modeling_electra.py 60.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# coding=utf-8
# Copyright 2019 The Google AI Language Team Authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch ELECTRA model. """

import math
Lysandre Debut's avatar
Lysandre Debut committed
18
import os
19
20
from dataclasses import dataclass
from typing import Optional, Tuple
Lysandre Debut's avatar
Lysandre Debut committed
21
22

import torch
23
import torch.utils.checkpoint
24
from packaging import version
25
from torch import nn
26
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
Lysandre Debut's avatar
Lysandre Debut committed
27

Sylvain Gugger's avatar
Sylvain Gugger committed
28
29
from ...activations import ACT2FN, get_activation
from ...file_utils import (
30
31
32
    ModelOutput,
    add_code_sample_docstrings,
    add_start_docstrings,
33
    add_start_docstrings_to_model_forward,
34
35
    replace_return_docstrings,
)
Sylvain Gugger's avatar
Sylvain Gugger committed
36
from ...modeling_outputs import (
37
    BaseModelOutputWithCrossAttentions,
38
    BaseModelOutputWithPastAndCrossAttentions,
39
40
41
42
43
44
    MaskedLMOutput,
    MultipleChoiceModelOutput,
    QuestionAnsweringModelOutput,
    SequenceClassifierOutput,
    TokenClassifierOutput,
)
Sylvain Gugger's avatar
Sylvain Gugger committed
45
from ...modeling_utils import (
46
47
48
49
50
51
    PreTrainedModel,
    SequenceSummary,
    apply_chunking_to_forward,
    find_pruneable_heads_and_indices,
    prune_linear_layer,
)
Sylvain Gugger's avatar
Sylvain Gugger committed
52
53
from ...utils import logging
from .configuration_electra import ElectraConfig
Lysandre Debut's avatar
Lysandre Debut committed
54
55


Lysandre Debut's avatar
Lysandre Debut committed
56
logger = logging.get_logger(__name__)
Lysandre Debut's avatar
Lysandre Debut committed
57

58
_CHECKPOINT_FOR_DOC = "google/electra-small-discriminator"
59
_CONFIG_FOR_DOC = "ElectraConfig"
60
_TOKENIZER_FOR_DOC = "ElectraTokenizer"
Lysandre Debut's avatar
Lysandre Debut committed
61

62
63
64
65
66
67
68
69
70
ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST = [
    "google/electra-small-generator",
    "google/electra-base-generator",
    "google/electra-large-generator",
    "google/electra-small-discriminator",
    "google/electra-base-discriminator",
    "google/electra-large-discriminator",
    # See all ELECTRA models at https://huggingface.co/models?filter=electra
]
Lysandre Debut's avatar
Lysandre Debut committed
71
72
73


def load_tf_weights_in_electra(model, config, tf_checkpoint_path, discriminator_or_generator="discriminator"):
Lysandre's avatar
Lysandre committed
74
    """Load tf checkpoints in a pytorch model."""
Lysandre Debut's avatar
Lysandre Debut committed
75
76
    try:
        import re
77

Lysandre Debut's avatar
Lysandre Debut committed
78
79
80
81
82
83
84
85
86
        import numpy as np
        import tensorflow as tf
    except ImportError:
        logger.error(
            "Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see "
            "https://www.tensorflow.org/install/ for installation instructions."
        )
        raise
    tf_path = os.path.abspath(tf_checkpoint_path)
87
    logger.info(f"Converting TensorFlow checkpoint from {tf_path}")
Lysandre Debut's avatar
Lysandre Debut committed
88
89
90
91
92
    # Load weights from TF model
    init_vars = tf.train.list_variables(tf_path)
    names = []
    arrays = []
    for name, shape in init_vars:
93
        logger.info(f"Loading TF weight {name} with shape {shape}")
Lysandre Debut's avatar
Lysandre Debut committed
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
        array = tf.train.load_variable(tf_path, name)
        names.append(name)
        arrays.append(array)
    for name, array in zip(names, arrays):
        original_name: str = name

        try:
            if isinstance(model, ElectraForMaskedLM):
                name = name.replace("electra/embeddings/", "generator/embeddings/")

            if discriminator_or_generator == "generator":
                name = name.replace("electra/", "discriminator/")
                name = name.replace("generator/", "electra/")

            name = name.replace("dense_1", "dense_prediction")
            name = name.replace("generator_predictions/output_bias", "generator_lm_head/bias")

            name = name.split("/")
            # print(original_name, name)
            # adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
            # which are not required for using pretrained model
            if any(n in ["global_step", "temperature"] for n in name):
116
                logger.info(f"Skipping {original_name}")
Lysandre Debut's avatar
Lysandre Debut committed
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
                continue
            pointer = model
            for m_name in name:
                if re.fullmatch(r"[A-Za-z]+_\d+", m_name):
                    scope_names = re.split(r"_(\d+)", m_name)
                else:
                    scope_names = [m_name]
                if scope_names[0] == "kernel" or scope_names[0] == "gamma":
                    pointer = getattr(pointer, "weight")
                elif scope_names[0] == "output_bias" or scope_names[0] == "beta":
                    pointer = getattr(pointer, "bias")
                elif scope_names[0] == "output_weights":
                    pointer = getattr(pointer, "weight")
                elif scope_names[0] == "squad":
                    pointer = getattr(pointer, "classifier")
                else:
                    pointer = getattr(pointer, scope_names[0])
                if len(scope_names) >= 2:
                    num = int(scope_names[1])
                    pointer = pointer[num]
            if m_name.endswith("_embeddings"):
                pointer = getattr(pointer, "weight")
            elif m_name == "kernel":
                array = np.transpose(array)
            try:
Teven's avatar
Teven committed
142
143
144
                assert (
                    pointer.shape == array.shape
                ), f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched"
Lysandre Debut's avatar
Lysandre Debut committed
145
146
147
            except AssertionError as e:
                e.args += (pointer.shape, array.shape)
                raise
148
            print(f"Initialize PyTorch weight {name}", original_name)
Lysandre Debut's avatar
Lysandre Debut committed
149
150
            pointer.data = torch.from_numpy(array)
        except AttributeError as e:
151
            print(f"Skipping {original_name}", name, e)
Lysandre Debut's avatar
Lysandre Debut committed
152
153
154
155
            continue
    return model


156
class ElectraEmbeddings(nn.Module):
Lysandre Debut's avatar
Lysandre Debut committed
157
158
159
    """Construct the embeddings from word, position and token_type embeddings."""

    def __init__(self, config):
160
        super().__init__()
Lysandre Debut's avatar
Lysandre Debut committed
161
162
163
164
165
166
        self.word_embeddings = nn.Embedding(config.vocab_size, config.embedding_size, padding_idx=config.pad_token_id)
        self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.embedding_size)
        self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.embedding_size)

        # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
        # any TensorFlow checkpoint file
167
168
169
170
171
        self.LayerNorm = nn.LayerNorm(config.embedding_size, eps=config.layer_norm_eps)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

        # position_ids (1, len position emb) is contiguous in memory and exported when serialized
        self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)))
172
        self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
173
174
175
176
177
178
        if version.parse(torch.__version__) > version.parse("1.6.0"):
            self.register_buffer(
                "token_type_ids",
                torch.zeros(self.position_ids.size(), dtype=torch.long, device=self.position_ids.device),
                persistent=False,
            )
179

