test_modeling_xlnet.py 29.7 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

thomwolf's avatar
thomwolf committed
16
17

import random
18
import unittest
thomwolf's avatar
thomwolf committed
19

20
from transformers import is_torch_available
21
from transformers.testing_utils import require_torch, slow, torch_device
thomwolf's avatar
thomwolf committed
22

23
from .test_configuration_common import ConfigTester
24
from .test_generation_utils import GenerationTesterMixin
25
from .test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
Aymeric Augustin's avatar
Aymeric Augustin committed
26
27


28
if is_torch_available():
thomwolf's avatar
thomwolf committed
29
30
    import torch

31
32
    from transformers import (
        XLNetConfig,
33
        XLNetForMultipleChoice,
34
        XLNetForQuestionAnswering,
35
        XLNetForQuestionAnsweringSimple,
36
37
38
39
        XLNetForSequenceClassification,
        XLNetForTokenClassification,
        XLNetLMHeadModel,
        XLNetModel,
40
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
41
    from transformers.models.xlnet.modeling_xlnet import XLNET_PRETRAINED_MODEL_ARCHIVE_LIST
thomwolf's avatar
thomwolf committed
42

43

44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
class XLNetModelTester:
    def __init__(
        self,
        parent,
        batch_size=14,
        seq_length=7,
        mem_len=10,
        clamp_len=-1,
        reuse_len=15,
        is_training=True,
        use_labels=True,
        vocab_size=99,
        cutoffs=[10, 50, 80],
        hidden_size=32,
        num_attention_heads=4,
        d_inner=128,
        num_hidden_layers=5,
        type_sequence_label_size=2,
        untie_r=True,
        bi_data=False,
        same_length=False,
        initializer_range=0.05,
        seed=1,
        type_vocab_size=2,
        bos_token_id=1,
        eos_token_id=2,
        pad_token_id=5,
        num_choices=4,
    ):
        self.parent = parent
        self.batch_size = 14
        self.seq_length = 7
        self.mem_len = 10
        # self.key_len = seq_length + mem_len
        self.clamp_len = -1
        self.reuse_len = 15
        self.is_training = True
        self.use_labels = True
        self.vocab_size = 99
        self.cutoffs = [10, 50, 80]
        self.hidden_size = 32
        self.num_attention_heads = 4
        self.d_inner = 128
        self.num_hidden_layers = 5
        self.type_sequence_label_size = 2
        self.untie_r = True
        self.bi_data = False
        self.same_length = False
        self.initializer_range = 0.05
        self.seed = 1
        self.type_vocab_size = 2
        self.bos_token_id = 1
        self.eos_token_id = 2
        self.pad_token_id = 5
        self.num_choices = 4

    def prepare_config_and_inputs(self):
        input_ids_1 = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
        input_ids_2 = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
        segment_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
104
        input_mask = random_attention_mask([self.batch_size, self.seq_length])
105
106
107

        input_ids_q = ids_tensor([self.batch_size, self.seq_length + 1], self.vocab_size)
        perm_mask = torch.zeros(
Lysandre's avatar
Lysandre committed
108
109
110
111
112
            self.batch_size,
            self.seq_length + 1,
            self.seq_length + 1,
            dtype=torch.float,
            device=torch_device,
113
114
        )
        perm_mask[:, :, -1] = 1.0  # Previous tokens don't see last token
Lysandre's avatar
Lysandre committed
115
116
117
118
119
120
121
        target_mapping = torch.zeros(
            self.batch_size,
            1,
            self.seq_length + 1,
            dtype=torch.float,
            device=torch_device,
        )
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
        target_mapping[:, 0, -1] = 1.0  # predict last token

        sequence_labels = None
        lm_labels = None
        is_impossible_labels = None
        token_labels = None
        if self.use_labels:
            lm_labels = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
            sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
            is_impossible_labels = ids_tensor([self.batch_size], 2).float()
            token_labels = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)

        config = XLNetConfig(
            vocab_size=self.vocab_size,
            d_model=self.hidden_size,
            n_head=self.num_attention_heads,
            d_inner=self.d_inner,
            n_layer=self.num_hidden_layers,
            untie_r=self.untie_r,
            mem_len=self.mem_len,
            clamp_len=self.clamp_len,
            same_length=self.same_length,
            reuse_len=self.reuse_len,
            bi_data=self.bi_data,
            initializer_range=self.initializer_range,
            num_labels=self.type_sequence_label_size,
            bos_token_id=self.bos_token_id,
            pad_token_id=self.pad_token_id,
            eos_token_id=self.eos_token_id,
151
        )
thomwolf's avatar
thomwolf committed
152

