modeling_electra.py 61.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# coding=utf-8
# Copyright 2019 The Google AI Language Team Authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch ELECTRA model. """

import math
Lysandre Debut's avatar
Lysandre Debut committed
18
import os
19
20
from dataclasses import dataclass
from typing import Optional, Tuple
Lysandre Debut's avatar
Lysandre Debut committed
21
22

import torch
23
import torch.utils.checkpoint
24
from packaging import version
25
from torch import nn
26
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
Lysandre Debut's avatar
Lysandre Debut committed
27

Sylvain Gugger's avatar
Sylvain Gugger committed
28
29
from ...activations import ACT2FN, get_activation
from ...file_utils import (
30
31
32
    ModelOutput,
    add_code_sample_docstrings,
    add_start_docstrings,
33
    add_start_docstrings_to_model_forward,
34
35
    replace_return_docstrings,
)
Sylvain Gugger's avatar
Sylvain Gugger committed
36
from ...modeling_outputs import (
37
    BaseModelOutputWithCrossAttentions,
38
    BaseModelOutputWithPastAndCrossAttentions,
39
40
41
42
43
44
    MaskedLMOutput,
    MultipleChoiceModelOutput,
    QuestionAnsweringModelOutput,
    SequenceClassifierOutput,
    TokenClassifierOutput,
)
Sylvain Gugger's avatar
Sylvain Gugger committed
45
from ...modeling_utils import (
46
47
48
49
50
51
    PreTrainedModel,
    SequenceSummary,
    apply_chunking_to_forward,
    find_pruneable_heads_and_indices,
    prune_linear_layer,
)
Sylvain Gugger's avatar
Sylvain Gugger committed
52
53
from ...utils import logging
from .configuration_electra import ElectraConfig
Lysandre Debut's avatar
Lysandre Debut committed
54
55


Lysandre Debut's avatar
Lysandre Debut committed
56
logger = logging.get_logger(__name__)
Lysandre Debut's avatar
Lysandre Debut committed
57

58
_CHECKPOINT_FOR_DOC = "google/electra-small-discriminator"
59
_CONFIG_FOR_DOC = "ElectraConfig"
60
_TOKENIZER_FOR_DOC = "ElectraTokenizer"
Lysandre Debut's avatar
Lysandre Debut committed
61

62
63
64
65
66
67
68
69
70
ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST = [
    "google/electra-small-generator",
    "google/electra-base-generator",
    "google/electra-large-generator",
    "google/electra-small-discriminator",
    "google/electra-base-discriminator",
    "google/electra-large-discriminator",
    # See all ELECTRA models at https://huggingface.co/models?filter=electra
]
Lysandre Debut's avatar
Lysandre Debut committed
71
72
73


def load_tf_weights_in_electra(model, config, tf_checkpoint_path, discriminator_or_generator="discriminator"):
Lysandre's avatar
Lysandre committed
74
    """Load tf checkpoints in a pytorch model."""
Lysandre Debut's avatar
Lysandre Debut committed
75
76
    try:
        import re
77

Lysandre Debut's avatar
Lysandre Debut committed
78
79
80
81
82
83
84
85
86
        import numpy as np
        import tensorflow as tf
    except ImportError:
        logger.error(
            "Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see "
            "https://www.tensorflow.org/install/ for installation instructions."
        )
        raise
    tf_path = os.path.abspath(tf_checkpoint_path)
87
    logger.info(f"Converting TensorFlow checkpoint from {tf_path}")
Lysandre Debut's avatar
Lysandre Debut committed
88
89
90
91
92
    # Load weights from TF model
    init_vars = tf.train.list_variables(tf_path)
    names = []
    arrays = []
    for name, shape in init_vars:
93
        logger.info(f"Loading TF weight {name} with shape {shape}")
Lysandre Debut's avatar
Lysandre Debut committed
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
        array = tf.train.load_variable(tf_path, name)
        names.append(name)
        arrays.append(array)
    for name, array in zip(names, arrays):
        original_name: str = name

        try:
            if isinstance(model, ElectraForMaskedLM):
                name = name.replace("electra/embeddings/", "generator/embeddings/")

            if discriminator_or_generator == "generator":
                name = name.replace("electra/", "discriminator/")
                name = name.replace("generator/", "electra/")

            name = name.replace("dense_1", "dense_prediction")
            name = name.replace("generator_predictions/output_bias", "generator_lm_head/bias")

            name = name.split("/")
            # print(original_name, name)
            # adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
            # which are not required for using pretrained model
            if any(n in ["global_step", "temperature"] for n in name):
116
                logger.info(f"Skipping {original_name}")
Lysandre Debut's avatar
Lysandre Debut committed
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
                continue
            pointer = model
            for m_name in name:
                if re.fullmatch(r"[A-Za-z]+_\d+", m_name):
                    scope_names = re.split(r"_(\d+)", m_name)
                else:
                    scope_names = [m_name]
                if scope_names[0] == "kernel" or scope_names[0] == "gamma":
                    pointer = getattr(pointer, "weight")
                elif scope_names[0] == "output_bias" or scope_names[0] == "beta":
                    pointer = getattr(pointer, "bias")
                elif scope_names[0] == "output_weights":
                    pointer = getattr(pointer, "weight")
                elif scope_names[0] == "squad":
                    pointer = getattr(pointer, "classifier")
                else:
                    pointer = getattr(pointer, scope_names[0])
                if len(scope_names) >= 2:
                    num = int(scope_names[1])
                    pointer = pointer[num]
            if m_name.endswith("_embeddings"):
                pointer = getattr(pointer, "weight")
            elif m_name == "kernel":
                array = np.transpose(array)
            try:
142
143
                if pointer.shape != array.shape:
                    raise ValueError(f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched")
Lysandre Debut's avatar
Lysandre Debut committed
144
145
146
            except AssertionError as e:
                e.args += (pointer.shape, array.shape)
                raise
147
            print(f"Initialize PyTorch weight {name}", original_name)
Lysandre Debut's avatar
Lysandre Debut committed
148
149
            pointer.data = torch.from_numpy(array)
        except AttributeError as e:
150
            print(f"Skipping {original_name}", name, e)
Lysandre Debut's avatar
Lysandre Debut committed
151
152
153
154
            continue
    return model


155
class ElectraEmbeddings(nn.Module):
Lysandre Debut's avatar
Lysandre Debut committed
156
157
158
    """Construct the embeddings from word, position and token_type embeddings."""

    def __init__(self, config):
159
        super().__init__()
Lysandre Debut's avatar
Lysandre Debut committed
160
161
162
163
164
165
        self.word_embeddings = nn.Embedding(config.vocab_size, config.embedding_size, padding_idx=config.pad_token_id)
        self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.embedding_size)
        self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.embedding_size)

        # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
        # any TensorFlow checkpoint file
166
167
168
169
170
        self.LayerNorm = nn.LayerNorm(config.embedding_size, eps=config.layer_norm_eps)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

        # position_ids (1, len position emb) is contiguous in memory and exported when serialized
        self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)))
171
        self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
172
173
174
        if version.parse(torch.__version__) > version.parse("1.6.0"):
            self.register_buffer(
                "token_type_ids",
175
                torch.zeros(self.position_ids.size(), dtype=torch.long),
176
177
                persistent=False,
            )
178

