modeling_electra.py 58 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# coding=utf-8
# Copyright 2019 The Google AI Language Team Authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch ELECTRA model. """

import math
Lysandre Debut's avatar
Lysandre Debut committed
18
import os
19
20
from dataclasses import dataclass
from typing import Optional, Tuple
Lysandre Debut's avatar
Lysandre Debut committed
21
22
23

import torch
import torch.nn as nn
24
from torch.nn import CrossEntropyLoss, MSELoss
Lysandre Debut's avatar
Lysandre Debut committed
25

Sylvain Gugger's avatar
Sylvain Gugger committed
26
27
from ...activations import ACT2FN, get_activation
from ...file_utils import (
28
29
30
    ModelOutput,
    add_code_sample_docstrings,
    add_start_docstrings,
31
    add_start_docstrings_to_model_forward,
32
33
    replace_return_docstrings,
)
Sylvain Gugger's avatar
Sylvain Gugger committed
34
from ...modeling_outputs import (
35
    BaseModelOutputWithCrossAttentions,
36
    BaseModelOutputWithPastAndCrossAttentions,
37
38
39
40
41
42
    MaskedLMOutput,
    MultipleChoiceModelOutput,
    QuestionAnsweringModelOutput,
    SequenceClassifierOutput,
    TokenClassifierOutput,
)
Sylvain Gugger's avatar
Sylvain Gugger committed
43
from ...modeling_utils import (
44
45
46
47
48
49
    PreTrainedModel,
    SequenceSummary,
    apply_chunking_to_forward,
    find_pruneable_heads_and_indices,
    prune_linear_layer,
)
Sylvain Gugger's avatar
Sylvain Gugger committed
50
51
from ...utils import logging
from .configuration_electra import ElectraConfig
Lysandre Debut's avatar
Lysandre Debut committed
52
53


Lysandre Debut's avatar
Lysandre Debut committed
54
logger = logging.get_logger(__name__)
Lysandre Debut's avatar
Lysandre Debut committed
55

56
_CONFIG_FOR_DOC = "ElectraConfig"
57
_TOKENIZER_FOR_DOC = "ElectraTokenizer"
Lysandre Debut's avatar
Lysandre Debut committed
58

59
60
61
62
63
64
65
66
67
ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST = [
    "google/electra-small-generator",
    "google/electra-base-generator",
    "google/electra-large-generator",
    "google/electra-small-discriminator",
    "google/electra-base-discriminator",
    "google/electra-large-discriminator",
    # See all ELECTRA models at https://huggingface.co/models?filter=electra
]
Lysandre Debut's avatar
Lysandre Debut committed
68
69
70


def load_tf_weights_in_electra(model, config, tf_checkpoint_path, discriminator_or_generator="discriminator"):
Lysandre's avatar
Lysandre committed
71
    """Load tf checkpoints in a pytorch model."""
Lysandre Debut's avatar
Lysandre Debut committed
72
73
    try:
        import re
74

Lysandre Debut's avatar
Lysandre Debut committed
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
        import numpy as np
        import tensorflow as tf
    except ImportError:
        logger.error(
            "Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see "
            "https://www.tensorflow.org/install/ for installation instructions."
        )
        raise
    tf_path = os.path.abspath(tf_checkpoint_path)
    logger.info("Converting TensorFlow checkpoint from {}".format(tf_path))
    # Load weights from TF model
    init_vars = tf.train.list_variables(tf_path)
    names = []
    arrays = []
    for name, shape in init_vars:
        logger.info("Loading TF weight {} with shape {}".format(name, shape))
        array = tf.train.load_variable(tf_path, name)
        names.append(name)
        arrays.append(array)
    for name, array in zip(names, arrays):
        original_name: str = name

        try:
            if isinstance(model, ElectraForMaskedLM):
                name = name.replace("electra/embeddings/", "generator/embeddings/")

            if discriminator_or_generator == "generator":
                name = name.replace("electra/", "discriminator/")
                name = name.replace("generator/", "electra/")

            name = name.replace("dense_1", "dense_prediction")
            name = name.replace("generator_predictions/output_bias", "generator_lm_head/bias")

            name = name.split("/")
            # print(original_name, name)
            # adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
            # which are not required for using pretrained model
            if any(n in ["global_step", "temperature"] for n in name):
                logger.info("Skipping {}".format(original_name))
                continue
            pointer = model
            for m_name in name:
                if re.fullmatch(r"[A-Za-z]+_\d+", m_name):
                    scope_names = re.split(r"_(\d+)", m_name)
                else:
                    scope_names = [m_name]
                if scope_names[0] == "kernel" or scope_names[0] == "gamma":
                    pointer = getattr(pointer, "weight")
                elif scope_names[0] == "output_bias" or scope_names[0] == "beta":
                    pointer = getattr(pointer, "bias")
                elif scope_names[0] == "output_weights":
                    pointer = getattr(pointer, "weight")
                elif scope_names[0] == "squad":
                    pointer = getattr(pointer, "classifier")
                else:
                    pointer = getattr(pointer, scope_names[0])
                if len(scope_names) >= 2:
                    num = int(scope_names[1])
                    pointer = pointer[num]
            if m_name.endswith("_embeddings"):
                pointer = getattr(pointer, "weight")
            elif m_name == "kernel":
                array = np.transpose(array)
            try:
Teven's avatar
Teven committed
139
140
141
                assert (
                    pointer.shape == array.shape
                ), f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched"
Lysandre Debut's avatar
Lysandre Debut committed
142
143
144
145
146
147
148
149
150
151
152
            except AssertionError as e:
                e.args += (pointer.shape, array.shape)
                raise
            print("Initialize PyTorch weight {}".format(name), original_name)
            pointer.data = torch.from_numpy(array)
        except AttributeError as e:
            print("Skipping {}".format(original_name), name, e)
            continue
    return model


153
class ElectraEmbeddings(nn.Module):
Lysandre Debut's avatar
Lysandre Debut committed
154
155
156
    """Construct the embeddings from word, position and token_type embeddings."""

    def __init__(self, config):
157
        super().__init__()
Lysandre Debut's avatar
Lysandre Debut committed
158
159
160
161
162
163
        self.word_embeddings = nn.Embedding(config.vocab_size, config.embedding_size, padding_idx=config.pad_token_id)
        self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.embedding_size)
        self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.embedding_size)

        # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
        # any TensorFlow checkpoint file
164
165
166
167
168
        self.LayerNorm = nn.LayerNorm(config.embedding_size, eps=config.layer_norm_eps)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

        # position_ids (1, len position emb) is contiguous in memory and exported when serialized
        self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)))
169
        self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
170

Sylvain Gugger's avatar
Sylvain Gugger committed
171
    # Copied from transformers.models.bert.modeling_bert.BertEmbeddings.forward
172
173
174
    def forward(
        self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None, past_key_values_length=0
    ):
175
176
177
178
179
180
181
182
        if input_ids is not None:
            input_shape = input_ids.size()
        else:
            input_shape = inputs_embeds.size()[:-1]

        seq_length = input_shape[1]

        if position_ids is None:
183
            position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length]
184
185
186
187
188
189
190
191

        if token_type_ids is None:
            token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)

        if inputs_embeds is None:
            inputs_embeds = self.word_embeddings(input_ids)
        token_type_embeddings = self.token_type_embeddings(token_type_ids)

