test_modeling_xlnet.py 28.8 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

thomwolf's avatar
thomwolf committed
16
17

import random
18
import unittest
thomwolf's avatar
thomwolf committed
19

20
from transformers import is_torch_available
21
from transformers.testing_utils import require_torch, slow, torch_device
thomwolf's avatar
thomwolf committed
22

23
from .test_configuration_common import ConfigTester
24
from .test_modeling_common import ModelTesterMixin, ids_tensor
Aymeric Augustin's avatar
Aymeric Augustin committed
25
26


27
if is_torch_available():
thomwolf's avatar
thomwolf committed
28
29
    import torch

30
31
32
33
    from transformers import (
        XLNetConfig,
        XLNetModel,
        XLNetLMHeadModel,
34
        XLNetForMultipleChoice,
35
36
37
        XLNetForSequenceClassification,
        XLNetForTokenClassification,
        XLNetForQuestionAnswering,
38
        XLNetForQuestionAnsweringSimple,
39
    )
40
    from transformers.modeling_xlnet import XLNET_PRETRAINED_MODEL_ARCHIVE_LIST
thomwolf's avatar
thomwolf committed
41

42

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
class XLNetModelTester:
    def __init__(
        self,
        parent,
        batch_size=14,
        seq_length=7,
        mem_len=10,
        clamp_len=-1,
        reuse_len=15,
        is_training=True,
        use_labels=True,
        vocab_size=99,
        cutoffs=[10, 50, 80],
        hidden_size=32,
        num_attention_heads=4,
        d_inner=128,
        num_hidden_layers=5,
        type_sequence_label_size=2,
        untie_r=True,
        bi_data=False,
        same_length=False,
        initializer_range=0.05,
        seed=1,
        type_vocab_size=2,
        bos_token_id=1,
        eos_token_id=2,
        pad_token_id=5,
        num_choices=4,
    ):
        self.parent = parent
        self.batch_size = 14
        self.seq_length = 7
        self.mem_len = 10
        # self.key_len = seq_length + mem_len
        self.clamp_len = -1
        self.reuse_len = 15
        self.is_training = True
        self.use_labels = True
        self.vocab_size = 99
        self.cutoffs = [10, 50, 80]
        self.hidden_size = 32
        self.num_attention_heads = 4
        self.d_inner = 128
        self.num_hidden_layers = 5
        self.type_sequence_label_size = 2
        self.untie_r = True
        self.bi_data = False
        self.same_length = False
        self.initializer_range = 0.05
        self.seed = 1
        self.type_vocab_size = 2
        self.bos_token_id = 1
        self.eos_token_id = 2
        self.pad_token_id = 5
        self.num_choices = 4

    def prepare_config_and_inputs(self):
        input_ids_1 = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
        input_ids_2 = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
        segment_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
        input_mask = ids_tensor([self.batch_size, self.seq_length], 2).float()

        input_ids_q = ids_tensor([self.batch_size, self.seq_length + 1], self.vocab_size)
        perm_mask = torch.zeros(
            self.batch_size, self.seq_length + 1, self.seq_length + 1, dtype=torch.float, device=torch_device,
        )
        perm_mask[:, :, -1] = 1.0  # Previous tokens don't see last token
        target_mapping = torch.zeros(self.batch_size, 1, self.seq_length + 1, dtype=torch.float, device=torch_device,)
        target_mapping[:, 0, -1] = 1.0  # predict last token

        sequence_labels = None
        lm_labels = None
        is_impossible_labels = None
        token_labels = None
        if self.use_labels:
            lm_labels = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
            sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
            is_impossible_labels = ids_tensor([self.batch_size], 2).float()
            token_labels = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)

        config = XLNetConfig(
            vocab_size=self.vocab_size,
            d_model=self.hidden_size,
            n_head=self.num_attention_heads,
            d_inner=self.d_inner,
            n_layer=self.num_hidden_layers,
            untie_r=self.untie_r,
            mem_len=self.mem_len,
            clamp_len=self.clamp_len,
            same_length=self.same_length,
            reuse_len=self.reuse_len,
            bi_data=self.bi_data,
            initializer_range=self.initializer_range,
            num_labels=self.type_sequence_label_size,
            bos_token_id=self.bos_token_id,
            pad_token_id=self.pad_token_id,
            eos_token_id=self.eos_token_id,
140
        )
thomwolf's avatar
thomwolf committed
141

