuration using `save_pretrained()`.
        # They can then be reloaded using `from_pretrained()`
        if not isinstance(self.model, PreTrainedModel):
            raise ValueError("Trainer.model appears to not be a PreTrainedModel")

        xm.rendezvous("saving_checkpoint")
        self.model.save_pretrained(output_dir)

Julien Chaumond's avatar
Julien Chaumond committed
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
    def _save(self, output_dir: Optional[str] = None):
        output_dir = output_dir if output_dir is not None else self.args.output_dir
        os.makedirs(output_dir, exist_ok=True)
        logger.info("Saving model checkpoint to %s", output_dir)
        # Save a trained model and configuration using `save_pretrained()`.
        # They can then be reloaded using `from_pretrained()`
        if not isinstance(self.model, PreTrainedModel):
            raise ValueError("Trainer.model appears to not be a PreTrainedModel")
        self.model.save_pretrained(output_dir)

        # Good practice: save your training arguments together with the trained model
        torch.save(self.args, os.path.join(output_dir, "training_args.bin"))

    def _sorted_checkpoints(self, checkpoint_prefix=PREFIX_CHECKPOINT_DIR, use_mtime=False) -> List[str]:
        ordering_and_checkpoint_path = []

709
        glob_checkpoints = [str(x) for x in Path(self.args.output_dir).glob(f"{checkpoint_prefix}-*")]
Julien Chaumond's avatar
Julien Chaumond committed
710
711
712
713
714

        for path in glob_checkpoints:
            if use_mtime:
                ordering_and_checkpoint_path.append((os.path.getmtime(path), path))
            else:
715
                regex_match = re.match(f".*{checkpoint_prefix}-([0-9]+)", path)
Julien Chaumond's avatar
Julien Chaumond committed
716
717
718
719
720
721
722
723
                if regex_match and regex_match.groups():
                    ordering_and_checkpoint_path.append((int(regex_match.groups()[0]), path))

        checkpoints_sorted = sorted(ordering_and_checkpoint_path)
        checkpoints_sorted = [checkpoint[1] for checkpoint in checkpoints_sorted]
        return checkpoints_sorted

    def _rotate_checkpoints(self, use_mtime=False) -> None:
724
        if self.args.save_total_limit is None or self.args.save_total_limit <= 0:
Julien Chaumond's avatar
Julien Chaumond committed
725
726
727
728
729
730
731
732
733
734
735
736
737
            return

        # Check if we should delete older checkpoint(s)
        checkpoints_sorted = self._sorted_checkpoints(use_mtime=use_mtime)
        if len(checkpoints_sorted) <= self.args.save_total_limit:
            return

        number_of_checkpoints_to_delete = max(0, len(checkpoints_sorted) - self.args.save_total_limit)
        checkpoints_to_be_deleted = checkpoints_sorted[:number_of_checkpoints_to_delete]
        for checkpoint in checkpoints_to_be_deleted:
            logger.info("Deleting older checkpoint [{}] due to args.save_total_limit".format(checkpoint))
            shutil.rmtree(checkpoint)

738
    def evaluate(self, eval_dataset: Optional[Dataset] = None) -> Dict[str, float]:
Julien Chaumond's avatar
Julien Chaumond committed
739
        """
740
        Run evaluation and returns metrics.
Julien Chaumond's avatar
Julien Chaumond committed
741
742

        The calling script will be responsible for providing a method to compute metrics, as they are
743
        task-dependent (pass it to the init :obj:`compute_metrics` argument).
Julien Chaumond's avatar
Julien Chaumond committed
744
745

        Args:
746
747
            eval_dataset (:obj:`Dataset`, `optional`):
                Pass a dataset if you wish to override :obj:`self.eval_dataset`.
Julien Chaumond's avatar
Julien Chaumond committed
748
        Returns:
749
            A dictionary containing the evaluation loss and the potential metrics computed from the predictions.
Julien Chaumond's avatar
Julien Chaumond committed
750
751
752
753
        """
        eval_dataloader = self.get_eval_dataloader(eval_dataset)

        output = self._prediction_loop(eval_dataloader, description="Evaluation")
Lysandre Debut's avatar
Lysandre Debut committed
754

755
756
        self._log(output.metrics)

Lysandre Debut's avatar
Lysandre Debut committed
757
758
759
760
        if self.args.tpu_metrics_debug:
            # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.)
            xm.master_print(met.metrics_report())

Julien Chaumond's avatar
Julien Chaumond committed
761
762
763
764
        return output.metrics

    def predict(self, test_dataset: Dataset) -> PredictionOutput:
        """
765
        Run prediction and returns predictions and potential metrics.
Julien Chaumond's avatar
Julien Chaumond committed
766
767

        Depending on the dataset and your use case, your test dataset may contain labels.
768
769
770
771
772
773
774
775
776
777
778
779
780
        In that case, this method will also return metrics, like in :obj:`evaluate()`.

        Args:
            test_dataset (:obj:`Dataset`):
                Dataset to run the predictions on.
        Returns:
            `NamedTuple`:
            predictions (:obj:`np.ndarray`):
                The predictions on :obj:`test_dataset`.
            label_ids (:obj:`np.ndarray`, `optional`):
                The labels (if the dataset contained some).
            metrics (:obj:`Dict[str, float]`, `optional`):
                The potential dictionary of metrics (if the dataset contained labels).
Julien Chaumond's avatar
Julien Chaumond committed
781
782
        """
        test_dataloader = self.get_test_dataloader(test_dataset)
783

Julien Chaumond's avatar
Julien Chaumond committed
784
785
786
787
788
789
790
791
792
793
794
795
796
        return self._prediction_loop(test_dataloader, description="Prediction")

    def _prediction_loop(
        self, dataloader: DataLoader, description: str, prediction_loss_only: Optional[bool] = None
    ) -> PredictionOutput:
        """
        Prediction/evaluation loop, shared by `evaluate()` and `predict()`.

