test_modeling_xlnet.py 27.8 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

thomwolf's avatar
thomwolf committed
16
17

import random
18
import unittest
thomwolf's avatar
thomwolf committed
19

20
from transformers import is_torch_available
thomwolf's avatar
thomwolf committed
21

22
from .test_configuration_common import ConfigTester
23
from .test_modeling_common import ModelTesterMixin, ids_tensor
24
from .utils import require_torch, slow, torch_device
Aymeric Augustin's avatar
Aymeric Augustin committed
25
26


27
if is_torch_available():
thomwolf's avatar
thomwolf committed
28
29
    import torch

30
31
32
33
    from transformers import (
        XLNetConfig,
        XLNetModel,
        XLNetLMHeadModel,
34
        XLNetForMultipleChoice,
35
36
37
38
        XLNetForSequenceClassification,
        XLNetForTokenClassification,
        XLNetForQuestionAnswering,
    )
39
    from transformers.modeling_xlnet import XLNET_PRETRAINED_MODEL_ARCHIVE_LIST
thomwolf's avatar
thomwolf committed
40

41
42

@require_torch
43
class XLNetModelTest(ModelTesterMixin, unittest.TestCase):
thomwolf's avatar
thomwolf committed
44

45
46
47
48
49
50
51
    all_model_classes = (
        (
            XLNetModel,
            XLNetLMHeadModel,
            XLNetForTokenClassification,
            XLNetForSequenceClassification,
            XLNetForQuestionAnswering,
52
            XLNetForMultipleChoice,
53
54
55
56
        )
        if is_torch_available()
        else ()
    )
57
58
59
    all_generative_model_classes = (
        (XLNetLMHeadModel,) if is_torch_available() else ()
    )  # TODO (PVP): Check other models whether language generation is also applicable
thomwolf's avatar
thomwolf committed
60
    test_pruning = False
thomwolf's avatar
thomwolf committed
61

thomwolf's avatar
thomwolf committed
62
    class XLNetModelTester(object):
63
64
65
        def __init__(
            self,
            parent,
66
            batch_size=14,
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
            seq_length=7,
            mem_len=10,
            clamp_len=-1,
            reuse_len=15,
            is_training=True,
            use_labels=True,
            vocab_size=99,
            cutoffs=[10, 50, 80],
            hidden_size=32,
            num_attention_heads=4,
            d_inner=128,
            num_hidden_layers=5,
            type_sequence_label_size=2,
            untie_r=True,
            bi_data=False,
            same_length=False,
            initializer_range=0.05,
            seed=1,
            type_vocab_size=2,
86
87
88
            bos_token_id=1,
            eos_token_id=2,
            pad_token_id=5,
89
            num_choices=4,
90
        ):
thomwolf's avatar
thomwolf committed
91
92
93
94
            self.parent = parent
            self.batch_size = batch_size
            self.seq_length = seq_length
            self.mem_len = mem_len
thomwolf's avatar
thomwolf committed
95
            # self.key_len = seq_length + mem_len
thomwolf's avatar
thomwolf committed
96
97
98
99
100
101
            self.clamp_len = clamp_len
            self.reuse_len = reuse_len
            self.is_training = is_training
            self.use_labels = use_labels
            self.vocab_size = vocab_size
            self.cutoffs = cutoffs
thomwolf's avatar
thomwolf committed
102
103
            self.hidden_size = hidden_size
            self.num_attention_heads = num_attention_heads
thomwolf's avatar
thomwolf committed
104
            self.d_inner = d_inner
thomwolf's avatar
thomwolf committed
105
            self.num_hidden_layers = num_hidden_layers
thomwolf's avatar
thomwolf committed
106
107
108
            self.bi_data = bi_data
            self.untie_r = untie_r
            self.same_length = same_length
109
            self.initializer_range = initializer_range
thomwolf's avatar
thomwolf committed
110
111
            self.seed = seed
            self.type_vocab_size = type_vocab_size
thomwolf's avatar
thomwolf committed
112
            self.type_sequence_label_size = type_sequence_label_size
113
114
115
            self.bos_token_id = bos_token_id
            self.pad_token_id = pad_token_id
            self.eos_token_id = eos_token_id
116
            self.num_choices = num_choices
thomwolf's avatar
thomwolf committed
117
118

