modeling_electra.py 54.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# coding=utf-8
# Copyright 2019 The Google AI Language Team Authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch ELECTRA model. """

import math
Lysandre Debut's avatar
Lysandre Debut committed
18
import os
19
20
from dataclasses import dataclass
from typing import Optional, Tuple
Lysandre Debut's avatar
Lysandre Debut committed
21
22
23

import torch
import torch.nn as nn
24
from torch.nn import CrossEntropyLoss, MSELoss
Lysandre Debut's avatar
Lysandre Debut committed
25

Sylvain Gugger's avatar
Sylvain Gugger committed
26
27
from ...activations import ACT2FN, get_activation
from ...file_utils import (
28
29
30
    ModelOutput,
    add_code_sample_docstrings,
    add_start_docstrings,
31
    add_start_docstrings_to_model_forward,
32
33
    replace_return_docstrings,
)
Sylvain Gugger's avatar
Sylvain Gugger committed
34
from ...modeling_outputs import (
35
    BaseModelOutputWithCrossAttentions,
36
37
38
39
40
41
    MaskedLMOutput,
    MultipleChoiceModelOutput,
    QuestionAnsweringModelOutput,
    SequenceClassifierOutput,
    TokenClassifierOutput,
)
Sylvain Gugger's avatar
Sylvain Gugger committed
42
from ...modeling_utils import (
43
44
45
46
47
48
    PreTrainedModel,
    SequenceSummary,
    apply_chunking_to_forward,
    find_pruneable_heads_and_indices,
    prune_linear_layer,
)
Sylvain Gugger's avatar
Sylvain Gugger committed
49
50
from ...utils import logging
from .configuration_electra import ElectraConfig
Lysandre Debut's avatar
Lysandre Debut committed
51
52


Lysandre Debut's avatar
Lysandre Debut committed
53
logger = logging.get_logger(__name__)
Lysandre Debut's avatar
Lysandre Debut committed
54

55
_CONFIG_FOR_DOC = "ElectraConfig"
56
_TOKENIZER_FOR_DOC = "ElectraTokenizer"
Lysandre Debut's avatar
Lysandre Debut committed
57

58
59
60
61
62
63
64
65
66
ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST = [
    "google/electra-small-generator",
    "google/electra-base-generator",
    "google/electra-large-generator",
    "google/electra-small-discriminator",
    "google/electra-base-discriminator",
    "google/electra-large-discriminator",
    # See all ELECTRA models at https://huggingface.co/models?filter=electra
]
Lysandre Debut's avatar
Lysandre Debut committed
67
68
69


def load_tf_weights_in_electra(model, config, tf_checkpoint_path, discriminator_or_generator="discriminator"):
Lysandre's avatar
Lysandre committed
70
    """Load tf checkpoints in a pytorch model."""
Lysandre Debut's avatar
Lysandre Debut committed
71
72
    try:
        import re
73

Lysandre Debut's avatar
Lysandre Debut committed
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
        import numpy as np
        import tensorflow as tf
    except ImportError:
        logger.error(
            "Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see "
            "https://www.tensorflow.org/install/ for installation instructions."
        )
        raise
    tf_path = os.path.abspath(tf_checkpoint_path)
    logger.info("Converting TensorFlow checkpoint from {}".format(tf_path))
    # Load weights from TF model
    init_vars = tf.train.list_variables(tf_path)
    names = []
    arrays = []
    for name, shape in init_vars:
        logger.info("Loading TF weight {} with shape {}".format(name, shape))
        array = tf.train.load_variable(tf_path, name)
        names.append(name)
        arrays.append(array)
    for name, array in zip(names, arrays):
        original_name: str = name

        try:
            if isinstance(model, ElectraForMaskedLM):
                name = name.replace("electra/embeddings/", "generator/embeddings/")

            if discriminator_or_generator == "generator":
                name = name.replace("electra/", "discriminator/")
                name = name.replace("generator/", "electra/")

            name = name.replace("dense_1", "dense_prediction")
            name = name.replace("generator_predictions/output_bias", "generator_lm_head/bias")

            name = name.split("/")
            # print(original_name, name)
            # adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
            # which are not required for using pretrained model
            if any(n in ["global_step", "temperature"] for n in name):
                logger.info("Skipping {}".format(original_name))
                continue
            pointer = model
            for m_name in name:
                if re.fullmatch(r"[A-Za-z]+_\d+", m_name):
                    scope_names = re.split(r"_(\d+)", m_name)
                else:
                    scope_names = [m_name]
                if scope_names[0] == "kernel" or scope_names[0] == "gamma":
                    pointer = getattr(pointer, "weight")
                elif scope_names[0] == "output_bias" or scope_names[0] == "beta":
                    pointer = getattr(pointer, "bias")
                elif scope_names[0] == "output_weights":
                    pointer = getattr(pointer, "weight")
                elif scope_names[0] == "squad":
                    pointer = getattr(pointer, "classifier")
                else:
                    pointer = getattr(pointer, scope_names[0])
                if len(scope_names) >= 2:
                    num = int(scope_names[1])
                    pointer = pointer[num]
            if m_name.endswith("_embeddings"):
                pointer = getattr(pointer, "weight")
            elif m_name == "kernel":
                array = np.transpose(array)
            try:
Teven's avatar
Teven committed
138
139
140
                assert (
                    pointer.shape == array.shape
                ), f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched"
Lysandre Debut's avatar
Lysandre Debut committed
141
142
143
144
145
146
147
148
149
150
151
            except AssertionError as e:
                e.args += (pointer.shape, array.shape)
                raise
            print("Initialize PyTorch weight {}".format(name), original_name)
            pointer.data = torch.from_numpy(array)
        except AttributeError as e:
            print("Skipping {}".format(original_name), name, e)
            continue
    return model


152
class ElectraEmbeddings(nn.Module):
Lysandre Debut's avatar
Lysandre Debut committed
153
154
155
    """Construct the embeddings from word, position and token_type embeddings."""

    def __init__(self, config):
156
        super().__init__()
Lysandre Debut's avatar
Lysandre Debut committed
157
158
159
160
161
162
        self.word_embeddings = nn.Embedding(config.vocab_size, config.embedding_size, padding_idx=config.pad_token_id)
        self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.embedding_size)
        self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.embedding_size)

        # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
        # any TensorFlow checkpoint file
163
164
165
166
167
        self.LayerNorm = nn.LayerNorm(config.embedding_size, eps=config.layer_norm_eps)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

        # position_ids (1, len position emb) is contiguous in memory and exported when serialized
        self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)))
168
        self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
169