Sylvain Gugger's avatar
Sylvain Gugger committed
180
    # Copied from transformers.models.bert.modeling_bert.BertEmbeddings.forward
181
182
183
    def forward(
        self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None, past_key_values_length=0
    ):
184
185
186
187
188
189
190
191
        if input_ids is not None:
            input_shape = input_ids.size()
        else:
            input_shape = inputs_embeds.size()[:-1]

        seq_length = input_shape[1]

        if position_ids is None:
192
            position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length]
193

194
195
196
        # Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs
        # when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves
        # issue #5664
197
        if token_type_ids is None:
198
199
200
201
202
203
            if hasattr(self, "token_type_ids"):
                buffered_token_type_ids = self.token_type_ids[:, :seq_length]
                buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length)
                token_type_ids = buffered_token_type_ids_expanded
            else:
                token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
204
205
206
207
208

        if inputs_embeds is None:
            inputs_embeds = self.word_embeddings(input_ids)
        token_type_embeddings = self.token_type_embeddings(token_type_ids)

209
210
211
212
        embeddings = inputs_embeds + token_type_embeddings
        if self.position_embedding_type == "absolute":
            position_embeddings = self.position_embeddings(position_ids)
            embeddings += position_embeddings
213
214
215
216
217
        embeddings = self.LayerNorm(embeddings)
        embeddings = self.dropout(embeddings)
        return embeddings


Sylvain Gugger's avatar
Sylvain Gugger committed
218
# Copied from transformers.models.bert.modeling_bert.BertSelfAttention with Bert->Electra
219
220
221
222
223
class ElectraSelfAttention(nn.Module):
    def __init__(self, config):
        super().__init__()
        if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
            raise ValueError(
224
225
                f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
                f"heads ({config.num_attention_heads})"
226
227
228
229
230
231
232
233
234
235
236
            )

        self.num_attention_heads = config.num_attention_heads
        self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
        self.all_head_size = self.num_attention_heads * self.attention_head_size

        self.query = nn.Linear(config.hidden_size, self.all_head_size)
        self.key = nn.Linear(config.hidden_size, self.all_head_size)
        self.value = nn.Linear(config.hidden_size, self.all_head_size)

        self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
237
        self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
238
239
240
        if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
            self.max_position_embeddings = config.max_position_embeddings
            self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size)
241

242
243
        self.is_decoder = config.is_decoder

244
245
246
247
248
249
250
251
252
253
254
255
    def transpose_for_scores(self, x):
        new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
        x = x.view(*new_x_shape)
        return x.permute(0, 2, 1, 3)

    def forward(
        self,
        hidden_states,
        attention_mask=None,
        head_mask=None,
        encoder_hidden_states=None,
        encoder_attention_mask=None,
256
        past_key_value=None,
257
258
259
260
261
262
263
        output_attentions=False,
    ):
        mixed_query_layer = self.query(hidden_states)

        # If this is instantiated as a cross-attention module, the keys
        # and values come from an encoder; the attention mask needs to be
        # such that the encoder's padding tokens are not attended to.
264
265
266
267
268
269
        is_cross_attention = encoder_hidden_states is not None

        if is_cross_attention and past_key_value is not None:
            # reuse k,v, cross_attentions
            key_layer = past_key_value[0]
            value_layer = past_key_value[1]
270
            attention_mask = encoder_attention_mask
271
272
273
274
275
276
277
278
279
        elif is_cross_attention:
            key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
            value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
            attention_mask = encoder_attention_mask
        elif past_key_value is not None:
            key_layer = self.transpose_for_scores(self.key(hidden_states))
            value_layer = self.transpose_for_scores(self.value(hidden_states))
            key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
            value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
280
        else:
281
282
            key_layer = self.transpose_for_scores(self.key(hidden_states))
            value_layer = self.transpose_for_scores(self.value(hidden_states))
283
284

        query_layer = self.transpose_for_scores(mixed_query_layer)
285
286
287
288
289
290
291
292
293
294

        if self.is_decoder:
            # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
            # Further calls to cross_attention layer can then reuse all cross-attention
            # key/value_states (first "if" case)
            # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
            # all previous decoder key/value_states. Further calls to uni-directional self-attention
            # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
            # if encoder bi-directional self-attention `past_key_value` is always `None`
            past_key_value = (key_layer, value_layer)
295
296
297

        # Take the dot product between "query" and "key" to get the raw attention scores.
        attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314

        if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
            seq_length = hidden_states.size()[1]
            position_ids_l = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(-1, 1)
            position_ids_r = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(1, -1)
            distance = position_ids_l - position_ids_r
            positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
            positional_embedding = positional_embedding.to(dtype=query_layer.dtype)  # fp16 compatibility

            if self.position_embedding_type == "relative_key":
                relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
                attention_scores = attention_scores + relative_position_scores
            elif self.position_embedding_type == "relative_key_query":
                relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
                relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
                attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key

315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
        attention_scores = attention_scores / math.sqrt(self.attention_head_size)
        if attention_mask is not None:
            # Apply the attention mask is (precomputed for all layers in ElectraModel forward() function)
            attention_scores = attention_scores + attention_mask

        # Normalize the attention scores to probabilities.
        attention_probs = nn.Softmax(dim=-1)(attention_scores)

        # This is actually dropping out entire tokens to attend to, which might
        # seem a bit unusual, but is taken from the original Transformer paper.
        attention_probs = self.dropout(attention_probs)

        # Mask heads if we want to
        if head_mask is not None:
            attention_probs = attention_probs * head_mask

        context_layer = torch.matmul(attention_probs, value_layer)

        context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
        new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
        context_layer = context_layer.view(*new_context_layer_shape)

        outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
338
339
340

        if self.is_decoder:
            outputs = outputs + (past_key_value,)
341
342
343
        return outputs


Sylvain Gugger's avatar
Sylvain Gugger committed
344
# Copied from transformers.models.bert.modeling_bert.BertSelfOutput
345
346
347
348
349
350
351
352
353
354
355
356
357
358
class ElectraSelfOutput(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
        self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

    def forward(self, hidden_states, input_tensor):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.dropout(hidden_states)
        hidden_states = self.LayerNorm(hidden_states + input_tensor)
        return hidden_states


Sylvain Gugger's avatar
Sylvain Gugger committed
359
# Copied from transformers.models.bert.modeling_bert.BertAttention with Bert->Electra
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
class ElectraAttention(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.self = ElectraSelfAttention(config)
        self.output = ElectraSelfOutput(config)
        self.pruned_heads = set()

    def prune_heads(self, heads):
        if len(heads) == 0:
            return
        heads, index = find_pruneable_heads_and_indices(
            heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
        )

        # Prune linear layers
        self.self.query = prune_linear_layer(self.self.query, index)
        self.self.key = prune_linear_layer(self.self.key, index)
        self.self.value = prune_linear_layer(self.self.value, index)
        self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)

        # Update hyper params and store pruned heads
        self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
        self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
        self.pruned_heads = self.pruned_heads.union(heads)

    def forward(
        self,
        hidden_states,
        attention_mask=None,
        head_mask=None,
        encoder_hidden_states=None,
        encoder_attention_mask=None,
392
        past_key_value=None,
393
394
395
396
397
398
399
400
        output_attentions=False,
    ):
        self_outputs = self.self(
            hidden_states,
            attention_mask,
            head_mask,
            encoder_hidden_states,
            encoder_attention_mask,
401
            past_key_value,
402
403
404
405
406
407
408
            output_attentions,
        )
        attention_output = self.output(self_outputs[0], hidden_states)
        outputs = (attention_output,) + self_outputs[1:]  # add attentions if we output them
        return outputs