Sylvain Gugger's avatar
Sylvain Gugger committed
179
    # Copied from transformers.models.bert.modeling_bert.BertEmbeddings.forward
180
181
182
    def forward(
        self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None, past_key_values_length=0
    ):
183
184
185
186
187
188
189
190
        if input_ids is not None:
            input_shape = input_ids.size()
        else:
            input_shape = inputs_embeds.size()[:-1]

        seq_length = input_shape[1]

        if position_ids is None:
191
            position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length]
192

193
194
195
        # Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs
        # when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves
        # issue #5664
196
        if token_type_ids is None:
197
198
199
200
201
202
            if hasattr(self, "token_type_ids"):
                buffered_token_type_ids = self.token_type_ids[:, :seq_length]
                buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length)
                token_type_ids = buffered_token_type_ids_expanded
            else:
                token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
203
204
205
206
207

        if inputs_embeds is None:
            inputs_embeds = self.word_embeddings(input_ids)
        token_type_embeddings = self.token_type_embeddings(token_type_ids)

208
209
210
211
        embeddings = inputs_embeds + token_type_embeddings
        if self.position_embedding_type == "absolute":
            position_embeddings = self.position_embeddings(position_ids)
            embeddings += position_embeddings
212
213
214
215
216
        embeddings = self.LayerNorm(embeddings)
        embeddings = self.dropout(embeddings)
        return embeddings


Sylvain Gugger's avatar
Sylvain Gugger committed
217
# Copied from transformers.models.bert.modeling_bert.BertSelfAttention with Bert->Electra
218
class ElectraSelfAttention(nn.Module):
219
    def __init__(self, config, position_embedding_type=None):
220
221
222
        super().__init__()
        if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
            raise ValueError(
223
224
                f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
                f"heads ({config.num_attention_heads})"
225
226
227
228
229
230
231
232
233
234
235
            )

        self.num_attention_heads = config.num_attention_heads
        self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
        self.all_head_size = self.num_attention_heads * self.attention_head_size

        self.query = nn.Linear(config.hidden_size, self.all_head_size)
        self.key = nn.Linear(config.hidden_size, self.all_head_size)
        self.value = nn.Linear(config.hidden_size, self.all_head_size)

        self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
236
237
238
        self.position_embedding_type = position_embedding_type or getattr(
            config, "position_embedding_type", "absolute"
        )
239
240
241
        if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
            self.max_position_embeddings = config.max_position_embeddings
            self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size)
242

243
244
        self.is_decoder = config.is_decoder

245
246
247
248
249
250
251
252
253
254
255
256
    def transpose_for_scores(self, x):
        new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
        x = x.view(*new_x_shape)
        return x.permute(0, 2, 1, 3)

    def forward(
        self,
        hidden_states,
        attention_mask=None,
        head_mask=None,
        encoder_hidden_states=None,
        encoder_attention_mask=None,
257
        past_key_value=None,
258
259
260
261
262
263
264
        output_attentions=False,
    ):
        mixed_query_layer = self.query(hidden_states)

        # If this is instantiated as a cross-attention module, the keys
        # and values come from an encoder; the attention mask needs to be
        # such that the encoder's padding tokens are not attended to.
265
266
267
268
269
270
        is_cross_attention = encoder_hidden_states is not None

        if is_cross_attention and past_key_value is not None:
            # reuse k,v, cross_attentions
            key_layer = past_key_value[0]
            value_layer = past_key_value[1]
271
            attention_mask = encoder_attention_mask
272
273
274
275
276
277
278
279
280
        elif is_cross_attention:
            key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
            value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
            attention_mask = encoder_attention_mask
        elif past_key_value is not None:
            key_layer = self.transpose_for_scores(self.key(hidden_states))
            value_layer = self.transpose_for_scores(self.value(hidden_states))
            key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
            value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
281
        else:
282
283
            key_layer = self.transpose_for_scores(self.key(hidden_states))
            value_layer = self.transpose_for_scores(self.value(hidden_states))
284
285

        query_layer = self.transpose_for_scores(mixed_query_layer)
286
287
288
289
290
291
292
293
294
295

        if self.is_decoder:
            # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
            # Further calls to cross_attention layer can then reuse all cross-attention
            # key/value_states (first "if" case)
            # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
            # all previous decoder key/value_states. Further calls to uni-directional self-attention
            # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
            # if encoder bi-directional self-attention `past_key_value` is always `None`
            past_key_value = (key_layer, value_layer)
296
297
298

        # Take the dot product between "query" and "key" to get the raw attention scores.
        attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315

        if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
            seq_length = hidden_states.size()[1]
            position_ids_l = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(-1, 1)
            position_ids_r = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(1, -1)
            distance = position_ids_l - position_ids_r
            positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
            positional_embedding = positional_embedding.to(dtype=query_layer.dtype)  # fp16 compatibility

            if self.position_embedding_type == "relative_key":
                relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
                attention_scores = attention_scores + relative_position_scores
            elif self.position_embedding_type == "relative_key_query":
                relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
                relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
                attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key

316
317
318
319
320
321
        attention_scores = attention_scores / math.sqrt(self.attention_head_size)
        if attention_mask is not None:
            # Apply the attention mask is (precomputed for all layers in ElectraModel forward() function)
            attention_scores = attention_scores + attention_mask

        # Normalize the attention scores to probabilities.
322
        attention_probs = nn.functional.softmax(attention_scores, dim=-1)
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338

        # This is actually dropping out entire tokens to attend to, which might
        # seem a bit unusual, but is taken from the original Transformer paper.
        attention_probs = self.dropout(attention_probs)

        # Mask heads if we want to
        if head_mask is not None:
            attention_probs = attention_probs * head_mask

        context_layer = torch.matmul(attention_probs, value_layer)

        context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
        new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
        context_layer = context_layer.view(*new_context_layer_shape)

        outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
339
340
341

        if self.is_decoder:
            outputs = outputs + (past_key_value,)
342
343
344
        return outputs


Sylvain Gugger's avatar
Sylvain Gugger committed
345
# Copied from transformers.models.bert.modeling_bert.BertSelfOutput
346
347
348
349
350
351
352
353
354
355
356
357
358
359
class ElectraSelfOutput(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
        self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

    def forward(self, hidden_states, input_tensor):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.dropout(hidden_states)
        hidden_states = self.LayerNorm(hidden_states + input_tensor)
        return hidden_states


Sylvain Gugger's avatar
Sylvain Gugger committed
360
# Copied from transformers.models.bert.modeling_bert.BertAttention with Bert->Electra
361
class ElectraAttention(nn.Module):
362
    def __init__(self, config, position_embedding_type=None):
363
        super().__init__()
364
        self.self = ElectraSelfAttention(config, position_embedding_type=position_embedding_type)
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
        self.output = ElectraSelfOutput(config)
        self.pruned_heads = set()

    def prune_heads(self, heads):
        if len(heads) == 0:
            return
        heads, index = find_pruneable_heads_and_indices(
            heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
        )

        # Prune linear layers
        self.self.query = prune_linear_layer(self.self.query, index)
        self.self.key = prune_linear_layer(self.self.key, index)
        self.self.value = prune_linear_layer(self.self.value, index)
        self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)

