test_modeling_xlnet.py 27.8 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

thomwolf's avatar
thomwolf committed
16
17

import random
18
import unittest
thomwolf's avatar
thomwolf committed
19

20
from transformers import is_torch_available
21
from transformers.testing_utils import require_torch, slow, torch_device
thomwolf's avatar
thomwolf committed
22

23
from .test_configuration_common import ConfigTester
24
from .test_generation_utils import GenerationTesterMixin
25
from .test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
Aymeric Augustin's avatar
Aymeric Augustin committed
26
27


28
if is_torch_available():
thomwolf's avatar
thomwolf committed
29
30
    import torch

31
32
    from transformers import (
        XLNetConfig,
33
        XLNetForMultipleChoice,
34
        XLNetForQuestionAnswering,
35
        XLNetForQuestionAnsweringSimple,
36
37
38
39
        XLNetForSequenceClassification,
        XLNetForTokenClassification,
        XLNetLMHeadModel,
        XLNetModel,
40
    )
41
    from transformers.modeling_xlnet import XLNET_PRETRAINED_MODEL_ARCHIVE_LIST
thomwolf's avatar
thomwolf committed
42

43

44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
class XLNetModelTester:
    def __init__(
        self,
        parent,
        batch_size=14,
        seq_length=7,
        mem_len=10,
        clamp_len=-1,
        reuse_len=15,
        is_training=True,
        use_labels=True,
        vocab_size=99,
        cutoffs=[10, 50, 80],
        hidden_size=32,
        num_attention_heads=4,
        d_inner=128,
        num_hidden_layers=5,
        type_sequence_label_size=2,
        untie_r=True,
        bi_data=False,
        same_length=False,
        initializer_range=0.05,
        seed=1,
        type_vocab_size=2,
        bos_token_id=1,
        eos_token_id=2,
        pad_token_id=5,
        num_choices=4,
    ):
        self.parent = parent
        self.batch_size = 14
        self.seq_length = 7
        self.mem_len = 10
        # self.key_len = seq_length + mem_len
        self.clamp_len = -1
        self.reuse_len = 15
        self.is_training = True
        self.use_labels = True
        self.vocab_size = 99
        self.cutoffs = [10, 50, 80]
        self.hidden_size = 32
        self.num_attention_heads = 4
        self.d_inner = 128
        self.num_hidden_layers = 5
        self.type_sequence_label_size = 2
        self.untie_r = True
        self.bi_data = False
        self.same_length = False
        self.initializer_range = 0.05
        self.seed = 1
        self.type_vocab_size = 2
        self.bos_token_id = 1
        self.eos_token_id = 2
        self.pad_token_id = 5
        self.num_choices = 4

    def prepare_config_and_inputs(self):
        input_ids_1 = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
        input_ids_2 = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
        segment_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
104
        input_mask = random_attention_mask([self.batch_size, self.seq_length])
105
106
107

        input_ids_q = ids_tensor([self.batch_size, self.seq_length + 1], self.vocab_size)
        perm_mask = torch.zeros(
Lysandre's avatar
Lysandre committed
108
109
110
111
112
            self.batch_size,
            self.seq_length + 1,
            self.seq_length + 1,
            dtype=torch.float,
            device=torch_device,
113
114
        )
        perm_mask[:, :, -1] = 1.0  # Previous tokens don't see last token
Lysandre's avatar
Lysandre committed
115
116
117
118
119
120
121
        target_mapping = torch.zeros(
            self.batch_size,
            1,
            self.seq_length + 1,
            dtype=torch.float,
            device=torch_device,
        )
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
        target_mapping[:, 0, -1] = 1.0  # predict last token

        sequence_labels = None
        lm_labels = None
        is_impossible_labels = None
        token_labels = None
        if self.use_labels:
            lm_labels = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
            sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
            is_impossible_labels = ids_tensor([self.batch_size], 2).float()
            token_labels = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)

