test_modeling_xlnet.py 27.5 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

thomwolf's avatar
thomwolf committed
16
17

import random
18
import unittest
thomwolf's avatar
thomwolf committed
19

20
from transformers import is_torch_available
21
from transformers.testing_utils import require_torch, slow, torch_device
thomwolf's avatar
thomwolf committed
22

23
from .test_configuration_common import ConfigTester
24
from .test_modeling_common import ModelTesterMixin, ids_tensor
Aymeric Augustin's avatar
Aymeric Augustin committed
25
26


27
if is_torch_available():
thomwolf's avatar
thomwolf committed
28
29
    import torch

30
31
32
33
    from transformers import (
        XLNetConfig,
        XLNetModel,
        XLNetLMHeadModel,
34
        XLNetForMultipleChoice,
35
36
37
        XLNetForSequenceClassification,
        XLNetForTokenClassification,
        XLNetForQuestionAnswering,
38
        XLNetForQuestionAnsweringSimple,
39
    )
40
    from transformers.modeling_xlnet import XLNET_PRETRAINED_MODEL_ARCHIVE_LIST
thomwolf's avatar
thomwolf committed
41

42

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
class XLNetModelTester:
    def __init__(
        self,
        parent,
        batch_size=14,
        seq_length=7,
        mem_len=10,
        clamp_len=-1,
        reuse_len=15,
        is_training=True,
        use_labels=True,
        vocab_size=99,
        cutoffs=[10, 50, 80],
        hidden_size=32,
        num_attention_heads=4,
        d_inner=128,
        num_hidden_layers=5,
        type_sequence_label_size=2,
        untie_r=True,
        bi_data=False,
        same_length=False,
        initializer_range=0.05,
        seed=1,
        type_vocab_size=2,
        bos_token_id=1,
        eos_token_id=2,
        pad_token_id=5,
        num_choices=4,
    ):
        self.parent = parent
        self.batch_size = 14
        self.seq_length = 7
        self.mem_len = 10
        # self.key_len = seq_length + mem_len
        self.clamp_len = -1
        self.reuse_len = 15
        self.is_training = True
        self.use_labels = True
        self.vocab_size = 99
        self.cutoffs = [10, 50, 80]
        self.hidden_size = 32
        self.num_attention_heads = 4
        self.d_inner = 128
        self.num_hidden_layers = 5
        self.type_sequence_label_size = 2
        self.untie_r = True
        self.bi_data = False
        self.same_length = False
        self.initializer_range = 0.05
        self.seed = 1
        self.type_vocab_size = 2
        self.bos_token_id = 1
        self.eos_token_id = 2
        self.pad_token_id = 5
        self.num_choices = 4

    def prepare_config_and_inputs(self):
        input_ids_1 = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
        input_ids_2 = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
        segment_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
        input_mask = ids_tensor([self.batch_size, self.seq_length], 2).float()

        input_ids_q = ids_tensor([self.batch_size, self.seq_length + 1], self.vocab_size)
        perm_mask = torch.zeros(
            self.batch_size, self.seq_length + 1, self.seq_length + 1, dtype=torch.float, device=torch_device,
        )
        perm_mask[:, :, -1] = 1.0  # Previous tokens don't see last token
        target_mapping = torch.zeros(self.batch_size, 1, self.seq_length + 1, dtype=torch.float, device=torch_device,)
        target_mapping[:, 0, -1] = 1.0  # predict last token

        sequence_labels = None
        lm_labels = None
        is_impossible_labels = None
        token_labels = None
        if self.use_labels:
            lm_labels = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
            sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
            is_impossible_labels = ids_tensor([self.batch_size], 2).float()
            token_labels = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)

        config = XLNetConfig(
            vocab_size=self.vocab_size,
            d_model=self.hidden_size,
            n_head=self.num_attention_heads,
            d_inner=self.d_inner,
            n_layer=self.num_hidden_layers,
            untie_r=self.untie_r,
            mem_len=self.mem_len,
            clamp_len=self.clamp_len,
            same_length=self.same_length,
            reuse_len=self.reuse_len,
            bi_data=self.bi_data,
            initializer_range=self.initializer_range,
            num_labels=self.type_sequence_label_size,
            bos_token_id=self.bos_token_id,
            pad_token_id=self.pad_token_id,
            eos_token_id=self.eos_token_id,
Sylvain Gugger's avatar
Sylvain Gugger committed
140
            return_dict=True,
141
        )
thomwolf's avatar
thomwolf committed
142