Sylvain Gugger's avatar
Sylvain Gugger committed
170
    # Copied from transformers.models.bert.modeling_bert.BertEmbeddings.forward
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
    def forward(self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None):
        if input_ids is not None:
            input_shape = input_ids.size()
        else:
            input_shape = inputs_embeds.size()[:-1]

        seq_length = input_shape[1]

        if position_ids is None:
            position_ids = self.position_ids[:, :seq_length]

        if token_type_ids is None:
            token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)

        if inputs_embeds is None:
            inputs_embeds = self.word_embeddings(input_ids)
        token_type_embeddings = self.token_type_embeddings(token_type_ids)

189
190
191
192
        embeddings = inputs_embeds + token_type_embeddings
        if self.position_embedding_type == "absolute":
            position_embeddings = self.position_embeddings(position_ids)
            embeddings += position_embeddings
193
194
195
196
197
        embeddings = self.LayerNorm(embeddings)
        embeddings = self.dropout(embeddings)
        return embeddings


Sylvain Gugger's avatar
Sylvain Gugger committed
198
# Copied from transformers.models.bert.modeling_bert.BertSelfAttention with Bert->Electra
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
class ElectraSelfAttention(nn.Module):
    def __init__(self, config):
        super().__init__()
        if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
            raise ValueError(
                "The hidden size (%d) is not a multiple of the number of attention "
                "heads (%d)" % (config.hidden_size, config.num_attention_heads)
            )

        self.num_attention_heads = config.num_attention_heads
        self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
        self.all_head_size = self.num_attention_heads * self.attention_head_size

        self.query = nn.Linear(config.hidden_size, self.all_head_size)
        self.key = nn.Linear(config.hidden_size, self.all_head_size)
        self.value = nn.Linear(config.hidden_size, self.all_head_size)

        self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
217
        self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
218
219
220
        if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
            self.max_position_embeddings = config.max_position_embeddings
            self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size)
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254

    def transpose_for_scores(self, x):
        new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
        x = x.view(*new_x_shape)
        return x.permute(0, 2, 1, 3)

    def forward(
        self,
        hidden_states,
        attention_mask=None,
        head_mask=None,
        encoder_hidden_states=None,
        encoder_attention_mask=None,
        output_attentions=False,
    ):
        mixed_query_layer = self.query(hidden_states)

        # If this is instantiated as a cross-attention module, the keys
        # and values come from an encoder; the attention mask needs to be
        # such that the encoder's padding tokens are not attended to.
        if encoder_hidden_states is not None:
            mixed_key_layer = self.key(encoder_hidden_states)
            mixed_value_layer = self.value(encoder_hidden_states)
            attention_mask = encoder_attention_mask
        else:
            mixed_key_layer = self.key(hidden_states)
            mixed_value_layer = self.value(hidden_states)

        query_layer = self.transpose_for_scores(mixed_query_layer)
        key_layer = self.transpose_for_scores(mixed_key_layer)
        value_layer = self.transpose_for_scores(mixed_value_layer)

        # Take the dot product between "query" and "key" to get the raw attention scores.
        attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271

        if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
            seq_length = hidden_states.size()[1]
            position_ids_l = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(-1, 1)
            position_ids_r = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(1, -1)
            distance = position_ids_l - position_ids_r
            positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
            positional_embedding = positional_embedding.to(dtype=query_layer.dtype)  # fp16 compatibility

            if self.position_embedding_type == "relative_key":
                relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
                attention_scores = attention_scores + relative_position_scores
            elif self.position_embedding_type == "relative_key_query":
                relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
                relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
                attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key

272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
        attention_scores = attention_scores / math.sqrt(self.attention_head_size)
        if attention_mask is not None:
            # Apply the attention mask is (precomputed for all layers in ElectraModel forward() function)
            attention_scores = attention_scores + attention_mask

        # Normalize the attention scores to probabilities.
        attention_probs = nn.Softmax(dim=-1)(attention_scores)

        # This is actually dropping out entire tokens to attend to, which might
        # seem a bit unusual, but is taken from the original Transformer paper.
        attention_probs = self.dropout(attention_probs)

        # Mask heads if we want to
        if head_mask is not None:
            attention_probs = attention_probs * head_mask

        context_layer = torch.matmul(attention_probs, value_layer)

        context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
        new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
        context_layer = context_layer.view(*new_context_layer_shape)

        outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
        return outputs


Sylvain Gugger's avatar
Sylvain Gugger committed
298
# Copied from transformers.models.bert.modeling_bert.BertSelfOutput
299
300
301
302
303
304
305
306
307
308
309
310
311
312
class ElectraSelfOutput(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
        self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

    def forward(self, hidden_states, input_tensor):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.dropout(hidden_states)
        hidden_states = self.LayerNorm(hidden_states + input_tensor)
        return hidden_states


Sylvain Gugger's avatar
Sylvain Gugger committed
313
# Copied from transformers.models.bert.modeling_bert.BertAttention with Bert->Electra
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
class ElectraAttention(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.self = ElectraSelfAttention(config)
        self.output = ElectraSelfOutput(config)
        self.pruned_heads = set()

    def prune_heads(self, heads):
        if len(heads) == 0:
            return
        heads, index = find_pruneable_heads_and_indices(
            heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
        )

        # Prune linear layers
        self.self.query = prune_linear_layer(self.self.query, index)
        self.self.key = prune_linear_layer(self.self.key, index)
        self.self.value = prune_linear_layer(self.self.value, index)
        self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)

        # Update hyper params and store pruned heads
        self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
        self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
        self.pruned_heads = self.pruned_heads.union(heads)

    def forward(
        self,
        hidden_states,
        attention_mask=None,
        head_mask=None,
        encoder_hidden_states=None,
        encoder_attention_mask=None,
        output_attentions=False,
    ):
        self_outputs = self.self(
            hidden_states,
            attention_mask,
            head_mask,
            encoder_hidden_states,
            encoder_attention_mask,
            output_attentions,
        )
        attention_output = self.output(self_outputs[0], hidden_states)
        outputs = (attention_output,) + self_outputs[1:]  # add attentions if we output them
        return outputs


Sylvain Gugger's avatar
Sylvain Gugger committed
361
# Copied from transformers.models.bert.modeling_bert.BertIntermediate
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
class ElectraIntermediate(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
        if isinstance(config.hidden_act, str):
            self.intermediate_act_fn = ACT2FN[config.hidden_act]
        else:
            self.intermediate_act_fn = config.hidden_act

    def forward(self, hidden_states):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.intermediate_act_fn(hidden_states)
        return hidden_states


Sylvain Gugger's avatar
Sylvain Gugger committed
377
# Copied from transformers.models.bert.modeling_bert.BertOutput
378
379
380
381
382
383
384
385
386
387
388
389
390
391
class ElectraOutput(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
        self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

    def forward(self, hidden_states, input_tensor):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.dropout(hidden_states)
        hidden_states = self.LayerNorm(hidden_states + input_tensor)
        return hidden_states