        # Update hyper params and store pruned heads
        self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
        self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
        self.pruned_heads = self.pruned_heads.union(heads)

    def forward(
        self,
        hidden_states,
        attention_mask=None,
        head_mask=None,
        encoder_hidden_states=None,
        encoder_attention_mask=None,
393
        past_key_value=None,
394
395
396
397
398
399
400
401
        output_attentions=False,
    ):
        self_outputs = self.self(
            hidden_states,
            attention_mask,
            head_mask,
            encoder_hidden_states,
            encoder_attention_mask,
402
            past_key_value,
403
404
405
406
407
408
409
            output_attentions,
        )
        attention_output = self.output(self_outputs[0], hidden_states)
        outputs = (attention_output,) + self_outputs[1:]  # add attentions if we output them
        return outputs


Sylvain Gugger's avatar
Sylvain Gugger committed
410
# Copied from transformers.models.bert.modeling_bert.BertIntermediate
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
class ElectraIntermediate(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
        if isinstance(config.hidden_act, str):
            self.intermediate_act_fn = ACT2FN[config.hidden_act]
        else:
            self.intermediate_act_fn = config.hidden_act

    def forward(self, hidden_states):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.intermediate_act_fn(hidden_states)
        return hidden_states


Sylvain Gugger's avatar
Sylvain Gugger committed
426
# Copied from transformers.models.bert.modeling_bert.BertOutput
427
428
429
430
431
432
433
434
435
436
437
438
439
440
class ElectraOutput(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
        self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

    def forward(self, hidden_states, input_tensor):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.dropout(hidden_states)
        hidden_states = self.LayerNorm(hidden_states + input_tensor)
        return hidden_states


Sylvain Gugger's avatar
Sylvain Gugger committed
441
# Copied from transformers.models.bert.modeling_bert.BertLayer with Bert->Electra
442
443
444
445
446
447
448
449
450
class ElectraLayer(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.chunk_size_feed_forward = config.chunk_size_feed_forward
        self.seq_len_dim = 1
        self.attention = ElectraAttention(config)
        self.is_decoder = config.is_decoder
        self.add_cross_attention = config.add_cross_attention
        if self.add_cross_attention:
451
452
            if not self.is_decoder:
                raise ValueError(f"{self} should be used as a decoder model if cross attention is added")
453
            self.crossattention = ElectraAttention(config, position_embedding_type="absolute")
454
455
456
457
458
459
460
461
462
463
        self.intermediate = ElectraIntermediate(config)
        self.output = ElectraOutput(config)

    def forward(
        self,
        hidden_states,
        attention_mask=None,
        head_mask=None,
        encoder_hidden_states=None,
        encoder_attention_mask=None,
464
        past_key_value=None,
465
466
        output_attentions=False,
    ):
467
468
        # decoder uni-directional self-attention cached key/values tuple is at positions 1,2
        self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
469
470
471
472
473
        self_attention_outputs = self.attention(
            hidden_states,
            attention_mask,
            head_mask,
            output_attentions=output_attentions,
474
            past_key_value=self_attn_past_key_value,
475
476
477
        )
        attention_output = self_attention_outputs[0]

478
479
480
481
482
483
484
485
        # if decoder, the last output is tuple of self-attn cache
        if self.is_decoder:
            outputs = self_attention_outputs[1:-1]
            present_key_value = self_attention_outputs[-1]
        else:
            outputs = self_attention_outputs[1:]  # add self attentions if we output attention weights

        cross_attn_present_key_value = None
486
        if self.is_decoder and encoder_hidden_states is not None:
487
488
489
490
            if not hasattr(self, "crossattention"):
                raise ValueError(
                    f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers by setting `config.add_cross_attention=True`"
                )
491
492
493

            # cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple
            cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
494
495
496
497
498
499
            cross_attention_outputs = self.crossattention(
                attention_output,
                attention_mask,
                head_mask,
                encoder_hidden_states,
                encoder_attention_mask,
500
                cross_attn_past_key_value,
501
502
503
                output_attentions,
            )
            attention_output = cross_attention_outputs[0]
504
505
506
507
508
            outputs = outputs + cross_attention_outputs[1:-1]  # add cross attentions if we output attention weights

            # add cross-attn cache to positions 3,4 of present_key_value tuple
            cross_attn_present_key_value = cross_attention_outputs[-1]
            present_key_value = present_key_value + cross_attn_present_key_value
509
510
511
512
513

        layer_output = apply_chunking_to_forward(
            self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
        )
        outputs = (layer_output,) + outputs
514
515
516
517
518

        # if decoder, return the attn key/values as the last output
        if self.is_decoder:
            outputs = outputs + (present_key_value,)

519
520
521
522
523
524
525
526
        return outputs

    def feed_forward_chunk(self, attention_output):
        intermediate_output = self.intermediate(attention_output)
        layer_output = self.output(intermediate_output, attention_output)
        return layer_output


Sylvain Gugger's avatar
Sylvain Gugger committed
527
# Copied from transformers.models.bert.modeling_bert.BertEncoder with Bert->Electra
528
529
530
531
532
class ElectraEncoder(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.config = config
        self.layer = nn.ModuleList([ElectraLayer(config) for _ in range(config.num_hidden_layers)])
533
        self.gradient_checkpointing = False
534
535
536
537
538
539
540
541

    def forward(
        self,
        hidden_states,
        attention_mask=None,
        head_mask=None,
        encoder_hidden_states=None,
        encoder_attention_mask=None,
542
543
        past_key_values=None,
        use_cache=None,
544
545
        output_attentions=False,
        output_hidden_states=False,
546
        return_dict=True,
547
548
    ):
        all_hidden_states = () if output_hidden_states else None
549
550
        all_self_attentions = () if output_attentions else None
        all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
551
552

        next_decoder_cache = () if use_cache else None
553
554
555
556
557
        for i, layer_module in enumerate(self.layer):
            if output_hidden_states:
                all_hidden_states = all_hidden_states + (hidden_states,)

            layer_head_mask = head_mask[i] if head_mask is not None else None
558
            past_key_value = past_key_values[i] if past_key_values is not None else None
559

560
            if self.gradient_checkpointing and self.training:
561
562

                if use_cache:
563
                    logger.warning(
564
                        "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
565
566
                    )
                    use_cache = False
567
568
569

                def create_custom_forward(module):
                    def custom_forward(*inputs):
570
                        return module(*inputs, past_key_value, output_attentions)
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588

                    return custom_forward

                layer_outputs = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(layer_module),
                    hidden_states,
                    attention_mask,
                    layer_head_mask,
                    encoder_hidden_states,
                    encoder_attention_mask,
                )
            else:
                layer_outputs = layer_module(
                    hidden_states,
                    attention_mask,
                    layer_head_mask,
                    encoder_hidden_states,
                    encoder_attention_mask,
589
                    past_key_value,
590
591
                    output_attentions,
                )
592