143
        return (
144
145
146
147
148
149
150
151
152
153
154
155
            config,
            input_ids_1,
            input_ids_2,
            input_ids_q,
            perm_mask,
            input_mask,
            target_mapping,
            segment_ids,
            lm_labels,
            sequence_labels,
            is_impossible_labels,
            token_labels,
156
        )
157

158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
    def set_seed(self):
        random.seed(self.seed)
        torch.manual_seed(self.seed)

    def create_and_check_xlnet_base_model(
        self,
        config,
        input_ids_1,
        input_ids_2,
        input_ids_q,
        perm_mask,
        input_mask,
        target_mapping,
        segment_ids,
        lm_labels,
        sequence_labels,
        is_impossible_labels,
        token_labels,
    ):
        model = XLNetModel(config)
        model.to(torch_device)
        model.eval()

Sylvain Gugger's avatar
Sylvain Gugger committed
181
182
183
184
        result = model(input_ids_1, input_mask=input_mask)
        result = model(input_ids_1, attention_mask=input_mask)
        result = model(input_ids_1, token_type_ids=segment_ids)
        result = model(input_ids_1)
185
186
187
188
189

        config.mem_len = 0
        model = XLNetModel(config)
        model.to(torch_device)
        model.eval()
Teven's avatar
Teven committed
190
191
        base_model_output = model(input_ids_1)
        self.parent.assertEqual(len(base_model_output), 2)
192

Stas Bekman's avatar
Stas Bekman committed
193
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
194
        self.parent.assertListEqual(
195
196
            [mem.shape for mem in result.mems],
            [(self.seq_length, self.batch_size, self.hidden_size)] * self.num_hidden_layers,
197
        )
198

Teven's avatar
Teven committed
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
    def create_and_check_xlnet_model_use_cache(
        self,
        config,
        input_ids_1,
        input_ids_2,
        input_ids_q,
        perm_mask,
        input_mask,
        target_mapping,
        segment_ids,
        lm_labels,
        sequence_labels,
        is_impossible_labels,
        token_labels,
    ):
        model = XLNetModel(config=config)
        model.to(torch_device)
        model.eval()

        # first forward pass
        causal_mask = torch.ones(
            input_ids_1.shape[0], input_ids_1.shape[1], input_ids_1.shape[1], dtype=torch.float, device=torch_device,
        )
        causal_mask = torch.triu(causal_mask, diagonal=0)
        outputs_cache = model(input_ids_1, use_cache=True, perm_mask=causal_mask)
        outputs_no_cache = model(input_ids_1, use_cache=False, perm_mask=causal_mask)
        outputs_conf = model(input_ids_1)

        self.parent.assertTrue(len(outputs_cache) == len(outputs_conf))
        self.parent.assertTrue(len(outputs_cache) == len(outputs_no_cache) + 1)

Sylvain Gugger's avatar
Sylvain Gugger committed
230
        output, mems = outputs_cache.to_tuple()
Teven's avatar
Teven committed
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249

        # create hypothetical next token and extent to next_input_ids
        next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size)

        # append to next input_ids and token_type_ids
        next_input_ids = torch.cat([input_ids_1, next_tokens], dim=-1)

        # causal mask
        causal_mask = torch.ones(
            input_ids_1.shape[0],
            input_ids_1.shape[1] + 1,
            input_ids_1.shape[1] + 1,
            dtype=torch.float,
            device=torch_device,
        )
        causal_mask = torch.triu(causal_mask, diagonal=0)
        single_mask = torch.ones(input_ids_1.shape[0], 1, 1, dtype=torch.float, device=torch_device)

        # second forward pass
Sylvain Gugger's avatar
Sylvain Gugger committed
250
251
        output_from_no_past = model(next_input_ids, perm_mask=causal_mask)["last_hidden_state"]
        output_from_past = model(next_tokens, mems=mems, perm_mask=single_mask)["last_hidden_state"]
Teven's avatar
Teven committed
252
253
254
255
256
257
258
259
260

        # select random slice
        random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
        output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx].detach()
        output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach()

        # test that outputs are equal for slice
        self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))

261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
    def create_and_check_xlnet_base_model_with_att_output(
        self,
        config,
        input_ids_1,
        input_ids_2,
        input_ids_q,
        perm_mask,
        input_mask,
        target_mapping,
        segment_ids,
        lm_labels,
        sequence_labels,
        is_impossible_labels,
        token_labels,
    ):
        model = XLNetModel(config)
        model.to(torch_device)
        model.eval()