        def prepare_config_and_inputs(self):
thomwolf's avatar
thomwolf committed
119
120
121
            input_ids_1 = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
            input_ids_2 = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
            segment_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
thomwolf's avatar
thomwolf committed
122
            input_mask = ids_tensor([self.batch_size, self.seq_length], 2).float()
thomwolf's avatar
thomwolf committed
123

thomwolf's avatar
thomwolf committed
124
            input_ids_q = ids_tensor([self.batch_size, self.seq_length + 1], self.vocab_size)
125
            perm_mask = torch.zeros(
patrickvonplaten's avatar
patrickvonplaten committed
126
                self.batch_size, self.seq_length + 1, self.seq_length + 1, dtype=torch.float, device=torch_device,
127
            )
128
            perm_mask[:, :, -1] = 1.0  # Previous tokens don't see last token
129
            target_mapping = torch.zeros(
patrickvonplaten's avatar
patrickvonplaten committed
130
                self.batch_size, 1, self.seq_length + 1, dtype=torch.float, device=torch_device,
131
            )
132
133
            target_mapping[:, 0, -1] = 1.0  # predict last token

thomwolf's avatar
thomwolf committed
134
            sequence_labels = None
thomwolf's avatar
thomwolf committed
135
            lm_labels = None
thomwolf's avatar
thomwolf committed
136
            is_impossible_labels = None
137
            token_labels = None
thomwolf's avatar
thomwolf committed
138
            if self.use_labels:
thomwolf's avatar
thomwolf committed
139
                lm_labels = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
thomwolf's avatar
thomwolf committed
140
141
                sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
                is_impossible_labels = ids_tensor([self.batch_size], 2).float()
142
                token_labels = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
thomwolf's avatar
thomwolf committed
143
144

            config = XLNetConfig(
thomwolf's avatar
thomwolf committed
145
                vocab_size=self.vocab_size,
thomwolf's avatar
thomwolf committed
146
147
                d_model=self.hidden_size,
                n_head=self.num_attention_heads,
thomwolf's avatar
thomwolf committed
148
                d_inner=self.d_inner,
thomwolf's avatar
thomwolf committed
149
                n_layer=self.num_hidden_layers,
thomwolf's avatar
thomwolf committed
150
151
152
153
154
                untie_r=self.untie_r,
                mem_len=self.mem_len,
                clamp_len=self.clamp_len,
                same_length=self.same_length,
                reuse_len=self.reuse_len,
155
                bi_data=self.bi_data,
thomwolf's avatar
thomwolf committed
156
                initializer_range=self.initializer_range,
157
                num_labels=self.type_sequence_label_size,
158
159
160
                bos_token_id=self.bos_token_id,
                pad_token_id=self.pad_token_id,
                eos_token_id=self.eos_token_id,
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
            )

            return (
                config,
                input_ids_1,
                input_ids_2,
                input_ids_q,
                perm_mask,
                input_mask,
                target_mapping,
                segment_ids,
                lm_labels,
                sequence_labels,
                is_impossible_labels,
                token_labels,
            )
thomwolf's avatar
thomwolf committed
177
178
179
180
181

        def set_seed(self):
            random.seed(self.seed)
            torch.manual_seed(self.seed)

182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
        def create_and_check_xlnet_base_model(
            self,
            config,
            input_ids_1,
            input_ids_2,
            input_ids_q,
            perm_mask,
            input_mask,
            target_mapping,
            segment_ids,
            lm_labels,
            sequence_labels,
            is_impossible_labels,
            token_labels,
        ):
thomwolf's avatar
thomwolf committed
197
            model = XLNetModel(config)
198
            model.to(torch_device)
thomwolf's avatar
thomwolf committed
199
200
            model.eval()

thomwolf's avatar
thomwolf committed
201
202
            _, _ = model(input_ids_1, input_mask=input_mask)
            _, _ = model(input_ids_1, attention_mask=input_mask)
thomwolf's avatar
thomwolf committed
203
204
205
206
207
208
209
210
            _, _ = model(input_ids_1, token_type_ids=segment_ids)
            outputs, mems_1 = model(input_ids_1)