593
            hidden_states = layer_outputs[0]
594
595
            if use_cache:
                next_decoder_cache += (layer_outputs[-1],)
596
            if output_attentions:
597
598
599
                all_self_attentions = all_self_attentions + (layer_outputs[1],)
                if self.config.add_cross_attention:
                    all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
600
601
602
603
604

        if output_hidden_states:
            all_hidden_states = all_hidden_states + (hidden_states,)

        if not return_dict:
605
606
            return tuple(
                v
607
608
609
610
611
612
613
                for v in [
                    hidden_states,
                    next_decoder_cache,
                    all_hidden_states,
                    all_self_attentions,
                    all_cross_attentions,
                ]
614
615
                if v is not None
            )
616
        return BaseModelOutputWithPastAndCrossAttentions(
617
            last_hidden_state=hidden_states,
618
            past_key_values=next_decoder_cache,
619
620
621
            hidden_states=all_hidden_states,
            attentions=all_self_attentions,
            cross_attentions=all_cross_attentions,
622
        )
Lysandre Debut's avatar
Lysandre Debut committed
623
624
625
626
627
628
629
630
631
632
633
634


class ElectraDiscriminatorPredictions(nn.Module):
    """Prediction module for the discriminator, made up of two dense layers."""

    def __init__(self, config):
        super().__init__()

        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
        self.dense_prediction = nn.Linear(config.hidden_size, 1)
        self.config = config

635
    def forward(self, discriminator_hidden_states):
Lysandre Debut's avatar
Lysandre Debut committed
636
637
        hidden_states = self.dense(discriminator_hidden_states)
        hidden_states = get_activation(self.config.hidden_act)(hidden_states)
638
        logits = self.dense_prediction(hidden_states).squeeze(-1)
Lysandre Debut's avatar
Lysandre Debut committed
639
640
641
642
643
644
645
646
647
648

        return logits


class ElectraGeneratorPredictions(nn.Module):
    """Prediction module for the generator, made up of two dense layers."""

    def __init__(self, config):
        super().__init__()

649
        self.LayerNorm = nn.LayerNorm(config.embedding_size)
Lysandre Debut's avatar
Lysandre Debut committed
650
651
652
653
654
655
656
657
658
659
        self.dense = nn.Linear(config.hidden_size, config.embedding_size)

    def forward(self, generator_hidden_states):
        hidden_states = self.dense(generator_hidden_states)
        hidden_states = get_activation("gelu")(hidden_states)
        hidden_states = self.LayerNorm(hidden_states)

        return hidden_states


660
class ElectraPreTrainedModel(PreTrainedModel):
Sylvain Gugger's avatar
Sylvain Gugger committed
661
662
663
    """
    An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
    models.
Lysandre Debut's avatar
Lysandre Debut committed
664
665
666
667
668
    """

    config_class = ElectraConfig
    load_tf_weights = load_tf_weights_in_electra
    base_model_prefix = "electra"
669
    supports_gradient_checkpointing = True
670
671
    _keys_to_ignore_on_load_missing = [r"position_ids"]
    _keys_to_ignore_on_load_unexpected = [r"electra\.embeddings_project\.weight", r"electra\.embeddings_project\.bias"]
Lysandre Debut's avatar
Lysandre Debut committed
672

Sylvain Gugger's avatar
Sylvain Gugger committed
673
    # Copied from transformers.models.bert.modeling_bert.BertPreTrainedModel._init_weights
674
    def _init_weights(self, module):
Patrick von Platen's avatar
Patrick von Platen committed
675
        """Initialize the weights"""
676
        if isinstance(module, nn.Linear):
677
678
679
            # Slightly different from the TF version which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
680
681
682
683
684
685
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.Embedding):
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
            if module.padding_idx is not None:
                module.weight.data[module.padding_idx].zero_()
686
687
688
689
        elif isinstance(module, nn.LayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)

690
691
692
693
    def _set_gradient_checkpointing(self, module, value=False):
        if isinstance(module, ElectraEncoder):
            module.gradient_checkpointing = value

Lysandre Debut's avatar
Lysandre Debut committed
694

695
@dataclass
Sylvain Gugger's avatar
Sylvain Gugger committed
696
class ElectraForPreTrainingOutput(ModelOutput):
697
    """
698
    Output type of [`ElectraForPreTraining`].
699
700

    Args:
701
        loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`):
702
            Total loss of the ELECTRA objective.
703
        logits (`torch.FloatTensor` of shape `(batch_size, sequence_length)`):
704
            Prediction scores of the head (scores for each token before SoftMax).
705
706
707
        hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
            of shape `(batch_size, sequence_length, hidden_size)`.
708
709

            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
710
711
        attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
            Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`.
712
713
714
715
716

            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
            heads.
    """

717
718
    loss: Optional[torch.FloatTensor] = None
    logits: torch.FloatTensor = None
719
720
721
722
    hidden_states: Optional[Tuple[torch.FloatTensor]] = None
    attentions: Optional[Tuple[torch.FloatTensor]] = None


Lysandre Debut's avatar
Lysandre Debut committed
723
ELECTRA_START_DOCSTRING = r"""
Sylvain Gugger's avatar
Sylvain Gugger committed
724

725
    This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic
Sylvain Gugger's avatar
Sylvain Gugger committed
726
727
728
    methods the library implements for all its model (such as downloading or saving, resizing the input embeddings,
    pruning heads etc.)

729
    This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module)
Sylvain Gugger's avatar
Sylvain Gugger committed
730
731
    subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to
    general usage and behavior.
Lysandre Debut's avatar
Lysandre Debut committed
732
733

    Parameters:
734
        config ([`ElectraConfig`]): Model configuration class with all the parameters of the model.
Sylvain Gugger's avatar
Sylvain Gugger committed
735
            Initializing with a config file does not load the weights associated with the model, only the
736
            configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model
Sylvain Gugger's avatar
Sylvain Gugger committed
737
            weights.
Lysandre Debut's avatar
Lysandre Debut committed
738
739
740
741
"""

ELECTRA_INPUTS_DOCSTRING = r"""
    Args:
742
        input_ids (`torch.LongTensor` of shape `({0})`):
Lysandre Debut's avatar
Lysandre Debut committed
743
744
            Indices of input sequence tokens in the vocabulary.

745
746
            Indices can be obtained using [`ElectraTokenizer`]. See
            [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for
Sylvain Gugger's avatar
Sylvain Gugger committed
747
            details.
Lysandre Debut's avatar
Lysandre Debut committed
748

749
750
751
            [What are input IDs?](../glossary#input-ids)
        attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
            Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
Sylvain Gugger's avatar
Sylvain Gugger committed
752
753

            - 1 for tokens that are **not masked**,
754
            - 0 for tokens that are **masked**.
Lysandre Debut's avatar
Lysandre Debut committed
755

756
757
758
            [What are attention masks?](../glossary#attention-mask)
        token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
            Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`:
Sylvain Gugger's avatar
Sylvain Gugger committed
759

760
761
            - 0 corresponds to a *sentence A* token,
            - 1 corresponds to a *sentence B* token.
Lysandre Debut's avatar
Lysandre Debut committed
762

763
764
765
            [What are token type IDs?](../glossary#token-type-ids)
        position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
            Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`.
Lysandre Debut's avatar
Lysandre Debut committed
766

767
768
769
            [What are position IDs?](../glossary#position-ids)
        head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
            Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
Sylvain Gugger's avatar
Sylvain Gugger committed
770
771
772
773

            - 1 indicates the head is **not masked**,
            - 0 indicates the head is **masked**.