Sylvain Gugger's avatar
Sylvain Gugger committed
280
        attentions = model(input_ids_1, target_mapping=target_mapping, output_attentions=True)["attentions"]
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305

        self.parent.assertEqual(len(attentions), config.n_layer)
        self.parent.assertIsInstance(attentions[0], tuple)
        self.parent.assertEqual(len(attentions[0]), 2)
        self.parent.assertTrue(attentions[0][0].shape, attentions[0][0].shape)

    def create_and_check_xlnet_lm_head(
        self,
        config,
        input_ids_1,
        input_ids_2,
        input_ids_q,
        perm_mask,
        input_mask,
        target_mapping,
        segment_ids,
        lm_labels,
        sequence_labels,
        is_impossible_labels,
        token_labels,
    ):
        model = XLNetLMHeadModel(config)
        model.to(torch_device)
        model.eval()

Sylvain Gugger's avatar
Sylvain Gugger committed
306
        result1 = model(input_ids_1, token_type_ids=segment_ids, labels=lm_labels)
307

308
        result2 = model(input_ids_2, token_type_ids=segment_ids, labels=lm_labels, mems=result1.mems)
309

Sylvain Gugger's avatar
Sylvain Gugger committed
310
        _ = model(input_ids_q, perm_mask=perm_mask, target_mapping=target_mapping)
311

Stas Bekman's avatar
Stas Bekman committed
312
313
        self.parent.assertEqual(result1.loss.shape, ())
        self.parent.assertEqual(result1.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
314
        self.parent.assertListEqual(
315
316
            [mem.shape for mem in result1.mems],
            [(self.seq_length, self.batch_size, self.hidden_size)] * self.num_hidden_layers,
317
        )
318

Stas Bekman's avatar
Stas Bekman committed
319
320
        self.parent.assertEqual(result2.loss.shape, ())
        self.parent.assertEqual(result2.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
321
        self.parent.assertListEqual(
322
323
            [mem.shape for mem in result2.mems],
            [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers,
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
        )

    def create_and_check_xlnet_qa(
        self,
        config,
        input_ids_1,
        input_ids_2,
        input_ids_q,
        perm_mask,
        input_mask,
        target_mapping,
        segment_ids,
        lm_labels,
        sequence_labels,
        is_impossible_labels,
        token_labels,
    ):
        model = XLNetForQuestionAnswering(config)
        model.to(torch_device)
        model.eval()

Sylvain Gugger's avatar
Sylvain Gugger committed
345
        result = model(input_ids_1)
346

Sylvain Gugger's avatar
Sylvain Gugger committed
347
        result_with_labels = model(
348
            input_ids_1,
349
350
351
352
353
354
355
            start_positions=sequence_labels,
            end_positions=sequence_labels,
            cls_index=sequence_labels,
            is_impossible=is_impossible_labels,
            p_mask=input_mask,
        )

Sylvain Gugger's avatar
Sylvain Gugger committed
356
        result_with_labels = model(
357
            input_ids_1,
358
359
360
361
362
363
            start_positions=sequence_labels,
            end_positions=sequence_labels,
            cls_index=sequence_labels,
            is_impossible=is_impossible_labels,
        )

Sylvain Gugger's avatar
Sylvain Gugger committed
364
        total_loss, mems = result_with_labels.to_tuple()
365

Sylvain Gugger's avatar
Sylvain Gugger committed
366
        result_with_labels = model(input_ids_1, start_positions=sequence_labels, end_positions=sequence_labels,)
367

Sylvain Gugger's avatar
Sylvain Gugger committed
368
        total_loss, mems = result_with_labels.to_tuple()
369

Stas Bekman's avatar
Stas Bekman committed
370
371
372
373
374
        self.parent.assertEqual(result_with_labels.loss.shape, ())
        self.parent.assertEqual(result.start_top_log_probs.shape, (self.batch_size, model.config.start_n_top))
        self.parent.assertEqual(result.start_top_index.shape, (self.batch_size, model.config.start_n_top))
        self.parent.assertEqual(
            result.end_top_log_probs.shape, (self.batch_size, model.config.start_n_top * model.config.end_n_top)
375
        )
Stas Bekman's avatar
Stas Bekman committed
376
377
        self.parent.assertEqual(
            result.end_top_index.shape, (self.batch_size, model.config.start_n_top * model.config.end_n_top)
378
        )
Stas Bekman's avatar
Stas Bekman committed
379
        self.parent.assertEqual(result.cls_logits.shape, (self.batch_size,))
380
        self.parent.assertListEqual(
381
382
            [mem.shape for mem in result.mems],
            [(self.seq_length, self.batch_size, self.hidden_size)] * self.num_hidden_layers,
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
        )

