modeling_xlnet.py 62.7 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
# coding=utf-8
# Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch XLNet model.
"""
from __future__ import absolute_import, division, print_function, unicode_literals

import json
import logging
import math
import os
import sys
from io import open

import torch
from torch import nn
thomwolf's avatar
thomwolf committed
29
from torch.nn import functional as F
30
from torch.nn import CrossEntropyLoss, MSELoss
thomwolf's avatar
thomwolf committed
31

32
from .modeling_utils import (CONFIG_NAME, WEIGHTS_NAME, PretrainedConfig, PreTrainedModel,
thomwolf's avatar
thomwolf committed
33
34
                             SequenceSummary, PoolerAnswerClass, PoolerEndLogits, PoolerStartLogits,
                             add_start_docstrings)
35

thomwolf's avatar
thomwolf committed
36
37
38

logger = logging.getLogger(__name__)

39
XLNET_PRETRAINED_MODEL_ARCHIVE_MAP = {
40
    'xlnet-base-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/xlnet-base-cased-pytorch_model.bin",
thomwolf's avatar
thomwolf committed
41
42
    'xlnet-large-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/xlnet-large-cased-pytorch_model.bin",
}
43
XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP = {
44
    'xlnet-base-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/xlnet-base-cased-config.json",
thomwolf's avatar
thomwolf committed
45
46
47
    'xlnet-large-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/xlnet-large-cased-config.json",
}

thomwolf's avatar
thomwolf committed
48

49
def build_tf_xlnet_to_pytorch_map(model, config, tf_weights=None):
thomwolf's avatar
thomwolf committed
50
51
52
53
54
55
56
57
    """ A map of modules from TF to PyTorch.
        I use a map to keep the PyTorch model as
        identical to the original PyTorch model as possible.
    """

    tf_to_pt_map = {}

    if hasattr(model, 'transformer'):
58
59
60
        if hasattr(model, 'lm_loss'):
            # We will load also the output bias
            tf_to_pt_map['model/lm_loss/bias'] = model.lm_loss.bias
61
        if hasattr(model, 'sequence_summary') and 'model/sequnece_summary/summary/kernel' in tf_weights:
62
63
64
            # We will load also the sequence summary
            tf_to_pt_map['model/sequnece_summary/summary/kernel'] = model.sequence_summary.summary.weight
            tf_to_pt_map['model/sequnece_summary/summary/bias'] = model.sequence_summary.summary.bias
thomwolf's avatar
thomwolf committed
65
66
        if hasattr(model, 'logits_proj') and config.finetuning_task is not None \
                and 'model/regression_{}/logit/kernel'.format(config.finetuning_task) in tf_weights:
67
68
            tf_to_pt_map['model/regression_{}/logit/kernel'.format(config.finetuning_task)] = model.logits_proj.weight
            tf_to_pt_map['model/regression_{}/logit/bias'.format(config.finetuning_task)] = model.logits_proj.bias
69

thomwolf's avatar
thomwolf committed
70
71
72
73
74
        # Now load the rest of the transformer
        model = model.transformer

    # Embeddings and output
    tf_to_pt_map.update({'model/transformer/word_embedding/lookup_table': model.word_embedding.weight,
75
                         'model/transformer/mask_emb/mask_emb': model.mask_emb})
thomwolf's avatar
thomwolf committed
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118

    # Transformer blocks
    for i, b in enumerate(model.layer):
        layer_str = "model/transformer/layer_%d/" % i
        tf_to_pt_map.update({
            layer_str + "rel_attn/LayerNorm/gamma": b.rel_attn.layer_norm.weight,
            layer_str + "rel_attn/LayerNorm/beta": b.rel_attn.layer_norm.bias,
            layer_str + "rel_attn/o/kernel": b.rel_attn.o,
            layer_str + "rel_attn/q/kernel": b.rel_attn.q,
            layer_str + "rel_attn/k/kernel": b.rel_attn.k,
            layer_str + "rel_attn/r/kernel": b.rel_attn.r,
            layer_str + "rel_attn/v/kernel": b.rel_attn.v,
            layer_str + "ff/LayerNorm/gamma": b.ff.layer_norm.weight,
            layer_str + "ff/LayerNorm/beta": b.ff.layer_norm.bias,
            layer_str + "ff/layer_1/kernel": b.ff.layer_1.weight,
            layer_str + "ff/layer_1/bias": b.ff.layer_1.bias,
            layer_str + "ff/layer_2/kernel": b.ff.layer_2.weight,
            layer_str + "ff/layer_2/bias": b.ff.layer_2.bias,
        })

    # Relative positioning biases
    if config.untie_r:
        r_r_list = []
        r_w_list = []
        r_s_list = []
        seg_embed_list = []
        for b in model.layer:
            r_r_list.append(b.rel_attn.r_r_bias)
            r_w_list.append(b.rel_attn.r_w_bias)
            r_s_list.append(b.rel_attn.r_s_bias)
            seg_embed_list.append(b.rel_attn.seg_embed)
    else:
        r_r_list = [model.r_r_bias]
        r_w_list = [model.r_w_bias]
        r_s_list = [model.r_s_bias]
        seg_embed_list = [model.seg_embed]
    tf_to_pt_map.update({
        'model/transformer/r_r_bias': r_r_list,
        'model/transformer/r_w_bias': r_w_list,
        'model/transformer/r_s_bias': r_s_list,
        'model/transformer/seg_embed': seg_embed_list})
    return tf_to_pt_map

119
def load_tf_weights_in_xlnet(model, config, tf_path):
thomwolf's avatar
thomwolf committed
120
121
122
123
124
125
    """ Load tf checkpoints in a pytorch model
    """
    try:
        import numpy as np
        import tensorflow as tf
    except ImportError:
thomwolf's avatar
thomwolf committed
126
        logger.error("Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see "
thomwolf's avatar
thomwolf committed
127
128
129
130
            "https://www.tensorflow.org/install/ for installation instructions.")
        raise
    # Load weights from TF model
    init_vars = tf.train.list_variables(tf_path)
thomwolf's avatar
thomwolf committed
131
    tf_weights = {}
thomwolf's avatar
thomwolf committed
132
    for name, shape in init_vars:
thomwolf's avatar
thomwolf committed
133
        logger.info("Loading TF weight {} with shape {}".format(name, shape))
thomwolf's avatar
thomwolf committed
134
        array = tf.train.load_variable(tf_path, name)
thomwolf's avatar
thomwolf committed
135
        tf_weights[name] = array
thomwolf's avatar
thomwolf committed
136

137
    # Build TF to PyTorch weights loading map
138
    tf_to_pt_map = build_tf_xlnet_to_pytorch_map(model, config, tf_weights)
139

thomwolf's avatar
thomwolf committed
140
    for name, pointer in tf_to_pt_map.items():
thomwolf's avatar
thomwolf committed
141
        logger.info("Importing {}".format(name))
142
        if name not in tf_weights:
thomwolf's avatar
thomwolf committed
143
            logger.info("{} not in tf pre-trained weights, skipping".format(name))
144
            continue
thomwolf's avatar
thomwolf committed
145
        array = tf_weights[name]
thomwolf's avatar
thomwolf committed
146
147
        # adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
        # which are not required for using pretrained model
148
        if 'kernel' in name and ('ff' in name or 'summary' in name or 'logit' in name):
thomwolf's avatar
thomwolf committed
149
            logger.info("Transposing")
thomwolf's avatar
thomwolf committed
150
            array = np.transpose(array)
thomwolf's avatar
thomwolf committed
151
152
153
154
155
156
157
158
159
160
        if isinstance(pointer, list):
            # Here we will split the TF weigths
            assert len(pointer) == array.shape[0]
            for i, p_i in enumerate(pointer):
                arr_i = array[i, ...]
                try:
                    assert p_i.shape == arr_i.shape
                except AssertionError as e:
                    e.args += (p_i.shape, arr_i.shape)
                    raise
thomwolf's avatar
thomwolf committed
161
                logger.info("Initialize PyTorch weight {} for layer {}".format(name, i))
thomwolf's avatar
thomwolf committed
162
163
164
165
166
167
168
                p_i.data = torch.from_numpy(arr_i)
        else:
            try:
                assert pointer.shape == array.shape
            except AssertionError as e:
                e.args += (pointer.shape, array.shape)
                raise
thomwolf's avatar
thomwolf committed
169
            logger.info("Initialize PyTorch weight {}".format(name))
thomwolf's avatar
thomwolf committed
170
171
172
173
174
            pointer.data = torch.from_numpy(array)
        tf_weights.pop(name, None)
        tf_weights.pop(name + '/Adam', None)
        tf_weights.pop(name + '/Adam_1', None)

thomwolf's avatar
thomwolf committed
175
    logger.info("Weights not copied to PyTorch model: {}".format(', '.join(tf_weights.keys())))
thomwolf's avatar
thomwolf committed
176
177
178
179
    return model


def gelu(x):
180
181
    """ Implementation of the gelu activation function.
        XLNet is using OpenAI GPT's gelu (not exactly the same as BERT)
thomwolf's avatar
thomwolf committed
182
183
        Also see https://arxiv.org/abs/1606.08415
    """
184
185
    cdf = 0.5 * (1.0 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))
    return x * cdf
thomwolf's avatar
thomwolf committed
186
187
188
189
190
191
192
193
194


def swish(x):
    return x * torch.sigmoid(x)


ACT2FN = {"gelu": gelu, "relu": torch.nn.functional.relu, "swish": swish}


195
class XLNetConfig(PretrainedConfig):
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
    """Configuration class to store the configuration of a ``XLNetModel``.