        Works both with or without labels.
        """

        prediction_loss_only = prediction_loss_only if prediction_loss_only is not None else self.prediction_loss_only

797
        model = self.model
Julien Chaumond's avatar
Julien Chaumond committed
798
        # multi-gpu eval
799
800
        if self.args.n_gpu > 1:
            model = torch.nn.DataParallel(model)
Julien Chaumond's avatar
Julien Chaumond committed
801
802
        else:
            model = self.model
803
804
        # Note: in torch.distributed mode, there's no point in wrapping the model
        # inside a DistributedDataParallel as we'll be under `no_grad` anyways.
Julien Chaumond's avatar
Julien Chaumond committed
805

806
        batch_size = dataloader.batch_size
Julien Chaumond's avatar
Julien Chaumond committed
807
        logger.info("***** Running %s *****", description)
808
809
        logger.info("  Num examples = %d", self.num_examples(dataloader))
        logger.info("  Batch size = %d", batch_size)
Julien Chaumond's avatar
Julien Chaumond committed
810
        eval_losses: List[float] = []
811
812
        preds: torch.Tensor = None
        label_ids: torch.Tensor = None
Julien Chaumond's avatar
Julien Chaumond committed
813
814
        model.eval()

815
        if is_torch_tpu_available():
816
817
            dataloader = pl.ParallelLoader(dataloader, [self.args.device]).per_device_loader(self.args.device)

818
819
820
        if self.args.past_index >= 0:
            past = None

Julien Chaumond's avatar
Julien Chaumond committed
821
        for inputs in tqdm(dataloader, desc=description):
Suraj Patil's avatar
Suraj Patil committed
822
            has_labels = any(inputs.get(k) is not None for k in ["labels", "lm_labels", "masked_lm_labels"])
Julien Chaumond's avatar
Julien Chaumond committed
823
824

            for k, v in inputs.items():
825
826
                if isinstance(v, torch.Tensor):
                    inputs[k] = v.to(self.args.device)
827
828
            if self.args.past_index >= 0:
                inputs["mems"] = past
Julien Chaumond's avatar
Julien Chaumond committed
829
830
831
832
833
834
835
836

            with torch.no_grad():
                outputs = model(**inputs)
                if has_labels:
                    step_eval_loss, logits = outputs[:2]
                    eval_losses += [step_eval_loss.mean().item()]
                else:
                    logits = outputs[0]
837
838
                if self.args.past_index >= 0:
                    past = outputs[self.args.past_index if has_labels else self.args.past_index - 1]
Julien Chaumond's avatar
Julien Chaumond committed
839
840
841

            if not prediction_loss_only:
                if preds is None:
842
                    preds = logits.detach()
Julien Chaumond's avatar
Julien Chaumond committed
843
                else:
844
                    preds = torch.cat((preds, logits.detach()), dim=0)
Julien Chaumond's avatar
Julien Chaumond committed
845
846
                if inputs.get("labels") is not None:
                    if label_ids is None:
847
                        label_ids = inputs["labels"].detach()
Julien Chaumond's avatar
Julien Chaumond committed
848
                    else:
849
                        label_ids = torch.cat((label_ids, inputs["labels"].detach()), dim=0)
Julien Chaumond's avatar
Julien Chaumond committed
850

851
852
853
854
855
856
        if self.args.local_rank != -1:
            # In distributed mode, concatenate all results from all nodes:
            if preds is not None:
                preds = self.distributed_concat(preds, num_total_examples=self.num_examples(dataloader))
            if label_ids is not None:
                label_ids = self.distributed_concat(label_ids, num_total_examples=self.num_examples(dataloader))
857
        elif is_torch_tpu_available():
Lysandre Debut's avatar
Lysandre Debut committed
858
            # tpu-comment: Get all predictions and labels from all worker shards of eval dataset
859
860
861
862
863
864
865
866
867
868
            if preds is not None:
                preds = xm.mesh_reduce("eval_preds", preds, torch.cat)
            if label_ids is not None:
                label_ids = xm.mesh_reduce("eval_label_ids", label_ids, torch.cat)

        # Finally, turn the aggregated tensors into numpy arrays.
        if preds is not None:
            preds = preds.cpu().numpy()
        if label_ids is not None:
            label_ids = label_ids.cpu().numpy()
Lysandre Debut's avatar
Lysandre Debut committed
869

Julien Chaumond's avatar
Julien Chaumond committed
870
871
872
873
874
        if self.compute_metrics is not None and preds is not None and label_ids is not None:
            metrics = self.compute_metrics(EvalPrediction(predictions=preds, label_ids=label_ids))
        else:
            metrics = {}
        if len(eval_losses) > 0:
875
876
877
878
879
880
            metrics["eval_loss"] = np.mean(eval_losses)

        # Prefix all keys with eval_
        for key in list(metrics.keys()):
            if not key.startswith("eval_"):
                metrics[f"eval_{key}"] = metrics.pop(key)
Julien Chaumond's avatar
Julien Chaumond committed
881
882

        return PredictionOutput(predictions=preds, label_ids=label_ids, metrics=metrics)
883
884
885
886
887
888
889
890
891
892
893
894

    def distributed_concat(self, tensor: torch.Tensor, num_total_examples: int) -> torch.Tensor:
        assert self.args.local_rank != -1

        output_tensors = [tensor.clone() for _ in range(torch.distributed.get_world_size())]
        torch.distributed.all_gather(output_tensors, tensor)

        concat = torch.cat(output_tensors, dim=0)

        # truncate the dummy elements added by SequentialDistributedSampler
        output = concat[:num_total_examples]
        return output