774
775
776
        inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
            Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
            This is useful if you want more control over how to convert `input_ids` indices into associated
Sylvain Gugger's avatar
Sylvain Gugger committed
777
            vectors than the model's internal embedding lookup matrix.
778
        encoder_hidden_states  (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
779
780
            Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
            the model is configured as a decoder.
781
        encoder_attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
782
            Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
783
            the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
Sylvain Gugger's avatar
Sylvain Gugger committed
784
785
786
787

            - 1 indicates the head is **not masked**,
            - 0 indicates the head is **masked**.

788
789
        output_attentions (`bool`, *optional*):
            Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
Sylvain Gugger's avatar
Sylvain Gugger committed
790
            tensors for more detail.
791
792
        output_hidden_states (`bool`, *optional*):
            Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
Sylvain Gugger's avatar
Sylvain Gugger committed
793
            more detail.
794
795
        return_dict (`bool`, *optional*):
            Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.
Lysandre Debut's avatar
Lysandre Debut committed
796
797
798
799
800
801
"""


@add_start_docstrings(
    "The bare Electra Model transformer outputting raw hidden-states without any specific head on top. Identical to "
    "the BERT model except that it uses an additional linear layer between the embedding layer and the encoder if the "
802
    "hidden size and embedding size are different. "
Lysandre Debut's avatar
Lysandre Debut committed
803
804
805
806
807
808
809
810
811
812
813
814
    ""
    "Both the generator and discriminator checkpoints may be loaded into this model.",
    ELECTRA_START_DOCSTRING,
)
class ElectraModel(ElectraPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)
        self.embeddings = ElectraEmbeddings(config)

        if config.embedding_size != config.hidden_size:
            self.embeddings_project = nn.Linear(config.embedding_size, config.hidden_size)

815
        self.encoder = ElectraEncoder(config)
Lysandre Debut's avatar
Lysandre Debut committed
816
        self.config = config
817
818
        # Initialize weights and apply final processing
        self.post_init()
Lysandre Debut's avatar
Lysandre Debut committed
819
820
821
822
823
824
825
826

    def get_input_embeddings(self):
        return self.embeddings.word_embeddings

    def set_input_embeddings(self, value):
        self.embeddings.word_embeddings = value

    def _prune_heads(self, heads_to_prune):
Sylvain Gugger's avatar
Sylvain Gugger committed
827
828
829
        """
        Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
        class PreTrainedModel
Lysandre Debut's avatar
Lysandre Debut committed
830
831
832
833
        """
        for layer, heads in heads_to_prune.items():
            self.encoder.layer[layer].attention.prune_heads(heads)

834
    @add_start_docstrings_to_model_forward(ELECTRA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
835
    @add_code_sample_docstrings(
836
        processor_class=_TOKENIZER_FOR_DOC,
837
        checkpoint=_CHECKPOINT_FOR_DOC,
838
        output_type=BaseModelOutputWithCrossAttentions,
839
840
        config_class=_CONFIG_FOR_DOC,
    )
Lysandre Debut's avatar
Lysandre Debut committed
841
842
843
844
845
846
847
848
    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        head_mask=None,
        inputs_embeds=None,
849
        output_attentions=None,
Joseph Liu's avatar
Joseph Liu committed
850
        output_hidden_states=None,
851
        return_dict=None,
Lysandre Debut's avatar
Lysandre Debut committed
852
    ):
853
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
Joseph Liu's avatar
Joseph Liu committed
854
855
856
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
857
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
858

Lysandre Debut's avatar
Lysandre Debut committed
859
860
861
862
863
864
865
866
867
        if input_ids is not None and inputs_embeds is not None:
            raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
        elif input_ids is not None:
            input_shape = input_ids.size()
        elif inputs_embeds is not None:
            input_shape = inputs_embeds.size()[:-1]
        else:
            raise ValueError("You have to specify either input_ids or inputs_embeds")

868
        batch_size, seq_length = input_shape
Lysandre Debut's avatar
Lysandre Debut committed
869
870
871
872
873
        device = input_ids.device if input_ids is not None else inputs_embeds.device

        if attention_mask is None:
            attention_mask = torch.ones(input_shape, device=device)
        if token_type_ids is None:
874
875
876
877
878
879
            if hasattr(self.embeddings, "token_type_ids"):
                buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length]
                buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length)
                token_type_ids = buffered_token_type_ids_expanded
            else:
                token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
Lysandre Debut's avatar
Lysandre Debut committed
880
881

        extended_attention_mask = self.get_extended_attention_mask(attention_mask, input_shape, device)
882
        head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
Lysandre Debut's avatar
Lysandre Debut committed
883
884
885
886
887
888
889
890

        hidden_states = self.embeddings(
            input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds
        )

        if hasattr(self, "embeddings_project"):
            hidden_states = self.embeddings_project(hidden_states)

891
892
893
894
895
        hidden_states = self.encoder(
            hidden_states,
            attention_mask=extended_attention_mask,
            head_mask=head_mask,
            output_attentions=output_attentions,
Joseph Liu's avatar
Joseph Liu committed
896
            output_hidden_states=output_hidden_states,
897
            return_dict=return_dict,
898
        )
Lysandre Debut's avatar
Lysandre Debut committed
899
900
901
902

        return hidden_states


903
904
905
906
907
908
class ElectraClassificationHead(nn.Module):
    """Head for sentence-level classification tasks."""

    def __init__(self, config):
        super().__init__()
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
909
910
911
912
        classifier_dropout = (
            config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
        )
        self.dropout = nn.Dropout(classifier_dropout)
913
914
915
916
917
918
919
920
921
922
923
924
925
        self.out_proj = nn.Linear(config.hidden_size, config.num_labels)

    def forward(self, features, **kwargs):
        x = features[:, 0, :]  # take <s> token (equiv. to [CLS])
        x = self.dropout(x)
        x = self.dense(x)
        x = get_activation("gelu")(x)  # although BERT uses tanh here, it seems Electra authors used gelu here
        x = self.dropout(x)
        x = self.out_proj(x)
        return x


@add_start_docstrings(
Sylvain Gugger's avatar
Sylvain Gugger committed
926
927
928
929
    """
    ELECTRA Model transformer with a sequence classification/regression head on top (a linear layer on top of the
    pooled output) e.g. for GLUE tasks.
    """,
930
931
932
933
934
935
    ELECTRA_START_DOCSTRING,
)
class ElectraForSequenceClassification(ElectraPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)
        self.num_labels = config.num_labels
936
        self.config = config
937
938
939
        self.electra = ElectraModel(config)
        self.classifier = ElectraClassificationHead(config)

940
941
        # Initialize weights and apply final processing
        self.post_init()
942

943
    @add_start_docstrings_to_model_forward(ELECTRA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
944
    @add_code_sample_docstrings(
945
        processor_class=_TOKENIZER_FOR_DOC,
946
        checkpoint=_CHECKPOINT_FOR_DOC,
947
948
949
        output_type=SequenceClassifierOutput,
        config_class=_CONFIG_FOR_DOC,
    )
950
951
952
953
954
955
956
957
958
    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        head_mask=None,
        inputs_embeds=None,
        labels=None,
959
        output_attentions=None,
Joseph Liu's avatar
Joseph Liu committed
960
        output_hidden_states=None,
961
        return_dict=None,
962
963
    ):
        r"""
964
965
966
        labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
            Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss),
            If `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
967
        """
968
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
969