    Args:
        vocab_size_or_config_json_file: Vocabulary size of ``inputs_ids`` in ``XLNetModel``.
        d_model: Size of the encoder layers and the pooler layer.
        n_layer: Number of hidden layers in the Transformer encoder.
        n_head: Number of attention heads for each attention layer in
            the Transformer encoder.
        d_inner: The size of the "intermediate" (i.e., feed-forward)
            layer in the Transformer encoder.
        ff_activation: The non-linear activation function (function or string) in the
            encoder and pooler. If string, "gelu", "relu" and "swish" are supported.
        untie_r: untie relative position biases
        attn_type: 'bi' for XLNet, 'uni' for Transformer-XL

        dropout: The dropout probabilitiy for all fully connected
            layers in the embeddings, encoder, and pooler.
        dropatt: The dropout ratio for the attention
            probabilities.
        initializer_range: The sttdev of the truncated_normal_initializer for
            initializing all weight matrices.
        layer_norm_eps: The epsilon used by LayerNorm.

        dropout: float, dropout rate.
        dropatt: float, dropout rate on attention probabilities.
        init: str, the initialization scheme, either "normal" or "uniform".
        init_range: float, initialize the parameters with a uniform distribution
            in [-init_range, init_range]. Only effective when init="uniform".
        init_std: float, initialize the parameters with a normal distribution
            with mean 0 and stddev init_std. Only effective when init="normal".
        mem_len: int, the number of tokens to cache.
        reuse_len: int, the number of tokens in the currect batch to be cached
            and reused in the future.
        bi_data: bool, whether to use bidirectional input pipeline.
            Usually set to True during pretraining and False during finetuning.
        clamp_len: int, clamp all relative distances larger than clamp_len.
            -1 means no clamping.
        same_length: bool, whether to use the same attention length for each token.
        finetuning_task: name of the glue task on which the model was fine-tuned if any
thomwolf's avatar
thomwolf committed
235
    """
236
    pretrained_config_archive_map = XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP
237

thomwolf's avatar
thomwolf committed
238
    def __init__(self,
thomwolf's avatar
thomwolf committed
239
                 vocab_size_or_config_json_file=32000,
thomwolf's avatar
thomwolf committed
240
241
242
243
                 d_model=1024,
                 n_layer=24,
                 n_head=16,
                 d_inner=4096,
thomwolf's avatar
thomwolf committed
244
245
                 ff_activation="gelu",
                 untie_r=True,
thomwolf's avatar
thomwolf committed
246
                 attn_type="bi",
thomwolf's avatar
thomwolf committed
247
248

                 initializer_range=0.02,
thomwolf's avatar
thomwolf committed
249
250
251
252
253
254
255
                 layer_norm_eps=1e-12,

                 dropout=0.1,
                 mem_len=None,
                 reuse_len=None,
                 bi_data=False,
                 clamp_len=-1,
256
                 same_length=False,
thomwolf's avatar
thomwolf committed
257

thomwolf's avatar
thomwolf committed
258
259
                 finetuning_task=None,
                 num_labels=2,
thomwolf's avatar
thomwolf committed
260
261
262
                 summary_type='last',
                 summary_use_proj=True,
                 summary_activation='tanh',
263
                 summary_last_dropout=0.1,
thomwolf's avatar
thomwolf committed
264
265
                 start_n_top=5,
                 end_n_top=5,
thomwolf's avatar
thomwolf committed
266
                 **kwargs):
thomwolf's avatar
thomwolf committed
267
268
        """Constructs XLNetConfig.
        """
thomwolf's avatar
thomwolf committed
269
270
        super(XLNetConfig, self).__init__(**kwargs)

thomwolf's avatar
thomwolf committed
271
272
273
274
275
276
277
        if isinstance(vocab_size_or_config_json_file, str) or (sys.version_info[0] == 2
                        and isinstance(vocab_size_or_config_json_file, unicode)):
            with open(vocab_size_or_config_json_file, "r", encoding='utf-8') as reader:
                json_config = json.loads(reader.read())
            for key, value in json_config.items():
                self.__dict__[key] = value
        elif isinstance(vocab_size_or_config_json_file, int):
thomwolf's avatar
thomwolf committed
278
            self.n_token = vocab_size_or_config_json_file
thomwolf's avatar
thomwolf committed
279
280
281
            self.d_model = d_model
            self.n_layer = n_layer
            self.n_head = n_head
thomwolf's avatar
thomwolf committed
282
283
            assert d_model % n_head == 0
            self.d_head = d_model // n_head
thomwolf's avatar
thomwolf committed
284
285
286
            self.ff_activation = ff_activation
            self.d_inner = d_inner
            self.untie_r = untie_r
thomwolf's avatar
thomwolf committed
287
            self.attn_type = attn_type
thomwolf's avatar
thomwolf committed
288

thomwolf's avatar
thomwolf committed
289
290
            self.initializer_range = initializer_range
            self.layer_norm_eps = layer_norm_eps
thomwolf's avatar
thomwolf committed
291
292
293
294
295
296
297

            self.dropout = dropout
            self.mem_len = mem_len
            self.reuse_len = reuse_len
            self.bi_data = bi_data
            self.clamp_len = clamp_len
            self.same_length = same_length
thomwolf's avatar
thomwolf committed
298

299
            self.finetuning_task = finetuning_task
thomwolf's avatar
thomwolf committed
300
301
            self.num_labels = num_labels
            self.summary_type = summary_type
thomwolf's avatar
thomwolf committed
302
303
            self.summary_use_proj = summary_use_proj
            self.summary_activation = summary_activation
304
            self.summary_last_dropout = summary_last_dropout
thomwolf's avatar
thomwolf committed
305
306
            self.start_n_top = start_n_top
            self.end_n_top = end_n_top
thomwolf's avatar
thomwolf committed
307
308
        else:
            raise ValueError("First argument must be either a vocabulary size (int)"
VictorSanh's avatar
VictorSanh committed
309
                             " or the path to a pretrained model config file (str)")
thomwolf's avatar
thomwolf committed
310

311
312
313
314
    @property
    def max_position_embeddings(self):
        return -1

thomwolf's avatar
thomwolf committed
315
316
317
318
    @property
    def vocab_size(self):
        return self.n_token

thomwolf's avatar
thomwolf committed
319
320
321
322
    @vocab_size.setter
    def vocab_size(self, value):
        self.n_token = value

thomwolf's avatar
thomwolf committed
323
324
325
326
327
328
329
330
331
332
333
334
    @property
    def hidden_size(self):
        return self.d_model

    @property
    def num_attention_heads(self):
        return self.n_head

    @property
    def num_hidden_layers(self):
        return self.n_layer

thomwolf's avatar
thomwolf committed
335
336
337

try:
    from apex.normalization.fused_layer_norm import FusedLayerNorm as XLNetLayerNorm
雷打不动!'s avatar
雷打不动! committed
338
except (ImportError, AttributeError) as e:
thomwolf's avatar
thomwolf committed
339
    logger.info("Better speed can be achieved with apex installed from https://www.github.com/nvidia/apex .")
340
    from torch.nn import LayerNorm as XLNetLayerNorm
thomwolf's avatar
thomwolf committed
341

thomwolf's avatar
thomwolf committed
342
class XLNetRelativeAttention(nn.Module):
thomwolf's avatar
thomwolf committed
343
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
344
        super(XLNetRelativeAttention, self).__init__()
thomwolf's avatar
thomwolf committed
345
346
        self.output_attentions = config.output_attentions

thomwolf's avatar
thomwolf committed
347
        if config.d_model % config.n_head != 0:
thomwolf's avatar
thomwolf committed
348
349
            raise ValueError(
                "The hidden size (%d) is not a multiple of the number of attention "
thomwolf's avatar
thomwolf committed
350
                "heads (%d)" % (config.d_model, config.n_head))
thomwolf's avatar
thomwolf committed
351

thomwolf's avatar
thomwolf committed
352
        self.n_head = config.n_head
thomwolf's avatar
thomwolf committed
353
354
355
356
        self.d_head = config.d_head
        self.d_model = config.d_model
        self.scale = 1 / (config.d_head ** 0.5)

thomwolf's avatar
thomwolf committed
357
358
359
360
361
        self.q = nn.Parameter(torch.FloatTensor(config.d_model, self.n_head, self.d_head))
        self.k = nn.Parameter(torch.FloatTensor(config.d_model, self.n_head, self.d_head))
        self.v = nn.Parameter(torch.FloatTensor(config.d_model, self.n_head, self.d_head))
        self.o = nn.Parameter(torch.FloatTensor(config.d_model, self.n_head, self.d_head))
        self.r = nn.Parameter(torch.FloatTensor(config.d_model, self.n_head, self.d_head))
thomwolf's avatar
thomwolf committed
362

thomwolf's avatar
thomwolf committed
363
364
365
366
        self.r_r_bias = nn.Parameter(torch.FloatTensor(self.n_head, self.d_head))
        self.r_s_bias = nn.Parameter(torch.FloatTensor(self.n_head, self.d_head))
        self.r_w_bias = nn.Parameter(torch.FloatTensor(self.n_head, self.d_head))
        self.seg_embed = nn.Parameter(torch.FloatTensor(2, self.n_head, self.d_head))
thomwolf's avatar
thomwolf committed
367

thomwolf's avatar
thomwolf committed
368
        self.layer_norm = XLNetLayerNorm(config.d_model, eps=config.layer_norm_eps)
thomwolf's avatar
thomwolf committed
369
370
371
372
373
        self.dropout = nn.Dropout(config.dropout)

    def prune_heads(self, heads):
        raise NotImplementedError

thomwolf's avatar
thomwolf committed
374
375
376
377
378
379
380
381
    @staticmethod
    def rel_shift(x, klen=-1):
        """perform relative shift to form the relative attention score."""
        x_size = x.shape

        x = x.reshape(x_size[1], x_size[0], x_size[2], x_size[3])
        x = x[1:, ...]
        x = x.reshape(x_size[0], x_size[1] - 1, x_size[2], x_size[3])
382
        # x = x[:, 0:klen, :, :]
thomwolf's avatar
thomwolf committed
383
        x = torch.index_select(x, 1, torch.arange(klen, device=x.device, dtype=torch.long))
thomwolf's avatar
thomwolf committed
384
385
386

        return x

387
    def rel_attn_core(self, q_head, k_head_h, v_head_h, k_head_r, seg_mat=None, attn_mask=None, head_mask=None):
thomwolf's avatar
thomwolf committed
388
389
390
391
392
393
394
        """Core relative positional attention operations."""