142
        return (
143
144
145
146
147
148
149
150
151
152
153
154
            config,
            input_ids_1,
            input_ids_2,
            input_ids_q,
            perm_mask,
            input_mask,
            target_mapping,
            segment_ids,
            lm_labels,
            sequence_labels,
            is_impossible_labels,
            token_labels,
155
        )
156

157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
    def set_seed(self):
        random.seed(self.seed)
        torch.manual_seed(self.seed)

    def create_and_check_xlnet_base_model(
        self,
        config,
        input_ids_1,
        input_ids_2,
        input_ids_q,
        perm_mask,
        input_mask,
        target_mapping,
        segment_ids,
        lm_labels,
        sequence_labels,
        is_impossible_labels,
        token_labels,
    ):
        model = XLNetModel(config)
        model.to(torch_device)
        model.eval()

        _, _ = model(input_ids_1, input_mask=input_mask)
        _, _ = model(input_ids_1, attention_mask=input_mask)
        _, _ = model(input_ids_1, token_type_ids=segment_ids)
        outputs, mems_1 = model(input_ids_1)

        result = {
            "mems_1": mems_1,
            "outputs": outputs,
        }

        config.mem_len = 0
        model = XLNetModel(config)
        model.to(torch_device)
        model.eval()
Teven's avatar
Teven committed
194
195
        base_model_output = model(input_ids_1)
        self.parent.assertEqual(len(base_model_output), 2)
196
197
198
199
200
201
202
203

        self.parent.assertListEqual(
            list(result["outputs"].size()), [self.batch_size, self.seq_length, self.hidden_size],
        )
        self.parent.assertListEqual(
            list(list(mem.size()) for mem in result["mems_1"]),
            [[self.seq_length, self.batch_size, self.hidden_size]] * self.num_hidden_layers,
        )
204

Teven's avatar
Teven committed
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
    def create_and_check_xlnet_model_use_cache(
        self,
        config,
        input_ids_1,
        input_ids_2,
        input_ids_q,
        perm_mask,
        input_mask,
        target_mapping,
        segment_ids,
        lm_labels,
        sequence_labels,
        is_impossible_labels,
        token_labels,
    ):
        model = XLNetModel(config=config)
        model.to(torch_device)
        model.eval()

        # first forward pass
        causal_mask = torch.ones(
            input_ids_1.shape[0], input_ids_1.shape[1], input_ids_1.shape[1], dtype=torch.float, device=torch_device,
        )
        causal_mask = torch.triu(causal_mask, diagonal=0)
        outputs_cache = model(input_ids_1, use_cache=True, perm_mask=causal_mask)
        outputs_no_cache = model(input_ids_1, use_cache=False, perm_mask=causal_mask)
        outputs_conf = model(input_ids_1)

        self.parent.assertTrue(len(outputs_cache) == len(outputs_conf))
        self.parent.assertTrue(len(outputs_cache) == len(outputs_no_cache) + 1)

        output, mems = outputs_cache

        # create hypothetical next token and extent to next_input_ids
        next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size)

        # append to next input_ids and token_type_ids
        next_input_ids = torch.cat([input_ids_1, next_tokens], dim=-1)

        # causal mask
        causal_mask = torch.ones(
            input_ids_1.shape[0],
            input_ids_1.shape[1] + 1,
            input_ids_1.shape[1] + 1,
            dtype=torch.float,
            device=torch_device,
        )
        causal_mask = torch.triu(causal_mask, diagonal=0)
        single_mask = torch.ones(input_ids_1.shape[0], 1, 1, dtype=torch.float, device=torch_device)

        # second forward pass
        output_from_no_past, _ = model(next_input_ids, perm_mask=causal_mask)
        output_from_past, _ = model(next_tokens, mems=mems, perm_mask=single_mask)

        # select random slice
        random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
        output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx].detach()
        output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach()

        # test that outputs are equal for slice
        self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))

267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
    def create_and_check_xlnet_base_model_with_att_output(
        self,
        config,
        input_ids_1,
        input_ids_2,
        input_ids_q,
        perm_mask,
        input_mask,
        target_mapping,
        segment_ids,
        lm_labels,
        sequence_labels,
        is_impossible_labels,
        token_labels,
    ):
        model = XLNetModel(config)
        model.to(torch_device)
        model.eval()