Sylvain Gugger's avatar
Sylvain Gugger committed
409
# Copied from transformers.models.bert.modeling_bert.BertIntermediate
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
class ElectraIntermediate(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
        if isinstance(config.hidden_act, str):
            self.intermediate_act_fn = ACT2FN[config.hidden_act]
        else:
            self.intermediate_act_fn = config.hidden_act

    def forward(self, hidden_states):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.intermediate_act_fn(hidden_states)
        return hidden_states


Sylvain Gugger's avatar
Sylvain Gugger committed
425
# Copied from transformers.models.bert.modeling_bert.BertOutput
426
427
428
429
430
431
432
433
434
435
436
437
438
439
class ElectraOutput(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
        self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

    def forward(self, hidden_states, input_tensor):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.dropout(hidden_states)
        hidden_states = self.LayerNorm(hidden_states + input_tensor)
        return hidden_states


Sylvain Gugger's avatar
Sylvain Gugger committed
440
# Copied from transformers.models.bert.modeling_bert.BertLayer with Bert->Electra
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
class ElectraLayer(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.chunk_size_feed_forward = config.chunk_size_feed_forward
        self.seq_len_dim = 1
        self.attention = ElectraAttention(config)
        self.is_decoder = config.is_decoder
        self.add_cross_attention = config.add_cross_attention
        if self.add_cross_attention:
            assert self.is_decoder, f"{self} should be used as a decoder model if cross attention is added"
            self.crossattention = ElectraAttention(config)
        self.intermediate = ElectraIntermediate(config)
        self.output = ElectraOutput(config)

    def forward(
        self,
        hidden_states,
        attention_mask=None,
        head_mask=None,
        encoder_hidden_states=None,
        encoder_attention_mask=None,
462
        past_key_value=None,
463
464
        output_attentions=False,
    ):
465
466
        # decoder uni-directional self-attention cached key/values tuple is at positions 1,2
        self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
467
468
469
470
471
        self_attention_outputs = self.attention(
            hidden_states,
            attention_mask,
            head_mask,
            output_attentions=output_attentions,
472
            past_key_value=self_attn_past_key_value,
473
474
475
        )
        attention_output = self_attention_outputs[0]

476
477
478
479
480
481
482
483
        # if decoder, the last output is tuple of self-attn cache
        if self.is_decoder:
            outputs = self_attention_outputs[1:-1]
            present_key_value = self_attention_outputs[-1]
        else:
            outputs = self_attention_outputs[1:]  # add self attentions if we output attention weights

        cross_attn_present_key_value = None
484
485
486
487
        if self.is_decoder and encoder_hidden_states is not None:
            assert hasattr(
                self, "crossattention"
            ), f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers by setting `config.add_cross_attention=True`"
488
489
490

            # cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple
            cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
491
492
493
494
495
496
            cross_attention_outputs = self.crossattention(
                attention_output,
                attention_mask,
                head_mask,
                encoder_hidden_states,
                encoder_attention_mask,
497
                cross_attn_past_key_value,
498
499
500
                output_attentions,
            )
            attention_output = cross_attention_outputs[0]
501
502
503
504
505
            outputs = outputs + cross_attention_outputs[1:-1]  # add cross attentions if we output attention weights

            # add cross-attn cache to positions 3,4 of present_key_value tuple
            cross_attn_present_key_value = cross_attention_outputs[-1]
            present_key_value = present_key_value + cross_attn_present_key_value
506
507
508
509
510

        layer_output = apply_chunking_to_forward(
            self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
        )
        outputs = (layer_output,) + outputs
511
512
513
514
515

        # if decoder, return the attn key/values as the last output
        if self.is_decoder:
            outputs = outputs + (present_key_value,)

516
517
518
519
520
521
522
523
        return outputs

    def feed_forward_chunk(self, attention_output):
        intermediate_output = self.intermediate(attention_output)
        layer_output = self.output(intermediate_output, attention_output)
        return layer_output


Sylvain Gugger's avatar
Sylvain Gugger committed
524
# Copied from transformers.models.bert.modeling_bert.BertEncoder with Bert->Electra
525
526
527
528
529
530
531
532
533
534
535
536
537
class ElectraEncoder(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.config = config
        self.layer = nn.ModuleList([ElectraLayer(config) for _ in range(config.num_hidden_layers)])

    def forward(
        self,
        hidden_states,
        attention_mask=None,
        head_mask=None,
        encoder_hidden_states=None,
        encoder_attention_mask=None,
538
539
        past_key_values=None,
        use_cache=None,
540
541
        output_attentions=False,
        output_hidden_states=False,
542
        return_dict=True,
543
544
    ):
        all_hidden_states = () if output_hidden_states else None
545
546
        all_self_attentions = () if output_attentions else None
        all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
547
548

        next_decoder_cache = () if use_cache else None
549
550
551
552
553
        for i, layer_module in enumerate(self.layer):
            if output_hidden_states:
                all_hidden_states = all_hidden_states + (hidden_states,)

            layer_head_mask = head_mask[i] if head_mask is not None else None
554
            past_key_value = past_key_values[i] if past_key_values is not None else None
555
556
557
558

            if getattr(self.config, "gradient_checkpointing", False) and self.training:

                if use_cache:
559
                    logger.warning(
560
561
                        "`use_cache=True` is incompatible with `config.gradient_checkpointing=True`. Setting "
                        "`use_cache=False`..."
562
563
                    )
                    use_cache = False
564
565
566

                def create_custom_forward(module):
                    def custom_forward(*inputs):
567
                        return module(*inputs, past_key_value, output_attentions)
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585

                    return custom_forward

                layer_outputs = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(layer_module),
                    hidden_states,
                    attention_mask,
                    layer_head_mask,
                    encoder_hidden_states,
                    encoder_attention_mask,
                )
            else:
                layer_outputs = layer_module(
                    hidden_states,
                    attention_mask,
                    layer_head_mask,
                    encoder_hidden_states,
                    encoder_attention_mask,
586
                    past_key_value,
587
588
                    output_attentions,
                )
589

590
            hidden_states = layer_outputs[0]
591
592
            if use_cache:
                next_decoder_cache += (layer_outputs[-1],)
593
            if output_attentions:
594
595
596
                all_self_attentions = all_self_attentions + (layer_outputs[1],)
                if self.config.add_cross_attention:
                    all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
597
598
599
600
601

        if output_hidden_states:
            all_hidden_states = all_hidden_states + (hidden_states,)

        if not return_dict:
602
603
            return tuple(
                v
604
605
606
607
608
609
610
                for v in [
                    hidden_states,
                    next_decoder_cache,
                    all_hidden_states,
                    all_self_attentions,
                    all_cross_attentions,
                ]
611
612
                if v is not None
            )
613
        return BaseModelOutputWithPastAndCrossAttentions(
614
            last_hidden_state=hidden_states,
615
            past_key_values=next_decoder_cache,
616
617
618
            hidden_states=all_hidden_states,
            attentions=all_self_attentions,
            cross_attentions=all_cross_attentions,
619
        )
Lysandre Debut's avatar
Lysandre Debut committed
620
621
622
623
624
625
626
627
628
629
630
631


class ElectraDiscriminatorPredictions(nn.Module):
    """Prediction module for the discriminator, made up of two dense layers."""

    def __init__(self, config):
        super().__init__()

        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
        self.dense_prediction = nn.Linear(config.hidden_size, 1)
        self.config = config