970
        discriminator_hidden_states = self.electra(
Joseph Liu's avatar
Joseph Liu committed
971
972
973
974
975
976
977
978
            input_ids,
            attention_mask,
            token_type_ids,
            position_ids,
            head_mask,
            inputs_embeds,
            output_attentions,
            output_hidden_states,
979
            return_dict,
980
981
982
983
984
        )

        sequence_output = discriminator_hidden_states[0]
        logits = self.classifier(sequence_output)

985
        loss = None
986
        if labels is not None:
987
988
989
990
991
992
993
994
995
            if self.config.problem_type is None:
                if self.num_labels == 1:
                    self.config.problem_type = "regression"
                elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
                    self.config.problem_type = "single_label_classification"
                else:
                    self.config.problem_type = "multi_label_classification"

            if self.config.problem_type == "regression":
996
                loss_fct = MSELoss()
997
998
999
1000
                if self.num_labels == 1:
                    loss = loss_fct(logits.squeeze(), labels.squeeze())
                else:
                    loss = loss_fct(logits, labels)
1001
            elif self.config.problem_type == "single_label_classification":
1002
1003
                loss_fct = CrossEntropyLoss()
                loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
1004
1005
1006
            elif self.config.problem_type == "multi_label_classification":
                loss_fct = BCEWithLogitsLoss()
                loss = loss_fct(logits, labels)
1007

1008
        if not return_dict:
1009
1010
1011
1012
1013
1014
1015
1016
1017
            output = (logits,) + discriminator_hidden_states[1:]
            return ((loss,) + output) if loss is not None else output

        return SequenceClassifierOutput(
            loss=loss,
            logits=logits,
            hidden_states=discriminator_hidden_states.hidden_states,
            attentions=discriminator_hidden_states.attentions,
        )
1018
1019


Lysandre Debut's avatar
Lysandre Debut committed
1020
1021
@add_start_docstrings(
    """
1022
    Electra model with a binary classification head on top as used during pretraining for identifying generated tokens.
Lysandre Debut's avatar
Lysandre Debut committed
1023

Sylvain Gugger's avatar
Sylvain Gugger committed
1024
1025
    It is recommended to load the discriminator checkpoint into that model.
    """,
Lysandre Debut's avatar
Lysandre Debut committed
1026
1027
1028
1029
1030
1031
1032
1033
    ELECTRA_START_DOCSTRING,
)
class ElectraForPreTraining(ElectraPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)

        self.electra = ElectraModel(config)
        self.discriminator_predictions = ElectraDiscriminatorPredictions(config)
1034
1035
        # Initialize weights and apply final processing
        self.post_init()
Lysandre Debut's avatar
Lysandre Debut committed
1036

1037
    @add_start_docstrings_to_model_forward(ELECTRA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
Sylvain Gugger's avatar
Sylvain Gugger committed
1038
    @replace_return_docstrings(output_type=ElectraForPreTrainingOutput, config_class=_CONFIG_FOR_DOC)
Lysandre Debut's avatar
Lysandre Debut committed
1039
1040
1041
1042
1043
1044
1045
1046
1047
    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        head_mask=None,
        inputs_embeds=None,
        labels=None,
1048
        output_attentions=None,
Joseph Liu's avatar
Joseph Liu committed
1049
        output_hidden_states=None,
1050
        return_dict=None,
Lysandre Debut's avatar
Lysandre Debut committed
1051
1052
    ):
        r"""
1053
1054
1055
        labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
            Labels for computing the ELECTRA loss. Input should be a sequence of tokens (see `input_ids`
            docstring) Indices should be in `[0, 1]`:
Sylvain Gugger's avatar
Sylvain Gugger committed
1056
1057
1058

            - 0 indicates the token is an original token,
            - 1 indicates the token was replaced.
Lysandre Debut's avatar
Lysandre Debut committed
1059

Lysandre's avatar
Lysandre committed
1060
        Returns:
Lysandre Debut's avatar
Lysandre Debut committed
1061

1062
        Examples:
Lysandre Debut's avatar
Lysandre Debut committed
1063

1064
1065
1066
        ```python
        >>> from transformers import ElectraTokenizer, ElectraForPreTraining
        >>> import torch
Lysandre Debut's avatar
Lysandre Debut committed
1067

1068
1069
        >>> tokenizer = ElectraTokenizer.from_pretrained('google/electra-small-discriminator')
        >>> model = ElectraForPreTraining.from_pretrained('google/electra-small-discriminator')
Lysandre Debut's avatar
Lysandre Debut committed
1070

1071
1072
1073
        >>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0)  # Batch size 1
        >>> logits = model(input_ids).logits
        ```"""
1074
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
Lysandre Debut's avatar
Lysandre Debut committed
1075
1076

        discriminator_hidden_states = self.electra(
Joseph Liu's avatar
Joseph Liu committed
1077
1078
1079
1080
1081
1082
1083
1084
            input_ids,
            attention_mask,
            token_type_ids,
            position_ids,
            head_mask,
            inputs_embeds,
            output_attentions,
            output_hidden_states,
1085
            return_dict,
Lysandre Debut's avatar
Lysandre Debut committed
1086
1087
1088
        )
        discriminator_sequence_output = discriminator_hidden_states[0]

1089
        logits = self.discriminator_predictions(discriminator_sequence_output)
Lysandre Debut's avatar
Lysandre Debut committed
1090

1091
        loss = None
Lysandre Debut's avatar
Lysandre Debut committed
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
        if labels is not None:
            loss_fct = nn.BCEWithLogitsLoss()
            if attention_mask is not None:
                active_loss = attention_mask.view(-1, discriminator_sequence_output.shape[1]) == 1
                active_logits = logits.view(-1, discriminator_sequence_output.shape[1])[active_loss]
                active_labels = labels[active_loss]
                loss = loss_fct(active_logits, active_labels.float())
            else:
                loss = loss_fct(logits.view(-1, discriminator_sequence_output.shape[1]), labels.float())

1102
        if not return_dict:
1103
1104
            output = (logits,) + discriminator_hidden_states[1:]
            return ((loss,) + output) if loss is not None else output
Lysandre Debut's avatar
Lysandre Debut committed
1105

Sylvain Gugger's avatar
Sylvain Gugger committed
1106
        return ElectraForPreTrainingOutput(
1107
1108
1109
1110
1111
            loss=loss,
            logits=logits,
            hidden_states=discriminator_hidden_states.hidden_states,
            attentions=discriminator_hidden_states.attentions,
        )
Lysandre Debut's avatar
Lysandre Debut committed
1112
1113
1114
1115
1116
1117


@add_start_docstrings(
    """
    Electra model with a language modeling head on top.