        _, _, attentions = model(input_ids_1, target_mapping=target_mapping, output_attentions=True)

        self.parent.assertEqual(len(attentions), config.n_layer)
        self.parent.assertIsInstance(attentions[0], tuple)
        self.parent.assertEqual(len(attentions[0]), 2)
        self.parent.assertTrue(attentions[0][0].shape, attentions[0][0].shape)

    def create_and_check_xlnet_lm_head(
        self,
        config,
        input_ids_1,
        input_ids_2,
        input_ids_q,
        perm_mask,
        input_mask,
        target_mapping,
        segment_ids,
        lm_labels,
        sequence_labels,
        is_impossible_labels,
        token_labels,
    ):
        model = XLNetLMHeadModel(config)
        model.to(torch_device)
        model.eval()

        loss_1, all_logits_1, mems_1 = model(input_ids_1, token_type_ids=segment_ids, labels=lm_labels)

        loss_2, all_logits_2, mems_2 = model(input_ids_2, token_type_ids=segment_ids, labels=lm_labels, mems=mems_1)

        logits, _ = model(input_ids_q, perm_mask=perm_mask, target_mapping=target_mapping)

        result = {
            "loss_1": loss_1,
            "mems_1": mems_1,
            "all_logits_1": all_logits_1,
            "loss_2": loss_2,
            "mems_2": mems_2,
            "all_logits_2": all_logits_2,
        }

        self.parent.assertListEqual(list(result["loss_1"].size()), [])
        self.parent.assertListEqual(
            list(result["all_logits_1"].size()), [self.batch_size, self.seq_length, self.vocab_size],
        )
        self.parent.assertListEqual(
            list(list(mem.size()) for mem in result["mems_1"]),
            [[self.seq_length, self.batch_size, self.hidden_size]] * self.num_hidden_layers,
        )
335

336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
        self.parent.assertListEqual(list(result["loss_2"].size()), [])
        self.parent.assertListEqual(
            list(result["all_logits_2"].size()), [self.batch_size, self.seq_length, self.vocab_size],
        )
        self.parent.assertListEqual(
            list(list(mem.size()) for mem in result["mems_2"]),
            [[self.mem_len, self.batch_size, self.hidden_size]] * self.num_hidden_layers,
        )

    def create_and_check_xlnet_qa(
        self,
        config,
        input_ids_1,
        input_ids_2,
        input_ids_q,
        perm_mask,
        input_mask,
        target_mapping,
        segment_ids,
        lm_labels,
        sequence_labels,
        is_impossible_labels,
        token_labels,
    ):
        model = XLNetForQuestionAnswering(config)
        model.to(torch_device)
        model.eval()

        outputs = model(input_ids_1)
        (start_top_log_probs, start_top_index, end_top_log_probs, end_top_index, cls_logits, mems,) = outputs

        outputs = model(
368
            input_ids_1,
369
370
371
372
373
374
375
376
            start_positions=sequence_labels,
            end_positions=sequence_labels,
            cls_index=sequence_labels,
            is_impossible=is_impossible_labels,
            p_mask=input_mask,
        )

        outputs = model(
377
            input_ids_1,
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
            start_positions=sequence_labels,
            end_positions=sequence_labels,
            cls_index=sequence_labels,
            is_impossible=is_impossible_labels,
        )

        total_loss, mems = outputs

        outputs = model(input_ids_1, start_positions=sequence_labels, end_positions=sequence_labels,)

        total_loss, mems = outputs

        result = {
            "loss": total_loss,
            "start_top_log_probs": start_top_log_probs,
            "start_top_index": start_top_index,
            "end_top_log_probs": end_top_log_probs,
            "end_top_index": end_top_index,
            "cls_logits": cls_logits,
            "mems": mems,
        }

        self.parent.assertListEqual(list(result["loss"].size()), [])
        self.parent.assertListEqual(
            list(result["start_top_log_probs"].size()), [self.batch_size, model.config.start_n_top],
        )
        self.parent.assertListEqual(
            list(result["start_top_index"].size()), [self.batch_size, model.config.start_n_top],
        )
        self.parent.assertListEqual(
            list(result["end_top_log_probs"].size()),
            [self.batch_size, model.config.start_n_top * model.config.end_n_top],
        )
        self.parent.assertListEqual(
            list(result["end_top_index"].size()), [self.batch_size, model.config.start_n_top * model.config.end_n_top],
        )
        self.parent.assertListEqual(list(result["cls_logits"].size()), [self.batch_size])
        self.parent.assertListEqual(
            list(list(mem.size()) for mem in result["mems"]),
            [[self.seq_length, self.batch_size, self.hidden_size]] * self.num_hidden_layers,
        )