632
    def forward(self, discriminator_hidden_states):
Lysandre Debut's avatar
Lysandre Debut committed
633
634
        hidden_states = self.dense(discriminator_hidden_states)
        hidden_states = get_activation(self.config.hidden_act)(hidden_states)
635
        logits = self.dense_prediction(hidden_states).squeeze(-1)
Lysandre Debut's avatar
Lysandre Debut committed
636
637
638
639
640
641
642
643
644
645

        return logits


class ElectraGeneratorPredictions(nn.Module):
    """Prediction module for the generator, made up of two dense layers."""

    def __init__(self, config):
        super().__init__()

646
        self.LayerNorm = nn.LayerNorm(config.embedding_size)
Lysandre Debut's avatar
Lysandre Debut committed
647
648
649
650
651
652
653
654
655
656
        self.dense = nn.Linear(config.hidden_size, config.embedding_size)

    def forward(self, generator_hidden_states):
        hidden_states = self.dense(generator_hidden_states)
        hidden_states = get_activation("gelu")(hidden_states)
        hidden_states = self.LayerNorm(hidden_states)

        return hidden_states


657
class ElectraPreTrainedModel(PreTrainedModel):
Sylvain Gugger's avatar
Sylvain Gugger committed
658
659
660
    """
    An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
    models.
Lysandre Debut's avatar
Lysandre Debut committed
661
662
663
664
665
    """

    config_class = ElectraConfig
    load_tf_weights = load_tf_weights_in_electra
    base_model_prefix = "electra"
666
667
    _keys_to_ignore_on_load_missing = [r"position_ids"]
    _keys_to_ignore_on_load_unexpected = [r"electra\.embeddings_project\.weight", r"electra\.embeddings_project\.bias"]
Lysandre Debut's avatar
Lysandre Debut committed
668

Sylvain Gugger's avatar
Sylvain Gugger committed
669
    # Copied from transformers.models.bert.modeling_bert.BertPreTrainedModel._init_weights
670
    def _init_weights(self, module):
Patrick von Platen's avatar
Patrick von Platen committed
671
        """Initialize the weights"""
672
        if isinstance(module, nn.Linear):
673
674
675
            # Slightly different from the TF version which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
676
677
678
679
680
681
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.Embedding):
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
            if module.padding_idx is not None:
                module.weight.data[module.padding_idx].zero_()
682
683
684
685
        elif isinstance(module, nn.LayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)

Lysandre Debut's avatar
Lysandre Debut committed
686

687
@dataclass
Sylvain Gugger's avatar
Sylvain Gugger committed
688
class ElectraForPreTrainingOutput(ModelOutput):
689
    """
690
    Output type of :class:`~transformers.ElectraForPreTraining`.
691
692

    Args:
693
        loss (`optional`, returned when ``labels`` is provided, ``torch.FloatTensor`` of shape :obj:`(1,)`):
694
            Total loss of the ELECTRA objective.
695
        logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`):
696
697
698
699
700
701
702
            Prediction scores of the head (scores for each token before SoftMax).
        hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
            Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
            of shape :obj:`(batch_size, sequence_length, hidden_size)`.

            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
        attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
Sylvain Gugger's avatar
Sylvain Gugger committed
703
704
            Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads,
            sequence_length, sequence_length)`.
705
706
707
708
709

            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
            heads.
    """

710
711
    loss: Optional[torch.FloatTensor] = None
    logits: torch.FloatTensor = None
712
713
714
715
    hidden_states: Optional[Tuple[torch.FloatTensor]] = None
    attentions: Optional[Tuple[torch.FloatTensor]] = None


Lysandre Debut's avatar
Lysandre Debut committed
716
ELECTRA_START_DOCSTRING = r"""
Sylvain Gugger's avatar
Sylvain Gugger committed
717
718
719
720
721

    This model inherits from :class:`~transformers.PreTrainedModel`. Check the superclass documentation for the generic
    methods the library implements for all its model (such as downloading or saving, resizing the input embeddings,
    pruning heads etc.)

Sylvain Gugger's avatar
Sylvain Gugger committed
722
723
724
    This model is also a PyTorch `torch.nn.Module <https://pytorch.org/docs/stable/nn.html#torch.nn.Module>`__
    subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to
    general usage and behavior.
Lysandre Debut's avatar
Lysandre Debut committed
725
726
727

    Parameters:
        config (:class:`~transformers.ElectraConfig`): Model configuration class with all the parameters of the model.
Sylvain Gugger's avatar
Sylvain Gugger committed
728
729
730
            Initializing with a config file does not load the weights associated with the model, only the
            configuration. Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model
            weights.
Lysandre Debut's avatar
Lysandre Debut committed
731
732
733
734
"""

ELECTRA_INPUTS_DOCSTRING = r"""
    Args:
Sylvain Gugger's avatar
Sylvain Gugger committed
735
        input_ids (:obj:`torch.LongTensor` of shape :obj:`({0})`):
Lysandre Debut's avatar
Lysandre Debut committed
736
737
            Indices of input sequence tokens in the vocabulary.

Sylvain Gugger's avatar
Sylvain Gugger committed
738
739
740
            Indices can be obtained using :class:`~transformers.ElectraTokenizer`. See
            :meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__` for
            details.
Lysandre Debut's avatar
Lysandre Debut committed
741
742

            `What are input IDs? <../glossary.html#input-ids>`__
Sylvain Gugger's avatar
Sylvain Gugger committed
743
        attention_mask (:obj:`torch.FloatTensor` of shape :obj:`({0})`, `optional`):
Sylvain Gugger's avatar
Sylvain Gugger committed
744
            Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``:
Sylvain Gugger's avatar
Sylvain Gugger committed
745
746

            - 1 for tokens that are **not masked**,
747
            - 0 for tokens that are **masked**.
Lysandre Debut's avatar
Lysandre Debut committed
748
749

            `What are attention masks? <../glossary.html#attention-mask>`__
Sylvain Gugger's avatar
Sylvain Gugger committed
750
        token_type_ids (:obj:`torch.LongTensor` of shape :obj:`({0})`, `optional`):
Sylvain Gugger's avatar
Sylvain Gugger committed
751
752
            Segment token indices to indicate first and second portions of the inputs. Indices are selected in ``[0,
            1]``:
Sylvain Gugger's avatar
Sylvain Gugger committed
753
754
755

            - 0 corresponds to a `sentence A` token,
            - 1 corresponds to a `sentence B` token.
Lysandre Debut's avatar
Lysandre Debut committed
756
757

            `What are token type IDs? <../glossary.html#token-type-ids>`_
Sylvain Gugger's avatar
Sylvain Gugger committed
758
        position_ids (:obj:`torch.LongTensor` of shape :obj:`({0})`, `optional`):
Sylvain Gugger's avatar
Sylvain Gugger committed
759
760
            Indices of positions of each input sequence tokens in the position embeddings. Selected in the range ``[0,
            config.max_position_embeddings - 1]``.
Lysandre Debut's avatar
Lysandre Debut committed
761
762

            `What are position IDs? <../glossary.html#position-ids>`_
763
        head_mask (:obj:`torch.FloatTensor` of shape :obj:`(num_heads,)` or :obj:`(num_layers, num_heads)`, `optional`):
Sylvain Gugger's avatar
Sylvain Gugger committed
764
            Mask to nullify selected heads of the self-attention modules. Mask values selected in ``[0, 1]``:
Sylvain Gugger's avatar
Sylvain Gugger committed
765
766
767
768
769