Sylvain Gugger's avatar
Sylvain Gugger committed
392
# Copied from transformers.models.bert.modeling_bert.BertLayer with Bert->Electra
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
class ElectraLayer(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.chunk_size_feed_forward = config.chunk_size_feed_forward
        self.seq_len_dim = 1
        self.attention = ElectraAttention(config)
        self.is_decoder = config.is_decoder
        self.add_cross_attention = config.add_cross_attention
        if self.add_cross_attention:
            assert self.is_decoder, f"{self} should be used as a decoder model if cross attention is added"
            self.crossattention = ElectraAttention(config)
        self.intermediate = ElectraIntermediate(config)
        self.output = ElectraOutput(config)

    def forward(
        self,
        hidden_states,
        attention_mask=None,
        head_mask=None,
        encoder_hidden_states=None,
        encoder_attention_mask=None,
        output_attentions=False,
    ):
        self_attention_outputs = self.attention(
            hidden_states,
            attention_mask,
            head_mask,
            output_attentions=output_attentions,
        )
        attention_output = self_attention_outputs[0]
        outputs = self_attention_outputs[1:]  # add self attentions if we output attention weights

        if self.is_decoder and encoder_hidden_states is not None:
            assert hasattr(
                self, "crossattention"
            ), f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers by setting `config.add_cross_attention=True`"
            cross_attention_outputs = self.crossattention(
                attention_output,
                attention_mask,
                head_mask,
                encoder_hidden_states,
                encoder_attention_mask,
                output_attentions,
            )
            attention_output = cross_attention_outputs[0]
            outputs = outputs + cross_attention_outputs[1:]  # add cross attentions if we output attention weights

        layer_output = apply_chunking_to_forward(
            self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
        )
        outputs = (layer_output,) + outputs
        return outputs

    def feed_forward_chunk(self, attention_output):
        intermediate_output = self.intermediate(attention_output)
        layer_output = self.output(intermediate_output, attention_output)
        return layer_output


Sylvain Gugger's avatar
Sylvain Gugger committed
452
# Copied from transformers.models.bert.modeling_bert.BertEncoder with Bert->Electra
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
class ElectraEncoder(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.config = config
        self.layer = nn.ModuleList([ElectraLayer(config) for _ in range(config.num_hidden_layers)])

    def forward(
        self,
        hidden_states,
        attention_mask=None,
        head_mask=None,
        encoder_hidden_states=None,
        encoder_attention_mask=None,
        output_attentions=False,
        output_hidden_states=False,
468
        return_dict=True,
469
470
    ):
        all_hidden_states = () if output_hidden_states else None
471
472
        all_self_attentions = () if output_attentions else None
        all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
        for i, layer_module in enumerate(self.layer):
            if output_hidden_states:
                all_hidden_states = all_hidden_states + (hidden_states,)

            layer_head_mask = head_mask[i] if head_mask is not None else None

            if getattr(self.config, "gradient_checkpointing", False):

                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        return module(*inputs, output_attentions)

                    return custom_forward

                layer_outputs = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(layer_module),
                    hidden_states,
                    attention_mask,
                    layer_head_mask,
                    encoder_hidden_states,
                    encoder_attention_mask,
                )
            else:
                layer_outputs = layer_module(
                    hidden_states,
                    attention_mask,
                    layer_head_mask,
                    encoder_hidden_states,
                    encoder_attention_mask,
                    output_attentions,
                )
            hidden_states = layer_outputs[0]
            if output_attentions:
506
507
508
                all_self_attentions = all_self_attentions + (layer_outputs[1],)
                if self.config.add_cross_attention:
                    all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
509
510
511
512
513

        if output_hidden_states:
            all_hidden_states = all_hidden_states + (hidden_states,)

        if not return_dict:
514
515
516
517
518
519
520
521
522
523
            return tuple(
                v
                for v in [hidden_states, all_hidden_states, all_self_attentions, all_cross_attentions]
                if v is not None
            )
        return BaseModelOutputWithCrossAttentions(
            last_hidden_state=hidden_states,
            hidden_states=all_hidden_states,
            attentions=all_self_attentions,
            cross_attentions=all_cross_attentions,
524
        )
Lysandre Debut's avatar
Lysandre Debut committed
525
526
527
528
529
530
531
532
533
534
535
536


class ElectraDiscriminatorPredictions(nn.Module):
    """Prediction module for the discriminator, made up of two dense layers."""

    def __init__(self, config):
        super().__init__()

        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
        self.dense_prediction = nn.Linear(config.hidden_size, 1)
        self.config = config

537
    def forward(self, discriminator_hidden_states):
Lysandre Debut's avatar
Lysandre Debut committed
538
539
        hidden_states = self.dense(discriminator_hidden_states)
        hidden_states = get_activation(self.config.hidden_act)(hidden_states)
540
        logits = self.dense_prediction(hidden_states).squeeze(-1)
Lysandre Debut's avatar
Lysandre Debut committed
541
542
543
544
545
546
547
548
549
550

        return logits


class ElectraGeneratorPredictions(nn.Module):
    """Prediction module for the generator, made up of two dense layers."""

    def __init__(self, config):
        super().__init__()

551
        self.LayerNorm = nn.LayerNorm(config.embedding_size)
Lysandre Debut's avatar
Lysandre Debut committed
552
553
554
555
556
557
558
559
560
561
        self.dense = nn.Linear(config.hidden_size, config.embedding_size)

    def forward(self, generator_hidden_states):
        hidden_states = self.dense(generator_hidden_states)
        hidden_states = get_activation("gelu")(hidden_states)
        hidden_states = self.LayerNorm(hidden_states)

        return hidden_states


562
class ElectraPreTrainedModel(PreTrainedModel):
Sylvain Gugger's avatar
Sylvain Gugger committed
563
564
565
    """
    An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
    models.
Lysandre Debut's avatar
Lysandre Debut committed
566
567
568
569
570
    """

    config_class = ElectraConfig
    load_tf_weights = load_tf_weights_in_electra
    base_model_prefix = "electra"
571
572
    _keys_to_ignore_on_load_missing = [r"position_ids"]
    _keys_to_ignore_on_load_unexpected = [r"electra\.embeddings_project\.weight", r"electra\.embeddings_project\.bias"]
Lysandre Debut's avatar
Lysandre Debut committed
573

Sylvain Gugger's avatar
Sylvain Gugger committed
574
    # Copied from transformers.models.bert.modeling_bert.BertPreTrainedModel._init_weights
575
576
577
578
579
580
581
582
583
584
585
586
    def _init_weights(self, module):
        """ Initialize the weights """
        if isinstance(module, (nn.Linear, nn.Embedding)):
            # Slightly different from the TF version which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
        elif isinstance(module, nn.LayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)
        if isinstance(module, nn.Linear) and module.bias is not None:
            module.bias.data.zero_()

Lysandre Debut's avatar
Lysandre Debut committed
587

588
@dataclass
Sylvain Gugger's avatar
Sylvain Gugger committed
589
class ElectraForPreTrainingOutput(ModelOutput):
590
    """
591
    Output type of :class:`~transformers.ElectraForPreTraining`.
592
593

    Args:
594
        loss (`optional`, returned when ``labels`` is provided, ``torch.FloatTensor`` of shape :obj:`(1,)`):
595
            Total loss of the ELECTRA objective.
596
        logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`):
597
598
599
600
601
602
603
            Prediction scores of the head (scores for each token before SoftMax).
        hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
            Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
            of shape :obj:`(batch_size, sequence_length, hidden_size)`.