    def create_and_check_xlnet_token_classif(
        self,
        config,
        input_ids_1,
        input_ids_2,
        input_ids_q,
        perm_mask,
        input_mask,
        target_mapping,
        segment_ids,
        lm_labels,
        sequence_labels,
        is_impossible_labels,
        token_labels,
    ):
        model = XLNetForTokenClassification(config)
        model.to(torch_device)
        model.eval()

        logits, mems_1 = model(input_ids_1)
        loss, logits, mems_1 = model(input_ids_1, labels=token_labels)

        result = {
            "loss": loss,
            "mems_1": mems_1,
            "logits": logits,
        }

        self.parent.assertListEqual(list(result["loss"].size()), [])
        self.parent.assertListEqual(
            list(result["logits"].size()), [self.batch_size, self.seq_length, self.type_sequence_label_size],
        )
        self.parent.assertListEqual(
            list(list(mem.size()) for mem in result["mems_1"]),
            [[self.seq_length, self.batch_size, self.hidden_size]] * self.num_hidden_layers,
        )

    def create_and_check_xlnet_sequence_classif(
        self,
        config,
        input_ids_1,
        input_ids_2,
        input_ids_q,
        perm_mask,
        input_mask,
        target_mapping,
        segment_ids,
        lm_labels,
        sequence_labels,
        is_impossible_labels,
        token_labels,
    ):
        model = XLNetForSequenceClassification(config)
        model.to(torch_device)
        model.eval()

        logits, mems_1 = model(input_ids_1)
        loss, logits, mems_1 = model(input_ids_1, labels=sequence_labels)

        result = {
            "loss": loss,
            "mems_1": mems_1,
            "logits": logits,
        }

        self.parent.assertListEqual(list(result["loss"].size()), [])
        self.parent.assertListEqual(
            list(result["logits"].size()), [self.batch_size, self.type_sequence_label_size],
        )
        self.parent.assertListEqual(
            list(list(mem.size()) for mem in result["mems_1"]),
            [[self.seq_length, self.batch_size, self.hidden_size]] * self.num_hidden_layers,
        )

    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        (
497
498
499
500
501
502
503
504
505
506
507
508
            config,
            input_ids_1,
            input_ids_2,
            input_ids_q,
            perm_mask,
            input_mask,
            target_mapping,
            segment_ids,
            lm_labels,
            sequence_labels,
            is_impossible_labels,
            token_labels,
509
510
511
512
513
514
515
516
517
518
519
520
521
522
        ) = config_and_inputs
        inputs_dict = {"input_ids": input_ids_1}
        return config, inputs_dict


@require_torch
class XLNetModelTest(ModelTesterMixin, unittest.TestCase):
    all_model_classes = (
        (
            XLNetModel,
            XLNetLMHeadModel,
            XLNetForTokenClassification,
            XLNetForSequenceClassification,
            XLNetForQuestionAnswering,
523
            XLNetForQuestionAnsweringSimple,
524
525
526
527
528
529
530
531
532
            XLNetForMultipleChoice,
        )
        if is_torch_available()
        else ()
    )
    all_generative_model_classes = (
        (XLNetLMHeadModel,) if is_torch_available() else ()
    )  # TODO (PVP): Check other models whether language generation is also applicable
    test_pruning = False
thomwolf's avatar
thomwolf committed
533
534

    def setUp(self):
535
        self.model_tester = XLNetModelTester(self)
thomwolf's avatar
thomwolf committed
536
        self.config_tester = ConfigTester(self, config_class=XLNetConfig, d_inner=37)
thomwolf's avatar
thomwolf committed
537

thomwolf's avatar
thomwolf committed
538
    def test_config(self):
thomwolf's avatar
thomwolf committed
539
540
541
542
543
544
545
        self.config_tester.run_common_tests()

    def test_xlnet_base_model(self):
        self.model_tester.set_seed()
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_xlnet_base_model(*config_and_inputs)

Teven's avatar
Teven committed
546
547
548
549
550
551
    def test_xlnet_base_model_use_cache(self):
        # checking that in auto-regressive mode, `use_cache` gives the same results
        self.model_tester.set_seed()
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_xlnet_model_use_cache(*config_and_inputs)