        # content based attention score
        ac = torch.einsum('ibnd,jbnd->ijbn', q_head + self.r_w_bias, k_head_h)

        # position based attention score
        bd = torch.einsum('ibnd,jbnd->ijbn', q_head + self.r_r_bias, k_head_r)
thomwolf's avatar
thomwolf committed
395
        bd = self.rel_shift(bd, klen=ac.shape[1])
thomwolf's avatar
thomwolf committed
396
397
398
399
400
401
402
403
404
405
406
407

        # segment based attention score
        if seg_mat is None:
            ef = 0
        else:
            ef = torch.einsum('ibnd,snd->ibns', q_head + self.r_s_bias, self.seg_embed)
            ef = torch.einsum('ijbs,ibns->ijbn', seg_mat, ef)

        # merge attention scores and perform masking
        attn_score = (ac + bd + ef) * self.scale
        if attn_mask is not None:
            # attn_score = attn_score * (1 - attn_mask) - 1e30 * attn_mask
ziliwang's avatar
ziliwang committed
408
409
410
411
            if attn_mask.dtype == torch.float16:
                attn_score = attn_score - 65500 * attn_mask
            else:
                attn_score = attn_score - 1e30 * attn_mask
thomwolf's avatar
thomwolf committed
412
413
414
415
416

        # attention probability
        attn_prob = F.softmax(attn_score, dim=1)
        attn_prob = self.dropout(attn_prob)

417
418
419
420
        # Mask heads if we want to
        if head_mask is not None:
            attn_prob = attn_prob * head_mask

thomwolf's avatar
thomwolf committed
421
422
423
        # attention output
        attn_vec = torch.einsum('ijbn,jbnd->ibnd', attn_prob, v_head_h)

424
425
426
        if self.output_attentions:
            return attn_vec, attn_prob

thomwolf's avatar
thomwolf committed
427
428
429
430
431
432
433
434
435
436
        return attn_vec

    def post_attention(self, h, attn_vec, residual=True):
        """Post-attention processing."""
        # post-attention projection (back to `d_model`)
        attn_out = torch.einsum('ibnd,hnd->ibh', attn_vec, self.o)

        attn_out = self.dropout(attn_out)
        if residual:
            attn_out = attn_out + h
thomwolf's avatar
thomwolf committed
437
        output = self.layer_norm(attn_out)
thomwolf's avatar
thomwolf committed
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467

        return output

    def forward(self, h, g,
                      attn_mask_h, attn_mask_g,
                      r, seg_mat,
                      mems=None, target_mapping=None, head_mask=None):
        if g is not None:
            ###### Two-stream attention with relative positional encoding.
            # content based attention score
            if mems is not None and mems.dim() > 1:
                cat = torch.cat([mems, h], dim=0)
            else:
                cat = h

            # content-based key head
            k_head_h = torch.einsum('ibh,hnd->ibnd', cat, self.k)

            # content-based value head
            v_head_h = torch.einsum('ibh,hnd->ibnd', cat, self.v)

            # position-based key head
            k_head_r = torch.einsum('ibh,hnd->ibnd', r, self.r)

            ##### h-stream
            # content-stream query head
            q_head_h = torch.einsum('ibh,hnd->ibnd', h, self.q)

            # core attention ops
            attn_vec_h = self.rel_attn_core(
468
469
470
471
                q_head_h, k_head_h, v_head_h, k_head_r, seg_mat=seg_mat, attn_mask=attn_mask_h, head_mask=head_mask)

            if self.output_attentions:
                attn_vec_h, attn_prob_h = attn_vec_h
thomwolf's avatar
thomwolf committed
472
473
474
475
476
477
478
479
480
481
482
483

            # post processing
            output_h = self.post_attention(h, attn_vec_h)

            ##### g-stream
            # query-stream query head
            q_head_g = torch.einsum('ibh,hnd->ibnd', g, self.q)

            # core attention ops
            if target_mapping is not None:
                q_head_g = torch.einsum('mbnd,mlb->lbnd', q_head_g, target_mapping)
                attn_vec_g = self.rel_attn_core(
484
485
486
487
488
                    q_head_g, k_head_h, v_head_h, k_head_r, seg_mat=seg_mat, attn_mask=attn_mask_g, head_mask=head_mask)

                if self.output_attentions:
                    attn_vec_g, attn_prob_g = attn_vec_g

thomwolf's avatar
thomwolf committed
489
490
491
                attn_vec_g = torch.einsum('lbnd,mlb->mbnd', attn_vec_g, target_mapping)
            else:
                attn_vec_g = self.rel_attn_core(
492
493
494
495
                    q_head_g, k_head_h, v_head_h, k_head_r, seg_mat=seg_mat, attn_mask=attn_mask_g, head_mask=head_mask)

                if self.output_attentions:
                    attn_vec_g, attn_prob_g = attn_vec_g
thomwolf's avatar
thomwolf committed
496
497
498

            # post processing
            output_g = self.post_attention(g, attn_vec_g)
499
500
501
502

            if self.output_attentions:
                attn_prob = attn_prob_h, attn_prob_g

thomwolf's avatar
thomwolf committed
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
        else:
            ###### Multi-head attention with relative positional encoding
            if mems is not None and mems.dim() > 1:
                cat = torch.cat([mems, h], dim=0)
            else:
                cat = h

            # content heads
            q_head_h = torch.einsum('ibh,hnd->ibnd', h, self.q)
            k_head_h = torch.einsum('ibh,hnd->ibnd', cat, self.k)
            v_head_h = torch.einsum('ibh,hnd->ibnd', cat, self.v)

            # positional heads
            k_head_r = torch.einsum('ibh,hnd->ibnd', r, self.r)

            # core attention ops
            attn_vec = self.rel_attn_core(
520
521
522
523
                q_head_h, k_head_h, v_head_h, k_head_r, seg_mat=seg_mat, attn_mask=attn_mask_h, head_mask=head_mask)

            if self.output_attentions:
                attn_vec, attn_prob = attn_vec
thomwolf's avatar
thomwolf committed
524
525

            # post processing
thomwolf's avatar
thomwolf committed
526
527
            output_h = self.post_attention(h, attn_vec)
            output_g = None
thomwolf's avatar
thomwolf committed
528

529
        outputs = (output_h, output_g)
530
        if self.output_attentions:
531
            outputs = outputs + (attn_prob,)
thomwolf's avatar
thomwolf committed
532
        return outputs
thomwolf's avatar
thomwolf committed
533
534
535
536

class XLNetFeedForward(nn.Module):
    def __init__(self, config):
        super(XLNetFeedForward, self).__init__()
thomwolf's avatar
thomwolf committed
537
        self.layer_norm = XLNetLayerNorm(config.d_model, eps=config.layer_norm_eps)
thomwolf's avatar
thomwolf committed
538
539
540
        self.layer_1 = nn.Linear(config.d_model, config.d_inner)
        self.layer_2 = nn.Linear(config.d_inner, config.d_model)
        self.dropout = nn.Dropout(config.dropout)
541
542
        if isinstance(config.ff_activation, str) or \
                (sys.version_info[0] == 2 and isinstance(config.ff_activation, unicode)):
thomwolf's avatar
thomwolf committed
543
544
545
546
            self.activation_function = ACT2FN[config.ff_activation]
        else:
            self.activation_function = config.ff_activation

thomwolf's avatar
thomwolf committed
547
548
549
550
551
552
553
    def forward(self, inp):
        output = inp
        output = self.layer_1(output)
        output = self.activation_function(output)
        output = self.dropout(output)
        output = self.layer_2(output)
        output = self.dropout(output)
thomwolf's avatar
thomwolf committed
554
        output = self.layer_norm(output + inp)
thomwolf's avatar
thomwolf committed
555
        return output
thomwolf's avatar
thomwolf committed
556
557

class XLNetLayer(nn.Module):
thomwolf's avatar
thomwolf committed
558
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
559
        super(XLNetLayer, self).__init__()
thomwolf's avatar
thomwolf committed
560
        self.rel_attn = XLNetRelativeAttention(config)
thomwolf's avatar
thomwolf committed
561
562
563
564
565
        self.ff = XLNetFeedForward(config)
        self.dropout = nn.Dropout(config.dropout)

    def forward(self, output_h, output_g,
                attn_mask_h, attn_mask_g,
566
567
568
569
570
571
                r, seg_mat, mems=None, target_mapping=None, head_mask=None):
        outputs = self.rel_attn(output_h, output_g, attn_mask_h, attn_mask_g,
                                r, seg_mat, mems=mems, target_mapping=target_mapping,
                                head_mask=head_mask)
        output_h, output_g = outputs[:2]

thomwolf's avatar
thomwolf committed
572
        if output_g is not None:
thomwolf's avatar
thomwolf committed
573
574
575
            output_g = self.ff(output_g)
        output_h = self.ff(output_h)