            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
        attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
Sylvain Gugger's avatar
Sylvain Gugger committed
604
605
            Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads,
            sequence_length, sequence_length)`.
606
607
608
609
610

            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
            heads.
    """

611
612
    loss: Optional[torch.FloatTensor] = None
    logits: torch.FloatTensor = None
613
614
615
616
    hidden_states: Optional[Tuple[torch.FloatTensor]] = None
    attentions: Optional[Tuple[torch.FloatTensor]] = None


Lysandre Debut's avatar
Lysandre Debut committed
617
ELECTRA_START_DOCSTRING = r"""
Sylvain Gugger's avatar
Sylvain Gugger committed
618
619
620
621
622

    This model inherits from :class:`~transformers.PreTrainedModel`. Check the superclass documentation for the generic
    methods the library implements for all its model (such as downloading or saving, resizing the input embeddings,
    pruning heads etc.)

Sylvain Gugger's avatar
Sylvain Gugger committed
623
624
625
    This model is also a PyTorch `torch.nn.Module <https://pytorch.org/docs/stable/nn.html#torch.nn.Module>`__
    subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to
    general usage and behavior.
Lysandre Debut's avatar
Lysandre Debut committed
626
627
628

    Parameters:
        config (:class:`~transformers.ElectraConfig`): Model configuration class with all the parameters of the model.
Sylvain Gugger's avatar
Sylvain Gugger committed
629
630
631
            Initializing with a config file does not load the weights associated with the model, only the
            configuration. Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model
            weights.
Lysandre Debut's avatar
Lysandre Debut committed
632
633
634
635
"""

ELECTRA_INPUTS_DOCSTRING = r"""
    Args:
Sylvain Gugger's avatar
Sylvain Gugger committed
636
        input_ids (:obj:`torch.LongTensor` of shape :obj:`({0})`):
Lysandre Debut's avatar
Lysandre Debut committed
637
638
            Indices of input sequence tokens in the vocabulary.

Sylvain Gugger's avatar
Sylvain Gugger committed
639
640
641
            Indices can be obtained using :class:`~transformers.ElectraTokenizer`. See
            :meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__` for
            details.
Lysandre Debut's avatar
Lysandre Debut committed
642
643

            `What are input IDs? <../glossary.html#input-ids>`__
Sylvain Gugger's avatar
Sylvain Gugger committed
644
        attention_mask (:obj:`torch.FloatTensor` of shape :obj:`({0})`, `optional`):
Sylvain Gugger's avatar
Sylvain Gugger committed
645
            Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``:
Sylvain Gugger's avatar
Sylvain Gugger committed
646
647

            - 1 for tokens that are **not masked**,
648
            - 0 for tokens that are **masked**.
Lysandre Debut's avatar
Lysandre Debut committed
649
650

            `What are attention masks? <../glossary.html#attention-mask>`__
Sylvain Gugger's avatar
Sylvain Gugger committed
651
        token_type_ids (:obj:`torch.LongTensor` of shape :obj:`({0})`, `optional`):
Sylvain Gugger's avatar
Sylvain Gugger committed
652
653
            Segment token indices to indicate first and second portions of the inputs. Indices are selected in ``[0,
            1]``:
Sylvain Gugger's avatar
Sylvain Gugger committed
654
655
656

            - 0 corresponds to a `sentence A` token,
            - 1 corresponds to a `sentence B` token.
Lysandre Debut's avatar
Lysandre Debut committed
657
658

            `What are token type IDs? <../glossary.html#token-type-ids>`_
Sylvain Gugger's avatar
Sylvain Gugger committed
659
        position_ids (:obj:`torch.LongTensor` of shape :obj:`({0})`, `optional`):
Sylvain Gugger's avatar
Sylvain Gugger committed
660
661
            Indices of positions of each input sequence tokens in the position embeddings. Selected in the range ``[0,
            config.max_position_embeddings - 1]``.
Lysandre Debut's avatar
Lysandre Debut committed
662
663

            `What are position IDs? <../glossary.html#position-ids>`_
664
        head_mask (:obj:`torch.FloatTensor` of shape :obj:`(num_heads,)` or :obj:`(num_layers, num_heads)`, `optional`):
Sylvain Gugger's avatar
Sylvain Gugger committed
665
            Mask to nullify selected heads of the self-attention modules. Mask values selected in ``[0, 1]``:
Sylvain Gugger's avatar
Sylvain Gugger committed
666
667
668
669
670

            - 1 indicates the head is **not masked**,
            - 0 indicates the head is **masked**.

        inputs_embeds (:obj:`torch.FloatTensor` of shape :obj:`({0}, hidden_size)`, `optional`):
Lysandre Debut's avatar
Lysandre Debut committed
671
            Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation.
Sylvain Gugger's avatar
Sylvain Gugger committed
672
673
674
            This is useful if you want more control over how to convert :obj:`input_ids` indices into associated
            vectors than the model's internal embedding lookup matrix.
        encoder_hidden_states  (:obj:`torch.FloatTensor` of shape :obj:`({0}, hidden_size)`, `optional`):
Sylvain Gugger's avatar
Sylvain Gugger committed
675
676
            Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
            the model is configured as a decoder.
Sylvain Gugger's avatar
Sylvain Gugger committed
677
        encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`({0})`, `optional`):
Sylvain Gugger's avatar
Sylvain Gugger committed
678
679
            Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
            the cross-attention if the model is configured as a decoder. Mask values selected in ``[0, 1]``:
Sylvain Gugger's avatar
Sylvain Gugger committed
680
681
682
683

            - 1 indicates the head is **not masked**,
            - 0 indicates the head is **masked**.