        config = XLNetConfig(
            vocab_size=self.vocab_size,
            d_model=self.hidden_size,
            n_head=self.num_attention_heads,
            d_inner=self.d_inner,
            n_layer=self.num_hidden_layers,
            untie_r=self.untie_r,
            mem_len=self.mem_len,
            clamp_len=self.clamp_len,
            same_length=self.same_length,
            reuse_len=self.reuse_len,
            bi_data=self.bi_data,
            initializer_range=self.initializer_range,
            num_labels=self.type_sequence_label_size,
            bos_token_id=self.bos_token_id,
            pad_token_id=self.pad_token_id,
            eos_token_id=self.eos_token_id,
Sylvain Gugger's avatar
Sylvain Gugger committed
151
            return_dict=True,
152
        )
thomwolf's avatar
thomwolf committed
153

154
        return (
155
156
157
158
159
160
161
162
163
164
165
166
            config,
            input_ids_1,
            input_ids_2,
            input_ids_q,
            perm_mask,
            input_mask,
            target_mapping,
            segment_ids,
            lm_labels,
            sequence_labels,
            is_impossible_labels,
            token_labels,
167
        )
168

169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
    def set_seed(self):
        random.seed(self.seed)
        torch.manual_seed(self.seed)

    def create_and_check_xlnet_base_model(
        self,
        config,
        input_ids_1,
        input_ids_2,
        input_ids_q,
        perm_mask,
        input_mask,
        target_mapping,
        segment_ids,
        lm_labels,
        sequence_labels,
        is_impossible_labels,
        token_labels,
    ):
        model = XLNetModel(config)
        model.to(torch_device)
        model.eval()

Sylvain Gugger's avatar
Sylvain Gugger committed
192
193
194
195
        result = model(input_ids_1, input_mask=input_mask)
        result = model(input_ids_1, attention_mask=input_mask)
        result = model(input_ids_1, token_type_ids=segment_ids)
        result = model(input_ids_1)
196
197
198
199
200

        config.mem_len = 0
        model = XLNetModel(config)
        model.to(torch_device)
        model.eval()
Teven's avatar
Teven committed
201
202
        base_model_output = model(input_ids_1)
        self.parent.assertEqual(len(base_model_output), 2)
203

Stas Bekman's avatar
Stas Bekman committed
204
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
205
        self.parent.assertListEqual(
206
207
            [mem.shape for mem in result.mems],
            [(self.seq_length, self.batch_size, self.hidden_size)] * self.num_hidden_layers,
208
        )
209

Teven's avatar
Teven committed
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
    def create_and_check_xlnet_model_use_cache(
        self,
        config,
        input_ids_1,
        input_ids_2,
        input_ids_q,
        perm_mask,
        input_mask,
        target_mapping,
        segment_ids,
        lm_labels,
        sequence_labels,
        is_impossible_labels,
        token_labels,
    ):
        model = XLNetModel(config=config)
        model.to(torch_device)
        model.eval()

        # first forward pass
        causal_mask = torch.ones(
Lysandre's avatar
Lysandre committed
231
232
233
234
235
            input_ids_1.shape[0],
            input_ids_1.shape[1],
            input_ids_1.shape[1],
            dtype=torch.float,
            device=torch_device,
Teven's avatar
Teven committed
236
237
238
239
240
241
242
243
244
        )
        causal_mask = torch.triu(causal_mask, diagonal=0)
        outputs_cache = model(input_ids_1, use_cache=True, perm_mask=causal_mask)
        outputs_no_cache = model(input_ids_1, use_cache=False, perm_mask=causal_mask)
        outputs_conf = model(input_ids_1)

        self.parent.assertTrue(len(outputs_cache) == len(outputs_conf))
        self.parent.assertTrue(len(outputs_cache) == len(outputs_no_cache) + 1)

Sylvain Gugger's avatar
Sylvain Gugger committed
245
        output, mems = outputs_cache.to_tuple()
Teven's avatar
Teven committed
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264