192
193
194
195
        embeddings = inputs_embeds + token_type_embeddings
        if self.position_embedding_type == "absolute":
            position_embeddings = self.position_embeddings(position_ids)
            embeddings += position_embeddings
196
197
198
199
200
        embeddings = self.LayerNorm(embeddings)
        embeddings = self.dropout(embeddings)
        return embeddings


Sylvain Gugger's avatar
Sylvain Gugger committed
201
# Copied from transformers.models.bert.modeling_bert.BertSelfAttention with Bert->Electra
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
class ElectraSelfAttention(nn.Module):
    def __init__(self, config):
        super().__init__()
        if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
            raise ValueError(
                "The hidden size (%d) is not a multiple of the number of attention "
                "heads (%d)" % (config.hidden_size, config.num_attention_heads)
            )

        self.num_attention_heads = config.num_attention_heads
        self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
        self.all_head_size = self.num_attention_heads * self.attention_head_size

        self.query = nn.Linear(config.hidden_size, self.all_head_size)
        self.key = nn.Linear(config.hidden_size, self.all_head_size)
        self.value = nn.Linear(config.hidden_size, self.all_head_size)

        self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
220
        self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
221
222
223
        if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
            self.max_position_embeddings = config.max_position_embeddings
            self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size)
224

225
226
        self.is_decoder = config.is_decoder

227
228
229
230
231
232
233
234
235
236
237
238
    def transpose_for_scores(self, x):
        new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
        x = x.view(*new_x_shape)
        return x.permute(0, 2, 1, 3)

    def forward(
        self,
        hidden_states,
        attention_mask=None,
        head_mask=None,
        encoder_hidden_states=None,
        encoder_attention_mask=None,
239
        past_key_value=None,
240
241
242
243
244
245
246
        output_attentions=False,
    ):
        mixed_query_layer = self.query(hidden_states)

        # If this is instantiated as a cross-attention module, the keys
        # and values come from an encoder; the attention mask needs to be
        # such that the encoder's padding tokens are not attended to.
247
248
249
250
251
252
        is_cross_attention = encoder_hidden_states is not None

        if is_cross_attention and past_key_value is not None:
            # reuse k,v, cross_attentions
            key_layer = past_key_value[0]
            value_layer = past_key_value[1]
253
            attention_mask = encoder_attention_mask
254
255
256
257
258
259
260
261
262
        elif is_cross_attention:
            key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
            value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
            attention_mask = encoder_attention_mask
        elif past_key_value is not None:
            key_layer = self.transpose_for_scores(self.key(hidden_states))
            value_layer = self.transpose_for_scores(self.value(hidden_states))
            key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
            value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
263
        else:
264
265
            key_layer = self.transpose_for_scores(self.key(hidden_states))
            value_layer = self.transpose_for_scores(self.value(hidden_states))
266
267

        query_layer = self.transpose_for_scores(mixed_query_layer)
268
269
270
271
272
273
274
275
276
277

        if self.is_decoder:
            # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
            # Further calls to cross_attention layer can then reuse all cross-attention
            # key/value_states (first "if" case)
            # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
            # all previous decoder key/value_states. Further calls to uni-directional self-attention
            # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
            # if encoder bi-directional self-attention `past_key_value` is always `None`
            past_key_value = (key_layer, value_layer)
278
279
280

        # Take the dot product between "query" and "key" to get the raw attention scores.
        attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297

        if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
            seq_length = hidden_states.size()[1]
            position_ids_l = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(-1, 1)
            position_ids_r = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(1, -1)
            distance = position_ids_l - position_ids_r
            positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
            positional_embedding = positional_embedding.to(dtype=query_layer.dtype)  # fp16 compatibility

            if self.position_embedding_type == "relative_key":
                relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
                attention_scores = attention_scores + relative_position_scores
            elif self.position_embedding_type == "relative_key_query":
                relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
                relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
                attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key

298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
        attention_scores = attention_scores / math.sqrt(self.attention_head_size)
        if attention_mask is not None:
            # Apply the attention mask is (precomputed for all layers in ElectraModel forward() function)
            attention_scores = attention_scores + attention_mask

        # Normalize the attention scores to probabilities.
        attention_probs = nn.Softmax(dim=-1)(attention_scores)

        # This is actually dropping out entire tokens to attend to, which might
        # seem a bit unusual, but is taken from the original Transformer paper.
        attention_probs = self.dropout(attention_probs)

        # Mask heads if we want to
        if head_mask is not None:
            attention_probs = attention_probs * head_mask

        context_layer = torch.matmul(attention_probs, value_layer)

        context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
        new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
        context_layer = context_layer.view(*new_context_layer_shape)

        outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
321
322
323

        if self.is_decoder:
            outputs = outputs + (past_key_value,)
324
325
326
        return outputs


Sylvain Gugger's avatar
Sylvain Gugger committed
327
# Copied from transformers.models.bert.modeling_bert.BertSelfOutput
328
329
330
331
332
333
334
335
336
337
338
339
340
341
class ElectraSelfOutput(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
        self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

    def forward(self, hidden_states, input_tensor):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.dropout(hidden_states)
        hidden_states = self.LayerNorm(hidden_states + input_tensor)
        return hidden_states


Sylvain Gugger's avatar
Sylvain Gugger committed
342
# Copied from transformers.models.bert.modeling_bert.BertAttention with Bert->Electra
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
class ElectraAttention(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.self = ElectraSelfAttention(config)
        self.output = ElectraSelfOutput(config)
        self.pruned_heads = set()

    def prune_heads(self, heads):
        if len(heads) == 0:
            return
        heads, index = find_pruneable_heads_and_indices(
            heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
        )

        # Prune linear layers
        self.self.query = prune_linear_layer(self.self.query, index)
        self.self.key = prune_linear_layer(self.self.key, index)
        self.self.value = prune_linear_layer(self.self.value, index)
        self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)

        # Update hyper params and store pruned heads
        self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
        self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
        self.pruned_heads = self.pruned_heads.union(heads)

    def forward(
        self,
        hidden_states,
        attention_mask=None,
        head_mask=None,
        encoder_hidden_states=None,
        encoder_attention_mask=None,
375
        past_key_value=None,
376
377
378
379
380
381
382
383
        output_attentions=False,
    ):
        self_outputs = self.self(
            hidden_states,
            attention_mask,
            head_mask,
            encoder_hidden_states,
            encoder_attention_mask,
384
            past_key_value,
385
386
387
388
389
390
391
            output_attentions,
        )
        attention_output = self.output(self_outputs[0], hidden_states)
        outputs = (attention_output,) + self_outputs[1:]  # add attentions if we output them
        return outputs


Sylvain Gugger's avatar
Sylvain Gugger committed
392
# Copied from transformers.models.bert.modeling_bert.BertIntermediate
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
class ElectraIntermediate(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
        if isinstance(config.hidden_act, str):
            self.intermediate_act_fn = ACT2FN[config.hidden_act]
        else:
            self.intermediate_act_fn = config.hidden_act

    def forward(self, hidden_states):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.intermediate_act_fn(hidden_states)
        return hidden_states