            result = {
                "mems_1": mems_1,
                "outputs": outputs,
            }

thomwolf's avatar
thomwolf committed
211
212
            config.mem_len = 0
            model = XLNetModel(config)
213
            model.to(torch_device)
thomwolf's avatar
thomwolf committed
214
            model.eval()
215
216
217
            no_mems_outputs = model(input_ids_1)
            self.parent.assertEqual(len(no_mems_outputs), 1)

thomwolf's avatar
thomwolf committed
218
            self.parent.assertListEqual(
patrickvonplaten's avatar
patrickvonplaten committed
219
                list(result["outputs"].size()), [self.batch_size, self.seq_length, self.hidden_size],
220
            )
thomwolf's avatar
thomwolf committed
221
222
            self.parent.assertListEqual(
                list(list(mem.size()) for mem in result["mems_1"]),
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
                [[self.seq_length, self.batch_size, self.hidden_size]] * self.num_hidden_layers,
            )

        def create_and_check_xlnet_base_model_with_att_output(
            self,
            config,
            input_ids_1,
            input_ids_2,
            input_ids_q,
            perm_mask,
            input_mask,
            target_mapping,
            segment_ids,
            lm_labels,
            sequence_labels,
            is_impossible_labels,
            token_labels,
        ):
241
            model = XLNetModel(config)
242
            model.to(torch_device)
243
244
            model.eval()

245
            _, _, attentions = model(input_ids_1, target_mapping=target_mapping, output_attentions=True)
246
247
248
249
250
251

            self.parent.assertEqual(len(attentions), config.n_layer)
            self.parent.assertIsInstance(attentions[0], tuple)
            self.parent.assertEqual(len(attentions[0]), 2)
            self.parent.assertTrue(attentions[0][0].shape, attentions[0][0].shape)

252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
        def create_and_check_xlnet_lm_head(
            self,
            config,
            input_ids_1,
            input_ids_2,
            input_ids_q,
            perm_mask,
            input_mask,
            target_mapping,
            segment_ids,
            lm_labels,
            sequence_labels,
            is_impossible_labels,
            token_labels,
        ):
thomwolf's avatar
thomwolf committed
267
            model = XLNetLMHeadModel(config)
268
            model.to(torch_device)
thomwolf's avatar
thomwolf committed
269
270
            model.eval()

thomwolf's avatar
thomwolf committed
271
            loss_1, all_logits_1, mems_1 = model(input_ids_1, token_type_ids=segment_ids, labels=lm_labels)
thomwolf's avatar
thomwolf committed
272

273
274
275
            loss_2, all_logits_2, mems_2 = model(
                input_ids_2, token_type_ids=segment_ids, labels=lm_labels, mems=mems_1
            )
276

277
            logits, _ = model(input_ids_q, perm_mask=perm_mask, target_mapping=target_mapping)
thomwolf's avatar
thomwolf committed
278

thomwolf's avatar
thomwolf committed
279
            result = {
thomwolf's avatar
thomwolf committed
280
                "loss_1": loss_1,
thomwolf's avatar
thomwolf committed
281
                "mems_1": mems_1,
282
                "all_logits_1": all_logits_1,
thomwolf's avatar
thomwolf committed
283
                "loss_2": loss_2,
thomwolf's avatar
thomwolf committed
284
                "mems_2": mems_2,
285
                "all_logits_2": all_logits_2,
thomwolf's avatar
thomwolf committed
286
287
            }

288
            self.parent.assertListEqual(list(result["loss_1"].size()), [])
thomwolf's avatar
thomwolf committed
289
            self.parent.assertListEqual(
patrickvonplaten's avatar
patrickvonplaten committed
290
                list(result["all_logits_1"].size()), [self.batch_size, self.seq_length, self.vocab_size],
291
            )
thomwolf's avatar
thomwolf committed
292
            self.parent.assertListEqual(
thomwolf's avatar
thomwolf committed
293
                list(list(mem.size()) for mem in result["mems_1"]),
294
295
                [[self.seq_length, self.batch_size, self.hidden_size]] * self.num_hidden_layers,
            )
thomwolf's avatar
thomwolf committed
296