153
        return (
154
155
156
157
158
159
160
161
162
163
164
165
            config,
            input_ids_1,
            input_ids_2,
            input_ids_q,
            perm_mask,
            input_mask,
            target_mapping,
            segment_ids,
            lm_labels,
            sequence_labels,
            is_impossible_labels,
            token_labels,
166
        )
167

168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
    def set_seed(self):
        random.seed(self.seed)
        torch.manual_seed(self.seed)

    def create_and_check_xlnet_base_model(
        self,
        config,
        input_ids_1,
        input_ids_2,
        input_ids_q,
        perm_mask,
        input_mask,
        target_mapping,
        segment_ids,
        lm_labels,
        sequence_labels,
        is_impossible_labels,
        token_labels,
    ):
        model = XLNetModel(config)
        model.to(torch_device)
        model.eval()

Sylvain Gugger's avatar
Sylvain Gugger committed
191
192
193
194
        result = model(input_ids_1, input_mask=input_mask)
        result = model(input_ids_1, attention_mask=input_mask)
        result = model(input_ids_1, token_type_ids=segment_ids)
        result = model(input_ids_1)
195
196
197
198
199

        config.mem_len = 0
        model = XLNetModel(config)
        model.to(torch_device)
        model.eval()
Teven's avatar
Teven committed
200
201
        base_model_output = model(input_ids_1)
        self.parent.assertEqual(len(base_model_output), 2)
202

Stas Bekman's avatar
Stas Bekman committed
203
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
204
        self.parent.assertListEqual(
205
206
            [mem.shape for mem in result.mems],
            [(self.seq_length, self.batch_size, self.hidden_size)] * self.num_hidden_layers,
207
        )
208

209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
    def create_and_check_use_mems_train(
        self,
        config,
        input_ids_1,
        input_ids_2,
        input_ids_q,
        perm_mask,
        input_mask,
        target_mapping,
        segment_ids,
        lm_labels,
        sequence_labels,
        is_impossible_labels,
        token_labels,
    ):
        model = XLNetForSequenceClassification(config)
        model.to(torch_device)
        model.train()

        train_size = input_ids_1.shape[0]

        batch_size = 4
        for i in range(train_size // batch_size + 1):
            input_ids = input_ids_1[i : (i + 1) * batch_size]
            labels = sequence_labels[i : (i + 1) * batch_size]
            outputs = model(input_ids=input_ids, labels=labels, return_dict=True)
            self.parent.assertIsNone(outputs.mems)
            self.parent.assertIsNotNone(outputs.loss)

    def create_and_check_xlnet_model_use_mems(
Teven's avatar
Teven committed
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
        self,
        config,
        input_ids_1,
        input_ids_2,
        input_ids_q,
        perm_mask,
        input_mask,
        target_mapping,
        segment_ids,
        lm_labels,
        sequence_labels,
        is_impossible_labels,
        token_labels,
    ):
        model = XLNetModel(config=config)
        model.to(torch_device)
        model.eval()

        # first forward pass
        causal_mask = torch.ones(
Lysandre's avatar
Lysandre committed
259
260
261
262
263
            input_ids_1.shape[0],
            input_ids_1.shape[1],
            input_ids_1.shape[1],
            dtype=torch.float,
            device=torch_device,
Teven's avatar
Teven committed
264
265
        )
        causal_mask = torch.triu(causal_mask, diagonal=0)
266
267
        outputs_cache = model(input_ids_1, use_mems=True, perm_mask=causal_mask)
        outputs_no_cache = model(input_ids_1, use_mems=False, perm_mask=causal_mask)
Teven's avatar
Teven committed
268
269
270
271
272
        outputs_conf = model(input_ids_1)

        self.parent.assertTrue(len(outputs_cache) == len(outputs_conf))
        self.parent.assertTrue(len(outputs_cache) == len(outputs_no_cache) + 1)