Sylvain Gugger's avatar
Sylvain Gugger committed
408
# Copied from transformers.models.bert.modeling_bert.BertOutput
409
410
411
412
413
414
415
416
417
418
419
420
421
422
class ElectraOutput(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
        self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

    def forward(self, hidden_states, input_tensor):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.dropout(hidden_states)
        hidden_states = self.LayerNorm(hidden_states + input_tensor)
        return hidden_states


Sylvain Gugger's avatar
Sylvain Gugger committed
423
# Copied from transformers.models.bert.modeling_bert.BertLayer with Bert->Electra
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
class ElectraLayer(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.chunk_size_feed_forward = config.chunk_size_feed_forward
        self.seq_len_dim = 1
        self.attention = ElectraAttention(config)
        self.is_decoder = config.is_decoder
        self.add_cross_attention = config.add_cross_attention
        if self.add_cross_attention:
            assert self.is_decoder, f"{self} should be used as a decoder model if cross attention is added"
            self.crossattention = ElectraAttention(config)
        self.intermediate = ElectraIntermediate(config)
        self.output = ElectraOutput(config)

    def forward(
        self,
        hidden_states,
        attention_mask=None,
        head_mask=None,
        encoder_hidden_states=None,
        encoder_attention_mask=None,
445
        past_key_value=None,
446
447
        output_attentions=False,
    ):
448
449
        # decoder uni-directional self-attention cached key/values tuple is at positions 1,2
        self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
450
451
452
453
454
        self_attention_outputs = self.attention(
            hidden_states,
            attention_mask,
            head_mask,
            output_attentions=output_attentions,
455
            past_key_value=self_attn_past_key_value,
456
457
458
        )
        attention_output = self_attention_outputs[0]

459
460
461
462
463
464
465
466
        # if decoder, the last output is tuple of self-attn cache
        if self.is_decoder:
            outputs = self_attention_outputs[1:-1]
            present_key_value = self_attention_outputs[-1]
        else:
            outputs = self_attention_outputs[1:]  # add self attentions if we output attention weights

        cross_attn_present_key_value = None
467
468
469
470
        if self.is_decoder and encoder_hidden_states is not None:
            assert hasattr(
                self, "crossattention"
            ), f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers by setting `config.add_cross_attention=True`"
471
472
473

            # cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple
            cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
474
475
476
477
478
479
            cross_attention_outputs = self.crossattention(
                attention_output,
                attention_mask,
                head_mask,
                encoder_hidden_states,
                encoder_attention_mask,
480
                cross_attn_past_key_value,
481
482
483
                output_attentions,
            )
            attention_output = cross_attention_outputs[0]
484
485
486
487
488
            outputs = outputs + cross_attention_outputs[1:-1]  # add cross attentions if we output attention weights

            # add cross-attn cache to positions 3,4 of present_key_value tuple
            cross_attn_present_key_value = cross_attention_outputs[-1]
            present_key_value = present_key_value + cross_attn_present_key_value
489
490
491
492
493

        layer_output = apply_chunking_to_forward(
            self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
        )
        outputs = (layer_output,) + outputs
494
495
496
497
498

        # if decoder, return the attn key/values as the last output
        if self.is_decoder:
            outputs = outputs + (present_key_value,)

499
500
501
502
503
504
505
506
        return outputs

    def feed_forward_chunk(self, attention_output):
        intermediate_output = self.intermediate(attention_output)
        layer_output = self.output(intermediate_output, attention_output)
        return layer_output


Sylvain Gugger's avatar
Sylvain Gugger committed
507
# Copied from transformers.models.bert.modeling_bert.BertEncoder with Bert->Electra
508
509
510
511
512
513
514
515
516
517
518
519
520
class ElectraEncoder(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.config = config
        self.layer = nn.ModuleList([ElectraLayer(config) for _ in range(config.num_hidden_layers)])

    def forward(
        self,
        hidden_states,
        attention_mask=None,
        head_mask=None,
        encoder_hidden_states=None,
        encoder_attention_mask=None,
521
522
        past_key_values=None,
        use_cache=None,
523
524
        output_attentions=False,
        output_hidden_states=False,
525
        return_dict=True,
526
527
    ):
        all_hidden_states = () if output_hidden_states else None
528
529
        all_self_attentions = () if output_attentions else None
        all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
530
531

        next_decoder_cache = () if use_cache else None
532
533
534
535
536
        for i, layer_module in enumerate(self.layer):
            if output_hidden_states:
                all_hidden_states = all_hidden_states + (hidden_states,)

            layer_head_mask = head_mask[i] if head_mask is not None else None
537
            past_key_value = past_key_values[i] if past_key_values is not None else None
538
539
540
541
            if getattr(self.config, "gradient_checkpointing", False):

                def create_custom_forward(module):
                    def custom_forward(*inputs):
542
                        return module(*inputs, past_key_value, output_attentions)
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560

                    return custom_forward

                layer_outputs = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(layer_module),
                    hidden_states,
                    attention_mask,
                    layer_head_mask,
                    encoder_hidden_states,
                    encoder_attention_mask,
                )
            else:
                layer_outputs = layer_module(
                    hidden_states,
                    attention_mask,
                    layer_head_mask,
                    encoder_hidden_states,
                    encoder_attention_mask,
561
                    past_key_value,
562
563
                    output_attentions,
                )
564

565
            hidden_states = layer_outputs[0]
566
567
            if use_cache:
                next_decoder_cache += (layer_outputs[-1],)
568
            if output_attentions:
569
570
571
                all_self_attentions = all_self_attentions + (layer_outputs[1],)
                if self.config.add_cross_attention:
                    all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
572
573
574
575
576

        if output_hidden_states:
            all_hidden_states = all_hidden_states + (hidden_states,)

        if not return_dict:
577
578
            return tuple(
                v
579
580
581
582
583
584
585
                for v in [
                    hidden_states,
                    next_decoder_cache,
                    all_hidden_states,
                    all_self_attentions,
                    all_cross_attentions,
                ]
586
587
                if v is not None
            )
588
        return BaseModelOutputWithPastAndCrossAttentions(
589
            last_hidden_state=hidden_states,
590
            past_key_values=next_decoder_cache,
591
592
593
            hidden_states=all_hidden_states,
            attentions=all_self_attentions,
            cross_attentions=all_cross_attentions,
594
        )
Lysandre Debut's avatar
Lysandre Debut committed
595
596
597
598
599
600
601
602
603
604
605
606


class ElectraDiscriminatorPredictions(nn.Module):
    """Prediction module for the discriminator, made up of two dense layers."""

    def __init__(self, config):
        super().__init__()

        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
        self.dense_prediction = nn.Linear(config.hidden_size, 1)
        self.config = config