576
        outputs = (output_h, output_g) + outputs[2:]  # Add again attentions if there are there
577
        return outputs
thomwolf's avatar
thomwolf committed
578

579
580

class XLNetPreTrainedModel(PreTrainedModel):
thomwolf's avatar
thomwolf committed
581
582
583
    """ An abstract class to handle weights initialization and
        a simple interface for dowloading and loading pretrained models.
    """
584
    config_class = XLNetConfig
585
    pretrained_model_archive_map = XLNET_PRETRAINED_MODEL_ARCHIVE_MAP
586
587
588
589
590
    load_tf_weights = load_tf_weights_in_xlnet
    base_model_prefix = "transformer"

    def __init__(self, *inputs, **kwargs):
        super(XLNetPreTrainedModel, self).__init__(*inputs, **kwargs)
thomwolf's avatar
thomwolf committed
591

thomwolf's avatar
thomwolf committed
592
    def init_weights(self, module):
thomwolf's avatar
thomwolf committed
593
594
595
596
597
598
        """ Initialize the weights.
        """
        if isinstance(module, (nn.Linear, nn.Embedding)):
            # Slightly different from the TF version which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
599
600
            if isinstance(module, nn.Linear) and module.bias is not None:
                module.bias.data.zero_()
thomwolf's avatar
thomwolf committed
601
602
603
        elif isinstance(module, XLNetLayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)
604
605
606
607
608
        elif isinstance(module, XLNetRelativeAttention):
            for param in [module.q, module.k, module.v, module.o, module.r,
                          module.r_r_bias, module.r_s_bias, module.r_w_bias,
                          module.seg_embed]:
                param.data.normal_(mean=0.0, std=self.config.initializer_range)
609
610
        elif isinstance(module, XLNetModel):
                module.mask_emb.data.normal_(mean=0.0, std=self.config.initializer_range)
thomwolf's avatar
thomwolf committed
611
612


thomwolf's avatar
thomwolf committed
613
614
615
616
617
618
XLNET_START_DOCSTRING = r"""    The XLNet model was proposed in
    `XLNet: Generalized Autoregressive Pretraining for Language Understanding`_
    by Zhilin Yang*, Zihang Dai*, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, Quoc V. Le.
    XLnet is an extension of the Transformer-XL model pre-trained using an autoregressive method
    to learn bidirectional contexts by maximizing the expected likelihood over all permutations
    of the input sequence factorization order.
619

thomwolf's avatar
thomwolf committed
620
    The specific attention pattern can be controlled at training and test time using the `perm_mask` input.
621

thomwolf's avatar
thomwolf committed
622
623
624
625
626
627
    Do to the difficulty of training a fully auto-regressive model over various factorization order,
    XLNet is pretrained using only a sub-set of the output tokens as target which are selected
    with the `target_mapping` input.

    To use XLNet for sequential decoding (i.e. not in fully bi-directional setting), use the `perm_mask` and
    `target_mapping` inputs to control the attention span and outputs (see examples in `examples/run_generation.py`)
628

thomwolf's avatar
thomwolf committed
629
630
    This model is a PyTorch `torch.nn.Module`_ sub-class. Use it as a regular PyTorch Module and
    refer to the PyTorch documentation for all matter related to general usage and behavior.
631

thomwolf's avatar
thomwolf committed
632
633
    .. _`XLNet: Generalized Autoregressive Pretraining for Language Understanding`:
        http://arxiv.org/abs/1906.08237
634

thomwolf's avatar
thomwolf committed
635
636
    .. _`torch.nn.Module`:
        https://pytorch.org/docs/stable/nn.html#module
637

thomwolf's avatar
thomwolf committed
638
639
    Parameters:
        config (:class:`~pytorch_transformers.XLNetConfig`): Model configuration class with all the parameters of the model.
640
641
            Initializing with a config file does not load the weights associated with the model, only the configuration.
            Check out the :meth:`~pytorch_transformers.PreTrainedModel.from_pretrained` method to load the model weights.
thomwolf's avatar
thomwolf committed
642
643
644
645
646
647
"""

XLNET_INPUTS_DOCSTRING = r"""
    Inputs:
        **input_ids**: ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            Indices of input sequence tokens in the vocabulary.
thomwolf's avatar
thomwolf committed
648
649
            XLNet is a model with relative position embeddings so you can either pad the inputs on
            the right or on the left.
thomwolf's avatar
thomwolf committed
650
651
652
653
654
655
656
            Indices can be obtained using :class:`pytorch_transformers.XLNetTokenizer`.
            See :func:`pytorch_transformers.PreTrainedTokenizer.encode` and
            :func:`pytorch_transformers.PreTrainedTokenizer.convert_tokens_to_ids` for details.
        **token_type_ids**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            A parallel sequence of tokens (can be used to indicate various portions of the inputs).
            The embeddings from these tokens will be summed with the respective token embeddings.
            Indices are selected in the vocabulary (unlike BERT which has a specific vocabulary for segment indices).
thomwolf's avatar
thomwolf committed
657
        **attention_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(batch_size, sequence_length)``:
thomwolf's avatar
thomwolf committed
658
659
660
            Mask to avoid performing attention on padding token indices.
            Mask values selected in ``[0, 1]``:
            ``1`` for tokens that are NOT MASKED, ``0`` for MASKED tokens.
thomwolf's avatar
thomwolf committed
661
        **input_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(batch_size, sequence_length)``:
thomwolf's avatar
thomwolf committed
662
663
664
665
666
667
668
669
            Mask to avoid performing attention on padding token indices.
            Negative of `attention_mask`, i.e. with 0 for real tokens and 1 for padding.
            Kept for compatibility with the original code base.
            You can only uses one of `input_mask` and `attention_mask`
            Mask values selected in ``[0, 1]``:
            ``1`` for tokens that are MASKED, ``0`` for tokens that are NOT MASKED.
        **mems**: (`optional`)
            list of ``torch.FloatTensor`` (one for each layer):
thomwolf's avatar
thomwolf committed
670
            that contains pre-computed hidden-states (key and values in the attention blocks) as output by the model
thomwolf's avatar
thomwolf committed
671
            (see `mems` output below). Can be used to speed up sequential decoding and attend to longer context.
thomwolf's avatar
thomwolf committed
672
673
674
            To activate mems you need to set up config.mem_len to a positive value which will be the max number of tokens in
            the memory output by the model. E.g. `model = XLNetModel.from_pretrained('xlnet-base-case, mem_len=1024)` will
            instantiate a model which can use up to 1024 tokens of memory (in addition to the input it self).
thomwolf's avatar
thomwolf committed
675
676
677
678
679
680
681
682
683
684
        **perm_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, sequence_length)``:
            Mask to indicate the attention pattern for each input token with values selected in ``[0, 1]``:
            If ``perm_mask[k, i, j] = 0``, i attend to j in batch k;
            if ``perm_mask[k, i, j] = 1``, i does not attend to j in batch k.
            If None, each token attends to all the others (full bidirectional attention).
            Only used during pretraining (to define factorization order) or for sequential decoding (generation).
        **target_mapping**: (`optional`) ``torch.FloatTensor`` of shape ``(batch_size, num_predict, sequence_length)``:
            Mask to indicate the output tokens to use.
            If ``target_mapping[k, i, j] = 1``, the i-th predict in batch k is on the j-th token.
            Only used during pretraining for partial prediction or for sequential decoding (generation).
thomwolf's avatar
thomwolf committed
685
        **head_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(num_heads,)`` or ``(num_layers, num_heads)``:
thomwolf's avatar
thomwolf committed
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
            Mask to nullify selected heads of the self-attention modules.
            Mask values selected in ``[0, 1]``:
            ``1`` indicates the head is **not masked**, ``0`` indicates the head is **masked**.
"""

@add_start_docstrings("The bare XLNet Model transformer outputing raw hidden-states without any specific head on top.",
                      XLNET_START_DOCSTRING, XLNET_INPUTS_DOCSTRING)
class XLNetModel(XLNetPreTrainedModel):
    r"""
    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
        **last_hidden_state**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, hidden_size)``
            Sequence of hidden-states at the last layer of the model.
        **mems**:
            list of ``torch.FloatTensor`` (one for each layer):
            that contains pre-computed hidden-states (key and values in the attention blocks) as computed by the model
thomwolf's avatar
thomwolf committed
701
702
            if config.mem_len > 0 else tuple of None. Can be used to speed up sequential decoding and attend to longer context.
            See details in the docstring of the `mems` input above.
thomwolf's avatar
thomwolf committed
703
704
705
706
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
thomwolf's avatar
thomwolf committed
707
708
709
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
thomwolf's avatar
thomwolf committed
710
711
712