        # create hypothetical next token and extent to next_input_ids
        next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size)

        # append to next input_ids and token_type_ids
        next_input_ids = torch.cat([input_ids_1, next_tokens], dim=-1)

        # causal mask
        causal_mask = torch.ones(
            input_ids_1.shape[0],
            input_ids_1.shape[1] + 1,
            input_ids_1.shape[1] + 1,
            dtype=torch.float,
            device=torch_device,
        )
        causal_mask = torch.triu(causal_mask, diagonal=0)
        single_mask = torch.ones(input_ids_1.shape[0], 1, 1, dtype=torch.float, device=torch_device)

        # second forward pass
Sylvain Gugger's avatar
Sylvain Gugger committed
265
266
        output_from_no_past = model(next_input_ids, perm_mask=causal_mask)["last_hidden_state"]
        output_from_past = model(next_tokens, mems=mems, perm_mask=single_mask)["last_hidden_state"]
Teven's avatar
Teven committed
267
268
269
270
271
272
273
274
275

        # select random slice
        random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
        output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx].detach()
        output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach()

        # test that outputs are equal for slice
        self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))

276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
    def create_and_check_xlnet_base_model_with_att_output(
        self,
        config,
        input_ids_1,
        input_ids_2,
        input_ids_q,
        perm_mask,
        input_mask,
        target_mapping,
        segment_ids,
        lm_labels,
        sequence_labels,
        is_impossible_labels,
        token_labels,
    ):
        model = XLNetModel(config)
        model.to(torch_device)
        model.eval()

Sylvain Gugger's avatar
Sylvain Gugger committed
295
        attentions = model(input_ids_1, target_mapping=target_mapping, output_attentions=True)["attentions"]
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320

        self.parent.assertEqual(len(attentions), config.n_layer)
        self.parent.assertIsInstance(attentions[0], tuple)
        self.parent.assertEqual(len(attentions[0]), 2)
        self.parent.assertTrue(attentions[0][0].shape, attentions[0][0].shape)

    def create_and_check_xlnet_lm_head(
        self,
        config,
        input_ids_1,
        input_ids_2,
        input_ids_q,
        perm_mask,
        input_mask,
        target_mapping,
        segment_ids,
        lm_labels,
        sequence_labels,
        is_impossible_labels,
        token_labels,
    ):
        model = XLNetLMHeadModel(config)
        model.to(torch_device)
        model.eval()

Sylvain Gugger's avatar
Sylvain Gugger committed
321
        result1 = model(input_ids_1, token_type_ids=segment_ids, labels=lm_labels)
322

323
        result2 = model(input_ids_2, token_type_ids=segment_ids, labels=lm_labels, mems=result1.mems)
324

Sylvain Gugger's avatar
Sylvain Gugger committed
325
        _ = model(input_ids_q, perm_mask=perm_mask, target_mapping=target_mapping)
326

Stas Bekman's avatar
Stas Bekman committed
327
328
        self.parent.assertEqual(result1.loss.shape, ())
        self.parent.assertEqual(result1.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
329
        self.parent.assertListEqual(
330
331
            [mem.shape for mem in result1.mems],
            [(self.seq_length, self.batch_size, self.hidden_size)] * self.num_hidden_layers,
332
        )
333

Stas Bekman's avatar
Stas Bekman committed
334
335
        self.parent.assertEqual(result2.loss.shape, ())
        self.parent.assertEqual(result2.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
336
        self.parent.assertListEqual(
337
338
            [mem.shape for mem in result2.mems],
            [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers,
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
        )

    def create_and_check_xlnet_qa(
        self,
        config,
        input_ids_1,
        input_ids_2,
        input_ids_q,
        perm_mask,
        input_mask,
        target_mapping,
        segment_ids,
        lm_labels,
        sequence_labels,
        is_impossible_labels,
        token_labels,
    ):
        model = XLNetForQuestionAnswering(config)
        model.to(torch_device)
        model.eval()