607
    def forward(self, discriminator_hidden_states):
Lysandre Debut's avatar
Lysandre Debut committed
608
609
        hidden_states = self.dense(discriminator_hidden_states)
        hidden_states = get_activation(self.config.hidden_act)(hidden_states)
610
        logits = self.dense_prediction(hidden_states).squeeze(-1)
Lysandre Debut's avatar
Lysandre Debut committed
611
612
613
614
615
616
617
618
619
620

        return logits


class ElectraGeneratorPredictions(nn.Module):
    """Prediction module for the generator, made up of two dense layers."""

    def __init__(self, config):
        super().__init__()

621
        self.LayerNorm = nn.LayerNorm(config.embedding_size)
Lysandre Debut's avatar
Lysandre Debut committed
622
623
624
625
626
627
628
629
630
631
        self.dense = nn.Linear(config.hidden_size, config.embedding_size)

    def forward(self, generator_hidden_states):
        hidden_states = self.dense(generator_hidden_states)
        hidden_states = get_activation("gelu")(hidden_states)
        hidden_states = self.LayerNorm(hidden_states)

        return hidden_states


632
class ElectraPreTrainedModel(PreTrainedModel):
Sylvain Gugger's avatar
Sylvain Gugger committed
633
634
635
    """
    An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
    models.
Lysandre Debut's avatar
Lysandre Debut committed
636
637
638
639
640
    """

    config_class = ElectraConfig
    load_tf_weights = load_tf_weights_in_electra
    base_model_prefix = "electra"
641
642
    _keys_to_ignore_on_load_missing = [r"position_ids"]
    _keys_to_ignore_on_load_unexpected = [r"electra\.embeddings_project\.weight", r"electra\.embeddings_project\.bias"]
Lysandre Debut's avatar
Lysandre Debut committed
643

Sylvain Gugger's avatar
Sylvain Gugger committed
644
    # Copied from transformers.models.bert.modeling_bert.BertPreTrainedModel._init_weights
645
646
647
648
649
650
651
652
653
654
655
656
    def _init_weights(self, module):
        """ Initialize the weights """
        if isinstance(module, (nn.Linear, nn.Embedding)):
            # Slightly different from the TF version which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
        elif isinstance(module, nn.LayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)
        if isinstance(module, nn.Linear) and module.bias is not None:
            module.bias.data.zero_()

Lysandre Debut's avatar
Lysandre Debut committed
657

658
@dataclass
Sylvain Gugger's avatar
Sylvain Gugger committed
659
class ElectraForPreTrainingOutput(ModelOutput):
660
    """
661
    Output type of :class:`~transformers.ElectraForPreTraining`.
662
663

    Args:
664
        loss (`optional`, returned when ``labels`` is provided, ``torch.FloatTensor`` of shape :obj:`(1,)`):
665
            Total loss of the ELECTRA objective.
666
        logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`):
667
668
669
670
671
672
673
            Prediction scores of the head (scores for each token before SoftMax).
        hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
            Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
            of shape :obj:`(batch_size, sequence_length, hidden_size)`.

            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
        attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
Sylvain Gugger's avatar
Sylvain Gugger committed
674
675
            Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads,
            sequence_length, sequence_length)`.
676
677
678
679
680

            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
            heads.
    """

681
682
    loss: Optional[torch.FloatTensor] = None
    logits: torch.FloatTensor = None
683
684
685
686
    hidden_states: Optional[Tuple[torch.FloatTensor]] = None
    attentions: Optional[Tuple[torch.FloatTensor]] = None


Lysandre Debut's avatar
Lysandre Debut committed
687
ELECTRA_START_DOCSTRING = r"""
Sylvain Gugger's avatar
Sylvain Gugger committed
688
689
690
691
692

    This model inherits from :class:`~transformers.PreTrainedModel`. Check the superclass documentation for the generic
    methods the library implements for all its model (such as downloading or saving, resizing the input embeddings,
    pruning heads etc.)

Sylvain Gugger's avatar
Sylvain Gugger committed
693
694
695
    This model is also a PyTorch `torch.nn.Module <https://pytorch.org/docs/stable/nn.html#torch.nn.Module>`__
    subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to
    general usage and behavior.
Lysandre Debut's avatar
Lysandre Debut committed
696
697
698

    Parameters:
        config (:class:`~transformers.ElectraConfig`): Model configuration class with all the parameters of the model.
Sylvain Gugger's avatar
Sylvain Gugger committed
699
700
701
            Initializing with a config file does not load the weights associated with the model, only the
            configuration. Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model
            weights.
Lysandre Debut's avatar
Lysandre Debut committed
702
703
704
705
"""

ELECTRA_INPUTS_DOCSTRING = r"""
    Args:
Sylvain Gugger's avatar
Sylvain Gugger committed
706
        input_ids (:obj:`torch.LongTensor` of shape :obj:`({0})`):
Lysandre Debut's avatar
Lysandre Debut committed
707
708
            Indices of input sequence tokens in the vocabulary.

Sylvain Gugger's avatar
Sylvain Gugger committed
709
710
711
            Indices can be obtained using :class:`~transformers.ElectraTokenizer`. See
            :meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__` for
            details.
Lysandre Debut's avatar
Lysandre Debut committed
712
713

            `What are input IDs? <../glossary.html#input-ids>`__
Sylvain Gugger's avatar
Sylvain Gugger committed
714
        attention_mask (:obj:`torch.FloatTensor` of shape :obj:`({0})`, `optional`):
Sylvain Gugger's avatar
Sylvain Gugger committed
715
            Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``:
Sylvain Gugger's avatar
Sylvain Gugger committed
716
717

            - 1 for tokens that are **not masked**,
718
            - 0 for tokens that are **masked**.
Lysandre Debut's avatar
Lysandre Debut committed
719
720

            `What are attention masks? <../glossary.html#attention-mask>`__
Sylvain Gugger's avatar
Sylvain Gugger committed
721
        token_type_ids (:obj:`torch.LongTensor` of shape :obj:`({0})`, `optional`):
Sylvain Gugger's avatar
Sylvain Gugger committed
722
723
            Segment token indices to indicate first and second portions of the inputs. Indices are selected in ``[0,
            1]``:
Sylvain Gugger's avatar
Sylvain Gugger committed
724
725
726

            - 0 corresponds to a `sentence A` token,
            - 1 corresponds to a `sentence B` token.
Lysandre Debut's avatar
Lysandre Debut committed
727
728

            `What are token type IDs? <../glossary.html#token-type-ids>`_
Sylvain Gugger's avatar
Sylvain Gugger committed
729
        position_ids (:obj:`torch.LongTensor` of shape :obj:`({0})`, `optional`):
Sylvain Gugger's avatar
Sylvain Gugger committed
730
731
            Indices of positions of each input sequence tokens in the position embeddings. Selected in the range ``[0,
            config.max_position_embeddings - 1]``.
Lysandre Debut's avatar
Lysandre Debut committed
732
733

            `What are position IDs? <../glossary.html#position-ids>`_
734
        head_mask (:obj:`torch.FloatTensor` of shape :obj:`(num_heads,)` or :obj:`(num_layers, num_heads)`, `optional`):
Sylvain Gugger's avatar
Sylvain Gugger committed
735
            Mask to nullify selected heads of the self-attention modules. Mask values selected in ``[0, 1]``:
Sylvain Gugger's avatar
Sylvain Gugger committed
736
737
738
739
740