    Examples::

wangfei's avatar
wangfei committed
713
714
715
716
717
        tokenizer = XLNetTokenizer.from_pretrained('xlnet-large-cased')
        model = XLNetModel.from_pretrained('xlnet-large-cased')
        input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0)  # Batch size 1
        outputs = model(input_ids)
        last_hidden_states = outputs[0]  # The last hidden-state is the first element of the output tuple
718

719
    """
thomwolf's avatar
thomwolf committed
720
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
721
        super(XLNetModel, self).__init__(config)
thomwolf's avatar
thomwolf committed
722
723
        self.output_attentions = config.output_attentions
        self.output_hidden_states = config.output_hidden_states
724

thomwolf's avatar
thomwolf committed
725
726
        self.mem_len = config.mem_len
        self.reuse_len = config.reuse_len
thomwolf's avatar
thomwolf committed
727
728
729
730
731
        self.d_model = config.d_model
        self.same_length = config.same_length
        self.attn_type = config.attn_type
        self.bi_data = config.bi_data
        self.clamp_len = config.clamp_len
thomwolf's avatar
thomwolf committed
732
        self.n_layer = config.n_layer
thomwolf's avatar
thomwolf committed
733

thomwolf's avatar
thomwolf committed
734
        self.word_embedding = nn.Embedding(config.n_token, config.d_model)
thomwolf's avatar
thomwolf committed
735
        self.mask_emb = nn.Parameter(torch.FloatTensor(1, 1, config.d_model))
736
        self.layer = nn.ModuleList([XLNetLayer(config) for _ in range(config.n_layer)])
thomwolf's avatar
thomwolf committed
737
        self.dropout = nn.Dropout(config.dropout)
thomwolf's avatar
thomwolf committed
738

739
740
        self.apply(self.init_weights)

thomwolf's avatar
thomwolf committed
741
742
    def _resize_token_embeddings(self, new_num_tokens):
        self.word_embedding = self._get_resized_embeddings(self.word_embedding, new_num_tokens)
thomwolf's avatar
thomwolf committed
743
        return self.word_embedding
thomwolf's avatar
thomwolf committed
744

thomwolf's avatar
thomwolf committed
745
    def _prune_heads(self, heads_to_prune):
thomwolf's avatar
thomwolf committed
746
        raise NotImplementedError
thomwolf's avatar
thomwolf committed
747

thomwolf's avatar
thomwolf committed
748
    def create_mask(self, qlen, mlen):
749
750
751
752
        """
        Creates causal attention mask. Float mask where 1.0 indicates masked, 0.0 indicates not-masked.

        Args:
753
754
            qlen: TODO Lysandre didn't fill
            mlen: TODO Lysandre didn't fill
755
756
757
758
759
760
761
762
763
764
765

        ::

                  same_length=False:      same_length=True:
                  <mlen > <  qlen >       <mlen > <  qlen >
               ^ [0 0 0 0 0 1 1 1 1]     [0 0 0 0 0 1 1 1 1]
                 [0 0 0 0 0 0 1 1 1]     [1 0 0 0 0 0 1 1 1]
            qlen [0 0 0 0 0 0 0 1 1]     [1 1 0 0 0 0 0 1 1]
                 [0 0 0 0 0 0 0 0 1]     [1 1 1 0 0 0 0 0 1]
               v [0 0 0 0 0 0 0 0 0]     [1 1 1 1 0 0 0 0 0]

thomwolf's avatar
thomwolf committed
766
767
768
769
770
771
772
773
774
775
        """
        attn_mask = torch.ones([qlen, qlen])
        mask_up = torch.triu(attn_mask, diagonal=1)
        attn_mask_pad = torch.zeros([qlen, mlen])
        ret = torch.cat([attn_mask_pad, mask_up], dim=1)
        if self.same_length:
            mask_lo = torch.tril(attn_mask, diagonal=-1)
            ret = torch.cat([ret[:, :qlen] + mask_lo, ret[:, qlen:]], dim=1)

        ret = ret.to(next(self.parameters()))
thomwolf's avatar
thomwolf committed
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
        return ret

    def cache_mem(self, curr_out, prev_mem):
        """cache hidden states into memory."""
        if self.mem_len is None or self.mem_len == 0:
            return None
        else:
            if self.reuse_len is not None and self.reuse_len > 0:
                curr_out = curr_out[:self.reuse_len]

            if prev_mem is None:
                new_mem = curr_out[-self.mem_len:]
            else:
                new_mem = torch.cat([prev_mem, curr_out], dim=0)[-self.mem_len:]

        return new_mem.detach()

thomwolf's avatar
thomwolf committed
793
794
795
796
797
798
799
800
801
802
803
804
    @staticmethod
    def positional_embedding(pos_seq, inv_freq, bsz=None):
        sinusoid_inp = torch.einsum('i,d->id', pos_seq, inv_freq)
        pos_emb = torch.cat([torch.sin(sinusoid_inp), torch.cos(sinusoid_inp)], dim=-1)
        pos_emb = pos_emb[:, None, :]

        if bsz is not None:
            pos_emb = pos_emb.expand(-1, bsz, -1)

        return pos_emb

    def relative_positional_encoding(self, qlen, klen, bsz=None):
thomwolf's avatar
thomwolf committed
805
        """create relative positional encoding."""
thomwolf's avatar
thomwolf committed
806
        freq_seq = torch.arange(0, self.d_model, 2.0, dtype=torch.float)
807
        inv_freq = 1 / torch.pow(10000, (freq_seq / self.d_model))
thomwolf's avatar
thomwolf committed
808
809
810
811
812
813
814
815
816
817
818

        if self.attn_type == 'bi':
            # beg, end = klen - 1, -qlen
            beg, end = klen, -qlen
        elif self.attn_type == 'uni':
            # beg, end = klen - 1, -1
            beg, end = klen, -1
        else:
            raise ValueError('Unknown `attn_type` {}.'.format(self.attn_type))

        if self.bi_data:
thomwolf's avatar
thomwolf committed
819
820
            fwd_pos_seq = torch.arange(beg, end, -1.0, dtype=torch.float)
            bwd_pos_seq = torch.arange(-beg, -end, 1.0, dtype=torch.float)
thomwolf's avatar
thomwolf committed
821
822
823
824
825
826

            if self.clamp_len > 0:
                fwd_pos_seq = fwd_pos_seq.clamp(-self.clamp_len, self.clamp_len)
                bwd_pos_seq = bwd_pos_seq.clamp(-self.clamp_len, self.clamp_len)

            if bsz is not None:
thomwolf's avatar
thomwolf committed
827
828
                fwd_pos_emb = self.positional_embedding(fwd_pos_seq, inv_freq, bsz//2)
                bwd_pos_emb = self.positional_embedding(bwd_pos_seq, inv_freq, bsz//2)
thomwolf's avatar
thomwolf committed
829
            else:
thomwolf's avatar
thomwolf committed
830
831
                fwd_pos_emb = self.positional_embedding(fwd_pos_seq, inv_freq)
                bwd_pos_emb = self.positional_embedding(bwd_pos_seq, inv_freq)
thomwolf's avatar
thomwolf committed
832
833
834

            pos_emb = torch.cat([fwd_pos_emb, bwd_pos_emb], dim=1)
        else:
thomwolf's avatar
thomwolf committed
835
            fwd_pos_seq = torch.arange(beg, end, -1.0)
thomwolf's avatar
thomwolf committed
836
837
            if self.clamp_len > 0:
                fwd_pos_seq = fwd_pos_seq.clamp(-self.clamp_len, self.clamp_len)
thomwolf's avatar
thomwolf committed
838
            pos_emb = self.positional_embedding(fwd_pos_seq, inv_freq, bsz)
thomwolf's avatar
thomwolf committed
839

thomwolf's avatar
thomwolf committed
840
        pos_emb = pos_emb.to(next(self.parameters()))
thomwolf's avatar
thomwolf committed
841
842
        return pos_emb

thomwolf's avatar
thomwolf committed
843
    def forward(self, input_ids, token_type_ids=None, input_mask=None, attention_mask=None,
844
                mems=None, perm_mask=None, target_mapping=None, head_mask=None):
845
846
847
        # the original code for XLNet uses shapes [len, bsz] with the batch dimension at the end
        # but we want a unified interface in the library with the batch size on the first dimension
        # so we move here the first dimension (batch) to the end
thomwolf's avatar
thomwolf committed
848
        input_ids = input_ids.transpose(0, 1).contiguous()
thomwolf's avatar
thomwolf committed
849
        token_type_ids = token_type_ids.transpose(0, 1).contiguous() if token_type_ids is not None else None
850
        input_mask = input_mask.transpose(0, 1).contiguous() if input_mask is not None else None
thomwolf's avatar
thomwolf committed
851
        attention_mask = attention_mask.transpose(0, 1).contiguous() if attention_mask is not None else None
852
853
854
        perm_mask = perm_mask.permute(1, 2, 0).contiguous() if perm_mask is not None else None
        target_mapping = target_mapping.permute(1, 2, 0).contiguous() if target_mapping is not None else None

thomwolf's avatar
thomwolf committed
855
        qlen, bsz = input_ids.shape[0], input_ids.shape[1]
thomwolf's avatar
thomwolf committed
856
        mlen = mems[0].shape[0] if mems is not None and mems[0] is not None else 0
thomwolf's avatar
thomwolf committed
857
        klen = mlen + qlen
thomwolf's avatar
thomwolf committed
858
859
860

        dtype_float = next(self.parameters()).dtype
        device = next(self.parameters()).device
thomwolf's avatar
thomwolf committed
861
862
863
864