552
553
554
555
556
    def test_xlnet_base_model_with_att_output(self):
        self.model_tester.set_seed()
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_xlnet_base_model_with_att_output(*config_and_inputs)

thomwolf's avatar
thomwolf committed
557
558
559
    def test_xlnet_lm_head(self):
        self.model_tester.set_seed()
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
560
        self.model_tester.create_and_check_xlnet_lm_head(*config_and_inputs)
thomwolf's avatar
thomwolf committed
561
562
563
564
565
566

    def test_xlnet_sequence_classif(self):
        self.model_tester.set_seed()
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_xlnet_sequence_classif(*config_and_inputs)

567
568
569
570
571
    def test_xlnet_token_classif(self):
        self.model_tester.set_seed()
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_xlnet_token_classif(*config_and_inputs)

thomwolf's avatar
thomwolf committed
572
573
574
575
    def test_xlnet_qa(self):
        self.model_tester.set_seed()
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_xlnet_qa(*config_and_inputs)
thomwolf's avatar
thomwolf committed
576

577
    @slow
thomwolf's avatar
thomwolf committed
578
    def test_model_from_pretrained(self):
579
        for model_name in XLNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
580
            model = XLNetModel.from_pretrained(model_name)
thomwolf's avatar
thomwolf committed
581
            self.assertIsNotNone(model)
582
583


584
@require_torch
585
586
587
588
class XLNetModelLanguageGenerationTest(unittest.TestCase):
    @slow
    def test_lm_generate_xlnet_base_cased(self):
        model = XLNetLMHeadModel.from_pretrained("xlnet-base-cased")
589
        model.to(torch_device)
patrickvonplaten's avatar
patrickvonplaten committed
590
        input_ids = torch.tensor(
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
            [
                [
                    67,
                    2840,
                    19,
                    18,
                    1484,
                    20,
                    965,
                    29077,
                    8719,
                    1273,
                    21,
                    45,
                    273,
                    17,
                    10,
                    15048,
                    28,
                    27511,
                    21,
                    4185,
                    11,
                    41,
                    2444,
                    9,
                    32,
                    1025,
                    20,
                    8719,
                    26,
                    23,
                    673,
                    966,
                    19,
                    29077,
                    20643,
                    27511,
                    20822,
                    20643,
                    19,
                    17,
                    6616,
                    17511,
                    18,
                    8978,
                    20,
                    18,
                    777,
                    9,
                    19233,
                    1527,
                    17669,
                    19,
                    24,
                    673,
                    17,
                    28756,
                    150,
                    12943,
                    4354,
                    153,
                    27,
                    442,
                    37,
                    45,
                    668,
                    21,
                    24,
                    256,
                    20,
                    416,
                    22,
                    2771,
                    4901,
                    9,
                    12943,
                    4354,
                    153,
                    51,
                    24,
                    3004,
                    21,
                    28142,
                    23,
                    65,
                    20,
                    18,
                    416,
                    34,
                    24,
                    2958,
                    22947,
                    9,
                    1177,
                    45,
                    668,
                    3097,
                    13768,
                    23,
                    103,
                    28,
                    441,
                    148,
                    48,
                    20522,
                    19,
                    12943,
                    4354,
                    153,
                    12860,
                    34,
                    18,
                    326,
                    27,
                    17492,
                    684,
                    21,
                    6709,
                    9,
                    8585,
                    123,
                    266,
                    19,
                    12943,
                    4354,
                    153,
                    6872,
                    24,
                    3004,
                    20,
                    18,
                    9225,
                    2198,
                    19,
                    12717,
                    103,
                    22,
                    401,
                    24,
                    6348,
                    9,
                    12943,
                    4354,
                    153,
                    1068,
                    2768,
                    2286,
                    19,
                    33,
                    104,
                    19,
                    176,
                    24,
                    9313,
                    19,
                    20086,
                    28,
                    45,
                    10292,
                    9,
                    4,
                    3,
                ]
patrickvonplaten's avatar
patrickvonplaten committed
755
756
757
758
            ],
            dtype=torch.long,
            device=torch_device,
        )
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
        #  In 1991, the remains of Russian Tsar Nicholas II and his family
        #  (except for Alexei and Maria) are discovered.
        #  The voice of Nicholas's young son, Tsarevich Alexei Nikolaevich, narrates the
        #  remainder of the story. 1883 Western Siberia,
        #  a young Grigori Rasputin is asked by his father and a group of men to perform magic.
        #  Rasputin has a vision and denounces one of the men as a horse thief. Although his
        #  father initially slaps him for making such an accusation, Rasputin watches as the
        #  man is chased outside and beaten. Twenty years later, Rasputin sees a vision of
        #  the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous,
        #  with people, even a bishop, begging for his blessing. """