            - 1 indicates the head is **not masked**,
            - 0 indicates the head is **masked**.

        inputs_embeds (:obj:`torch.FloatTensor` of shape :obj:`({0}, hidden_size)`, `optional`):
Lysandre Debut's avatar
Lysandre Debut committed
770
            Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation.
Sylvain Gugger's avatar
Sylvain Gugger committed
771
772
773
            This is useful if you want more control over how to convert :obj:`input_ids` indices into associated
            vectors than the model's internal embedding lookup matrix.
        encoder_hidden_states  (:obj:`torch.FloatTensor` of shape :obj:`({0}, hidden_size)`, `optional`):
Sylvain Gugger's avatar
Sylvain Gugger committed
774
775
            Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
            the model is configured as a decoder.
Sylvain Gugger's avatar
Sylvain Gugger committed
776
        encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`({0})`, `optional`):
Sylvain Gugger's avatar
Sylvain Gugger committed
777
778
            Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
            the cross-attention if the model is configured as a decoder. Mask values selected in ``[0, 1]``:
Sylvain Gugger's avatar
Sylvain Gugger committed
779
780
781
782

            - 1 indicates the head is **not masked**,
            - 0 indicates the head is **masked**.

783
        output_attentions (:obj:`bool`, `optional`):
Sylvain Gugger's avatar
Sylvain Gugger committed
784
785
            Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under returned
            tensors for more detail.
786
        output_hidden_states (:obj:`bool`, `optional`):
Sylvain Gugger's avatar
Sylvain Gugger committed
787
788
            Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors for
            more detail.
789
        return_dict (:obj:`bool`, `optional`):
Sylvain Gugger's avatar
Sylvain Gugger committed
790
            Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple.
Lysandre Debut's avatar
Lysandre Debut committed
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
"""


@add_start_docstrings(
    "The bare Electra Model transformer outputting raw hidden-states without any specific head on top. Identical to "
    "the BERT model except that it uses an additional linear layer between the embedding layer and the encoder if the "
    "hidden size and embedding size are different."
    ""
    "Both the generator and discriminator checkpoints may be loaded into this model.",
    ELECTRA_START_DOCSTRING,
)
class ElectraModel(ElectraPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)
        self.embeddings = ElectraEmbeddings(config)

        if config.embedding_size != config.hidden_size:
            self.embeddings_project = nn.Linear(config.embedding_size, config.hidden_size)

810
        self.encoder = ElectraEncoder(config)
Lysandre Debut's avatar
Lysandre Debut committed
811
812
813
814
815
816
817
818
819
820
        self.config = config
        self.init_weights()

    def get_input_embeddings(self):
        return self.embeddings.word_embeddings

    def set_input_embeddings(self, value):
        self.embeddings.word_embeddings = value

    def _prune_heads(self, heads_to_prune):
Sylvain Gugger's avatar
Sylvain Gugger committed
821
822
823
        """
        Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
        class PreTrainedModel
Lysandre Debut's avatar
Lysandre Debut committed
824
825
826
827
        """
        for layer, heads in heads_to_prune.items():
            self.encoder.layer[layer].attention.prune_heads(heads)

828
    @add_start_docstrings_to_model_forward(ELECTRA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
829
830
    @add_code_sample_docstrings(
        tokenizer_class=_TOKENIZER_FOR_DOC,
831
        checkpoint=_CHECKPOINT_FOR_DOC,
832
        output_type=BaseModelOutputWithCrossAttentions,
833
834
        config_class=_CONFIG_FOR_DOC,
    )
Lysandre Debut's avatar
Lysandre Debut committed
835
836
837
838
839
840
841
842
    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        head_mask=None,
        inputs_embeds=None,
843
        output_attentions=None,
Joseph Liu's avatar
Joseph Liu committed
844
        output_hidden_states=None,
845
        return_dict=None,
Lysandre Debut's avatar
Lysandre Debut committed
846
    ):
847
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
Joseph Liu's avatar
Joseph Liu committed
848
849
850
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
851
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
852

Lysandre Debut's avatar
Lysandre Debut committed
853
854
855
856
        if input_ids is not None and inputs_embeds is not None:
            raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
        elif input_ids is not None:
            input_shape = input_ids.size()
857
            batch_size, seq_length = input_shape
Lysandre Debut's avatar
Lysandre Debut committed
858
859
860
861
862
863
864
865
866
867
        elif inputs_embeds is not None:
            input_shape = inputs_embeds.size()[:-1]
        else:
            raise ValueError("You have to specify either input_ids or inputs_embeds")

        device = input_ids.device if input_ids is not None else inputs_embeds.device

        if attention_mask is None:
            attention_mask = torch.ones(input_shape, device=device)
        if token_type_ids is None:
868
869
870
871
872
873
            if hasattr(self.embeddings, "token_type_ids"):
                buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length]
                buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length)
                token_type_ids = buffered_token_type_ids_expanded
            else:
                token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
Lysandre Debut's avatar
Lysandre Debut committed
874
875

        extended_attention_mask = self.get_extended_attention_mask(attention_mask, input_shape, device)
876
        head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
Lysandre Debut's avatar
Lysandre Debut committed
877
878
879
880
881
882
883
884

        hidden_states = self.embeddings(
            input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds
        )

        if hasattr(self, "embeddings_project"):
            hidden_states = self.embeddings_project(hidden_states)

885
886
887
888
889
        hidden_states = self.encoder(
            hidden_states,
            attention_mask=extended_attention_mask,
            head_mask=head_mask,
            output_attentions=output_attentions,
Joseph Liu's avatar
Joseph Liu committed
890
            output_hidden_states=output_hidden_states,
891
            return_dict=return_dict,
892
        )
Lysandre Debut's avatar
Lysandre Debut committed
893
894
895
896

        return hidden_states


897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
class ElectraClassificationHead(nn.Module):
    """Head for sentence-level classification tasks."""

    def __init__(self, config):
        super().__init__()
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)
        self.out_proj = nn.Linear(config.hidden_size, config.num_labels)

    def forward(self, features, **kwargs):
        x = features[:, 0, :]  # take <s> token (equiv. to [CLS])
        x = self.dropout(x)
        x = self.dense(x)
        x = get_activation("gelu")(x)  # although BERT uses tanh here, it seems Electra authors used gelu here
        x = self.dropout(x)
        x = self.out_proj(x)
        return x


@add_start_docstrings(
Sylvain Gugger's avatar
Sylvain Gugger committed
917
918
919
920
    """
    ELECTRA Model transformer with a sequence classification/regression head on top (a linear layer on top of the
    pooled output) e.g. for GLUE tasks.
    """,
921
922
923
924
925
926
    ELECTRA_START_DOCSTRING,
)
class ElectraForSequenceClassification(ElectraPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)
        self.num_labels = config.num_labels
927
        self.config = config
928
929
930
931
932
        self.electra = ElectraModel(config)
        self.classifier = ElectraClassificationHead(config)

        self.init_weights()