        ##### Attention mask
        # causal attention mask
        if self.attn_type == 'uni':
thomwolf's avatar
thomwolf committed
865
            attn_mask = self.create_mask(qlen, mlen)
thomwolf's avatar
thomwolf committed
866
867
868
869
870
871
872
            attn_mask = attn_mask[:, :, None, None]
        elif self.attn_type == 'bi':
            attn_mask = None
        else:
            raise ValueError('Unsupported attention type: {}'.format(self.attn_type))

        # data mask: input mask & perm mask
873
874
875
876
877
878
879
880
881
        assert input_mask is None or attention_mask is None, "You can only use one of input_mask (uses 1 for padding) "
        "or attention_mask (uses 0 for padding, added for compatbility with BERT). Please choose one."
        if input_mask is None and attention_mask is not None:
            input_mask = 1.0 - attention_mask
        if input_mask is not None and perm_mask is not None:
            data_mask = input_mask[None] + perm_mask
        elif input_mask is not None and perm_mask is None:
            data_mask = input_mask[None]
        elif input_mask is None and perm_mask is not None:
thomwolf's avatar
thomwolf committed
882
883
884
885
886
887
            data_mask = perm_mask
        else:
            data_mask = None

        if data_mask is not None:
            # all mems can be attended to
thomwolf's avatar
thomwolf committed
888
            mems_mask = torch.zeros([data_mask.shape[0], mlen, bsz]).to(data_mask)
thomwolf's avatar
thomwolf committed
889
890
891
892
893
894
895
            data_mask = torch.cat([mems_mask, data_mask], dim=1)
            if attn_mask is None:
                attn_mask = data_mask[:, :, :, None]
            else:
                attn_mask += data_mask[:, :, :, None]

        if attn_mask is not None:
thomwolf's avatar
thomwolf committed
896
            attn_mask = (attn_mask > 0).to(dtype_float)
thomwolf's avatar
thomwolf committed
897
898

        if attn_mask is not None:
thomwolf's avatar
thomwolf committed
899
900
901
            non_tgt_mask = -torch.eye(qlen).to(attn_mask)
            non_tgt_mask = torch.cat([torch.zeros([qlen, mlen]).to(attn_mask), non_tgt_mask], dim=-1)
            non_tgt_mask = ((attn_mask + non_tgt_mask[:, :, None, None]) > 0).to(attn_mask)
thomwolf's avatar
thomwolf committed
902
903
904
        else:
            non_tgt_mask = None

thomwolf's avatar
thomwolf committed
905
        ##### Word embeddings and prepare h & g hidden states
thomwolf's avatar
thomwolf committed
906
        word_emb_k = self.word_embedding(input_ids)
thomwolf's avatar
thomwolf committed
907
        output_h = self.dropout(word_emb_k)
908
909
910
911
912
        if target_mapping is not None:
            word_emb_q = self.mask_emb.expand(target_mapping.shape[0], bsz, -1)
        # else:  # We removed the inp_q input which was same as target mapping
        #     inp_q_ext = inp_q[:, :, None]
        #     word_emb_q = inp_q_ext * self.mask_emb + (1 - inp_q_ext) * word_emb_k
thomwolf's avatar
thomwolf committed
913
914
915
916
917
            output_g = self.dropout(word_emb_q)
        else:
            output_g = None

        ##### Segment embedding
thomwolf's avatar
thomwolf committed
918
919
        if token_type_ids is not None:
            # Convert `token_type_ids` to one-hot `seg_mat`
thomwolf's avatar
thomwolf committed
920
            mem_pad = torch.zeros([mlen, bsz], dtype=torch.long, device=device)
thomwolf's avatar
thomwolf committed
921
            cat_ids = torch.cat([mem_pad, token_type_ids], dim=0)
thomwolf's avatar
thomwolf committed
922
923

            # `1` indicates not in the same segment [qlen x klen x bsz]
thomwolf's avatar
thomwolf committed
924
            seg_mat = (token_type_ids[:, None] != cat_ids[None, :]).long()
thomwolf's avatar
thomwolf committed
925
            seg_mat = F.one_hot(seg_mat, num_classes=2).to(dtype_float)
thomwolf's avatar
thomwolf committed
926
927
928
929
        else:
            seg_mat = None

        ##### Positional encoding
thomwolf's avatar
thomwolf committed
930
        pos_emb = self.relative_positional_encoding(qlen, klen, bsz=bsz)
thomwolf's avatar
thomwolf committed
931
932
        pos_emb = self.dropout(pos_emb)

thomwolf's avatar
thomwolf committed
933
        # Prepare head mask if needed
thomwolf's avatar
thomwolf committed
934
935
        # 1.0 in head_mask indicate we keep the head
        # attention_probs has shape bsz x n_heads x N x N
thomwolf's avatar
thomwolf committed
936
937
        # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] (a head_mask for each layer)
        # and head_mask is converted to shape [num_hidden_layers x qlen x klen x bsz x n_head]
thomwolf's avatar
thomwolf committed
938
939
        if head_mask is not None:
            if head_mask.dim() == 1:
thomwolf's avatar
thomwolf committed
940
941
                head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(0).unsqueeze(0)
                head_mask = head_mask.expand(self.n_layer, -1, -1, -1, -1)
thomwolf's avatar
thomwolf committed
942
            elif head_mask.dim() == 2:
thomwolf's avatar
thomwolf committed
943
                head_mask = head_mask.unsqueeze(1).unsqueeze(1).unsqueeze(1)
thomwolf's avatar
thomwolf committed
944
945
            head_mask = head_mask.to(dtype=next(self.parameters()).dtype) # switch to fload if need + fp16 compatibility
        else:
thomwolf's avatar
thomwolf committed
946
            head_mask = [None] * self.n_layer
thomwolf's avatar
thomwolf committed
947

948
        new_mems = ()
thomwolf's avatar
thomwolf committed
949
950
951
        if mems is None:
            mems = [None] * len(self.layer)

952
        attentions = []
953
        hidden_states = []
thomwolf's avatar
thomwolf committed
954
955
        for i, layer_module in enumerate(self.layer):
            # cache new mems
956
            new_mems = new_mems + (self.cache_mem(output_h, mems[i]),)
957
958
959
960
961
            if self.output_hidden_states:
                hidden_states.append((output_h, output_g) if output_g is not None else output_h)

            outputs = layer_module(output_h, output_g, attn_mask_h=non_tgt_mask, attn_mask_g=attn_mask,
                                   r=pos_emb, seg_mat=seg_mat, mems=mems[i], target_mapping=target_mapping,
thomwolf's avatar
thomwolf committed
962
                                   head_mask=head_mask[i])
963
964
            output_h, output_g = outputs[:2]
            if self.output_attentions:
thomwolf's avatar
thomwolf committed
965
                attentions.append(outputs[2])
966
967
968

        # Add last hidden state
        if self.output_hidden_states:
thomwolf's avatar
thomwolf committed
969
            hidden_states.append((output_h, output_g) if output_g is not None else output_h)
thomwolf's avatar
thomwolf committed
970
971
972

        output = self.dropout(output_g if output_g is not None else output_h)

973
        # Prepare outputs, we transpose back here to shape [bsz, len, hidden_dim] (cf. beginning of forward() method)
974
        outputs = (output.permute(1, 0, 2).contiguous(), new_mems)
975
976
        if self.output_hidden_states:
            if output_g is not None:
977
                hidden_states = tuple(h.permute(1, 0, 2).contiguous() for hs in hidden_states for h in hs)
978
            else:
979
                hidden_states = tuple(hs.permute(1, 0, 2).contiguous() for hs in hidden_states)
980
            outputs = outputs + (hidden_states,)
981
        if self.output_attentions:
982
            attentions = tuple(t.permute(2, 3, 0, 1).contiguous() for t in attentions)
983
            outputs = outputs + (attentions,)
984

985
        return outputs  # outputs, new_mems, (hidden_states), (attentions)
thomwolf's avatar
thomwolf committed
986
987


thomwolf's avatar
thomwolf committed
988
989
990
@add_start_docstrings("""XLNet Model with a language modeling head on top
    (linear layer with weights tied to the input embeddings). """,
    XLNET_START_DOCSTRING, XLNET_INPUTS_DOCSTRING)
thomwolf's avatar
thomwolf committed
991
class XLNetLMHeadModel(XLNetPreTrainedModel):
thomwolf's avatar
thomwolf committed
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
    r"""
        **labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            Labels for language modeling.
            Note that the labels **are shifted** inside the model, i.e. you can set ``lm_labels = input_ids``
            Indices are selected in ``[-1, 0, ..., config.vocab_size]``
            All labels set to ``-1`` are ignored (masked), the loss is only
            computed for labels in ``[0, ..., config.vocab_size]``

    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
        **loss**: (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
            Language modeling loss.
        **prediction_scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, config.vocab_size)``
            Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
        **mems**:
            list of ``torch.FloatTensor`` (one for each layer):
            that contains pre-computed hidden-states (key and values in the attention blocks) as computed by the model
thomwolf's avatar
thomwolf committed
1008
1009
            if config.mem_len > 0 else tuple of None. Can be used to speed up sequential decoding and attend to longer context.
            See details in the docstring of the `mems` input above.
thomwolf's avatar
thomwolf committed
1010
1011
1012
1013
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
thomwolf's avatar
thomwolf committed
1014
1015
1016
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
thomwolf's avatar
thomwolf committed
1017
1018
1019