    def create_and_check_xlnet_token_classif(
        self,
        config,
        input_ids_1,
        input_ids_2,
        input_ids_q,
        perm_mask,
        input_mask,
        target_mapping,
        segment_ids,
        lm_labels,
        sequence_labels,
        is_impossible_labels,
        token_labels,
    ):
        model = XLNetForTokenClassification(config)
        model.to(torch_device)
        model.eval()

Sylvain Gugger's avatar
Sylvain Gugger committed
404
405
        result = model(input_ids_1)
        result = model(input_ids_1, labels=token_labels)
406

Stas Bekman's avatar
Stas Bekman committed
407
408
        self.parent.assertEqual(result.loss.shape, ())
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.type_sequence_label_size))
409
        self.parent.assertListEqual(
410
411
            [mem.shape for mem in result.mems],
            [(self.seq_length, self.batch_size, self.hidden_size)] * self.num_hidden_layers,
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
        )

    def create_and_check_xlnet_sequence_classif(
        self,
        config,
        input_ids_1,
        input_ids_2,
        input_ids_q,
        perm_mask,
        input_mask,
        target_mapping,
        segment_ids,
        lm_labels,
        sequence_labels,
        is_impossible_labels,
        token_labels,
    ):
        model = XLNetForSequenceClassification(config)
        model.to(torch_device)
        model.eval()

Sylvain Gugger's avatar
Sylvain Gugger committed
433
434
        result = model(input_ids_1)
        result = model(input_ids_1, labels=sequence_labels)
435

Stas Bekman's avatar
Stas Bekman committed
436
437
        self.parent.assertEqual(result.loss.shape, ())
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size))
438
        self.parent.assertListEqual(
439
440
            [mem.shape for mem in result.mems],
            [(self.seq_length, self.batch_size, self.hidden_size)] * self.num_hidden_layers,
441
442
443
444
445
        )

    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        (
446
447
448
449
450
451
452
453
454
455
456
457
            config,
            input_ids_1,
            input_ids_2,
            input_ids_q,
            perm_mask,
            input_mask,
            target_mapping,
            segment_ids,
            lm_labels,
            sequence_labels,
            is_impossible_labels,
            token_labels,
458
459
460
461
462
463
464
465
466
467
468
469
470
471
        ) = config_and_inputs
        inputs_dict = {"input_ids": input_ids_1}
        return config, inputs_dict


@require_torch
class XLNetModelTest(ModelTesterMixin, unittest.TestCase):
    all_model_classes = (
        (
            XLNetModel,
            XLNetLMHeadModel,
            XLNetForTokenClassification,
            XLNetForSequenceClassification,
            XLNetForQuestionAnswering,
472
            XLNetForQuestionAnsweringSimple,
473
474
475
476
477
478
479
480
481
            XLNetForMultipleChoice,
        )
        if is_torch_available()
        else ()
    )
    all_generative_model_classes = (
        (XLNetLMHeadModel,) if is_torch_available() else ()
    )  # TODO (PVP): Check other models whether language generation is also applicable
    test_pruning = False
thomwolf's avatar
thomwolf committed
482
483

    def setUp(self):
484
        self.model_tester = XLNetModelTester(self)
thomwolf's avatar
thomwolf committed
485
        self.config_tester = ConfigTester(self, config_class=XLNetConfig, d_inner=37)
thomwolf's avatar
thomwolf committed
486

thomwolf's avatar
thomwolf committed
487
    def test_config(self):
thomwolf's avatar
thomwolf committed
488
489
490
491
492
493
494
        self.config_tester.run_common_tests()

    def test_xlnet_base_model(self):
        self.model_tester.set_seed()
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_xlnet_base_model(*config_and_inputs)

Teven's avatar
Teven committed
495
496
497
498
499
500
    def test_xlnet_base_model_use_cache(self):
        # checking that in auto-regressive mode, `use_cache` gives the same results
        self.model_tester.set_seed()
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_xlnet_model_use_cache(*config_and_inputs)