            - 1 indicates the head is **not masked**,
            - 0 indicates the head is **masked**.

        inputs_embeds (:obj:`torch.FloatTensor` of shape :obj:`({0}, hidden_size)`, `optional`):
Lysandre Debut's avatar
Lysandre Debut committed
741
            Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation.
Sylvain Gugger's avatar
Sylvain Gugger committed
742
743
744
            This is useful if you want more control over how to convert :obj:`input_ids` indices into associated
            vectors than the model's internal embedding lookup matrix.
        encoder_hidden_states  (:obj:`torch.FloatTensor` of shape :obj:`({0}, hidden_size)`, `optional`):
Sylvain Gugger's avatar
Sylvain Gugger committed
745
746
            Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
            the model is configured as a decoder.
Sylvain Gugger's avatar
Sylvain Gugger committed
747
        encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`({0})`, `optional`):
Sylvain Gugger's avatar
Sylvain Gugger committed
748
749
            Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
            the cross-attention if the model is configured as a decoder. Mask values selected in ``[0, 1]``:
Sylvain Gugger's avatar
Sylvain Gugger committed
750
751
752
753

            - 1 indicates the head is **not masked**,
            - 0 indicates the head is **masked**.

754
        output_attentions (:obj:`bool`, `optional`):
Sylvain Gugger's avatar
Sylvain Gugger committed
755
756
            Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under returned
            tensors for more detail.
757
        output_hidden_states (:obj:`bool`, `optional`):
Sylvain Gugger's avatar
Sylvain Gugger committed
758
759
            Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors for
            more detail.
760
        return_dict (:obj:`bool`, `optional`):
Sylvain Gugger's avatar
Sylvain Gugger committed
761
            Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple.
Lysandre Debut's avatar
Lysandre Debut committed
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
"""


@add_start_docstrings(
    "The bare Electra Model transformer outputting raw hidden-states without any specific head on top. Identical to "
    "the BERT model except that it uses an additional linear layer between the embedding layer and the encoder if the "
    "hidden size and embedding size are different."
    ""
    "Both the generator and discriminator checkpoints may be loaded into this model.",
    ELECTRA_START_DOCSTRING,
)
class ElectraModel(ElectraPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)
        self.embeddings = ElectraEmbeddings(config)

        if config.embedding_size != config.hidden_size:
            self.embeddings_project = nn.Linear(config.embedding_size, config.hidden_size)

781
        self.encoder = ElectraEncoder(config)
Lysandre Debut's avatar
Lysandre Debut committed
782
783
784
785
786
787
788
789
790
791
        self.config = config
        self.init_weights()

    def get_input_embeddings(self):
        return self.embeddings.word_embeddings

    def set_input_embeddings(self, value):
        self.embeddings.word_embeddings = value

    def _prune_heads(self, heads_to_prune):
Sylvain Gugger's avatar
Sylvain Gugger committed
792
793
794
        """
        Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
        class PreTrainedModel
Lysandre Debut's avatar
Lysandre Debut committed
795
796
797
798
        """
        for layer, heads in heads_to_prune.items():
            self.encoder.layer[layer].attention.prune_heads(heads)

799
    @add_start_docstrings_to_model_forward(ELECTRA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
800
801
802
    @add_code_sample_docstrings(
        tokenizer_class=_TOKENIZER_FOR_DOC,
        checkpoint="google/electra-small-discriminator",
803
        output_type=BaseModelOutputWithCrossAttentions,
804
805
        config_class=_CONFIG_FOR_DOC,
    )
Lysandre Debut's avatar
Lysandre Debut committed
806
807
808
809
810
811
812
813
    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        head_mask=None,
        inputs_embeds=None,
814
        output_attentions=None,
Joseph Liu's avatar
Joseph Liu committed
815
        output_hidden_states=None,
816
        return_dict=None,
Lysandre Debut's avatar
Lysandre Debut committed
817
    ):
818
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
Joseph Liu's avatar
Joseph Liu committed
819
820
821
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
822
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
823

Lysandre Debut's avatar
Lysandre Debut committed
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
        if input_ids is not None and inputs_embeds is not None:
            raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
        elif input_ids is not None:
            input_shape = input_ids.size()
        elif inputs_embeds is not None:
            input_shape = inputs_embeds.size()[:-1]
        else:
            raise ValueError("You have to specify either input_ids or inputs_embeds")

        device = input_ids.device if input_ids is not None else inputs_embeds.device

        if attention_mask is None:
            attention_mask = torch.ones(input_shape, device=device)
        if token_type_ids is None:
            token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)

        extended_attention_mask = self.get_extended_attention_mask(attention_mask, input_shape, device)
841
        head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
Lysandre Debut's avatar
Lysandre Debut committed
842
843
844
845
846
847
848
849

        hidden_states = self.embeddings(
            input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds
        )

        if hasattr(self, "embeddings_project"):
            hidden_states = self.embeddings_project(hidden_states)

850
851
852
853
854
        hidden_states = self.encoder(
            hidden_states,
            attention_mask=extended_attention_mask,
            head_mask=head_mask,
            output_attentions=output_attentions,
Joseph Liu's avatar
Joseph Liu committed
855
            output_hidden_states=output_hidden_states,
856
            return_dict=return_dict,
857
        )
Lysandre Debut's avatar
Lysandre Debut committed
858
859
860
861

        return hidden_states


862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
class ElectraClassificationHead(nn.Module):
    """Head for sentence-level classification tasks."""

    def __init__(self, config):
        super().__init__()
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)
        self.out_proj = nn.Linear(config.hidden_size, config.num_labels)

    def forward(self, features, **kwargs):
        x = features[:, 0, :]  # take <s> token (equiv. to [CLS])
        x = self.dropout(x)
        x = self.dense(x)
        x = get_activation("gelu")(x)  # although BERT uses tanh here, it seems Electra authors used gelu here
        x = self.dropout(x)
        x = self.out_proj(x)
        return x


@add_start_docstrings(
Sylvain Gugger's avatar
Sylvain Gugger committed
882
883
884
885
    """
    ELECTRA Model transformer with a sequence classification/regression head on top (a linear layer on top of the
    pooled output) e.g. for GLUE tasks.
    """,
886
887
888
889
890
891
892
893
894
895
896
    ELECTRA_START_DOCSTRING,
)
class ElectraForSequenceClassification(ElectraPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)
        self.num_labels = config.num_labels
        self.electra = ElectraModel(config)
        self.classifier = ElectraClassificationHead(config)

        self.init_weights()

897
    @add_start_docstrings_to_model_forward(ELECTRA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
898
899
900
901
902
903
    @add_code_sample_docstrings(
        tokenizer_class=_TOKENIZER_FOR_DOC,
        checkpoint="google/electra-small-discriminator",
        output_type=SequenceClassifierOutput,
        config_class=_CONFIG_FOR_DOC,
    )
904
905
906
907
908
909
910
911
912
    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        head_mask=None,
        inputs_embeds=None,
        labels=None,
913
        output_attentions=None,
Joseph Liu's avatar
Joseph Liu committed
914
        output_hidden_states=None,
915
        return_dict=None,
916
917
    ):
        r"""
918
        labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
Sylvain Gugger's avatar
Sylvain Gugger committed
919
920
            Labels for computing the sequence classification/regression loss. Indices should be in :obj:`[0, ...,
            config.num_labels - 1]`. If :obj:`config.num_labels == 1` a regression loss is computed (Mean-Square loss),
921
922
            If :obj:`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
        """
923
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
924