933
    @add_start_docstrings_to_model_forward(ELECTRA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
934
935
    @add_code_sample_docstrings(
        tokenizer_class=_TOKENIZER_FOR_DOC,
936
        checkpoint=_CHECKPOINT_FOR_DOC,
937
938
939
        output_type=SequenceClassifierOutput,
        config_class=_CONFIG_FOR_DOC,
    )
940
941
942
943
944
945
946
947
948
    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        head_mask=None,
        inputs_embeds=None,
        labels=None,
949
        output_attentions=None,
Joseph Liu's avatar
Joseph Liu committed
950
        output_hidden_states=None,
951
        return_dict=None,
952
953
    ):
        r"""
954
        labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
Sylvain Gugger's avatar
Sylvain Gugger committed
955
956
            Labels for computing the sequence classification/regression loss. Indices should be in :obj:`[0, ...,
            config.num_labels - 1]`. If :obj:`config.num_labels == 1` a regression loss is computed (Mean-Square loss),
957
958
            If :obj:`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
        """
959
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
960

961
        discriminator_hidden_states = self.electra(
Joseph Liu's avatar
Joseph Liu committed
962
963
964
965
966
967
968
969
            input_ids,
            attention_mask,
            token_type_ids,
            position_ids,
            head_mask,
            inputs_embeds,
            output_attentions,
            output_hidden_states,
970
            return_dict,
971
972
973
974
975
        )

        sequence_output = discriminator_hidden_states[0]
        logits = self.classifier(sequence_output)

976
        loss = None
977
        if labels is not None:
978
979
980
981
982
983
984
985
986
            if self.config.problem_type is None:
                if self.num_labels == 1:
                    self.config.problem_type = "regression"
                elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
                    self.config.problem_type = "single_label_classification"
                else:
                    self.config.problem_type = "multi_label_classification"

            if self.config.problem_type == "regression":
987
                loss_fct = MSELoss()
988
989
990
991
                if self.num_labels == 1:
                    loss = loss_fct(logits.squeeze(), labels.squeeze())
                else:
                    loss = loss_fct(logits, labels)
992
            elif self.config.problem_type == "single_label_classification":
993
994
                loss_fct = CrossEntropyLoss()
                loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
995
996
997
            elif self.config.problem_type == "multi_label_classification":
                loss_fct = BCEWithLogitsLoss()
                loss = loss_fct(logits, labels)
998

999
        if not return_dict:
1000
1001
1002
1003
1004
1005
1006
1007
1008
            output = (logits,) + discriminator_hidden_states[1:]
            return ((loss,) + output) if loss is not None else output

        return SequenceClassifierOutput(
            loss=loss,
            logits=logits,
            hidden_states=discriminator_hidden_states.hidden_states,
            attentions=discriminator_hidden_states.attentions,
        )
1009
1010


Lysandre Debut's avatar
Lysandre Debut committed
1011
1012
@add_start_docstrings(
    """
1013
    Electra model with a binary classification head on top as used during pretraining for identifying generated tokens.
Lysandre Debut's avatar
Lysandre Debut committed
1014

Sylvain Gugger's avatar
Sylvain Gugger committed
1015
1016
    It is recommended to load the discriminator checkpoint into that model.
    """,
Lysandre Debut's avatar
Lysandre Debut committed
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
    ELECTRA_START_DOCSTRING,
)
class ElectraForPreTraining(ElectraPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)

        self.electra = ElectraModel(config)
        self.discriminator_predictions = ElectraDiscriminatorPredictions(config)
        self.init_weights()

1027
    @add_start_docstrings_to_model_forward(ELECTRA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
Sylvain Gugger's avatar
Sylvain Gugger committed
1028
    @replace_return_docstrings(output_type=ElectraForPreTrainingOutput, config_class=_CONFIG_FOR_DOC)
Lysandre Debut's avatar
Lysandre Debut committed
1029
1030
1031
1032
1033
1034
1035
1036
1037
    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        head_mask=None,
        inputs_embeds=None,
        labels=None,
1038
        output_attentions=None,
Joseph Liu's avatar
Joseph Liu committed
1039
        output_hidden_states=None,
1040
        return_dict=None,
Lysandre Debut's avatar
Lysandre Debut committed
1041
1042
    ):
        r"""
Sylvain Gugger's avatar
Sylvain Gugger committed
1043
        labels (``torch.LongTensor`` of shape ``(batch_size, sequence_length)``, `optional`):
Sylvain Gugger's avatar
Sylvain Gugger committed
1044
1045
            Labels for computing the ELECTRA loss. Input should be a sequence of tokens (see :obj:`input_ids`
            docstring) Indices should be in ``[0, 1]``:
Sylvain Gugger's avatar
Sylvain Gugger committed
1046
1047
1048

            - 0 indicates the token is an original token,
            - 1 indicates the token was replaced.
Lysandre Debut's avatar
Lysandre Debut committed
1049

Lysandre's avatar
Lysandre committed
1050
        Returns:
Lysandre Debut's avatar
Lysandre Debut committed
1051

Lysandre's avatar
Lysandre committed
1052
        Examples::
Lysandre Debut's avatar
Lysandre Debut committed
1053

Lysandre's avatar
Lysandre committed
1054
1055
            >>> from transformers import ElectraTokenizer, ElectraForPreTraining
            >>> import torch
Lysandre Debut's avatar
Lysandre Debut committed
1056

Lysandre's avatar
Lysandre committed
1057
1058
            >>> tokenizer = ElectraTokenizer.from_pretrained('google/electra-small-discriminator')
            >>> model = ElectraForPreTraining.from_pretrained('google/electra-small-discriminator')
Lysandre Debut's avatar
Lysandre Debut committed
1059

Lysandre's avatar
Lysandre committed
1060
1061
            >>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0)  # Batch size 1
            >>> logits = model(input_ids).logits
Lysandre Debut's avatar
Lysandre Debut committed
1062
        """
1063
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
Lysandre Debut's avatar
Lysandre Debut committed
1064
1065

        discriminator_hidden_states = self.electra(
Joseph Liu's avatar
Joseph Liu committed
1066
1067
1068
1069
1070
1071
1072
1073
            input_ids,
            attention_mask,
            token_type_ids,
            position_ids,
            head_mask,
            inputs_embeds,
            output_attentions,
            output_hidden_states,
1074
            return_dict,
Lysandre Debut's avatar
Lysandre Debut committed
1075
1076
1077
        )
        discriminator_sequence_output = discriminator_hidden_states[0]

1078
        logits = self.discriminator_predictions(discriminator_sequence_output)
Lysandre Debut's avatar
Lysandre Debut committed
1079

1080
        loss = None
Lysandre Debut's avatar
Lysandre Debut committed
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
        if labels is not None:
            loss_fct = nn.BCEWithLogitsLoss()
            if attention_mask is not None:
                active_loss = attention_mask.view(-1, discriminator_sequence_output.shape[1]) == 1
                active_logits = logits.view(-1, discriminator_sequence_output.shape[1])[active_loss]
                active_labels = labels[active_loss]
                loss = loss_fct(active_logits, active_labels.float())
            else:
                loss = loss_fct(logits.view(-1, discriminator_sequence_output.shape[1]), labels.float())

1091
        if not return_dict:
1092
1093
            output = (logits,) + discriminator_hidden_states[1:]
            return ((loss,) + output) if loss is not None else output
Lysandre Debut's avatar
Lysandre Debut committed
1094

Sylvain Gugger's avatar
Sylvain Gugger committed
1095
        return ElectraForPreTrainingOutput(
1096
1097
1098
1099
1100
            loss=loss,
            logits=logits,
            hidden_states=discriminator_hidden_states.hidden_states,
            attentions=discriminator_hidden_states.attentions,
        )
Lysandre Debut's avatar
Lysandre Debut committed
1101
1102
1103
1104
1105
1106


@add_start_docstrings(
    """
    Electra model with a language modeling head on top.