        expected_output_ids = [
            67,
            2840,
            19,
            18,
            1484,
            20,
            965,
            29077,
            8719,
            1273,
            21,
            45,
            273,
            17,
            10,
            15048,
            28,
            27511,
            21,
            4185,
            11,
            41,
            2444,
            9,
            32,
            1025,
            20,
            8719,
            26,
            23,
            673,
            966,
            19,
            29077,
            20643,
            27511,
            20822,
            20643,
            19,
            17,
            6616,
            17511,
            18,
            8978,
            20,
            18,
            777,
            9,
            19233,
            1527,
            17669,
            19,
            24,
            673,
            17,
            28756,
            150,
            12943,
            4354,
            153,
            27,
            442,
            37,
            45,
            668,
            21,
            24,
            256,
            20,
            416,
            22,
            2771,
            4901,
            9,
            12943,
            4354,
            153,
            51,
            24,
            3004,
            21,
            28142,
            23,
            65,
            20,
            18,
            416,
            34,
            24,
            2958,
            22947,
            9,
            1177,
            45,
            668,
            3097,
            13768,
            23,
            103,
            28,
            441,
            148,
            48,
            20522,
            19,
            12943,
            4354,
            153,
            12860,
            34,
            18,
            326,
            27,
            17492,
            684,
            21,
            6709,
            9,
            8585,
            123,
            266,
            19,
            12943,
            4354,
            153,
            6872,
            24,
            3004,
            20,
            18,
            9225,
            2198,
            19,
            12717,
            103,
            22,
            401,
            24,
            6348,
            9,
            12943,
            4354,
            153,
            1068,
            2768,
            2286,
            19,
            33,
            104,
            19,
            176,
            24,
            9313,
            19,
            20086,
            28,
            45,
            10292,
            9,
            4,
            3,
            19,
patrickvonplaten's avatar
patrickvonplaten committed
933
934
935
            12943,
            4354,
            153,
936
937
938
939
940
941
            27,
            442,
            22,
            2771,
            4901,
            9,
patrickvonplaten's avatar
patrickvonplaten committed
942
943
            69,
            27,
Teven's avatar
Teven committed
944
            442,
patrickvonplaten's avatar
patrickvonplaten committed
945
946
            22,
            2771,
Teven's avatar
Teven committed
947
948
949
            24,
            11335,
            20,
patrickvonplaten's avatar
patrickvonplaten committed
950
            18,
Teven's avatar
Teven committed
951
952
953
954
955
956
            9225,
            2198,
            9,
            69,
            27,
            442,
patrickvonplaten's avatar
patrickvonplaten committed
957
            22,
Teven's avatar
Teven committed
958
959
960
961
            2771,
            24,
            11335,
            20,
patrickvonplaten's avatar
patrickvonplaten committed
962
            18,
Teven's avatar
Teven committed
963
964
            9225,
            2198,
patrickvonplaten's avatar
patrickvonplaten committed
965
            9,
Teven's avatar
Teven committed
966
            69,
patrickvonplaten's avatar
patrickvonplaten committed
967
            27,
Teven's avatar
Teven committed
968
            442,
patrickvonplaten's avatar
patrickvonplaten committed
969
            22,
Teven's avatar
Teven committed
970
            2771,
971
972
973
974
975
976
977
978
979
        ]
        #  In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria)
        #  are discovered. The voice of Nicholas's young son, Tsarevich Alexei Nikolaevich,
        #  narrates the remainder of the story. 1883 Western Siberia, a young Grigori Rasputin
        #  is asked by his father and a group of men to perform magic. Rasputin has a vision and
        #  denounces one of the men as a horse thief. Although his father initially slaps
        #  him for making such an accusation, Rasputin watches as the man is chased outside and beaten.
        #  Twenty years later, Rasputin sees a vision of the Virgin Mary, prompting him to become a priest.
        #  Rasputin quickly becomes famous, with people, even a bishop, begging for his blessing.
Teven's avatar
Teven committed
980
981
        #  <sep><cls>, Rasputin is asked to perform magic. He is asked to perform a ritual of the Virgin Mary.
        #  He is asked to perform a ritual of the Virgin Mary. He is asked to perform
982

patrickvonplaten's avatar
patrickvonplaten committed
983
        output_ids = model.generate(input_ids, max_length=200, do_sample=False)
984
        self.assertListEqual(output_ids[0].tolist(), expected_output_ids)