297
            self.parent.assertListEqual(list(result["loss_2"].size()), [])
thomwolf's avatar
thomwolf committed
298
            self.parent.assertListEqual(
patrickvonplaten's avatar
patrickvonplaten committed
299
                list(result["all_logits_2"].size()), [self.batch_size, self.seq_length, self.vocab_size],
300
            )
thomwolf's avatar
thomwolf committed
301
            self.parent.assertListEqual(
thomwolf's avatar
thomwolf committed
302
                list(list(mem.size()) for mem in result["mems_2"]),
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
                [[self.mem_len, self.batch_size, self.hidden_size]] * self.num_hidden_layers,
            )

        def create_and_check_xlnet_qa(
            self,
            config,
            input_ids_1,
            input_ids_2,
            input_ids_q,
            perm_mask,
            input_mask,
            target_mapping,
            segment_ids,
            lm_labels,
            sequence_labels,
            is_impossible_labels,
            token_labels,
        ):
thomwolf's avatar
thomwolf committed
321
            model = XLNetForQuestionAnswering(config)
322
            model.to(torch_device)
thomwolf's avatar
thomwolf committed
323
324
325
            model.eval()

            outputs = model(input_ids_1)
patrickvonplaten's avatar
patrickvonplaten committed
326
            (start_top_log_probs, start_top_index, end_top_log_probs, end_top_index, cls_logits, mems,) = outputs
thomwolf's avatar
thomwolf committed
327

328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
            outputs = model(
                input_ids_1,
                start_positions=sequence_labels,
                end_positions=sequence_labels,
                cls_index=sequence_labels,
                is_impossible=is_impossible_labels,
                p_mask=input_mask,
            )

            outputs = model(
                input_ids_1,
                start_positions=sequence_labels,
                end_positions=sequence_labels,
                cls_index=sequence_labels,
                is_impossible=is_impossible_labels,
            )
thomwolf's avatar
thomwolf committed
344

345
            total_loss, mems = outputs
thomwolf's avatar
thomwolf committed
346

patrickvonplaten's avatar
patrickvonplaten committed
347
            outputs = model(input_ids_1, start_positions=sequence_labels, end_positions=sequence_labels,)
thomwolf's avatar
thomwolf committed
348

349
            total_loss, mems = outputs
thomwolf's avatar
thomwolf committed
350
351
352

            result = {
                "loss": total_loss,
353
354
355
356
                "start_top_log_probs": start_top_log_probs,
                "start_top_index": start_top_index,
                "end_top_log_probs": end_top_log_probs,
                "end_top_index": end_top_index,
thomwolf's avatar
thomwolf committed
357
358
359
360
                "cls_logits": cls_logits,
                "mems": mems,
            }

361
            self.parent.assertListEqual(list(result["loss"].size()), [])
thomwolf's avatar
thomwolf committed
362
            self.parent.assertListEqual(
patrickvonplaten's avatar
patrickvonplaten committed
363
                list(result["start_top_log_probs"].size()), [self.batch_size, model.config.start_n_top],
364
            )
thomwolf's avatar
thomwolf committed
365
            self.parent.assertListEqual(
patrickvonplaten's avatar
patrickvonplaten committed
366
                list(result["start_top_index"].size()), [self.batch_size, model.config.start_n_top],
367
            )
368
369
            self.parent.assertListEqual(
                list(result["end_top_log_probs"].size()),
370
371
                [self.batch_size, model.config.start_n_top * model.config.end_n_top],
            )
372
373
            self.parent.assertListEqual(
                list(result["end_top_index"].size()),
374
375
376
                [self.batch_size, model.config.start_n_top * model.config.end_n_top],
            )
            self.parent.assertListEqual(list(result["cls_logits"].size()), [self.batch_size])
thomwolf's avatar
thomwolf committed
377
378
            self.parent.assertListEqual(
                list(list(mem.size()) for mem in result["mems"]),
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
                [[self.seq_length, self.batch_size, self.hidden_size]] * self.num_hidden_layers,
            )