    Examples::

wangfei's avatar
wangfei committed
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
        tokenizer = XLNetTokenizer.from_pretrained('xlnet-large-cased')
        model = XLNetLMHeadModel.from_pretrained('xlnet-large-cased')
        # We show how to setup inputs to predict a next token using a bi-directional context.
        input_ids = torch.tensor(tokenizer.encode("Hello, my dog is very <mask>")).unsqueeze(0)  # We will predict the masked token
        perm_mask = torch.zeros((1, input_ids.shape[1], input_ids.shape[1]), dtype=torch.float)
        perm_mask[:, :, -1] = 1.0  # Previous tokens don't see last token
        target_mapping = torch.zeros((1, 1, input_ids.shape[1]), dtype=torch.float)  # Shape [1, 1, seq_length] => let's predict one token
        target_mapping[0, 0, -1] = 1.0  # Our first (and only) prediction will be the last token of the sequence (the masked token)
        outputs = model(input_ids, perm_mask=perm_mask, target_mapping=target_mapping)
        next_token_logits = outputs[0]  # Output has shape [target_mapping.size(0), target_mapping.size(1), config.vocab_size]
1030

thomwolf's avatar
thomwolf committed
1031
    """
thomwolf's avatar
thomwolf committed
1032
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
1033
        super(XLNetLMHeadModel, self).__init__(config)
thomwolf's avatar
thomwolf committed
1034
1035
        self.attn_type = config.attn_type
        self.same_length = config.same_length
thomwolf's avatar
thomwolf committed
1036

thomwolf's avatar
thomwolf committed
1037
        self.transformer = XLNetModel(config)
thomwolf's avatar
thomwolf committed
1038
        self.lm_loss = nn.Linear(config.d_model, config.n_token, bias=True)
thomwolf's avatar
thomwolf committed
1039

thomwolf's avatar
thomwolf committed
1040
        self.apply(self.init_weights)
thomwolf's avatar
thomwolf committed
1041
        self.tie_weights()
thomwolf's avatar
thomwolf committed
1042

thomwolf's avatar
thomwolf committed
1043
1044
    def tie_weights(self):
        """ Make sure we are sharing the embeddings
thomwolf's avatar
thomwolf committed
1045
        """
thomwolf's avatar
thomwolf committed
1046
        self._tie_or_clone_weights(self.lm_loss, self.transformer.word_embedding)
thomwolf's avatar
thomwolf committed
1047

thomwolf's avatar
thomwolf committed
1048
    def forward(self, input_ids, token_type_ids=None, input_mask=None, attention_mask=None,
1049
                mems=None, perm_mask=None, target_mapping=None,
1050
                labels=None, head_mask=None):
thomwolf's avatar
thomwolf committed
1051
1052
1053
1054
        transformer_outputs = self.transformer(input_ids, token_type_ids=token_type_ids,
                                               input_mask=input_mask, attention_mask=attention_mask,
                                               mems=mems, perm_mask=perm_mask, target_mapping=target_mapping,
                                               head_mask=head_mask)
1055
1056

        logits = self.lm_loss(transformer_outputs[0])
1057

1058
        outputs = (logits,) + transformer_outputs[1:]  # Keep mems, hidden states, attentions if there are in it
1059

1060
        if labels is not None:
1061
1062
1063
            # Flatten the tokens
            loss_fct = CrossEntropyLoss(ignore_index=-1)
            loss = loss_fct(logits.view(-1, logits.size(-1)),
1064
                            labels.view(-1))
1065
            outputs = (loss,) + outputs
1066

thomwolf's avatar
thomwolf committed
1067
        return outputs  # return (loss), logits, mems, (hidden states), (attentions)
1068
1069


thomwolf's avatar
thomwolf committed
1070
1071
1072
@add_start_docstrings("""XLNet Model with a sequence classification/regression head on top (a linear layer on top of
    the pooled output) e.g. for GLUE tasks. """,
    XLNET_START_DOCSTRING, XLNET_INPUTS_DOCSTRING)
1073
class XLNetForSequenceClassification(XLNetPreTrainedModel):
thomwolf's avatar
thomwolf committed
1074
1075
1076
    r"""
        **labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``:
            Labels for computing the sequence classification/regression loss.
LysandreJik's avatar
LysandreJik committed
1077
            Indices should be in ``[0, ..., config.num_labels - 1]``.
thomwolf's avatar
thomwolf committed
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
            If ``config.num_labels == 1`` a regression loss is computed (Mean-Square loss),
            If ``config.num_labels > 1`` a classification loss is computed (Cross-Entropy).

    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
        **loss**: (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
            Classification (or regression if config.num_labels==1) loss.
        **logits**: ``torch.FloatTensor`` of shape ``(batch_size, config.num_labels)``
            Classification (or regression if config.num_labels==1) scores (before SoftMax).
        **mems**:
            list of ``torch.FloatTensor`` (one for each layer):
            that contains pre-computed hidden-states (key and values in the attention blocks) as computed by the model
thomwolf's avatar
thomwolf committed
1089
1090
            if config.mem_len > 0 else tuple of None. Can be used to speed up sequential decoding and attend to longer context.
            See details in the docstring of the `mems` input above.
thomwolf's avatar
thomwolf committed
1091
1092
1093
1094
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
thomwolf's avatar
thomwolf committed
1095
1096
1097
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
thomwolf's avatar
thomwolf committed
1098
1099
1100

    Examples::

wangfei's avatar
wangfei committed
1101
1102
1103
1104
1105
1106
        tokenizer = XLNetTokenizer.from_pretrained('xlnet-large-cased')
        model = XLNetForSequenceClassification.from_pretrained('xlnet-large-cased')
        input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0)  # Batch size 1
        labels = torch.tensor([1]).unsqueeze(0)  # Batch size 1
        outputs = model(input_ids, labels=labels)
        loss, logits = outputs[:2]
1107
1108

    """
thomwolf's avatar
thomwolf committed
1109
    def __init__(self, config):
1110
        super(XLNetForSequenceClassification, self).__init__(config)
thomwolf's avatar
thomwolf committed
1111
        self.num_labels = config.num_labels
1112

thomwolf's avatar
thomwolf committed
1113
        self.transformer = XLNetModel(config)
thomwolf's avatar
thomwolf committed
1114
        self.sequence_summary = SequenceSummary(config)
thomwolf's avatar
thomwolf committed
1115
        self.logits_proj = nn.Linear(config.d_model, config.num_labels)
1116

thomwolf's avatar
thomwolf committed
1117
        self.apply(self.init_weights)
1118

thomwolf's avatar
thomwolf committed
1119
    def forward(self, input_ids, token_type_ids=None, input_mask=None, attention_mask=None,
1120
                mems=None, perm_mask=None, target_mapping=None,
1121
                labels=None, head_mask=None):
thomwolf's avatar
thomwolf committed
1122
1123
1124
1125
        transformer_outputs = self.transformer(input_ids, token_type_ids=token_type_ids,
                                               input_mask=input_mask, attention_mask=attention_mask,
                                               mems=mems, perm_mask=perm_mask, target_mapping=target_mapping,
                                               head_mask=head_mask)
1126
        output = transformer_outputs[0]
thomwolf's avatar
thomwolf committed
1127

1128
        output = self.sequence_summary(output)
1129
        logits = self.logits_proj(output)
thomwolf's avatar
thomwolf committed
1130

1131
        outputs = (logits,) + transformer_outputs[1:]  # Keep mems, hidden states, attentions if there are in it
1132

1133
1134
1135
        if labels is not None:
            if self.num_labels == 1:
                #  We are doing regression
1136
                loss_fct = MSELoss()
1137
                loss = loss_fct(logits.view(-1), labels.view(-1))
1138
            else:
1139
1140
                loss_fct = CrossEntropyLoss()
                loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
1141
            outputs = (loss,) + outputs
1142

thomwolf's avatar
thomwolf committed
1143
        return outputs  # return (loss), logits, mems, (hidden states), (attentions)
thomwolf's avatar
thomwolf committed
1144

thomwolf's avatar
thomwolf committed
1145

thomwolf's avatar
thomwolf committed
1146
1147
1148
@add_start_docstrings("""XLNet Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of
    the hidden-states output to compute `span start logits` and `span end logits`). """,
    XLNET_START_DOCSTRING, XLNET_INPUTS_DOCSTRING)
thomwolf's avatar
thomwolf committed
1149
class XLNetForQuestionAnswering(XLNetPreTrainedModel):
thomwolf's avatar
thomwolf committed
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
    r"""
        **start_positions**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``:
            Labels for position (index) of the start of the labelled span for computing the token classification loss.
            Positions are clamped to the length of the sequence (`sequence_length`).
            Position outside of the sequence are not taken into account for computing the loss.
        **end_positions**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``:
            Labels for position (index) of the end of the labelled span for computing the token classification loss.
            Positions are clamped to the length of the sequence (`sequence_length`).
            Position outside of the sequence are not taken into account for computing the loss.
        **is_impossible**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``:
            Labels whether a question has an answer or no answer (SQuAD 2.0)
        **cls_index**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``:
            Labels for position (index) of the classification token to use as input for computing plausibility of the answer.
1163
1164
1165
        **p_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(batch_size, sequence_length)``:
            Optional mask of tokens which can't be in answers (e.g. [CLS], [PAD], ...).
            1.0 means token should be masked. 0.0 mean token is not masked.
thomwolf's avatar
thomwolf committed
1166
1167