684
        output_attentions (:obj:`bool`, `optional`):
Sylvain Gugger's avatar
Sylvain Gugger committed
685
686
            Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under returned
            tensors for more detail.
687
        output_hidden_states (:obj:`bool`, `optional`):
Sylvain Gugger's avatar
Sylvain Gugger committed
688
689
            Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors for
            more detail.
690
        return_dict (:obj:`bool`, `optional`):
Sylvain Gugger's avatar
Sylvain Gugger committed
691
            Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple.
Lysandre Debut's avatar
Lysandre Debut committed
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
"""


@add_start_docstrings(
    "The bare Electra Model transformer outputting raw hidden-states without any specific head on top. Identical to "
    "the BERT model except that it uses an additional linear layer between the embedding layer and the encoder if the "
    "hidden size and embedding size are different."
    ""
    "Both the generator and discriminator checkpoints may be loaded into this model.",
    ELECTRA_START_DOCSTRING,
)
class ElectraModel(ElectraPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)
        self.embeddings = ElectraEmbeddings(config)

        if config.embedding_size != config.hidden_size:
            self.embeddings_project = nn.Linear(config.embedding_size, config.hidden_size)

711
        self.encoder = ElectraEncoder(config)
Lysandre Debut's avatar
Lysandre Debut committed
712
713
714
715
716
717
718
719
720
721
        self.config = config
        self.init_weights()

    def get_input_embeddings(self):
        return self.embeddings.word_embeddings

    def set_input_embeddings(self, value):
        self.embeddings.word_embeddings = value

    def _prune_heads(self, heads_to_prune):
Sylvain Gugger's avatar
Sylvain Gugger committed
722
723
724
        """
        Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
        class PreTrainedModel
Lysandre Debut's avatar
Lysandre Debut committed
725
726
727
728
        """
        for layer, heads in heads_to_prune.items():
            self.encoder.layer[layer].attention.prune_heads(heads)

729
    @add_start_docstrings_to_model_forward(ELECTRA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
730
731
732
    @add_code_sample_docstrings(
        tokenizer_class=_TOKENIZER_FOR_DOC,
        checkpoint="google/electra-small-discriminator",
733
        output_type=BaseModelOutputWithCrossAttentions,
734
735
        config_class=_CONFIG_FOR_DOC,
    )
Lysandre Debut's avatar
Lysandre Debut committed
736
737
738
739
740
741
742
743
    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        head_mask=None,
        inputs_embeds=None,
744
        output_attentions=None,
Joseph Liu's avatar
Joseph Liu committed
745
        output_hidden_states=None,
746
        return_dict=None,
Lysandre Debut's avatar
Lysandre Debut committed
747
    ):
748
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
Joseph Liu's avatar
Joseph Liu committed
749
750
751
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
752
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
753

Lysandre Debut's avatar
Lysandre Debut committed
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
        if input_ids is not None and inputs_embeds is not None:
            raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
        elif input_ids is not None:
            input_shape = input_ids.size()
        elif inputs_embeds is not None:
            input_shape = inputs_embeds.size()[:-1]
        else:
            raise ValueError("You have to specify either input_ids or inputs_embeds")

        device = input_ids.device if input_ids is not None else inputs_embeds.device

        if attention_mask is None:
            attention_mask = torch.ones(input_shape, device=device)
        if token_type_ids is None:
            token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)

        extended_attention_mask = self.get_extended_attention_mask(attention_mask, input_shape, device)
771
        head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
Lysandre Debut's avatar
Lysandre Debut committed
772
773
774
775
776
777
778
779

        hidden_states = self.embeddings(
            input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds
        )

        if hasattr(self, "embeddings_project"):
            hidden_states = self.embeddings_project(hidden_states)

780
781
782
783
784
        hidden_states = self.encoder(
            hidden_states,
            attention_mask=extended_attention_mask,
            head_mask=head_mask,
            output_attentions=output_attentions,
Joseph Liu's avatar
Joseph Liu committed
785
            output_hidden_states=output_hidden_states,
786
            return_dict=return_dict,
787
        )
Lysandre Debut's avatar
Lysandre Debut committed
788
789
790
791

        return hidden_states


792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
class ElectraClassificationHead(nn.Module):
    """Head for sentence-level classification tasks."""

    def __init__(self, config):
        super().__init__()
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)
        self.out_proj = nn.Linear(config.hidden_size, config.num_labels)

    def forward(self, features, **kwargs):
        x = features[:, 0, :]  # take <s> token (equiv. to [CLS])
        x = self.dropout(x)
        x = self.dense(x)
        x = get_activation("gelu")(x)  # although BERT uses tanh here, it seems Electra authors used gelu here
        x = self.dropout(x)
        x = self.out_proj(x)
        return x


@add_start_docstrings(
Sylvain Gugger's avatar
Sylvain Gugger committed
812
813
814
815
    """
    ELECTRA Model transformer with a sequence classification/regression head on top (a linear layer on top of the
    pooled output) e.g. for GLUE tasks.
    """,
816
817
818
819
820
821
822
823
824
825
826
    ELECTRA_START_DOCSTRING,
)
class ElectraForSequenceClassification(ElectraPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)
        self.num_labels = config.num_labels
        self.electra = ElectraModel(config)
        self.classifier = ElectraClassificationHead(config)

        self.init_weights()

827
    @add_start_docstrings_to_model_forward(ELECTRA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
828
829
830
831
832
833
    @add_code_sample_docstrings(
        tokenizer_class=_TOKENIZER_FOR_DOC,
        checkpoint="google/electra-small-discriminator",
        output_type=SequenceClassifierOutput,
        config_class=_CONFIG_FOR_DOC,
    )
834
835
836
837
838
839
840
841
842
    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        head_mask=None,
        inputs_embeds=None,
        labels=None,
843
        output_attentions=None,
Joseph Liu's avatar
Joseph Liu committed
844
        output_hidden_states=None,
845
        return_dict=None,
846
847
    ):
        r"""
848
        labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
Sylvain Gugger's avatar
Sylvain Gugger committed
849
850
            Labels for computing the sequence classification/regression loss. Indices should be in :obj:`[0, ...,
            config.num_labels - 1]`. If :obj:`config.num_labels == 1` a regression loss is computed (Mean-Square loss),
851
852
            If :obj:`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
        """
853
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
854

855
        discriminator_hidden_states = self.electra(
Joseph Liu's avatar
Joseph Liu committed
856
857
858
859
860
861
862
863
            input_ids,
            attention_mask,
            token_type_ids,
            position_ids,
            head_mask,
            inputs_embeds,
            output_attentions,
            output_hidden_states,
864
            return_dict,
865
866
867
868
869
        )

        sequence_output = discriminator_hidden_states[0]
        logits = self.classifier(sequence_output)

870
        loss = None
871
872
873
874
875
876
877
878
879
        if labels is not None:
            if self.num_labels == 1:
                #  We are doing regression
                loss_fct = MSELoss()
                loss = loss_fct(logits.view(-1), labels.view(-1))
            else:
                loss_fct = CrossEntropyLoss()
                loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))