Sylvain Gugger's avatar
Sylvain Gugger committed
273
        output, mems = outputs_cache.to_tuple()
Teven's avatar
Teven committed
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292

        # create hypothetical next token and extent to next_input_ids
        next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size)

        # append to next input_ids and token_type_ids
        next_input_ids = torch.cat([input_ids_1, next_tokens], dim=-1)

        # causal mask
        causal_mask = torch.ones(
            input_ids_1.shape[0],
            input_ids_1.shape[1] + 1,
            input_ids_1.shape[1] + 1,
            dtype=torch.float,
            device=torch_device,
        )
        causal_mask = torch.triu(causal_mask, diagonal=0)
        single_mask = torch.ones(input_ids_1.shape[0], 1, 1, dtype=torch.float, device=torch_device)

        # second forward pass
Sylvain Gugger's avatar
Sylvain Gugger committed
293
294
        output_from_no_past = model(next_input_ids, perm_mask=causal_mask)["last_hidden_state"]
        output_from_past = model(next_tokens, mems=mems, perm_mask=single_mask)["last_hidden_state"]
Teven's avatar
Teven committed
295
296
297
298
299
300
301
302
303

        # select random slice
        random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
        output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx].detach()
        output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach()

        # test that outputs are equal for slice
        self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))

304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
    def create_and_check_xlnet_base_model_with_att_output(
        self,
        config,
        input_ids_1,
        input_ids_2,
        input_ids_q,
        perm_mask,
        input_mask,
        target_mapping,
        segment_ids,
        lm_labels,
        sequence_labels,
        is_impossible_labels,
        token_labels,
    ):
        model = XLNetModel(config)
        model.to(torch_device)
        model.eval()

Sylvain Gugger's avatar
Sylvain Gugger committed
323
        attentions = model(input_ids_1, target_mapping=target_mapping, output_attentions=True)["attentions"]
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348

        self.parent.assertEqual(len(attentions), config.n_layer)
        self.parent.assertIsInstance(attentions[0], tuple)
        self.parent.assertEqual(len(attentions[0]), 2)
        self.parent.assertTrue(attentions[0][0].shape, attentions[0][0].shape)

    def create_and_check_xlnet_lm_head(
        self,
        config,
        input_ids_1,
        input_ids_2,
        input_ids_q,
        perm_mask,
        input_mask,
        target_mapping,
        segment_ids,
        lm_labels,
        sequence_labels,
        is_impossible_labels,
        token_labels,
    ):
        model = XLNetLMHeadModel(config)
        model.to(torch_device)
        model.eval()

Sylvain Gugger's avatar
Sylvain Gugger committed
349
        result1 = model(input_ids_1, token_type_ids=segment_ids, labels=lm_labels)
350

351
        result2 = model(input_ids_2, token_type_ids=segment_ids, labels=lm_labels, mems=result1.mems)
352

Sylvain Gugger's avatar
Sylvain Gugger committed
353
        _ = model(input_ids_q, perm_mask=perm_mask, target_mapping=target_mapping)
354

Stas Bekman's avatar
Stas Bekman committed
355
356
        self.parent.assertEqual(result1.loss.shape, ())
        self.parent.assertEqual(result1.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
357
        self.parent.assertListEqual(
358
359
            [mem.shape for mem in result1.mems],
            [(self.seq_length, self.batch_size, self.hidden_size)] * self.num_hidden_layers,
360
        )
361

Stas Bekman's avatar
Stas Bekman committed
362
363
        self.parent.assertEqual(result2.loss.shape, ())
        self.parent.assertEqual(result2.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
364
        self.parent.assertListEqual(
365
366
            [mem.shape for mem in result2.mems],
            [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers,
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
        )

    def create_and_check_xlnet_qa(
        self,
        config,
        input_ids_1,
        input_ids_2,
        input_ids_q,
        perm_mask,
        input_mask,
        target_mapping,
        segment_ids,
        lm_labels,
        sequence_labels,
        is_impossible_labels,
        token_labels,
    ):
        model = XLNetForQuestionAnswering(config)
        model.to(torch_device)
        model.eval()