        def create_and_check_xlnet_token_classif(
            self,
            config,
            input_ids_1,
            input_ids_2,
            input_ids_q,
            perm_mask,
            input_mask,
            target_mapping,
            segment_ids,
            lm_labels,
            sequence_labels,
            is_impossible_labels,
            token_labels,
        ):
397
            model = XLNetForTokenClassification(config)
398
            model.to(torch_device)
399
400
401
402
403
404
405
406
407
408
409
            model.eval()

            logits, mems_1 = model(input_ids_1)
            loss, logits, mems_1 = model(input_ids_1, labels=token_labels)

            result = {
                "loss": loss,
                "mems_1": mems_1,
                "logits": logits,
            }

410
            self.parent.assertListEqual(list(result["loss"].size()), [])
411
            self.parent.assertListEqual(
patrickvonplaten's avatar
patrickvonplaten committed
412
                list(result["logits"].size()), [self.batch_size, self.seq_length, self.type_sequence_label_size],
413
            )
414
415
            self.parent.assertListEqual(
                list(list(mem.size()) for mem in result["mems_1"]),
416
417
                [[self.seq_length, self.batch_size, self.hidden_size]] * self.num_hidden_layers,
            )
418

419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
        def create_and_check_xlnet_sequence_classif(
            self,
            config,
            input_ids_1,
            input_ids_2,
            input_ids_q,
            perm_mask,
            input_mask,
            target_mapping,
            segment_ids,
            lm_labels,
            sequence_labels,
            is_impossible_labels,
            token_labels,
        ):
thomwolf's avatar
thomwolf committed
434
            model = XLNetForSequenceClassification(config)
435
            model.to(torch_device)
thomwolf's avatar
thomwolf committed
436
437
438
439
440
441
442
443
444
445
446
            model.eval()

            logits, mems_1 = model(input_ids_1)
            loss, logits, mems_1 = model(input_ids_1, labels=sequence_labels)

            result = {
                "loss": loss,
                "mems_1": mems_1,
                "logits": logits,
            }

447
            self.parent.assertListEqual(list(result["loss"].size()), [])
thomwolf's avatar
thomwolf committed
448
            self.parent.assertListEqual(
patrickvonplaten's avatar
patrickvonplaten committed
449
                list(result["logits"].size()), [self.batch_size, self.type_sequence_label_size],
450
            )
thomwolf's avatar
thomwolf committed
451
452
            self.parent.assertListEqual(
                list(list(mem.size()) for mem in result["mems_1"]),
453
454
                [[self.seq_length, self.batch_size, self.hidden_size]] * self.num_hidden_layers,
            )
thomwolf's avatar
thomwolf committed
455

thomwolf's avatar
thomwolf committed
456
457
        def prepare_config_and_inputs_for_common(self):
            config_and_inputs = self.prepare_config_and_inputs()
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
            (
                config,
                input_ids_1,
                input_ids_2,
                input_ids_q,
                perm_mask,
                input_mask,
                target_mapping,
                segment_ids,
                lm_labels,
                sequence_labels,
                is_impossible_labels,
                token_labels,
            ) = config_and_inputs
            inputs_dict = {"input_ids": input_ids_1}
thomwolf's avatar
thomwolf committed
473
474
475
476
477
            return config, inputs_dict

    def setUp(self):
        self.model_tester = XLNetModelTest.XLNetModelTester(self)
        self.config_tester = ConfigTester(self, config_class=XLNetConfig, d_inner=37)
thomwolf's avatar
thomwolf committed
478

thomwolf's avatar
thomwolf committed
479
    def test_config(self):
thomwolf's avatar
thomwolf committed
480
481
482
483
484
485
486
        self.config_tester.run_common_tests()

    def test_xlnet_base_model(self):
        self.model_tester.set_seed()
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_xlnet_base_model(*config_and_inputs)