    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
1168
1169
        **loss**: (`optional`, returned if both ``start_positions`` and ``end_positions`` are provided) ``torch.FloatTensor`` of shape ``(1,)``:
            Classification loss as the sum of start token, end token (and is_impossible if provided) classification losses.
thomwolf's avatar
thomwolf committed
1170
        **start_top_log_probs**: (`optional`, returned if ``start_positions`` or ``end_positions`` is not provided)
1171
1172
            ``torch.FloatTensor`` of shape ``(batch_size, config.start_n_top)``
            Log probabilities for the top config.start_n_top start token possibilities (beam-search).
thomwolf's avatar
thomwolf committed
1173
        **start_top_index**: (`optional`, returned if ``start_positions`` or ``end_positions`` is not provided)
1174
1175
            ``torch.LongTensor`` of shape ``(batch_size, config.start_n_top)``
            Indices for the top config.start_n_top start token possibilities (beam-search).
thomwolf's avatar
thomwolf committed
1176
        **end_top_log_probs**: (`optional`, returned if ``start_positions`` or ``end_positions`` is not provided)
1177
1178
            ``torch.FloatTensor`` of shape ``(batch_size, config.start_n_top * config.end_n_top)``
            Log probabilities for the top ``config.start_n_top * config.end_n_top`` end token possibilities (beam-search).
thomwolf's avatar
thomwolf committed
1179
        **end_top_index**: (`optional`, returned if ``start_positions`` or ``end_positions`` is not provided)
1180
1181
            ``torch.LongTensor`` of shape ``(batch_size, config.start_n_top * config.end_n_top)``
            Indices for the top ``config.start_n_top * config.end_n_top`` end token possibilities (beam-search).
thomwolf's avatar
thomwolf committed
1182
        **cls_logits**: (`optional`, returned if ``start_positions`` or ``end_positions`` is not provided)
1183
1184
            ``torch.FloatTensor`` of shape ``(batch_size,)``
            Log probabilities for the ``is_impossible`` label of the answers.
thomwolf's avatar
thomwolf committed
1185
1186
1187
        **mems**:
            list of ``torch.FloatTensor`` (one for each layer):
            that contains pre-computed hidden-states (key and values in the attention blocks) as computed by the model
thomwolf's avatar
thomwolf committed
1188
1189
            if config.mem_len > 0 else tuple of None. Can be used to speed up sequential decoding and attend to longer context.
            See details in the docstring of the `mems` input above.
thomwolf's avatar
thomwolf committed
1190
1191
1192
1193
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
thomwolf's avatar
thomwolf committed
1194
1195
1196
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
thomwolf's avatar
thomwolf committed
1197
1198
1199

    Examples::

wangfei's avatar
wangfei committed
1200
1201
1202
1203
1204
1205
1206
        tokenizer = XLMTokenizer.from_pretrained('xlm-mlm-en-2048')
        model = XLMForQuestionAnswering.from_pretrained('xlnet-large-cased')
        input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0)  # Batch size 1
        start_positions = torch.tensor([1])
        end_positions = torch.tensor([3])
        outputs = model(input_ids, start_positions=start_positions, end_positions=end_positions)
        loss, start_scores, end_scores = outputs[:2]
1207

thomwolf's avatar
thomwolf committed
1208
    """
thomwolf's avatar
thomwolf committed
1209
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
1210
        super(XLNetForQuestionAnswering, self).__init__(config)
thomwolf's avatar
thomwolf committed
1211
1212
        self.start_n_top = config.start_n_top
        self.end_n_top = config.end_n_top
1213

thomwolf's avatar
thomwolf committed
1214
        self.transformer = XLNetModel(config)
thomwolf's avatar
thomwolf committed
1215
1216
1217
        self.start_logits = PoolerStartLogits(config)
        self.end_logits = PoolerEndLogits(config)
        self.answer_class = PoolerAnswerClass(config)
thomwolf's avatar
thomwolf committed
1218

thomwolf's avatar
thomwolf committed
1219
1220
        self.apply(self.init_weights)

thomwolf's avatar
thomwolf committed
1221
    def forward(self, input_ids, token_type_ids=None, input_mask=None, attention_mask=None,
1222
                mems=None, perm_mask=None, target_mapping=None,
thomwolf's avatar
thomwolf committed
1223
1224
                start_positions=None, end_positions=None, cls_index=None, is_impossible=None, p_mask=None,
                head_mask=None):
thomwolf's avatar
thomwolf committed
1225
1226
1227
1228
        transformer_outputs = self.transformer(input_ids, token_type_ids=token_type_ids,
                                               input_mask=input_mask, attention_mask=attention_mask,
                                               mems=mems, perm_mask=perm_mask, target_mapping=target_mapping,
                                               head_mask=head_mask)
thomwolf's avatar
thomwolf committed
1229
        hidden_states = transformer_outputs[0]
thomwolf's avatar
thomwolf committed
1230
        start_logits = self.start_logits(hidden_states, p_mask=p_mask)
thomwolf's avatar
thomwolf committed
1231

thomwolf's avatar
thomwolf committed
1232
        outputs = transformer_outputs[1:]  # Keep mems, hidden states, attentions if there are in it
1233

thomwolf's avatar
thomwolf committed
1234
1235
1236
1237
1238
        if start_positions is not None and end_positions is not None:
            # If we are on multi-GPU, let's remove the dimension added by batch splitting
            for x in (start_positions, end_positions, cls_index, is_impossible):
                if x is not None and x.dim() > 1:
                    x.squeeze_(-1)
thomwolf's avatar
thomwolf committed
1239

thomwolf's avatar
thomwolf committed
1240
1241
            # during training, compute the end logits based on the ground truth of the start position
            end_logits = self.end_logits(hidden_states, start_positions=start_positions, p_mask=p_mask)
1242

thomwolf's avatar
thomwolf committed
1243
            loss_fct = CrossEntropyLoss()
thomwolf's avatar
thomwolf committed
1244
1245
1246
            start_loss = loss_fct(start_logits, start_positions)
            end_loss = loss_fct(end_logits, end_positions)
            total_loss = (start_loss + end_loss) / 2
1247

thomwolf's avatar
thomwolf committed
1248
1249
1250
1251
1252
1253
            if cls_index is not None and is_impossible is not None:
                # Predict answerability from the representation of CLS and START
                cls_logits = self.answer_class(hidden_states, start_positions=start_positions, cls_index=cls_index)
                loss_fct_cls = nn.BCEWithLogitsLoss()
                cls_loss = loss_fct_cls(cls_logits, is_impossible)

1254
                # note(zhiliny): by default multiply the loss by 0.5 so that the scale is comparable to start_loss and end_loss
thomwolf's avatar
thomwolf committed
1255
                total_loss += cls_loss * 0.5
1256
1257

            outputs = (total_loss,) + outputs
thomwolf's avatar
thomwolf committed
1258
1259
1260
1261
1262
1263
1264

        else:
            # during inference, compute the end logits based on beam search
            bsz, slen, hsz = hidden_states.size()
            start_log_probs = F.softmax(start_logits, dim=-1) # shape (bsz, slen)

            start_top_log_probs, start_top_index = torch.topk(start_log_probs, self.start_n_top, dim=-1) # shape (bsz, start_n_top)
1265
1266
            start_top_index_exp = start_top_index.unsqueeze(-1).expand(-1, -1, hsz) # shape (bsz, start_n_top, hsz)
            start_states = torch.gather(hidden_states, -2, start_top_index_exp) # shape (bsz, start_n_top, hsz)
thomwolf's avatar
thomwolf committed
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
            start_states = start_states.unsqueeze(1).expand(-1, slen, -1, -1) # shape (bsz, slen, start_n_top, hsz)

            hidden_states_expanded = hidden_states.unsqueeze(2).expand_as(start_states) # shape (bsz, slen, start_n_top, hsz)
            p_mask = p_mask.unsqueeze(-1) if p_mask is not None else None
            end_logits = self.end_logits(hidden_states_expanded, start_states=start_states, p_mask=p_mask)
            end_log_probs = F.softmax(end_logits, dim=1) # shape (bsz, slen, start_n_top)

            end_top_log_probs, end_top_index = torch.topk(end_log_probs, self.end_n_top, dim=1) # shape (bsz, end_n_top, start_n_top)
            end_top_log_probs = end_top_log_probs.view(-1, self.start_n_top * self.end_n_top)
            end_top_index = end_top_index.view(-1, self.start_n_top * self.end_n_top)

1278
1279
            start_states = torch.einsum("blh,bl->bh", hidden_states, start_log_probs)  # get the representation of START as weighted sum of hidden states
            cls_logits = self.answer_class(hidden_states, start_states=start_states, cls_index=cls_index)  # Shape (batch size,): one single `cls_logits` for each sample
thomwolf's avatar
thomwolf committed
1280
1281
1282

            outputs = (start_top_log_probs, start_top_index, end_top_log_probs, end_top_index, cls_logits) + outputs

1283
1284
        # return start_top_log_probs, start_top_index, end_top_log_probs, end_top_index, cls_logits
        # or (if labels are provided) (total_loss,)
thomwolf's avatar
thomwolf committed
1285
        return outputs