Sylvain Gugger's avatar
Sylvain Gugger committed
388
        result = model(input_ids_1)
389

Sylvain Gugger's avatar
Sylvain Gugger committed
390
        result_with_labels = model(
391
            input_ids_1,
392
393
394
395
396
397
398
            start_positions=sequence_labels,
            end_positions=sequence_labels,
            cls_index=sequence_labels,
            is_impossible=is_impossible_labels,
            p_mask=input_mask,
        )

Sylvain Gugger's avatar
Sylvain Gugger committed
399
        result_with_labels = model(
400
            input_ids_1,
401
402
403
404
405
406
            start_positions=sequence_labels,
            end_positions=sequence_labels,
            cls_index=sequence_labels,
            is_impossible=is_impossible_labels,
        )

Sylvain Gugger's avatar
Sylvain Gugger committed
407
        total_loss, mems = result_with_labels.to_tuple()
408

Lysandre's avatar
Lysandre committed
409
410
411
412
413
        result_with_labels = model(
            input_ids_1,
            start_positions=sequence_labels,
            end_positions=sequence_labels,
        )
414

Sylvain Gugger's avatar
Sylvain Gugger committed
415
        total_loss, mems = result_with_labels.to_tuple()
416

Stas Bekman's avatar
Stas Bekman committed
417
418
419
420
421
        self.parent.assertEqual(result_with_labels.loss.shape, ())
        self.parent.assertEqual(result.start_top_log_probs.shape, (self.batch_size, model.config.start_n_top))
        self.parent.assertEqual(result.start_top_index.shape, (self.batch_size, model.config.start_n_top))
        self.parent.assertEqual(
            result.end_top_log_probs.shape, (self.batch_size, model.config.start_n_top * model.config.end_n_top)
422
        )
Stas Bekman's avatar
Stas Bekman committed
423
424
        self.parent.assertEqual(
            result.end_top_index.shape, (self.batch_size, model.config.start_n_top * model.config.end_n_top)
425
        )
Stas Bekman's avatar
Stas Bekman committed
426
        self.parent.assertEqual(result.cls_logits.shape, (self.batch_size,))
427
        self.parent.assertListEqual(
428
429
            [mem.shape for mem in result.mems],
            [(self.seq_length, self.batch_size, self.hidden_size)] * self.num_hidden_layers,
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
        )

    def create_and_check_xlnet_token_classif(
        self,
        config,
        input_ids_1,
        input_ids_2,
        input_ids_q,
        perm_mask,
        input_mask,
        target_mapping,
        segment_ids,
        lm_labels,
        sequence_labels,
        is_impossible_labels,
        token_labels,
    ):
        model = XLNetForTokenClassification(config)
        model.to(torch_device)
        model.eval()

Sylvain Gugger's avatar
Sylvain Gugger committed
451
452
        result = model(input_ids_1)
        result = model(input_ids_1, labels=token_labels)
453

Stas Bekman's avatar
Stas Bekman committed
454
455
        self.parent.assertEqual(result.loss.shape, ())
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.type_sequence_label_size))
456
        self.parent.assertListEqual(
457
458
            [mem.shape for mem in result.mems],
            [(self.seq_length, self.batch_size, self.hidden_size)] * self.num_hidden_layers,
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
        )

    def create_and_check_xlnet_sequence_classif(
        self,
        config,
        input_ids_1,
        input_ids_2,
        input_ids_q,
        perm_mask,
        input_mask,
        target_mapping,
        segment_ids,
        lm_labels,
        sequence_labels,
        is_impossible_labels,
        token_labels,
    ):
        model = XLNetForSequenceClassification(config)
        model.to(torch_device)
        model.eval()

Sylvain Gugger's avatar
Sylvain Gugger committed
480
481
        result = model(input_ids_1)
        result = model(input_ids_1, labels=sequence_labels)
482