Sylvain Gugger's avatar
Sylvain Gugger committed
360
        result = model(input_ids_1)
361

Sylvain Gugger's avatar
Sylvain Gugger committed
362
        result_with_labels = model(
363
            input_ids_1,
364
365
366
367
368
369
370
            start_positions=sequence_labels,
            end_positions=sequence_labels,
            cls_index=sequence_labels,
            is_impossible=is_impossible_labels,
            p_mask=input_mask,
        )

Sylvain Gugger's avatar
Sylvain Gugger committed
371
        result_with_labels = model(
372
            input_ids_1,
373
374
375
376
377
378
            start_positions=sequence_labels,
            end_positions=sequence_labels,
            cls_index=sequence_labels,
            is_impossible=is_impossible_labels,
        )

Sylvain Gugger's avatar
Sylvain Gugger committed
379
        total_loss, mems = result_with_labels.to_tuple()
380

Lysandre's avatar
Lysandre committed
381
382
383
384
385
        result_with_labels = model(
            input_ids_1,
            start_positions=sequence_labels,
            end_positions=sequence_labels,
        )
386

Sylvain Gugger's avatar
Sylvain Gugger committed
387
        total_loss, mems = result_with_labels.to_tuple()
388

Stas Bekman's avatar
Stas Bekman committed
389
390
391
392
393
        self.parent.assertEqual(result_with_labels.loss.shape, ())
        self.parent.assertEqual(result.start_top_log_probs.shape, (self.batch_size, model.config.start_n_top))
        self.parent.assertEqual(result.start_top_index.shape, (self.batch_size, model.config.start_n_top))
        self.parent.assertEqual(
            result.end_top_log_probs.shape, (self.batch_size, model.config.start_n_top * model.config.end_n_top)
394
        )
Stas Bekman's avatar
Stas Bekman committed
395
396
        self.parent.assertEqual(
            result.end_top_index.shape, (self.batch_size, model.config.start_n_top * model.config.end_n_top)
397
        )
Stas Bekman's avatar
Stas Bekman committed
398
        self.parent.assertEqual(result.cls_logits.shape, (self.batch_size,))
399
        self.parent.assertListEqual(
400
401
            [mem.shape for mem in result.mems],
            [(self.seq_length, self.batch_size, self.hidden_size)] * self.num_hidden_layers,
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
        )

    def create_and_check_xlnet_token_classif(
        self,
        config,
        input_ids_1,
        input_ids_2,
        input_ids_q,
        perm_mask,
        input_mask,
        target_mapping,
        segment_ids,
        lm_labels,
        sequence_labels,
        is_impossible_labels,
        token_labels,
    ):
        model = XLNetForTokenClassification(config)
        model.to(torch_device)
        model.eval()

Sylvain Gugger's avatar
Sylvain Gugger committed
423
424
        result = model(input_ids_1)
        result = model(input_ids_1, labels=token_labels)
425

Stas Bekman's avatar
Stas Bekman committed
426
427
        self.parent.assertEqual(result.loss.shape, ())
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.type_sequence_label_size))
428
        self.parent.assertListEqual(
429
430
            [mem.shape for mem in result.mems],
            [(self.seq_length, self.batch_size, self.hidden_size)] * self.num_hidden_layers,
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
        )

    def create_and_check_xlnet_sequence_classif(
        self,
        config,
        input_ids_1,
        input_ids_2,
        input_ids_q,
        perm_mask,
        input_mask,
        target_mapping,
        segment_ids,
        lm_labels,
        sequence_labels,
        is_impossible_labels,
        token_labels,
    ):
        model = XLNetForSequenceClassification(config)
        model.to(torch_device)
        model.eval()

Sylvain Gugger's avatar
Sylvain Gugger committed
452
453
        result = model(input_ids_1)
        result = model(input_ids_1, labels=sequence_labels)
454