925
        discriminator_hidden_states = self.electra(
Joseph Liu's avatar
Joseph Liu committed
926
927
928
929
930
931
932
933
            input_ids,
            attention_mask,
            token_type_ids,
            position_ids,
            head_mask,
            inputs_embeds,
            output_attentions,
            output_hidden_states,
934
            return_dict,
935
936
937
938
939
        )

        sequence_output = discriminator_hidden_states[0]
        logits = self.classifier(sequence_output)

940
        loss = None
941
942
943
944
945
946
947
948
949
        if labels is not None:
            if self.num_labels == 1:
                #  We are doing regression
                loss_fct = MSELoss()
                loss = loss_fct(logits.view(-1), labels.view(-1))
            else:
                loss_fct = CrossEntropyLoss()
                loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))

950
        if not return_dict:
951
952
953
954
955
956
957
958
959
            output = (logits,) + discriminator_hidden_states[1:]
            return ((loss,) + output) if loss is not None else output

        return SequenceClassifierOutput(
            loss=loss,
            logits=logits,
            hidden_states=discriminator_hidden_states.hidden_states,
            attentions=discriminator_hidden_states.attentions,
        )
960
961


Lysandre Debut's avatar
Lysandre Debut committed
962
963
@add_start_docstrings(
    """
964
    Electra model with a binary classification head on top as used during pretraining for identifying generated tokens.
Lysandre Debut's avatar
Lysandre Debut committed
965

Sylvain Gugger's avatar
Sylvain Gugger committed
966
967
    It is recommended to load the discriminator checkpoint into that model.
    """,
Lysandre Debut's avatar
Lysandre Debut committed
968
969
970
971
972
973
974
975
976
977
    ELECTRA_START_DOCSTRING,
)
class ElectraForPreTraining(ElectraPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)

        self.electra = ElectraModel(config)
        self.discriminator_predictions = ElectraDiscriminatorPredictions(config)
        self.init_weights()

978
    @add_start_docstrings_to_model_forward(ELECTRA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
Sylvain Gugger's avatar
Sylvain Gugger committed
979
    @replace_return_docstrings(output_type=ElectraForPreTrainingOutput, config_class=_CONFIG_FOR_DOC)
Lysandre Debut's avatar
Lysandre Debut committed
980
981
982
983
984
985
986
987
988
    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        head_mask=None,
        inputs_embeds=None,
        labels=None,
989
        output_attentions=None,
Joseph Liu's avatar
Joseph Liu committed
990
        output_hidden_states=None,
991
        return_dict=None,
Lysandre Debut's avatar
Lysandre Debut committed
992
993
    ):
        r"""
Sylvain Gugger's avatar
Sylvain Gugger committed
994
        labels (``torch.LongTensor`` of shape ``(batch_size, sequence_length)``, `optional`):
Sylvain Gugger's avatar
Sylvain Gugger committed
995
996
            Labels for computing the ELECTRA loss. Input should be a sequence of tokens (see :obj:`input_ids`
            docstring) Indices should be in ``[0, 1]``:
Sylvain Gugger's avatar
Sylvain Gugger committed
997
998
999

            - 0 indicates the token is an original token,
            - 1 indicates the token was replaced.
Lysandre Debut's avatar
Lysandre Debut committed
1000

Lysandre's avatar
Lysandre committed
1001
        Returns:
Lysandre Debut's avatar
Lysandre Debut committed
1002

Lysandre's avatar
Lysandre committed
1003
        Examples::
Lysandre Debut's avatar
Lysandre Debut committed
1004

Lysandre's avatar
Lysandre committed
1005
1006
            >>> from transformers import ElectraTokenizer, ElectraForPreTraining
            >>> import torch
Lysandre Debut's avatar
Lysandre Debut committed
1007

Lysandre's avatar
Lysandre committed
1008
1009
            >>> tokenizer = ElectraTokenizer.from_pretrained('google/electra-small-discriminator')
            >>> model = ElectraForPreTraining.from_pretrained('google/electra-small-discriminator')
Lysandre Debut's avatar
Lysandre Debut committed
1010

Lysandre's avatar
Lysandre committed
1011
1012
            >>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0)  # Batch size 1
            >>> logits = model(input_ids).logits
Lysandre Debut's avatar
Lysandre Debut committed
1013
        """
1014
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
Lysandre Debut's avatar
Lysandre Debut committed
1015
1016

        discriminator_hidden_states = self.electra(
Joseph Liu's avatar
Joseph Liu committed
1017
1018
1019
1020
1021
1022
1023
1024
            input_ids,
            attention_mask,
            token_type_ids,
            position_ids,
            head_mask,
            inputs_embeds,
            output_attentions,
            output_hidden_states,
1025
            return_dict,
Lysandre Debut's avatar
Lysandre Debut committed
1026
1027
1028
        )
        discriminator_sequence_output = discriminator_hidden_states[0]

1029
        logits = self.discriminator_predictions(discriminator_sequence_output)
Lysandre Debut's avatar
Lysandre Debut committed
1030

1031
        loss = None
Lysandre Debut's avatar
Lysandre Debut committed
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
        if labels is not None:
            loss_fct = nn.BCEWithLogitsLoss()
            if attention_mask is not None:
                active_loss = attention_mask.view(-1, discriminator_sequence_output.shape[1]) == 1
                active_logits = logits.view(-1, discriminator_sequence_output.shape[1])[active_loss]
                active_labels = labels[active_loss]
                loss = loss_fct(active_logits, active_labels.float())
            else:
                loss = loss_fct(logits.view(-1, discriminator_sequence_output.shape[1]), labels.float())

1042
        if not return_dict:
1043
1044
            output = (logits,) + discriminator_hidden_states[1:]
            return ((loss,) + output) if loss is not None else output
Lysandre Debut's avatar
Lysandre Debut committed
1045

Sylvain Gugger's avatar
Sylvain Gugger committed
1046
        return ElectraForPreTrainingOutput(
1047
1048
1049
1050
1051
            loss=loss,
            logits=logits,
            hidden_states=discriminator_hidden_states.hidden_states,
            attentions=discriminator_hidden_states.attentions,
        )
Lysandre Debut's avatar
Lysandre Debut committed
1052
1053
1054
1055
1056
1057


@add_start_docstrings(
    """
    Electra model with a language modeling head on top.