Stas Bekman's avatar
Stas Bekman committed
483
484
        self.parent.assertEqual(result.loss.shape, ())
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size))
485
        self.parent.assertListEqual(
486
487
            [mem.shape for mem in result.mems],
            [(self.seq_length, self.batch_size, self.hidden_size)] * self.num_hidden_layers,
488
489
490
491
492
        )

    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        (
493
494
495
496
497
498
499
500
501
502
503
504
            config,
            input_ids_1,
            input_ids_2,
            input_ids_q,
            perm_mask,
            input_mask,
            target_mapping,
            segment_ids,
            lm_labels,
            sequence_labels,
            is_impossible_labels,
            token_labels,
505
506
507
508
509
510
        ) = config_and_inputs
        inputs_dict = {"input_ids": input_ids_1}
        return config, inputs_dict


@require_torch
511
class XLNetModelTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase):
512
513
514
515
516
517
518
    all_model_classes = (
        (
            XLNetModel,
            XLNetLMHeadModel,
            XLNetForTokenClassification,
            XLNetForSequenceClassification,
            XLNetForQuestionAnswering,
519
            XLNetForQuestionAnsweringSimple,
520
521
522
523
524
525
526
527
528
            XLNetForMultipleChoice,
        )
        if is_torch_available()
        else ()
    )
    all_generative_model_classes = (
        (XLNetLMHeadModel,) if is_torch_available() else ()
    )  # TODO (PVP): Check other models whether language generation is also applicable
    test_pruning = False
thomwolf's avatar
thomwolf committed
529

530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
    # XLNet has 2 QA models -> need to manually set the correct labels for one of them here
    def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
        inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels)

        if return_labels:
            if model_class.__name__ == "XLNetForQuestionAnswering":
                inputs_dict["start_positions"] = torch.zeros(
                    self.model_tester.batch_size, dtype=torch.long, device=torch_device
                )
                inputs_dict["end_positions"] = torch.zeros(
                    self.model_tester.batch_size, dtype=torch.long, device=torch_device
                )

        return inputs_dict

thomwolf's avatar
thomwolf committed
545
    def setUp(self):
546
        self.model_tester = XLNetModelTester(self)
thomwolf's avatar
thomwolf committed
547
        self.config_tester = ConfigTester(self, config_class=XLNetConfig, d_inner=37)
thomwolf's avatar
thomwolf committed
548

thomwolf's avatar
thomwolf committed
549
    def test_config(self):
thomwolf's avatar
thomwolf committed
550
551
552
553
554
555
556
        self.config_tester.run_common_tests()

    def test_xlnet_base_model(self):
        self.model_tester.set_seed()
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_xlnet_base_model(*config_and_inputs)

557
558
    def test_xlnet_base_model_use_mems(self):
        # checking that in auto-regressive mode, :obj:`use_mems` gives the same results
Teven's avatar
Teven committed
559
560
        self.model_tester.set_seed()
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
561
562
563
564
565
        self.model_tester.create_and_check_xlnet_model_use_mems(*config_and_inputs)

    def test_seq_classification_use_mems_train(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_use_mems_train(*config_and_inputs)
Teven's avatar
Teven committed
566

567
568
569
570
571
    def test_xlnet_base_model_with_att_output(self):
        self.model_tester.set_seed()
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_xlnet_base_model_with_att_output(*config_and_inputs)

thomwolf's avatar
thomwolf committed
572
573
574
    def test_xlnet_lm_head(self):
        self.model_tester.set_seed()
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
575
        self.model_tester.create_and_check_xlnet_lm_head(*config_and_inputs)
thomwolf's avatar
thomwolf committed
576
577
578
579
580
581

    def test_xlnet_sequence_classif(self):
        self.model_tester.set_seed()
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_xlnet_sequence_classif(*config_and_inputs)

582
583
584
585
586
    def test_xlnet_token_classif(self):
        self.model_tester.set_seed()
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_xlnet_token_classif(*config_and_inputs)

thomwolf's avatar
thomwolf committed
587
588
589
590
    def test_xlnet_qa(self):
        self.model_tester.set_seed()
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_xlnet_qa(*config_and_inputs)
thomwolf's avatar
thomwolf committed
591