Sylvain Gugger's avatar
Sylvain Gugger committed
1107
1108
1109
    Even though both the discriminator and generator may be loaded into this model, the generator is the only model of
    the two to have been trained for the masked language modeling task.
    """,
Lysandre Debut's avatar
Lysandre Debut committed
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
    ELECTRA_START_DOCSTRING,
)
class ElectraForMaskedLM(ElectraPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)

        self.electra = ElectraModel(config)
        self.generator_predictions = ElectraGeneratorPredictions(config)

        self.generator_lm_head = nn.Linear(config.embedding_size, config.vocab_size)
        self.init_weights()

    def get_output_embeddings(self):
        return self.generator_lm_head

1125
1126
1127
    def set_output_embeddings(self, word_embeddings):
        self.generator_lm_head = word_embeddings

1128
    @add_start_docstrings_to_model_forward(ELECTRA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
1129
1130
    @add_code_sample_docstrings(
        tokenizer_class=_TOKENIZER_FOR_DOC,
1131
        checkpoint=_CHECKPOINT_FOR_DOC,
1132
1133
1134
        output_type=MaskedLMOutput,
        config_class=_CONFIG_FOR_DOC,
    )
Lysandre Debut's avatar
Lysandre Debut committed
1135
1136
1137
1138
1139
1140
1141
1142
    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        head_mask=None,
        inputs_embeds=None,
Sylvain Gugger's avatar
Sylvain Gugger committed
1143
        labels=None,
1144
        output_attentions=None,
Joseph Liu's avatar
Joseph Liu committed
1145
        output_hidden_states=None,
1146
        return_dict=None,
Lysandre Debut's avatar
Lysandre Debut committed
1147
1148
    ):
        r"""
1149
        labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
Sylvain Gugger's avatar
Sylvain Gugger committed
1150
1151
1152
            Labels for computing the masked language modeling loss. Indices should be in ``[-100, 0, ...,
            config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-100`` are ignored
            (masked), the loss is only computed for the tokens with labels in ``[0, ..., config.vocab_size]``
Lysandre Debut's avatar
Lysandre Debut committed
1153
        """
1154
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
Lysandre Debut's avatar
Lysandre Debut committed
1155
1156

        generator_hidden_states = self.electra(
Joseph Liu's avatar
Joseph Liu committed
1157
1158
1159
1160
1161
1162
1163
1164
            input_ids,
            attention_mask,
            token_type_ids,
            position_ids,
            head_mask,
            inputs_embeds,
            output_attentions,
            output_hidden_states,
1165
            return_dict,
Lysandre Debut's avatar
Lysandre Debut committed
1166
1167
1168
1169
1170
1171
        )
        generator_sequence_output = generator_hidden_states[0]

        prediction_scores = self.generator_predictions(generator_sequence_output)
        prediction_scores = self.generator_lm_head(prediction_scores)

1172
        loss = None
Lysandre Debut's avatar
Lysandre Debut committed
1173
        # Masked language modeling softmax layer
Sylvain Gugger's avatar
Sylvain Gugger committed
1174
        if labels is not None:
Lysandre Debut's avatar
Lysandre Debut committed
1175
            loss_fct = nn.CrossEntropyLoss()  # -100 index = padding token
Sylvain Gugger's avatar
Sylvain Gugger committed
1176
            loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
Lysandre Debut's avatar
Lysandre Debut committed
1177

1178
        if not return_dict:
1179
1180
            output = (prediction_scores,) + generator_hidden_states[1:]
            return ((loss,) + output) if loss is not None else output
Lysandre Debut's avatar
Lysandre Debut committed
1181

1182
1183
1184
1185
1186
1187
        return MaskedLMOutput(
            loss=loss,
            logits=prediction_scores,
            hidden_states=generator_hidden_states.hidden_states,
            attentions=generator_hidden_states.attentions,
        )
Lysandre Debut's avatar
Lysandre Debut committed
1188
1189
1190
1191
1192
1193


@add_start_docstrings(
    """
    Electra model with a token classification head on top.

Sylvain Gugger's avatar
Sylvain Gugger committed
1194
1195
    Both the discriminator and generator may be loaded into this model.
    """,
Lysandre Debut's avatar
Lysandre Debut committed
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
    ELECTRA_START_DOCSTRING,
)
class ElectraForTokenClassification(ElectraPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)

        self.electra = ElectraModel(config)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)
        self.classifier = nn.Linear(config.hidden_size, config.num_labels)
        self.init_weights()

1207
    @add_start_docstrings_to_model_forward(ELECTRA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
1208
1209
    @add_code_sample_docstrings(
        tokenizer_class=_TOKENIZER_FOR_DOC,
1210
        checkpoint=_CHECKPOINT_FOR_DOC,
1211
1212
1213
        output_type=TokenClassifierOutput,
        config_class=_CONFIG_FOR_DOC,
    )
Lysandre Debut's avatar
Lysandre Debut committed
1214
1215
1216
1217
1218
1219
1220
1221
1222
    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        head_mask=None,
        inputs_embeds=None,
        labels=None,
1223
        output_attentions=None,
Joseph Liu's avatar
Joseph Liu committed
1224
        output_hidden_states=None,
1225
        return_dict=None,
Lysandre Debut's avatar
Lysandre Debut committed
1226
1227
    ):
        r"""
1228
        labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
Sylvain Gugger's avatar
Sylvain Gugger committed
1229
1230
            Labels for computing the token classification loss. Indices should be in ``[0, ..., config.num_labels -
            1]``.
Lysandre Debut's avatar
Lysandre Debut committed
1231
        """
1232
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
Lysandre Debut's avatar
Lysandre Debut committed
1233
1234

        discriminator_hidden_states = self.electra(
Joseph Liu's avatar
Joseph Liu committed
1235
1236
1237
1238
1239
1240
1241
1242
            input_ids,
            attention_mask,
            token_type_ids,
            position_ids,
            head_mask,
            inputs_embeds,
            output_attentions,
            output_hidden_states,
1243
            return_dict,
Lysandre Debut's avatar
Lysandre Debut committed
1244
1245
1246
1247
1248
1249
        )
        discriminator_sequence_output = discriminator_hidden_states[0]

        discriminator_sequence_output = self.dropout(discriminator_sequence_output)
        logits = self.classifier(discriminator_sequence_output)

1250
        loss = None
Lysandre Debut's avatar
Lysandre Debut committed
1251
1252
1253
1254
1255
1256
1257
1258
1259
        if labels is not None:
            loss_fct = nn.CrossEntropyLoss()
            # Only keep active parts of the loss
            if attention_mask is not None:
                active_loss = attention_mask.view(-1) == 1
                active_logits = logits.view(-1, self.config.num_labels)[active_loss]
                active_labels = labels.view(-1)[active_loss]
                loss = loss_fct(active_logits, active_labels)
            else:
LysandreJik's avatar
LysandreJik committed
1260
                loss = loss_fct(logits.view(-1, self.config.num_labels), labels.view(-1))
Lysandre Debut's avatar
Lysandre Debut committed
1261

1262
        if not return_dict:
1263
1264
            output = (logits,) + discriminator_hidden_states[1:]
            return ((loss,) + output) if loss is not None else output
Lysandre Debut's avatar
Lysandre Debut committed
1265

1266
1267
1268
1269
1270
1271
        return TokenClassifierOutput(
            loss=loss,
            logits=logits,
            hidden_states=discriminator_hidden_states.hidden_states,
            attentions=discriminator_hidden_states.attentions,
        )
1272
1273
1274