487
488
489
490
491
    def test_xlnet_base_model_with_att_output(self):
        self.model_tester.set_seed()
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_xlnet_base_model_with_att_output(*config_and_inputs)

thomwolf's avatar
thomwolf committed
492
493
494
    def test_xlnet_lm_head(self):
        self.model_tester.set_seed()
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
495
        self.model_tester.create_and_check_xlnet_lm_head(*config_and_inputs)
thomwolf's avatar
thomwolf committed
496
497
498
499
500
501

    def test_xlnet_sequence_classif(self):
        self.model_tester.set_seed()
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_xlnet_sequence_classif(*config_and_inputs)

502
503
504
505
506
    def test_xlnet_token_classif(self):
        self.model_tester.set_seed()
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_xlnet_token_classif(*config_and_inputs)

thomwolf's avatar
thomwolf committed
507
508
509
510
    def test_xlnet_qa(self):
        self.model_tester.set_seed()
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_xlnet_qa(*config_and_inputs)
thomwolf's avatar
thomwolf committed
511

512
    @slow
thomwolf's avatar
thomwolf committed
513
    def test_model_from_pretrained(self):
514
        for model_name in XLNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
515
            model = XLNetModel.from_pretrained(model_name)
thomwolf's avatar
thomwolf committed
516
            self.assertIsNotNone(model)
517
518


519
@require_torch
520
521
522
523
class XLNetModelLanguageGenerationTest(unittest.TestCase):
    @slow
    def test_lm_generate_xlnet_base_cased(self):
        model = XLNetLMHeadModel.from_pretrained("xlnet-base-cased")
524
        model.to(torch_device)
patrickvonplaten's avatar
patrickvonplaten committed
525
        input_ids = torch.tensor(
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
            [
                [
                    67,
                    2840,
                    19,
                    18,
                    1484,
                    20,
                    965,
                    29077,
                    8719,
                    1273,
                    21,
                    45,
                    273,
                    17,
                    10,
                    15048,
                    28,
                    27511,
                    21,
                    4185,
                    11,
                    41,
                    2444,
                    9,
                    32,
                    1025,
                    20,
                    8719,
                    26,
                    23,
                    673,
                    966,
                    19,
                    29077,
                    20643,
                    27511,
                    20822,
                    20643,
                    19,
                    17,
                    6616,
                    17511,
                    18,
                    8978,
                    20,
                    18,
                    777,
                    9,
                    19233,
                    1527,
                    17669,
                    19,
                    24,
                    673,
                    17,
                    28756,
                    150,
                    12943,
                    4354,
                    153,
                    27,
                    442,
                    37,
                    45,
                    668,
                    21,
                    24,
                    256,
                    20,
                    416,
                    22,
                    2771,
                    4901,
                    9,
                    12943,
                    4354,
                    153,
                    51,
                    24,
                    3004,
                    21,
                    28142,
                    23,
                    65,
                    20,
                    18,
                    416,
                    34,
                    24,
                    2958,
                    22947,
                    9,
                    1177,
                    45,
                    668,
                    3097,
                    13768,
                    23,
                    103,
                    28,
                    441,
                    148,
                    48,
                    20522,
                    19,
                    12943,
                    4354,
                    153,
                    12860,
                    34,
                    18,
                    326,
                    27,
                    17492,
                    684,
                    21,
                    6709,
                    9,
                    8585,
                    123,
                    266,
                    19,
                    12943,
                    4354,
                    153,
                    6872,
                    24,
                    3004,
                    20,
                    18,
                    9225,
                    2198,
                    19,
                    12717,
                    103,
                    22,
                    401,
                    24,
                    6348,
                    9,
                    12943,
                    4354,
                    153,
                    1068,
                    2768,
                    2286,
                    19,
                    33,
                    104,
                    19,
                    176,
                    24,
                    9313,
                    19,
                    20086,
                    28,
                    45,
                    10292,
                    9,
                    4,
                    3,
                ]
patrickvonplaten's avatar
patrickvonplaten committed
690
691
692
693
            ],
            dtype=torch.long,
            device=torch_device,
        )
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
        #  In 1991, the remains of Russian Tsar Nicholas II and his family
        #  (except for Alexei and Maria) are discovered.
        #  The voice of Nicholas's young son, Tsarevich Alexei Nikolaevich, narrates the
        #  remainder of the story. 1883 Western Siberia,
        #  a young Grigori Rasputin is asked by his father and a group of men to perform magic.
        #  Rasputin has a vision and denounces one of the men as a horse thief. Although his
        #  father initially slaps him for making such an accusation, Rasputin watches as the
        #  man is chased outside and beaten. Twenty years later, Rasputin sees a vision of
        #  the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous,
        #  with people, even a bishop, begging for his blessing. """