592
593
594
595
    def test_retain_grad_hidden_states_attentions(self):
        # xlnet cannot keep gradients in attentions or hidden states
        return

596
    @slow
thomwolf's avatar
thomwolf committed
597
    def test_model_from_pretrained(self):
598
        for model_name in XLNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
599
            model = XLNetModel.from_pretrained(model_name)
thomwolf's avatar
thomwolf committed
600
            self.assertIsNotNone(model)
601
602


603
@require_torch
604
605
606
607
class XLNetModelLanguageGenerationTest(unittest.TestCase):
    @slow
    def test_lm_generate_xlnet_base_cased(self):
        model = XLNetLMHeadModel.from_pretrained("xlnet-base-cased")
608
        model.to(torch_device)
patrickvonplaten's avatar
patrickvonplaten committed
609
        input_ids = torch.tensor(
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
            [
                [
                    67,
                    2840,
                    19,
                    18,
                    1484,
                    20,
                    965,
                    29077,
                    8719,
                    1273,
                    21,
                    45,
                    273,
                    17,
                    10,
                    15048,
                    28,
                    27511,
                    21,
                    4185,
                    11,
                    41,
                    2444,
                    9,
                    32,
                    1025,
                    20,
                    8719,
                    26,
                    23,
                    673,
                    966,
                    19,
                    29077,
                    20643,
                    27511,
                    20822,
                    20643,
                    19,
                    17,
                    6616,
                    17511,
                    18,
                    8978,
                    20,
                    18,
                    777,
                    9,
                    19233,
                    1527,
                    17669,
                    19,
                    24,
                    673,
                    17,
                    28756,
                    150,
                    12943,
                    4354,
                    153,
                    27,
                    442,
                    37,
                    45,
                    668,
                    21,
                    24,
                    256,
                    20,
                    416,
                    22,
                    2771,
                    4901,
                    9,
                    12943,
                    4354,
                    153,
                    51,
                    24,
                    3004,
                    21,
                    28142,
                    23,
                    65,
                    20,
                    18,
                    416,
                    34,
                    24,
                    2958,
                    22947,
                    9,
                    1177,
                    45,
                    668,
                    3097,
                    13768,
                    23,
                    103,
                    28,
                    441,
                    148,
                    48,
                    20522,
                    19,
                    12943,
                    4354,
                    153,
                    12860,
                    34,
                    18,
                    326,
                    27,
                    17492,
                    684,
                    21,
                    6709,
                    9,
                    8585,
                    123,
                    266,
                    19,
                    12943,
                    4354,
                    153,
                    6872,
                    24,
                    3004,
                    20,
                    18,
                    9225,
                    2198,
                    19,
                    12717,
                    103,
                    22,
                    401,
                    24,
                    6348,
                    9,
                    12943,
                    4354,
                    153,
                    1068,
                    2768,
                    2286,
                    19,
                    33,
                    104,
                    19,
                    176,
                    24,
                    9313,
                    19,
                    20086,
                    28,
                    45,
                    10292,
                    9,
                    4,
                    3,
                ]
patrickvonplaten's avatar
patrickvonplaten committed
774
775
776
777
            ],
            dtype=torch.long,
            device=torch_device,
        )
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
        #  In 1991, the remains of Russian Tsar Nicholas II and his family
        #  (except for Alexei and Maria) are discovered.
        #  The voice of Nicholas's young son, Tsarevich Alexei Nikolaevich, narrates the
        #  remainder of the story. 1883 Western Siberia,
        #  a young Grigori Rasputin is asked by his father and a group of men to perform magic.
        #  Rasputin has a vision and denounces one of the men as a horse thief. Although his
        #  father initially slaps him for making such an accusation, Rasputin watches as the
        #  man is chased outside and beaten. Twenty years later, Rasputin sees a vision of
        #  the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous,
        #  with people, even a bishop, begging for his blessing. """