Sylvain Gugger's avatar
Sylvain Gugger committed
1058
1059
1060
    Even though both the discriminator and generator may be loaded into this model, the generator is the only model of
    the two to have been trained for the masked language modeling task.
    """,
Lysandre Debut's avatar
Lysandre Debut committed
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
    ELECTRA_START_DOCSTRING,
)
class ElectraForMaskedLM(ElectraPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)

        self.electra = ElectraModel(config)
        self.generator_predictions = ElectraGeneratorPredictions(config)

        self.generator_lm_head = nn.Linear(config.embedding_size, config.vocab_size)
        self.init_weights()

    def get_output_embeddings(self):
        return self.generator_lm_head

1076
1077
1078
    def set_output_embeddings(self, word_embeddings):
        self.generator_lm_head = word_embeddings

1079
    @add_start_docstrings_to_model_forward(ELECTRA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
1080
1081
1082
1083
1084
1085
    @add_code_sample_docstrings(
        tokenizer_class=_TOKENIZER_FOR_DOC,
        checkpoint="google/electra-small-discriminator",
        output_type=MaskedLMOutput,
        config_class=_CONFIG_FOR_DOC,
    )
Lysandre Debut's avatar
Lysandre Debut committed
1086
1087
1088
1089
1090
1091
1092
1093
    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        head_mask=None,
        inputs_embeds=None,
Sylvain Gugger's avatar
Sylvain Gugger committed
1094
        labels=None,
1095
        output_attentions=None,
Joseph Liu's avatar
Joseph Liu committed
1096
        output_hidden_states=None,
1097
        return_dict=None,
Lysandre Debut's avatar
Lysandre Debut committed
1098
1099
    ):
        r"""
1100
        labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
Sylvain Gugger's avatar
Sylvain Gugger committed
1101
1102
1103
            Labels for computing the masked language modeling loss. Indices should be in ``[-100, 0, ...,
            config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-100`` are ignored
            (masked), the loss is only computed for the tokens with labels in ``[0, ..., config.vocab_size]``
Lysandre Debut's avatar
Lysandre Debut committed
1104
        """
1105
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
Lysandre Debut's avatar
Lysandre Debut committed
1106
1107

        generator_hidden_states = self.electra(
Joseph Liu's avatar
Joseph Liu committed
1108
1109
1110
1111
1112
1113
1114
1115
            input_ids,
            attention_mask,
            token_type_ids,
            position_ids,
            head_mask,
            inputs_embeds,
            output_attentions,
            output_hidden_states,
1116
            return_dict,
Lysandre Debut's avatar
Lysandre Debut committed
1117
1118
1119
1120
1121
1122
        )
        generator_sequence_output = generator_hidden_states[0]

        prediction_scores = self.generator_predictions(generator_sequence_output)
        prediction_scores = self.generator_lm_head(prediction_scores)

1123
        loss = None
Lysandre Debut's avatar
Lysandre Debut committed
1124
        # Masked language modeling softmax layer
Sylvain Gugger's avatar
Sylvain Gugger committed
1125
        if labels is not None:
Lysandre Debut's avatar
Lysandre Debut committed
1126
            loss_fct = nn.CrossEntropyLoss()  # -100 index = padding token
Sylvain Gugger's avatar
Sylvain Gugger committed
1127
            loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
Lysandre Debut's avatar
Lysandre Debut committed
1128

1129
        if not return_dict:
1130
1131
            output = (prediction_scores,) + generator_hidden_states[1:]
            return ((loss,) + output) if loss is not None else output
Lysandre Debut's avatar
Lysandre Debut committed
1132

1133
1134
1135
1136
1137
1138
        return MaskedLMOutput(
            loss=loss,
            logits=prediction_scores,
            hidden_states=generator_hidden_states.hidden_states,
            attentions=generator_hidden_states.attentions,
        )
Lysandre Debut's avatar
Lysandre Debut committed
1139
1140
1141
1142
1143
1144


@add_start_docstrings(
    """
    Electra model with a token classification head on top.

Sylvain Gugger's avatar
Sylvain Gugger committed
1145
1146
    Both the discriminator and generator may be loaded into this model.
    """,
Lysandre Debut's avatar
Lysandre Debut committed
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
    ELECTRA_START_DOCSTRING,
)
class ElectraForTokenClassification(ElectraPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)

        self.electra = ElectraModel(config)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)
        self.classifier = nn.Linear(config.hidden_size, config.num_labels)
        self.init_weights()

1158
    @add_start_docstrings_to_model_forward(ELECTRA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
1159
1160
1161
1162
1163
1164
    @add_code_sample_docstrings(
        tokenizer_class=_TOKENIZER_FOR_DOC,
        checkpoint="google/electra-small-discriminator",
        output_type=TokenClassifierOutput,
        config_class=_CONFIG_FOR_DOC,
    )
Lysandre Debut's avatar
Lysandre Debut committed
1165
1166
1167
1168
1169
1170
1171
1172
1173
    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        head_mask=None,
        inputs_embeds=None,
        labels=None,
1174
        output_attentions=None,
Joseph Liu's avatar
Joseph Liu committed
1175
        output_hidden_states=None,
1176
        return_dict=None,
Lysandre Debut's avatar
Lysandre Debut committed
1177
1178
    ):
        r"""
1179
        labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
Sylvain Gugger's avatar
Sylvain Gugger committed
1180
1181
            Labels for computing the token classification loss. Indices should be in ``[0, ..., config.num_labels -
            1]``.
Lysandre Debut's avatar
Lysandre Debut committed
1182
        """
1183
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
Lysandre Debut's avatar
Lysandre Debut committed
1184
1185

        discriminator_hidden_states = self.electra(
Joseph Liu's avatar
Joseph Liu committed
1186
1187
1188
1189
1190
1191
1192
1193
            input_ids,
            attention_mask,
            token_type_ids,
            position_ids,
            head_mask,
            inputs_embeds,
            output_attentions,
            output_hidden_states,
1194
            return_dict,
Lysandre Debut's avatar
Lysandre Debut committed
1195
1196
1197
1198
1199
1200
        )
        discriminator_sequence_output = discriminator_hidden_states[0]

        discriminator_sequence_output = self.dropout(discriminator_sequence_output)
        logits = self.classifier(discriminator_sequence_output)

1201
        loss = None
Lysandre Debut's avatar
Lysandre Debut committed
1202
1203
1204
1205
1206
1207
1208
1209
1210
        if labels is not None:
            loss_fct = nn.CrossEntropyLoss()
            # Only keep active parts of the loss
            if attention_mask is not None:
                active_loss = attention_mask.view(-1) == 1
                active_logits = logits.view(-1, self.config.num_labels)[active_loss]
                active_labels = labels.view(-1)[active_loss]
                loss = loss_fct(active_logits, active_labels)
            else:
LysandreJik's avatar
LysandreJik committed
1211
                loss = loss_fct(logits.view(-1, self.config.num_labels), labels.view(-1))
Lysandre Debut's avatar
Lysandre Debut committed
1212

1213
        if not return_dict:
1214
1215
            output = (logits,) + discriminator_hidden_states[1:]
            return ((loss,) + output) if loss is not None else output
Lysandre Debut's avatar
Lysandre Debut committed
1216

1217
1218
1219
1220
1221
1222
        return TokenClassifierOutput(
            loss=loss,
            logits=logits,
            hidden_states=discriminator_hidden_states.hidden_states,
            attentions=discriminator_hidden_states.attentions,
        )
1223
1224
1225