880
        if not return_dict:
881
882
883
884
885
886
887
888
889
            output = (logits,) + discriminator_hidden_states[1:]
            return ((loss,) + output) if loss is not None else output

        return SequenceClassifierOutput(
            loss=loss,
            logits=logits,
            hidden_states=discriminator_hidden_states.hidden_states,
            attentions=discriminator_hidden_states.attentions,
        )
890
891


Lysandre Debut's avatar
Lysandre Debut committed
892
893
@add_start_docstrings(
    """
894
    Electra model with a binary classification head on top as used during pretraining for identifying generated tokens.
Lysandre Debut's avatar
Lysandre Debut committed
895

Sylvain Gugger's avatar
Sylvain Gugger committed
896
897
    It is recommended to load the discriminator checkpoint into that model.
    """,
Lysandre Debut's avatar
Lysandre Debut committed
898
899
900
901
902
903
904
905
906
907
    ELECTRA_START_DOCSTRING,
)
class ElectraForPreTraining(ElectraPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)

        self.electra = ElectraModel(config)
        self.discriminator_predictions = ElectraDiscriminatorPredictions(config)
        self.init_weights()

908
    @add_start_docstrings_to_model_forward(ELECTRA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
Sylvain Gugger's avatar
Sylvain Gugger committed
909
    @replace_return_docstrings(output_type=ElectraForPreTrainingOutput, config_class=_CONFIG_FOR_DOC)
Lysandre Debut's avatar
Lysandre Debut committed
910
911
912
913
914
915
916
917
918
    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        head_mask=None,
        inputs_embeds=None,
        labels=None,
919
        output_attentions=None,
Joseph Liu's avatar
Joseph Liu committed
920
        output_hidden_states=None,
921
        return_dict=None,
Lysandre Debut's avatar
Lysandre Debut committed
922
923
    ):
        r"""
Sylvain Gugger's avatar
Sylvain Gugger committed
924
        labels (``torch.LongTensor`` of shape ``(batch_size, sequence_length)``, `optional`):
Sylvain Gugger's avatar
Sylvain Gugger committed
925
926
            Labels for computing the ELECTRA loss. Input should be a sequence of tokens (see :obj:`input_ids`
            docstring) Indices should be in ``[0, 1]``:
Sylvain Gugger's avatar
Sylvain Gugger committed
927
928
929

            - 0 indicates the token is an original token,
            - 1 indicates the token was replaced.
Lysandre Debut's avatar
Lysandre Debut committed
930

Lysandre's avatar
Lysandre committed
931
        Returns:
Lysandre Debut's avatar
Lysandre Debut committed
932

Lysandre's avatar
Lysandre committed
933
        Examples::
Lysandre Debut's avatar
Lysandre Debut committed
934

Lysandre's avatar
Lysandre committed
935
936
            >>> from transformers import ElectraTokenizer, ElectraForPreTraining
            >>> import torch
Lysandre Debut's avatar
Lysandre Debut committed
937

Lysandre's avatar
Lysandre committed
938
939
            >>> tokenizer = ElectraTokenizer.from_pretrained('google/electra-small-discriminator')
            >>> model = ElectraForPreTraining.from_pretrained('google/electra-small-discriminator')
Lysandre Debut's avatar
Lysandre Debut committed
940

Lysandre's avatar
Lysandre committed
941
942
            >>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0)  # Batch size 1
            >>> logits = model(input_ids).logits
Lysandre Debut's avatar
Lysandre Debut committed
943
        """
944
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
Lysandre Debut's avatar
Lysandre Debut committed
945
946

        discriminator_hidden_states = self.electra(
Joseph Liu's avatar
Joseph Liu committed
947
948
949
950
951
952
953
954
            input_ids,
            attention_mask,
            token_type_ids,
            position_ids,
            head_mask,
            inputs_embeds,
            output_attentions,
            output_hidden_states,
955
            return_dict,
Lysandre Debut's avatar
Lysandre Debut committed
956
957
958
        )
        discriminator_sequence_output = discriminator_hidden_states[0]

959
        logits = self.discriminator_predictions(discriminator_sequence_output)
Lysandre Debut's avatar
Lysandre Debut committed
960

961
        loss = None
Lysandre Debut's avatar
Lysandre Debut committed
962
963
964
965
966
967
968
969
970
971
        if labels is not None:
            loss_fct = nn.BCEWithLogitsLoss()
            if attention_mask is not None:
                active_loss = attention_mask.view(-1, discriminator_sequence_output.shape[1]) == 1
                active_logits = logits.view(-1, discriminator_sequence_output.shape[1])[active_loss]
                active_labels = labels[active_loss]
                loss = loss_fct(active_logits, active_labels.float())
            else:
                loss = loss_fct(logits.view(-1, discriminator_sequence_output.shape[1]), labels.float())

972
        if not return_dict:
973
974
            output = (logits,) + discriminator_hidden_states[1:]
            return ((loss,) + output) if loss is not None else output
Lysandre Debut's avatar
Lysandre Debut committed
975

Sylvain Gugger's avatar
Sylvain Gugger committed
976
        return ElectraForPreTrainingOutput(
977
978
979
980
981
            loss=loss,
            logits=logits,
            hidden_states=discriminator_hidden_states.hidden_states,
            attentions=discriminator_hidden_states.attentions,
        )
Lysandre Debut's avatar
Lysandre Debut committed
982
983
984
985
986
987


@add_start_docstrings(
    """
    Electra model with a language modeling head on top.

Sylvain Gugger's avatar
Sylvain Gugger committed
988
989
990
    Even though both the discriminator and generator may be loaded into this model, the generator is the only model of
    the two to have been trained for the masked language modeling task.
    """,
Lysandre Debut's avatar
Lysandre Debut committed
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
    ELECTRA_START_DOCSTRING,
)
class ElectraForMaskedLM(ElectraPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)

        self.electra = ElectraModel(config)
        self.generator_predictions = ElectraGeneratorPredictions(config)

        self.generator_lm_head = nn.Linear(config.embedding_size, config.vocab_size)
        self.init_weights()