Stas Bekman's avatar
Stas Bekman committed
455
456
        self.parent.assertEqual(result.loss.shape, ())
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size))
457
        self.parent.assertListEqual(
458
459
            [mem.shape for mem in result.mems],
            [(self.seq_length, self.batch_size, self.hidden_size)] * self.num_hidden_layers,
460
461
462
463
464
        )

    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        (
465
466
467
468
469
470
471
472
473
474
475
476
            config,
            input_ids_1,
            input_ids_2,
            input_ids_q,
            perm_mask,
            input_mask,
            target_mapping,
            segment_ids,
            lm_labels,
            sequence_labels,
            is_impossible_labels,
            token_labels,
477
478
479
480
481
482
        ) = config_and_inputs
        inputs_dict = {"input_ids": input_ids_1}
        return config, inputs_dict


@require_torch
483
class XLNetModelTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase):
484
485
486
487
488
489
490
    all_model_classes = (
        (
            XLNetModel,
            XLNetLMHeadModel,
            XLNetForTokenClassification,
            XLNetForSequenceClassification,
            XLNetForQuestionAnswering,
491
            XLNetForQuestionAnsweringSimple,
492
493
494
495
496
497
498
499
500
            XLNetForMultipleChoice,
        )
        if is_torch_available()
        else ()
    )
    all_generative_model_classes = (
        (XLNetLMHeadModel,) if is_torch_available() else ()
    )  # TODO (PVP): Check other models whether language generation is also applicable
    test_pruning = False
thomwolf's avatar
thomwolf committed
501
502

    def setUp(self):
503
        self.model_tester = XLNetModelTester(self)
thomwolf's avatar
thomwolf committed
504
        self.config_tester = ConfigTester(self, config_class=XLNetConfig, d_inner=37)
thomwolf's avatar
thomwolf committed
505

thomwolf's avatar
thomwolf committed
506
    def test_config(self):
thomwolf's avatar
thomwolf committed
507
508
509
510
511
512
513
        self.config_tester.run_common_tests()

    def test_xlnet_base_model(self):
        self.model_tester.set_seed()
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_xlnet_base_model(*config_and_inputs)

Teven's avatar
Teven committed
514
    def test_xlnet_base_model_use_cache(self):
515
        # checking that in auto-regressive mode, :obj:`use_cache` gives the same results
Teven's avatar
Teven committed
516
517
518
519
        self.model_tester.set_seed()
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_xlnet_model_use_cache(*config_and_inputs)

520
521
522
523
524
    def test_xlnet_base_model_with_att_output(self):
        self.model_tester.set_seed()
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_xlnet_base_model_with_att_output(*config_and_inputs)

thomwolf's avatar
thomwolf committed
525
526
527
    def test_xlnet_lm_head(self):
        self.model_tester.set_seed()
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
528
        self.model_tester.create_and_check_xlnet_lm_head(*config_and_inputs)
thomwolf's avatar
thomwolf committed
529
530
531
532
533
534

    def test_xlnet_sequence_classif(self):
        self.model_tester.set_seed()
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_xlnet_sequence_classif(*config_and_inputs)

535
536
537
538
539
    def test_xlnet_token_classif(self):
        self.model_tester.set_seed()
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_xlnet_token_classif(*config_and_inputs)

thomwolf's avatar
thomwolf committed
540
541
542
543
    def test_xlnet_qa(self):
        self.model_tester.set_seed()
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_xlnet_qa(*config_and_inputs)
thomwolf's avatar
thomwolf committed
544

545
    @slow
thomwolf's avatar
thomwolf committed
546
    def test_model_from_pretrained(self):
547
        for model_name in XLNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
548
            model = XLNetModel.from_pretrained(model_name)
thomwolf's avatar
thomwolf committed
549
            self.assertIsNotNone(model)
550
551