        expected_output_ids = [
            67,
            2840,
            19,
            18,
            1484,
            20,
            965,
            29077,
            8719,
            1273,
            21,
            45,
            273,
            17,
            10,
            15048,
            28,
            27511,
            21,
            4185,
            11,
            41,
            2444,
            9,
            32,
            1025,
            20,
            8719,
            26,
            23,
            673,
            966,
            19,
            29077,
            20643,
            27511,
            20822,
            20643,
            19,
            17,
            6616,
            17511,
            18,
            8978,
            20,
            18,
            777,
            9,
            19233,
            1527,
            17669,
            19,
            24,
            673,
            17,
            28756,
            150,
            12943,
            4354,
            153,
            27,
            442,
            37,
            45,
            668,
            21,
            24,
            256,
            20,
            416,
            22,
            2771,
            4901,
            9,
            12943,
            4354,
            153,
            51,
            24,
            3004,
            21,
            28142,
            23,
            65,
            20,
            18,
            416,
            34,
            24,
            2958,
            22947,
            9,
            1177,
            45,
            668,
            3097,
            13768,
            23,
            103,
            28,
            441,
            148,
            48,
            20522,
            19,
            12943,
            4354,
            153,
            12860,
            34,
            18,
            326,
            27,
            17492,
            684,
            21,
            6709,
            9,
            8585,
            123,
            266,
            19,
            12943,
            4354,
            153,
            6872,
            24,
            3004,
            20,
            18,
            9225,
            2198,
            19,
            12717,
            103,
            22,
            401,
            24,
            6348,
            9,
            12943,
            4354,
            153,
            1068,
            2768,
            2286,
            19,
            33,
            104,
            19,
            176,
            24,
            9313,
            19,
            20086,
            28,
            45,
            10292,
            9,
            4,
            3,
            19,
patrickvonplaten's avatar
patrickvonplaten committed
952
953
954
            12943,
            4354,
            153,
955
956
957
958
959
960
            27,
            442,
            22,
            2771,
            4901,
            9,
patrickvonplaten's avatar
patrickvonplaten committed
961
962
            69,
            27,
Teven's avatar
Teven committed
963
            442,
patrickvonplaten's avatar
patrickvonplaten committed
964
965
            22,
            2771,
Teven's avatar
Teven committed
966
967
968
            24,
            11335,
            20,
patrickvonplaten's avatar
patrickvonplaten committed
969
            18,
Teven's avatar
Teven committed
970
971
972
973
974
975
            9225,
            2198,
            9,
            69,
            27,
            442,
patrickvonplaten's avatar
patrickvonplaten committed
976
            22,
Teven's avatar
Teven committed
977
978
979
980
            2771,
            24,
            11335,
            20,
patrickvonplaten's avatar
patrickvonplaten committed
981
            18,
Teven's avatar
Teven committed
982
983
            9225,
            2198,
patrickvonplaten's avatar
patrickvonplaten committed
984
            9,
Teven's avatar
Teven committed
985
            69,
patrickvonplaten's avatar
patrickvonplaten committed
986
            27,
Teven's avatar
Teven committed
987
            442,
patrickvonplaten's avatar
patrickvonplaten committed
988
            22,
Teven's avatar
Teven committed
989
            2771,
990
991
992
993
994
995
996
997
998
        ]
        #  In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria)
        #  are discovered. The voice of Nicholas's young son, Tsarevich Alexei Nikolaevich,
        #  narrates the remainder of the story. 1883 Western Siberia, a young Grigori Rasputin
        #  is asked by his father and a group of men to perform magic. Rasputin has a vision and
        #  denounces one of the men as a horse thief. Although his father initially slaps
        #  him for making such an accusation, Rasputin watches as the man is chased outside and beaten.
        #  Twenty years later, Rasputin sees a vision of the Virgin Mary, prompting him to become a priest.
        #  Rasputin quickly becomes famous, with people, even a bishop, begging for his blessing.
Teven's avatar
Teven committed
999
1000
        #  <sep><cls>, Rasputin is asked to perform magic. He is asked to perform a ritual of the Virgin Mary.
        #  He is asked to perform a ritual of the Virgin Mary. He is asked to perform
1001

patrickvonplaten's avatar
patrickvonplaten committed
1002
        output_ids = model.generate(input_ids, max_length=200, do_sample=False)
1003
        self.assertListEqual(output_ids[0].tolist(), expected_output_ids)