Sylvain Gugger's avatar
Sylvain Gugger committed
1118
1119
1120
    Even though both the discriminator and generator may be loaded into this model, the generator is the only model of
    the two to have been trained for the masked language modeling task.
    """,
Lysandre Debut's avatar
Lysandre Debut committed
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
    ELECTRA_START_DOCSTRING,
)
class ElectraForMaskedLM(ElectraPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)

        self.electra = ElectraModel(config)
        self.generator_predictions = ElectraGeneratorPredictions(config)

        self.generator_lm_head = nn.Linear(config.embedding_size, config.vocab_size)
1131
1132
        # Initialize weights and apply final processing
        self.post_init()
Lysandre Debut's avatar
Lysandre Debut committed
1133
1134
1135
1136

    def get_output_embeddings(self):
        return self.generator_lm_head

1137
1138
1139
    def set_output_embeddings(self, word_embeddings):
        self.generator_lm_head = word_embeddings

1140
    @add_start_docstrings_to_model_forward(ELECTRA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
1141
    @add_code_sample_docstrings(
1142
        processor_class=_TOKENIZER_FOR_DOC,
1143
        checkpoint=_CHECKPOINT_FOR_DOC,
1144
1145
1146
        output_type=MaskedLMOutput,
        config_class=_CONFIG_FOR_DOC,
    )
Lysandre Debut's avatar
Lysandre Debut committed
1147
1148
1149
1150
1151
1152
1153
1154
    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        head_mask=None,
        inputs_embeds=None,
Sylvain Gugger's avatar
Sylvain Gugger committed
1155
        labels=None,
1156
        output_attentions=None,
Joseph Liu's avatar
Joseph Liu committed
1157
        output_hidden_states=None,
1158
        return_dict=None,
Lysandre Debut's avatar
Lysandre Debut committed
1159
1160
    ):
        r"""
1161
1162
1163
        labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
            Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored
            (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
Lysandre Debut's avatar
Lysandre Debut committed
1164
        """
1165
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
Lysandre Debut's avatar
Lysandre Debut committed
1166
1167

        generator_hidden_states = self.electra(
Joseph Liu's avatar
Joseph Liu committed
1168
1169
1170
1171
1172
1173
1174
1175
            input_ids,
            attention_mask,
            token_type_ids,
            position_ids,
            head_mask,
            inputs_embeds,
            output_attentions,
            output_hidden_states,
1176
            return_dict,
Lysandre Debut's avatar
Lysandre Debut committed
1177
1178
1179
1180
1181
1182
        )
        generator_sequence_output = generator_hidden_states[0]

        prediction_scores = self.generator_predictions(generator_sequence_output)
        prediction_scores = self.generator_lm_head(prediction_scores)

1183
        loss = None
Lysandre Debut's avatar
Lysandre Debut committed
1184
        # Masked language modeling softmax layer
Sylvain Gugger's avatar
Sylvain Gugger committed
1185
        if labels is not None:
Lysandre Debut's avatar
Lysandre Debut committed
1186
            loss_fct = nn.CrossEntropyLoss()  # -100 index = padding token
Sylvain Gugger's avatar
Sylvain Gugger committed
1187
            loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
Lysandre Debut's avatar
Lysandre Debut committed
1188

1189
        if not return_dict:
1190
1191
            output = (prediction_scores,) + generator_hidden_states[1:]
            return ((loss,) + output) if loss is not None else output
Lysandre Debut's avatar
Lysandre Debut committed
1192

1193
1194
1195
1196
1197
1198
        return MaskedLMOutput(
            loss=loss,
            logits=prediction_scores,
            hidden_states=generator_hidden_states.hidden_states,
            attentions=generator_hidden_states.attentions,
        )
Lysandre Debut's avatar
Lysandre Debut committed
1199
1200
1201
1202
1203
1204


@add_start_docstrings(
    """
    Electra model with a token classification head on top.

Sylvain Gugger's avatar
Sylvain Gugger committed
1205
1206
    Both the discriminator and generator may be loaded into this model.
    """,
Lysandre Debut's avatar
Lysandre Debut committed
1207
1208
1209
1210
1211
1212
1213
    ELECTRA_START_DOCSTRING,
)
class ElectraForTokenClassification(ElectraPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)

        self.electra = ElectraModel(config)
1214
1215
1216
1217
        classifier_dropout = (
            config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
        )
        self.dropout = nn.Dropout(classifier_dropout)
Lysandre Debut's avatar
Lysandre Debut committed
1218
        self.classifier = nn.Linear(config.hidden_size, config.num_labels)
1219
1220
        # Initialize weights and apply final processing
        self.post_init()
Lysandre Debut's avatar
Lysandre Debut committed
1221

1222
    @add_start_docstrings_to_model_forward(ELECTRA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
1223
    @add_code_sample_docstrings(
1224
        processor_class=_TOKENIZER_FOR_DOC,
1225
        checkpoint=_CHECKPOINT_FOR_DOC,
1226
1227
1228
        output_type=TokenClassifierOutput,
        config_class=_CONFIG_FOR_DOC,
    )
Lysandre Debut's avatar
Lysandre Debut committed
1229
1230
1231
1232
1233
1234
1235
1236
1237
    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        head_mask=None,
        inputs_embeds=None,
        labels=None,
1238
        output_attentions=None,
Joseph Liu's avatar
Joseph Liu committed
1239
        output_hidden_states=None,
1240
        return_dict=None,
Lysandre Debut's avatar
Lysandre Debut committed
1241
1242
    ):
        r"""
1243
1244
        labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
            Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
Lysandre Debut's avatar
Lysandre Debut committed
1245
        """
1246
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
Lysandre Debut's avatar
Lysandre Debut committed
1247
1248

        discriminator_hidden_states = self.electra(
Joseph Liu's avatar
Joseph Liu committed
1249
1250
1251
1252
1253
1254
1255
1256
            input_ids,
            attention_mask,
            token_type_ids,
            position_ids,
            head_mask,
            inputs_embeds,
            output_attentions,
            output_hidden_states,
1257
            return_dict,
Lysandre Debut's avatar
Lysandre Debut committed
1258
1259
1260
1261
1262
1263
        )
        discriminator_sequence_output = discriminator_hidden_states[0]

        discriminator_sequence_output = self.dropout(discriminator_sequence_output)
        logits = self.classifier(discriminator_sequence_output)

1264
        loss = None
Lysandre Debut's avatar
Lysandre Debut committed
1265
1266
1267
1268
1269
        if labels is not None:
            loss_fct = nn.CrossEntropyLoss()
            # Only keep active parts of the loss
            if attention_mask is not None:
                active_loss = attention_mask.view(-1) == 1
1270
1271
1272
1273
                active_logits = logits.view(-1, self.config.num_labels)
                active_labels = torch.where(
                    active_loss, labels.view(-1), torch.tensor(loss_fct.ignore_index).type_as(labels)
                )
Lysandre Debut's avatar
Lysandre Debut committed
1274
1275
                loss = loss_fct(active_logits, active_labels)
            else:
LysandreJik's avatar
LysandreJik committed
1276
                loss = loss_fct(logits.view(-1, self.config.num_labels), labels.view(-1))
Lysandre Debut's avatar
Lysandre Debut committed
1277

1278
        if not return_dict:
1279
1280
            output = (logits,) + discriminator_hidden_states[1:]
            return ((loss,) + output) if loss is not None else output
Lysandre Debut's avatar
Lysandre Debut committed
1281

1282
1283
1284
1285
1286
1287
        return TokenClassifierOutput(
            loss=loss,
            logits=logits,
            hidden_states=discriminator_hidden_states.hidden_states,
            attentions=discriminator_hidden_states.attentions,
        )
1288
1289
1290