501
502
503
504
505
    def test_xlnet_base_model_with_att_output(self):
        self.model_tester.set_seed()
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_xlnet_base_model_with_att_output(*config_and_inputs)

thomwolf's avatar
thomwolf committed
506
507
508
    def test_xlnet_lm_head(self):
        self.model_tester.set_seed()
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
509
        self.model_tester.create_and_check_xlnet_lm_head(*config_and_inputs)
thomwolf's avatar
thomwolf committed
510
511
512
513
514
515

    def test_xlnet_sequence_classif(self):
        self.model_tester.set_seed()
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_xlnet_sequence_classif(*config_and_inputs)

516
517
518
519
520
    def test_xlnet_token_classif(self):
        self.model_tester.set_seed()
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_xlnet_token_classif(*config_and_inputs)

thomwolf's avatar
thomwolf committed
521
522
523
524
    def test_xlnet_qa(self):
        self.model_tester.set_seed()
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_xlnet_qa(*config_and_inputs)
thomwolf's avatar
thomwolf committed
525

526
    @slow
thomwolf's avatar
thomwolf committed
527
    def test_model_from_pretrained(self):
528
        for model_name in XLNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
529
            model = XLNetModel.from_pretrained(model_name)
thomwolf's avatar
thomwolf committed
530
            self.assertIsNotNone(model)
531
532


533
@require_torch
534
535
536
537
class XLNetModelLanguageGenerationTest(unittest.TestCase):
    @slow
    def test_lm_generate_xlnet_base_cased(self):
        model = XLNetLMHeadModel.from_pretrained("xlnet-base-cased")
538
        model.to(torch_device)
patrickvonplaten's avatar
patrickvonplaten committed
539
        input_ids = torch.tensor(
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
            [
                [
                    67,
                    2840,
                    19,
                    18,
                    1484,
                    20,
                    965,
                    29077,
                    8719,
                    1273,
                    21,
                    45,
                    273,
                    17,
                    10,
                    15048,
                    28,
                    27511,
                    21,
                    4185,
                    11,
                    41,
                    2444,
                    9,
                    32,
                    1025,
                    20,
                    8719,
                    26,
                    23,
                    673,
                    966,
                    19,
                    29077,
                    20643,
                    27511,
                    20822,
                    20643,
                    19,
                    17,
                    6616,
                    17511,
                    18,
                    8978,
                    20,
                    18,
                    777,
                    9,
                    19233,
                    1527,
                    17669,
                    19,
                    24,
                    673,
                    17,
                    28756,
                    150,
                    12943,
                    4354,
                    153,
                    27,
                    442,
                    37,
                    45,
                    668,
                    21,
                    24,
                    256,
                    20,
                    416,
                    22,
                    2771,
                    4901,
                    9,
                    12943,
                    4354,
                    153,
                    51,
                    24,
                    3004,
                    21,
                    28142,
                    23,
                    65,
                    20,
                    18,
                    416,
                    34,
                    24,
                    2958,
                    22947,
                    9,
                    1177,
                    45,
                    668,
                    3097,
                    13768,
                    23,
                    103,
                    28,
                    441,
                    148,
                    48,
                    20522,
                    19,
                    12943,
                    4354,
                    153,
                    12860,
                    34,
                    18,
                    326,
                    27,
                    17492,
                    684,
                    21,
                    6709,
                    9,
                    8585,
                    123,
                    266,
                    19,
                    12943,
                    4354,
                    153,
                    6872,
                    24,
                    3004,
                    20,
                    18,
                    9225,
                    2198,
                    19,
                    12717,
                    103,
                    22,
                    401,
                    24,
                    6348,
                    9,
                    12943,
                    4354,
                    153,
                    1068,
                    2768,
                    2286,
                    19,
                    33,
                    104,
                    19,
                    176,
                    24,
                    9313,
                    19,
                    20086,
                    28,
                    45,
                    10292,
                    9,
                    4,
                    3,
                ]
patrickvonplaten's avatar
patrickvonplaten committed
704
705
706
707
            ],
            dtype=torch.long,
            device=torch_device,
        )
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
        #  In 1991, the remains of Russian Tsar Nicholas II and his family
        #  (except for Alexei and Maria) are discovered.
        #  The voice of Nicholas's young son, Tsarevich Alexei Nikolaevich, narrates the
        #  remainder of the story. 1883 Western Siberia,
        #  a young Grigori Rasputin is asked by his father and a group of men to perform magic.
        #  Rasputin has a vision and denounces one of the men as a horse thief. Although his
        #  father initially slaps him for making such an accusation, Rasputin watches as the
        #  man is chased outside and beaten. Twenty years later, Rasputin sees a vision of
        #  the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous,
        #  with people, even a bishop, begging for his blessing. """