    def get_output_embeddings(self):
        return self.generator_lm_head

1006
    @add_start_docstrings_to_model_forward(ELECTRA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
1007
1008
1009
1010
1011
1012
    @add_code_sample_docstrings(
        tokenizer_class=_TOKENIZER_FOR_DOC,
        checkpoint="google/electra-small-discriminator",
        output_type=MaskedLMOutput,
        config_class=_CONFIG_FOR_DOC,
    )
Lysandre Debut's avatar
Lysandre Debut committed
1013
1014
1015
1016
1017
1018
1019
1020
    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        head_mask=None,
        inputs_embeds=None,
Sylvain Gugger's avatar
Sylvain Gugger committed
1021
        labels=None,
1022
        output_attentions=None,
Joseph Liu's avatar
Joseph Liu committed
1023
        output_hidden_states=None,
1024
        return_dict=None,
Lysandre Debut's avatar
Lysandre Debut committed
1025
1026
    ):
        r"""
1027
        labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
Sylvain Gugger's avatar
Sylvain Gugger committed
1028
1029
1030
            Labels for computing the masked language modeling loss. Indices should be in ``[-100, 0, ...,
            config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-100`` are ignored
            (masked), the loss is only computed for the tokens with labels in ``[0, ..., config.vocab_size]``
Lysandre Debut's avatar
Lysandre Debut committed
1031
        """
1032
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
Lysandre Debut's avatar
Lysandre Debut committed
1033
1034

        generator_hidden_states = self.electra(
Joseph Liu's avatar
Joseph Liu committed
1035
1036
1037
1038
1039
1040
1041
1042
            input_ids,
            attention_mask,
            token_type_ids,
            position_ids,
            head_mask,
            inputs_embeds,
            output_attentions,
            output_hidden_states,
1043
            return_dict,
Lysandre Debut's avatar
Lysandre Debut committed
1044
1045
1046
1047
1048
1049
        )
        generator_sequence_output = generator_hidden_states[0]

        prediction_scores = self.generator_predictions(generator_sequence_output)
        prediction_scores = self.generator_lm_head(prediction_scores)

1050
        loss = None
Lysandre Debut's avatar
Lysandre Debut committed
1051
        # Masked language modeling softmax layer
Sylvain Gugger's avatar
Sylvain Gugger committed
1052
        if labels is not None:
Lysandre Debut's avatar
Lysandre Debut committed
1053
            loss_fct = nn.CrossEntropyLoss()  # -100 index = padding token
Sylvain Gugger's avatar
Sylvain Gugger committed
1054
            loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
Lysandre Debut's avatar
Lysandre Debut committed
1055

1056
        if not return_dict:
1057
1058
            output = (prediction_scores,) + generator_hidden_states[1:]
            return ((loss,) + output) if loss is not None else output
Lysandre Debut's avatar
Lysandre Debut committed
1059

1060
1061
1062
1063
1064
1065
        return MaskedLMOutput(
            loss=loss,
            logits=prediction_scores,
            hidden_states=generator_hidden_states.hidden_states,
            attentions=generator_hidden_states.attentions,
        )
Lysandre Debut's avatar
Lysandre Debut committed
1066
1067
1068
1069
1070
1071


@add_start_docstrings(
    """
    Electra model with a token classification head on top.

Sylvain Gugger's avatar
Sylvain Gugger committed
1072
1073
    Both the discriminator and generator may be loaded into this model.
    """,
Lysandre Debut's avatar
Lysandre Debut committed
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
    ELECTRA_START_DOCSTRING,
)
class ElectraForTokenClassification(ElectraPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)

        self.electra = ElectraModel(config)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)
        self.classifier = nn.Linear(config.hidden_size, config.num_labels)
        self.init_weights()

1085
    @add_start_docstrings_to_model_forward(ELECTRA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
1086
1087
1088
1089
1090
1091
    @add_code_sample_docstrings(
        tokenizer_class=_TOKENIZER_FOR_DOC,
        checkpoint="google/electra-small-discriminator",
        output_type=TokenClassifierOutput,
        config_class=_CONFIG_FOR_DOC,
    )
Lysandre Debut's avatar
Lysandre Debut committed
1092
1093
1094
1095
1096
1097
1098
1099
1100
    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        head_mask=None,
        inputs_embeds=None,
        labels=None,
1101
        output_attentions=None,
Joseph Liu's avatar
Joseph Liu committed
1102
        output_hidden_states=None,
1103
        return_dict=None,
Lysandre Debut's avatar
Lysandre Debut committed
1104
1105
    ):
        r"""
1106
        labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
Sylvain Gugger's avatar
Sylvain Gugger committed
1107
1108
            Labels for computing the token classification loss. Indices should be in ``[0, ..., config.num_labels -
            1]``.
Lysandre Debut's avatar
Lysandre Debut committed
1109
        """
1110
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
Lysandre Debut's avatar
Lysandre Debut committed
1111
1112

        discriminator_hidden_states = self.electra(
Joseph Liu's avatar
Joseph Liu committed
1113
1114
1115
1116
1117
1118
1119
1120
            input_ids,
            attention_mask,
            token_type_ids,
            position_ids,
            head_mask,
            inputs_embeds,
            output_attentions,
            output_hidden_states,
1121
            return_dict,
Lysandre Debut's avatar
Lysandre Debut committed
1122
1123
1124
1125
1126
1127
        )
        discriminator_sequence_output = discriminator_hidden_states[0]

        discriminator_sequence_output = self.dropout(discriminator_sequence_output)
        logits = self.classifier(discriminator_sequence_output)

1128
        loss = None
Lysandre Debut's avatar
Lysandre Debut committed
1129
1130
1131
1132
1133
1134
1135
1136
1137
        if labels is not None:
            loss_fct = nn.CrossEntropyLoss()
            # Only keep active parts of the loss
            if attention_mask is not None:
                active_loss = attention_mask.view(-1) == 1
                active_logits = logits.view(-1, self.config.num_labels)[active_loss]
                active_labels = labels.view(-1)[active_loss]
                loss = loss_fct(active_logits, active_labels)
            else:
LysandreJik's avatar
LysandreJik committed
1138
                loss = loss_fct(logits.view(-1, self.config.num_labels), labels.view(-1))
Lysandre Debut's avatar
Lysandre Debut committed
1139

1140
        if not return_dict:
1141
1142
            output = (logits,) + discriminator_hidden_states[1:]
            return ((loss,) + output) if loss is not None else output
Lysandre Debut's avatar
Lysandre Debut committed
1143

1144
1145
1146
1147
1148
1149
        return TokenClassifierOutput(
            loss=loss,
            logits=logits,
            hidden_states=discriminator_hidden_states.hidden_states,
            attentions=discriminator_hidden_states.attentions,
        )
1150
1151
1152


@add_start_docstrings(
1153
1154
    """
    ELECTRA Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
Sylvain Gugger's avatar
Sylvain Gugger committed
1155
1156
    layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
    """,
1157
    ELECTRA_START_DOCSTRING,
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
)
class ElectraForQuestionAnswering(ElectraPreTrainedModel):
    config_class = ElectraConfig
    base_model_prefix = "electra"

    def __init__(self, config):
        super().__init__(config)
        self.num_labels = config.num_labels

        self.electra = ElectraModel(config)
        self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)

        self.init_weights()