552
@require_torch
553
554
555
556
class XLNetModelLanguageGenerationTest(unittest.TestCase):
    @slow
    def test_lm_generate_xlnet_base_cased(self):
        model = XLNetLMHeadModel.from_pretrained("xlnet-base-cased")
557
        model.to(torch_device)
patrickvonplaten's avatar
patrickvonplaten committed
558
        input_ids = torch.tensor(
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
            [
                [
                    67,
                    2840,
                    19,
                    18,
                    1484,
                    20,
                    965,
                    29077,
                    8719,
                    1273,
                    21,
                    45,
                    273,
                    17,
                    10,
                    15048,
                    28,
                    27511,
                    21,
                    4185,
                    11,
                    41,
                    2444,
                    9,
                    32,
                    1025,
                    20,
                    8719,
                    26,
                    23,
                    673,
                    966,
                    19,
                    29077,
                    20643,
                    27511,
                    20822,
                    20643,
                    19,
                    17,
                    6616,
                    17511,
                    18,
                    8978,
                    20,
                    18,
                    777,
                    9,
                    19233,
                    1527,
                    17669,
                    19,
                    24,
                    673,
                    17,
                    28756,
                    150,
                    12943,
                    4354,
                    153,
                    27,
                    442,
                    37,
                    45,
                    668,
                    21,
                    24,
                    256,
                    20,
                    416,
                    22,
                    2771,
                    4901,
                    9,
                    12943,
                    4354,
                    153,
                    51,
                    24,
                    3004,
                    21,
                    28142,
                    23,
                    65,
                    20,
                    18,
                    416,
                    34,
                    24,
                    2958,
                    22947,
                    9,
                    1177,
                    45,
                    668,
                    3097,
                    13768,
                    23,
                    103,
                    28,
                    441,
                    148,
                    48,
                    20522,
                    19,
                    12943,
                    4354,
                    153,
                    12860,
                    34,
                    18,
                    326,
                    27,
                    17492,
                    684,
                    21,
                    6709,
                    9,
                    8585,
                    123,
                    266,
                    19,
                    12943,
                    4354,
                    153,
                    6872,
                    24,
                    3004,
                    20,
                    18,
                    9225,
                    2198,
                    19,
                    12717,
                    103,
                    22,
                    401,
                    24,
                    6348,
                    9,
                    12943,
                    4354,
                    153,
                    1068,
                    2768,
                    2286,
                    19,
                    33,
                    104,
                    19,
                    176,
                    24,
                    9313,
                    19,
                    20086,
                    28,
                    45,
                    10292,
                    9,
                    4,
                    3,
                ]
patrickvonplaten's avatar
patrickvonplaten committed
723
724
725
726
            ],
            dtype=torch.long,
            device=torch_device,
        )
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
        #  In 1991, the remains of Russian Tsar Nicholas II and his family
        #  (except for Alexei and Maria) are discovered.
        #  The voice of Nicholas's young son, Tsarevich Alexei Nikolaevich, narrates the
        #  remainder of the story. 1883 Western Siberia,
        #  a young Grigori Rasputin is asked by his father and a group of men to perform magic.
        #  Rasputin has a vision and denounces one of the men as a horse thief. Although his
        #  father initially slaps him for making such an accusation, Rasputin watches as the
        #  man is chased outside and beaten. Twenty years later, Rasputin sees a vision of
        #  the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous,
        #  with people, even a bishop, begging for his blessing. """