        expected_output_ids = [
            67,
            2840,
            19,
            18,
            1484,
            20,
            965,
            29077,
            8719,
            1273,
            21,
            45,
            273,
            17,
            10,
            15048,
            28,
            27511,
            21,
            4185,
            11,
            41,
            2444,
            9,
            32,
            1025,
            20,
            8719,
            26,
            23,
            673,
            966,
            19,
            29077,
            20643,
            27511,
            20822,
            20643,
            19,
            17,
            6616,
            17511,
            18,
            8978,
            20,
            18,
            777,
            9,
            19233,
            1527,
            17669,
            19,
            24,
            673,
            17,
            28756,
            150,
            12943,
            4354,
            153,
            27,
            442,
            37,
            45,
            668,
            21,
            24,
            256,
            20,
            416,
            22,
            2771,
            4901,
            9,
            12943,
            4354,
            153,
            51,
            24,
            3004,
            21,
            28142,
            23,
            65,
            20,
            18,
            416,
            34,
            24,
            2958,
            22947,
            9,
            1177,
            45,
            668,
            3097,
            13768,
            23,
            103,
            28,
            441,
            148,
            48,
            20522,
            19,
            12943,
            4354,
            153,
            12860,
            34,
            18,
            326,
            27,
            17492,
            684,
            21,
            6709,
            9,
            8585,
            123,
            266,
            19,
            12943,
            4354,
            153,
            6872,
            24,
            3004,
            20,
            18,
            9225,
            2198,
            19,
            12717,
            103,
            22,
            401,
            24,
            6348,
            9,
            12943,
            4354,
            153,
            1068,
            2768,
            2286,
            19,
            33,
            104,
            19,
            176,
            24,
            9313,
            19,
            20086,
            28,
            45,
            10292,
            9,
            4,
            3,
            19,
patrickvonplaten's avatar
patrickvonplaten committed
882
883
884
            12943,
            4354,
            153,
885
886
887
888
889
890
            27,
            442,
            22,
            2771,
            4901,
            9,
patrickvonplaten's avatar
patrickvonplaten committed
891
892
            69,
            27,
Teven's avatar
Teven committed
893
            442,
patrickvonplaten's avatar
patrickvonplaten committed
894
895
            22,
            2771,
Teven's avatar
Teven committed
896
897
898
            24,
            11335,
            20,
patrickvonplaten's avatar
patrickvonplaten committed
899
            18,
Teven's avatar
Teven committed
900
901
902
903
904
905
            9225,
            2198,
            9,
            69,
            27,
            442,
patrickvonplaten's avatar
patrickvonplaten committed
906
            22,
Teven's avatar
Teven committed
907
908
909
910
            2771,
            24,
            11335,
            20,
patrickvonplaten's avatar
patrickvonplaten committed
911
            18,
Teven's avatar
Teven committed
912
913
            9225,
            2198,
patrickvonplaten's avatar
patrickvonplaten committed
914
            9,
Teven's avatar
Teven committed
915
            69,
patrickvonplaten's avatar
patrickvonplaten committed
916
            27,
Teven's avatar
Teven committed
917
            442,
patrickvonplaten's avatar
patrickvonplaten committed
918
            22,
Teven's avatar
Teven committed
919
            2771,
920
921
922
923
924
925
926
927
928
        ]
        #  In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria)
        #  are discovered. The voice of Nicholas's young son, Tsarevich Alexei Nikolaevich,
        #  narrates the remainder of the story. 1883 Western Siberia, a young Grigori Rasputin
        #  is asked by his father and a group of men to perform magic. Rasputin has a vision and
        #  denounces one of the men as a horse thief. Although his father initially slaps
        #  him for making such an accusation, Rasputin watches as the man is chased outside and beaten.
        #  Twenty years later, Rasputin sees a vision of the Virgin Mary, prompting him to become a priest.
        #  Rasputin quickly becomes famous, with people, even a bishop, begging for his blessing.
Teven's avatar
Teven committed
929
930
        #  <sep><cls>, Rasputin is asked to perform magic. He is asked to perform a ritual of the Virgin Mary.
        #  He is asked to perform a ritual of the Virgin Mary. He is asked to perform
931

patrickvonplaten's avatar
patrickvonplaten committed
932
        output_ids = model.generate(input_ids, max_length=200, do_sample=False)
933
        self.assertListEqual(output_ids[0].tolist(), expected_output_ids)