        expected_output_ids = [
            67,
            2840,
            19,
            18,
            1484,
            20,
            965,
            29077,
            8719,
            1273,
            21,
            45,
            273,
            17,
            10,
            15048,
            28,
            27511,
            21,
            4185,
            11,
            41,
            2444,
            9,
            32,
            1025,
            20,
            8719,
            26,
            23,
            673,
            966,
            19,
            29077,
            20643,
            27511,
            20822,
            20643,
            19,
            17,
            6616,
            17511,
            18,
            8978,
            20,
            18,
            777,
            9,
            19233,
            1527,
            17669,
            19,
            24,
            673,
            17,
            28756,
            150,
            12943,
            4354,
            153,
            27,
            442,
            37,
            45,
            668,
            21,
            24,
            256,
            20,
            416,
            22,
            2771,
            4901,
            9,
            12943,
            4354,
            153,
            51,
            24,
            3004,
            21,
            28142,
            23,
            65,
            20,
            18,
            416,
            34,
            24,
            2958,
            22947,
            9,
            1177,
            45,
            668,
            3097,
            13768,
            23,
            103,
            28,
            441,
            148,
            48,
            20522,
            19,
            12943,
            4354,
            153,
            12860,
            34,
            18,
            326,
            27,
            17492,
            684,
            21,
            6709,
            9,
            8585,
            123,
            266,
            19,
            12943,
            4354,
            153,
            6872,
            24,
            3004,
            20,
            18,
            9225,
            2198,
            19,
            12717,
            103,
            22,
            401,
            24,
            6348,
            9,
            12943,
            4354,
            153,
            1068,
            2768,
            2286,
            19,
            33,
            104,
            19,
            176,
            24,
            9313,
            19,
            20086,
            28,
            45,
            10292,
            9,
            4,
            3,
            19,
patrickvonplaten's avatar
patrickvonplaten committed
868
869
870
            12943,
            4354,
            153,
871
872
873
874
875
876
            27,
            442,
            22,
            2771,
            4901,
            9,
patrickvonplaten's avatar
patrickvonplaten committed
877
878
879
880
881
882
883
            69,
            27,
            50,
            551,
            22,
            2771,
            4901,
884
            19,
patrickvonplaten's avatar
patrickvonplaten committed
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
            21,
            45,
            668,
            21,
            18,
            416,
            41,
            1499,
            22,
            755,
            18,
            14285,
            9,
            12943,
            4354,
            153,
            27,
            1499,
            22,
            642,
            22,
906
907
908
909
910
911
912
913
914
        ]
        #  In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria)
        #  are discovered. The voice of Nicholas's young son, Tsarevich Alexei Nikolaevich,
        #  narrates the remainder of the story. 1883 Western Siberia, a young Grigori Rasputin
        #  is asked by his father and a group of men to perform magic. Rasputin has a vision and
        #  denounces one of the men as a horse thief. Although his father initially slaps
        #  him for making such an accusation, Rasputin watches as the man is chased outside and beaten.
        #  Twenty years later, Rasputin sees a vision of the Virgin Mary, prompting him to become a priest.
        #  Rasputin quickly becomes famous, with people, even a bishop, begging for his blessing.
patrickvonplaten's avatar
patrickvonplaten committed
915
916
917
        #  <sep><cls>, Rasputin is asked to perform magic.
        #  He is not able to perform magic, and his father and
        # the men are forced to leave the monastery. Rasputin is forced to return to
918

patrickvonplaten's avatar
patrickvonplaten committed
919
        output_ids = model.generate(input_ids, max_length=200, do_sample=False)
920
        self.assertListEqual(output_ids[0].tolist(), expected_output_ids)