@add_start_docstrings(
1226
1227
    """
    ELECTRA Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
Sylvain Gugger's avatar
Sylvain Gugger committed
1228
1229
    layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
    """,
1230
    ELECTRA_START_DOCSTRING,
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
)
class ElectraForQuestionAnswering(ElectraPreTrainedModel):
    config_class = ElectraConfig
    base_model_prefix = "electra"

    def __init__(self, config):
        super().__init__(config)
        self.num_labels = config.num_labels

        self.electra = ElectraModel(config)
        self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)

        self.init_weights()

1245
    @add_start_docstrings_to_model_forward(ELECTRA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
1246
1247
1248
1249
1250
1251
    @add_code_sample_docstrings(
        tokenizer_class=_TOKENIZER_FOR_DOC,
        checkpoint="google/electra-small-discriminator",
        output_type=QuestionAnsweringModelOutput,
        config_class=_CONFIG_FOR_DOC,
    )
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        head_mask=None,
        inputs_embeds=None,
        start_positions=None,
        end_positions=None,
        output_attentions=None,
Joseph Liu's avatar
Joseph Liu committed
1263
        output_hidden_states=None,
1264
        return_dict=None,
1265
1266
    ):
        r"""
1267
        start_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
1268
            Labels for position (index) of the start of the labelled span for computing the token classification loss.
Sylvain Gugger's avatar
Sylvain Gugger committed
1269
1270
            Positions are clamped to the length of the sequence (:obj:`sequence_length`). Position outside of the
            sequence are not taken into account for computing the loss.
1271
        end_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
1272
            Labels for position (index) of the end of the labelled span for computing the token classification loss.
Sylvain Gugger's avatar
Sylvain Gugger committed
1273
1274
            Positions are clamped to the length of the sequence (:obj:`sequence_length`). Position outside of the
            sequence are not taken into account for computing the loss.
1275
        """
1276
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1277
1278
1279
1280
1281
1282
1283
1284
1285

        discriminator_hidden_states = self.electra(
            input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            output_attentions=output_attentions,
Joseph Liu's avatar
Joseph Liu committed
1286
            output_hidden_states=output_hidden_states,
1287
1288
1289
1290
1291
1292
1293
1294
1295
        )

        sequence_output = discriminator_hidden_states[0]

        logits = self.qa_outputs(sequence_output)
        start_logits, end_logits = logits.split(1, dim=-1)
        start_logits = start_logits.squeeze(-1)
        end_logits = end_logits.squeeze(-1)

1296
        total_loss = None
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
        if start_positions is not None and end_positions is not None:
            # If we are on multi-GPU, split add a dimension
            if len(start_positions.size()) > 1:
                start_positions = start_positions.squeeze(-1)
            if len(end_positions.size()) > 1:
                end_positions = end_positions.squeeze(-1)
            # sometimes the start/end positions are outside our model inputs, we ignore these terms
            ignored_index = start_logits.size(1)
            start_positions.clamp_(0, ignored_index)
            end_positions.clamp_(0, ignored_index)

            loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
            start_loss = loss_fct(start_logits, start_positions)
            end_loss = loss_fct(end_logits, end_positions)
            total_loss = (start_loss + end_loss) / 2

1313
        if not return_dict:
Lysandre's avatar
Lysandre committed
1314
1315
1316
1317
            output = (
                start_logits,
                end_logits,
            ) + discriminator_hidden_states[1:]
1318
1319
1320
1321
1322
1323
1324
1325
1326
            return ((total_loss,) + output) if total_loss is not None else output

        return QuestionAnsweringModelOutput(
            loss=total_loss,
            start_logits=start_logits,
            end_logits=end_logits,
            hidden_states=discriminator_hidden_states.hidden_states,
            attentions=discriminator_hidden_states.attentions,
        )
Suraj Patil's avatar
Suraj Patil committed
1327
1328
1329


@add_start_docstrings(
Sylvain Gugger's avatar
Sylvain Gugger committed
1330
1331
1332
1333
    """
    ELECTRA Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a
    softmax) e.g. for RocStories/SWAG tasks.
    """,
Sylvain Gugger's avatar
Sylvain Gugger committed
1334
    ELECTRA_START_DOCSTRING,
Suraj Patil's avatar
Suraj Patil committed
1335
1336
1337
1338
1339
1340
)
class ElectraForMultipleChoice(ElectraPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)

        self.electra = ElectraModel(config)
Julien Plu's avatar
Julien Plu committed
1341
        self.sequence_summary = SequenceSummary(config)
Suraj Patil's avatar
Suraj Patil committed
1342
1343
1344
1345
        self.classifier = nn.Linear(config.hidden_size, 1)

        self.init_weights()

1346
    @add_start_docstrings_to_model_forward(ELECTRA_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length"))
1347
1348
1349
1350
1351
1352
    @add_code_sample_docstrings(
        tokenizer_class=_TOKENIZER_FOR_DOC,
        checkpoint="google/electra-small-discriminator",
        output_type=MultipleChoiceModelOutput,
        config_class=_CONFIG_FOR_DOC,
    )
Suraj Patil's avatar
Suraj Patil committed
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        head_mask=None,
        inputs_embeds=None,
        labels=None,
        output_attentions=None,
1363
        output_hidden_states=None,
1364
        return_dict=None,
Suraj Patil's avatar
Suraj Patil committed
1365
1366
    ):
        r"""
1367
        labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
Sylvain Gugger's avatar
Sylvain Gugger committed
1368
1369
1370
            Labels for computing the multiple choice classification loss. Indices should be in ``[0, ...,
            num_choices-1]`` where :obj:`num_choices` is the size of the second dimension of the input tensors. (See
            :obj:`input_ids` above)
Suraj Patil's avatar
Suraj Patil committed
1371
        """
1372
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
Suraj Patil's avatar
Suraj Patil committed
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
        num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]

        input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
        attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
        token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
        position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
        inputs_embeds = (
            inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
            if inputs_embeds is not None
            else None
        )

        discriminator_hidden_states = self.electra(
            input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            output_attentions=output_attentions,
1393
            output_hidden_states=output_hidden_states,
1394
            return_dict=return_dict,
Suraj Patil's avatar
Suraj Patil committed
1395
1396
1397
1398
        )

        sequence_output = discriminator_hidden_states[0]

Julien Plu's avatar
Julien Plu committed
1399
        pooled_output = self.sequence_summary(sequence_output)
Suraj Patil's avatar
Suraj Patil committed
1400
1401
1402
        logits = self.classifier(pooled_output)
        reshaped_logits = logits.view(-1, num_choices)

1403
        loss = None
Suraj Patil's avatar
Suraj Patil committed
1404
1405
1406
1407
        if labels is not None:
            loss_fct = CrossEntropyLoss()
            loss = loss_fct(reshaped_logits, labels)

1408
        if not return_dict:
1409
1410
1411
1412
1413
1414
1415
1416
1417
            output = (reshaped_logits,) + discriminator_hidden_states[1:]
            return ((loss,) + output) if loss is not None else output

        return MultipleChoiceModelOutput(
            loss=loss,
            logits=reshaped_logits,
            hidden_states=discriminator_hidden_states.hidden_states,
            attentions=discriminator_hidden_states.attentions,
        )