        expected_output_ids = [
            67,
            2840,
            19,
            18,
            1484,
            20,
            965,
            29077,
            8719,
            1273,
            21,
            45,
            273,
            17,
            10,
            15048,
            28,
            27511,
            21,
            4185,
            11,
            41,
            2444,
            9,
            32,
            1025,
            20,
            8719,
            26,
            23,
            673,
            966,
            19,
            29077,
            20643,
            27511,
            20822,
            20643,
            19,
            17,
            6616,
            17511,
            18,
            8978,
            20,
            18,
            777,
            9,
            19233,
            1527,
            17669,
            19,
            24,
            673,
            17,
            28756,
            150,
            12943,
            4354,
            153,
            27,
            442,
            37,
            45,
            668,
            21,
            24,
            256,
            20,
            416,
            22,
            2771,
            4901,
            9,
            12943,
            4354,
            153,
            51,
            24,
            3004,
            21,
            28142,
            23,
            65,
            20,
            18,
            416,
            34,
            24,
            2958,
            22947,
            9,
            1177,
            45,
            668,
            3097,
            13768,
            23,
            103,
            28,
            441,
            148,
            48,
            20522,
            19,
            12943,
            4354,
            153,
            12860,
            34,
            18,
            326,
            27,
            17492,
            684,
            21,
            6709,
            9,
            8585,
            123,
            266,
            19,
            12943,
            4354,
            153,
            6872,
            24,
            3004,
            20,
            18,
            9225,
            2198,
            19,
            12717,
            103,
            22,
            401,
            24,
            6348,
            9,
            12943,
            4354,
            153,
            1068,
            2768,
            2286,
            19,
            33,
            104,
            19,
            176,
            24,
            9313,
            19,
            20086,
            28,
            45,
            10292,
            9,
            4,
            3,
            19,
patrickvonplaten's avatar
patrickvonplaten committed
901
902
903
            12943,
            4354,
            153,
904
905
906
907
908
909
            27,
            442,
            22,
            2771,
            4901,
            9,
patrickvonplaten's avatar
patrickvonplaten committed
910
911
            69,
            27,
Teven's avatar
Teven committed
912
            442,
patrickvonplaten's avatar
patrickvonplaten committed
913
914
            22,
            2771,
Teven's avatar
Teven committed
915
916
917
            24,
            11335,
            20,
patrickvonplaten's avatar
patrickvonplaten committed
918
            18,
Teven's avatar
Teven committed
919
920
921
922
923
924
            9225,
            2198,
            9,
            69,
            27,
            442,
patrickvonplaten's avatar
patrickvonplaten committed
925
            22,
Teven's avatar
Teven committed
926
927
928
929
            2771,
            24,
            11335,
            20,
patrickvonplaten's avatar
patrickvonplaten committed
930
            18,
Teven's avatar
Teven committed
931
932
            9225,
            2198,
patrickvonplaten's avatar
patrickvonplaten committed
933
            9,
Teven's avatar
Teven committed
934
            69,
patrickvonplaten's avatar
patrickvonplaten committed
935
            27,
Teven's avatar
Teven committed
936
            442,
patrickvonplaten's avatar
patrickvonplaten committed
937
            22,
Teven's avatar
Teven committed
938
            2771,
939
940
941
942
943
944
945
946
947
        ]
        #  In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria)
        #  are discovered. The voice of Nicholas's young son, Tsarevich Alexei Nikolaevich,
        #  narrates the remainder of the story. 1883 Western Siberia, a young Grigori Rasputin
        #  is asked by his father and a group of men to perform magic. Rasputin has a vision and
        #  denounces one of the men as a horse thief. Although his father initially slaps
        #  him for making such an accusation, Rasputin watches as the man is chased outside and beaten.
        #  Twenty years later, Rasputin sees a vision of the Virgin Mary, prompting him to become a priest.
        #  Rasputin quickly becomes famous, with people, even a bishop, begging for his blessing.
Teven's avatar
Teven committed
948
949
        #  <sep><cls>, Rasputin is asked to perform magic. He is asked to perform a ritual of the Virgin Mary.
        #  He is asked to perform a ritual of the Virgin Mary. He is asked to perform
950

patrickvonplaten's avatar
patrickvonplaten committed
951
        output_ids = model.generate(input_ids, max_length=200, do_sample=False)
952
        self.assertListEqual(output_ids[0].tolist(), expected_output_ids)