@add_start_docstrings(
1275
1276
    """
    ELECTRA Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
Sylvain Gugger's avatar
Sylvain Gugger committed
1277
1278
    layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
    """,
1279
    ELECTRA_START_DOCSTRING,
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
)
class ElectraForQuestionAnswering(ElectraPreTrainedModel):
    config_class = ElectraConfig
    base_model_prefix = "electra"

    def __init__(self, config):
        super().__init__(config)
        self.num_labels = config.num_labels

        self.electra = ElectraModel(config)
        self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)

        self.init_weights()

1294
    @add_start_docstrings_to_model_forward(ELECTRA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
1295
1296
    @add_code_sample_docstrings(
        tokenizer_class=_TOKENIZER_FOR_DOC,
1297
        checkpoint=_CHECKPOINT_FOR_DOC,
1298
1299
1300
        output_type=QuestionAnsweringModelOutput,
        config_class=_CONFIG_FOR_DOC,
    )
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        head_mask=None,
        inputs_embeds=None,
        start_positions=None,
        end_positions=None,
        output_attentions=None,
Joseph Liu's avatar
Joseph Liu committed
1312
        output_hidden_states=None,
1313
        return_dict=None,
1314
1315
    ):
        r"""
1316
        start_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
1317
            Labels for position (index) of the start of the labelled span for computing the token classification loss.
Sylvain Gugger's avatar
Sylvain Gugger committed
1318
1319
            Positions are clamped to the length of the sequence (:obj:`sequence_length`). Position outside of the
            sequence are not taken into account for computing the loss.
1320
        end_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
1321
            Labels for position (index) of the end of the labelled span for computing the token classification loss.
Sylvain Gugger's avatar
Sylvain Gugger committed
1322
1323
            Positions are clamped to the length of the sequence (:obj:`sequence_length`). Position outside of the
            sequence are not taken into account for computing the loss.
1324
        """
1325
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1326
1327
1328
1329
1330
1331
1332
1333
1334

        discriminator_hidden_states = self.electra(
            input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            output_attentions=output_attentions,
Joseph Liu's avatar
Joseph Liu committed
1335
            output_hidden_states=output_hidden_states,
1336
1337
1338
1339
1340
1341
        )

        sequence_output = discriminator_hidden_states[0]

        logits = self.qa_outputs(sequence_output)
        start_logits, end_logits = logits.split(1, dim=-1)
Fan Zhang's avatar
Fan Zhang committed
1342
1343
        start_logits = start_logits.squeeze(-1).contiguous()
        end_logits = end_logits.squeeze(-1).contiguous()
1344

1345
        total_loss = None
1346
1347
1348
1349
1350
1351
1352
1353
        if start_positions is not None and end_positions is not None:
            # If we are on multi-GPU, split add a dimension
            if len(start_positions.size()) > 1:
                start_positions = start_positions.squeeze(-1)
            if len(end_positions.size()) > 1:
                end_positions = end_positions.squeeze(-1)
            # sometimes the start/end positions are outside our model inputs, we ignore these terms
            ignored_index = start_logits.size(1)
1354
1355
            start_positions = start_positions.clamp(0, ignored_index)
            end_positions = end_positions.clamp(0, ignored_index)
1356
1357
1358
1359
1360
1361

            loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
            start_loss = loss_fct(start_logits, start_positions)
            end_loss = loss_fct(end_logits, end_positions)
            total_loss = (start_loss + end_loss) / 2

1362
        if not return_dict:
Lysandre's avatar
Lysandre committed
1363
1364
1365
1366
            output = (
                start_logits,
                end_logits,
            ) + discriminator_hidden_states[1:]
1367
1368
1369
1370
1371
1372
1373
1374
1375
            return ((total_loss,) + output) if total_loss is not None else output

        return QuestionAnsweringModelOutput(
            loss=total_loss,
            start_logits=start_logits,
            end_logits=end_logits,
            hidden_states=discriminator_hidden_states.hidden_states,
            attentions=discriminator_hidden_states.attentions,
        )
Suraj Patil's avatar
Suraj Patil committed
1376
1377
1378


@add_start_docstrings(
Sylvain Gugger's avatar
Sylvain Gugger committed
1379
1380
1381
1382
    """
    ELECTRA Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a
    softmax) e.g. for RocStories/SWAG tasks.
    """,
Sylvain Gugger's avatar
Sylvain Gugger committed
1383
    ELECTRA_START_DOCSTRING,
Suraj Patil's avatar
Suraj Patil committed
1384
1385
1386
1387
1388
1389
)
class ElectraForMultipleChoice(ElectraPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)

        self.electra = ElectraModel(config)
Julien Plu's avatar
Julien Plu committed
1390
        self.sequence_summary = SequenceSummary(config)
Suraj Patil's avatar
Suraj Patil committed
1391
1392
1393
1394
        self.classifier = nn.Linear(config.hidden_size, 1)

        self.init_weights()

1395
    @add_start_docstrings_to_model_forward(ELECTRA_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length"))
1396
1397
    @add_code_sample_docstrings(
        tokenizer_class=_TOKENIZER_FOR_DOC,
1398
        checkpoint=_CHECKPOINT_FOR_DOC,
1399
1400
1401
        output_type=MultipleChoiceModelOutput,
        config_class=_CONFIG_FOR_DOC,
    )
Suraj Patil's avatar
Suraj Patil committed
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        head_mask=None,
        inputs_embeds=None,
        labels=None,
        output_attentions=None,
1412
        output_hidden_states=None,
1413
        return_dict=None,
Suraj Patil's avatar
Suraj Patil committed
1414
1415
    ):
        r"""
1416
        labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
Sylvain Gugger's avatar
Sylvain Gugger committed
1417
1418
1419
            Labels for computing the multiple choice classification loss. Indices should be in ``[0, ...,
            num_choices-1]`` where :obj:`num_choices` is the size of the second dimension of the input tensors. (See
            :obj:`input_ids` above)
Suraj Patil's avatar
Suraj Patil committed
1420
        """
1421
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
Suraj Patil's avatar
Suraj Patil committed
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
        num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]

        input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
        attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
        token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
        position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
        inputs_embeds = (
            inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
            if inputs_embeds is not None
            else None
        )

        discriminator_hidden_states = self.electra(
            input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            output_attentions=output_attentions,
1442
            output_hidden_states=output_hidden_states,
1443
            return_dict=return_dict,
Suraj Patil's avatar
Suraj Patil committed
1444
1445
1446
1447
        )

        sequence_output = discriminator_hidden_states[0]

Julien Plu's avatar
Julien Plu committed
1448
        pooled_output = self.sequence_summary(sequence_output)
Suraj Patil's avatar
Suraj Patil committed
1449
1450
1451
        logits = self.classifier(pooled_output)
        reshaped_logits = logits.view(-1, num_choices)

1452
        loss = None
Suraj Patil's avatar
Suraj Patil committed
1453
1454
1455
1456
        if labels is not None:
            loss_fct = CrossEntropyLoss()
            loss = loss_fct(reshaped_logits, labels)

1457
        if not return_dict:
1458
1459
1460
1461
1462
1463
1464
1465
1466
            output = (reshaped_logits,) + discriminator_hidden_states[1:]
            return ((loss,) + output) if loss is not None else output

        return MultipleChoiceModelOutput(
            loss=loss,
            logits=reshaped_logits,
            hidden_states=discriminator_hidden_states.hidden_states,
            attentions=discriminator_hidden_states.attentions,
        )