@add_start_docstrings(
1291
1292
    """
    ELECTRA Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
Sylvain Gugger's avatar
Sylvain Gugger committed
1293
1294
    layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
    """,
1295
    ELECTRA_START_DOCSTRING,
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
)
class ElectraForQuestionAnswering(ElectraPreTrainedModel):
    config_class = ElectraConfig
    base_model_prefix = "electra"

    def __init__(self, config):
        super().__init__(config)
        self.num_labels = config.num_labels

        self.electra = ElectraModel(config)
        self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)

1308
1309
        # Initialize weights and apply final processing
        self.post_init()
1310

1311
    @add_start_docstrings_to_model_forward(ELECTRA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
1312
    @add_code_sample_docstrings(
1313
        processor_class=_TOKENIZER_FOR_DOC,
1314
        checkpoint=_CHECKPOINT_FOR_DOC,
1315
1316
1317
        output_type=QuestionAnsweringModelOutput,
        config_class=_CONFIG_FOR_DOC,
    )
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        head_mask=None,
        inputs_embeds=None,
        start_positions=None,
        end_positions=None,
        output_attentions=None,
Joseph Liu's avatar
Joseph Liu committed
1329
        output_hidden_states=None,
1330
        return_dict=None,
1331
1332
    ):
        r"""
1333
        start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1334
            Labels for position (index) of the start of the labelled span for computing the token classification loss.
1335
            Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the
Sylvain Gugger's avatar
Sylvain Gugger committed
1336
            sequence are not taken into account for computing the loss.
1337
        end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1338
            Labels for position (index) of the end of the labelled span for computing the token classification loss.
1339
            Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the
Sylvain Gugger's avatar
Sylvain Gugger committed
1340
            sequence are not taken into account for computing the loss.
1341
        """
1342
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1343
1344
1345
1346
1347
1348
1349
1350
1351

        discriminator_hidden_states = self.electra(
            input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            output_attentions=output_attentions,
Joseph Liu's avatar
Joseph Liu committed
1352
            output_hidden_states=output_hidden_states,
1353
1354
1355
1356
1357
1358
        )

        sequence_output = discriminator_hidden_states[0]

        logits = self.qa_outputs(sequence_output)
        start_logits, end_logits = logits.split(1, dim=-1)
Fan Zhang's avatar
Fan Zhang committed
1359
1360
        start_logits = start_logits.squeeze(-1).contiguous()
        end_logits = end_logits.squeeze(-1).contiguous()
1361

1362
        total_loss = None
1363
1364
1365
1366
1367
1368
1369
1370
        if start_positions is not None and end_positions is not None:
            # If we are on multi-GPU, split add a dimension
            if len(start_positions.size()) > 1:
                start_positions = start_positions.squeeze(-1)
            if len(end_positions.size()) > 1:
                end_positions = end_positions.squeeze(-1)
            # sometimes the start/end positions are outside our model inputs, we ignore these terms
            ignored_index = start_logits.size(1)
1371
1372
            start_positions = start_positions.clamp(0, ignored_index)
            end_positions = end_positions.clamp(0, ignored_index)
1373
1374
1375
1376
1377
1378

            loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
            start_loss = loss_fct(start_logits, start_positions)
            end_loss = loss_fct(end_logits, end_positions)
            total_loss = (start_loss + end_loss) / 2

1379
        if not return_dict:
Lysandre's avatar
Lysandre committed
1380
1381
1382
1383
            output = (
                start_logits,
                end_logits,
            ) + discriminator_hidden_states[1:]
1384
1385
1386
1387
1388
1389
1390
1391
1392
            return ((total_loss,) + output) if total_loss is not None else output

        return QuestionAnsweringModelOutput(
            loss=total_loss,
            start_logits=start_logits,
            end_logits=end_logits,
            hidden_states=discriminator_hidden_states.hidden_states,
            attentions=discriminator_hidden_states.attentions,
        )
Suraj Patil's avatar
Suraj Patil committed
1393
1394
1395


@add_start_docstrings(
Sylvain Gugger's avatar
Sylvain Gugger committed
1396
1397
1398
1399
    """
    ELECTRA Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a
    softmax) e.g. for RocStories/SWAG tasks.
    """,
Sylvain Gugger's avatar
Sylvain Gugger committed
1400
    ELECTRA_START_DOCSTRING,
Suraj Patil's avatar
Suraj Patil committed
1401
1402
1403
1404
1405
1406
)
class ElectraForMultipleChoice(ElectraPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)

        self.electra = ElectraModel(config)
Julien Plu's avatar
Julien Plu committed
1407
        self.sequence_summary = SequenceSummary(config)
Suraj Patil's avatar
Suraj Patil committed
1408
1409
        self.classifier = nn.Linear(config.hidden_size, 1)

1410
1411
        # Initialize weights and apply final processing
        self.post_init()
Suraj Patil's avatar
Suraj Patil committed
1412

1413
    @add_start_docstrings_to_model_forward(ELECTRA_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length"))
1414
    @add_code_sample_docstrings(
1415
        processor_class=_TOKENIZER_FOR_DOC,
1416
        checkpoint=_CHECKPOINT_FOR_DOC,
1417
1418
1419
        output_type=MultipleChoiceModelOutput,
        config_class=_CONFIG_FOR_DOC,
    )
Suraj Patil's avatar
Suraj Patil committed
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        head_mask=None,
        inputs_embeds=None,
        labels=None,
        output_attentions=None,
1430
        output_hidden_states=None,
1431
        return_dict=None,
Suraj Patil's avatar
Suraj Patil committed
1432
1433
    ):
        r"""
1434
1435
1436
        labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
            Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See
            `input_ids` above)
Suraj Patil's avatar
Suraj Patil committed
1437
        """
1438
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
Suraj Patil's avatar
Suraj Patil committed
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
        num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]

        input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
        attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
        token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
        position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
        inputs_embeds = (
            inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
            if inputs_embeds is not None
            else None
        )

        discriminator_hidden_states = self.electra(
            input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            output_attentions=output_attentions,
1459
            output_hidden_states=output_hidden_states,
1460
            return_dict=return_dict,
Suraj Patil's avatar
Suraj Patil committed
1461
1462
1463
1464
        )

        sequence_output = discriminator_hidden_states[0]

Julien Plu's avatar
Julien Plu committed
1465
        pooled_output = self.sequence_summary(sequence_output)
Suraj Patil's avatar
Suraj Patil committed
1466
1467
1468
        logits = self.classifier(pooled_output)
        reshaped_logits = logits.view(-1, num_choices)

1469
        loss = None
Suraj Patil's avatar
Suraj Patil committed
1470
1471
1472
1473
        if labels is not None:
            loss_fct = CrossEntropyLoss()
            loss = loss_fct(reshaped_logits, labels)

1474
        if not return_dict:
1475
1476
1477
1478
1479
1480
1481
1482
1483
            output = (reshaped_logits,) + discriminator_hidden_states[1:]
            return ((loss,) + output) if loss is not None else output

        return MultipleChoiceModelOutput(
            loss=loss,
            logits=reshaped_logits,
            hidden_states=discriminator_hidden_states.hidden_states,
            attentions=discriminator_hidden_states.attentions,
        )