1172
    @add_start_docstrings_to_model_forward(ELECTRA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
1173
1174
1175
1176
1177
1178
    @add_code_sample_docstrings(
        tokenizer_class=_TOKENIZER_FOR_DOC,
        checkpoint="google/electra-small-discriminator",
        output_type=QuestionAnsweringModelOutput,
        config_class=_CONFIG_FOR_DOC,
    )
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        head_mask=None,
        inputs_embeds=None,
        start_positions=None,
        end_positions=None,
        output_attentions=None,
Joseph Liu's avatar
Joseph Liu committed
1190
        output_hidden_states=None,
1191
        return_dict=None,
1192
1193
    ):
        r"""
1194
        start_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
1195
            Labels for position (index) of the start of the labelled span for computing the token classification loss.
Sylvain Gugger's avatar
Sylvain Gugger committed
1196
1197
            Positions are clamped to the length of the sequence (:obj:`sequence_length`). Position outside of the
            sequence are not taken into account for computing the loss.
1198
        end_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
1199
            Labels for position (index) of the end of the labelled span for computing the token classification loss.
Sylvain Gugger's avatar
Sylvain Gugger committed
1200
1201
            Positions are clamped to the length of the sequence (:obj:`sequence_length`). Position outside of the
            sequence are not taken into account for computing the loss.
1202
        """
1203
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1204
1205
1206
1207
1208
1209
1210
1211
1212

        discriminator_hidden_states = self.electra(
            input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            output_attentions=output_attentions,
Joseph Liu's avatar
Joseph Liu committed
1213
            output_hidden_states=output_hidden_states,
1214
1215
1216
1217
1218
1219
1220
1221
1222
        )

        sequence_output = discriminator_hidden_states[0]

        logits = self.qa_outputs(sequence_output)
        start_logits, end_logits = logits.split(1, dim=-1)
        start_logits = start_logits.squeeze(-1)
        end_logits = end_logits.squeeze(-1)

1223
        total_loss = None
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
        if start_positions is not None and end_positions is not None:
            # If we are on multi-GPU, split add a dimension
            if len(start_positions.size()) > 1:
                start_positions = start_positions.squeeze(-1)
            if len(end_positions.size()) > 1:
                end_positions = end_positions.squeeze(-1)
            # sometimes the start/end positions are outside our model inputs, we ignore these terms
            ignored_index = start_logits.size(1)
            start_positions.clamp_(0, ignored_index)
            end_positions.clamp_(0, ignored_index)

            loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
            start_loss = loss_fct(start_logits, start_positions)
            end_loss = loss_fct(end_logits, end_positions)
            total_loss = (start_loss + end_loss) / 2

1240
        if not return_dict:
Lysandre's avatar
Lysandre committed
1241
1242
1243
1244
            output = (
                start_logits,
                end_logits,
            ) + discriminator_hidden_states[1:]
1245
1246
1247
1248
1249
1250
1251
1252
1253
            return ((total_loss,) + output) if total_loss is not None else output

        return QuestionAnsweringModelOutput(
            loss=total_loss,
            start_logits=start_logits,
            end_logits=end_logits,
            hidden_states=discriminator_hidden_states.hidden_states,
            attentions=discriminator_hidden_states.attentions,
        )
Suraj Patil's avatar
Suraj Patil committed
1254
1255
1256


@add_start_docstrings(
Sylvain Gugger's avatar
Sylvain Gugger committed
1257
1258
1259
1260
    """
    ELECTRA Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a
    softmax) e.g. for RocStories/SWAG tasks.
    """,
Sylvain Gugger's avatar
Sylvain Gugger committed
1261
    ELECTRA_START_DOCSTRING,
Suraj Patil's avatar
Suraj Patil committed
1262
1263
1264
1265
1266
1267
)
class ElectraForMultipleChoice(ElectraPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)

        self.electra = ElectraModel(config)
Julien Plu's avatar
Julien Plu committed
1268
        self.sequence_summary = SequenceSummary(config)
Suraj Patil's avatar
Suraj Patil committed
1269
1270
1271
1272
        self.classifier = nn.Linear(config.hidden_size, 1)

        self.init_weights()

1273
    @add_start_docstrings_to_model_forward(ELECTRA_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length"))
1274
1275
1276
1277
1278
1279
    @add_code_sample_docstrings(
        tokenizer_class=_TOKENIZER_FOR_DOC,
        checkpoint="google/electra-small-discriminator",
        output_type=MultipleChoiceModelOutput,
        config_class=_CONFIG_FOR_DOC,
    )
Suraj Patil's avatar
Suraj Patil committed
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        head_mask=None,
        inputs_embeds=None,
        labels=None,
        output_attentions=None,
1290
        output_hidden_states=None,
1291
        return_dict=None,
Suraj Patil's avatar
Suraj Patil committed
1292
1293
    ):
        r"""
1294
        labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
Sylvain Gugger's avatar
Sylvain Gugger committed
1295
1296
1297
            Labels for computing the multiple choice classification loss. Indices should be in ``[0, ...,
            num_choices-1]`` where :obj:`num_choices` is the size of the second dimension of the input tensors. (See
            :obj:`input_ids` above)
Suraj Patil's avatar
Suraj Patil committed
1298
        """
1299
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
Suraj Patil's avatar
Suraj Patil committed
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
        num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]

        input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
        attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
        token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
        position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
        inputs_embeds = (
            inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
            if inputs_embeds is not None
            else None
        )

        discriminator_hidden_states = self.electra(
            input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            output_attentions=output_attentions,
1320
            output_hidden_states=output_hidden_states,
1321
            return_dict=return_dict,
Suraj Patil's avatar
Suraj Patil committed
1322
1323
1324
1325
        )

        sequence_output = discriminator_hidden_states[0]

Julien Plu's avatar
Julien Plu committed
1326
        pooled_output = self.sequence_summary(sequence_output)
Suraj Patil's avatar
Suraj Patil committed
1327
1328
1329
        logits = self.classifier(pooled_output)
        reshaped_logits = logits.view(-1, num_choices)

1330
        loss = None
Suraj Patil's avatar
Suraj Patil committed
1331
1332
1333
1334
        if labels is not None:
            loss_fct = CrossEntropyLoss()
            loss = loss_fct(reshaped_logits, labels)

1335
        if not return_dict:
1336
1337
1338
1339
1340
1341
1342
1343
1344
            output = (reshaped_logits,) + discriminator_hidden_states[1:]
            return ((loss,) + output) if loss is not None else output

        return MultipleChoiceModelOutput(
            loss=loss,
            logits=reshaped_logits,
            hidden_states=discriminator_hidden_states.hidden_states,
            attentions=discriminator_hidden_states.attentions,
        )