test_modeling_tf_xlm.py 12 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

thomwolf's avatar
thomwolf committed
16

17
18
import unittest

19
from transformers import is_tf_available
20
from transformers.testing_utils import require_tf, slow
thomwolf's avatar
thomwolf committed
21

22
from .test_configuration_common import ConfigTester
23
from .test_modeling_tf_common import TFModelTesterMixin, ids_tensor
Aymeric Augustin's avatar
Aymeric Augustin committed
24
25


thomwolf's avatar
thomwolf committed
26
27
if is_tf_available():
    import tensorflow as tf
28

29
    from transformers import (
30
31
        TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST,
        TFXLMForMultipleChoice,
32
        TFXLMForQuestionAnsweringSimple,
33
        TFXLMForSequenceClassification,
34
        TFXLMForTokenClassification,
35
36
37
        TFXLMModel,
        TFXLMWithLMHeadModel,
        XLMConfig,
38
39
    )

thomwolf's avatar
thomwolf committed
40

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
class TFXLMModelTester:
    def __init__(
        self, parent,
    ):
        self.parent = parent
        self.batch_size = 13
        self.seq_length = 7
        self.is_training = True
        self.use_input_lengths = True
        self.use_token_type_ids = True
        self.use_labels = True
        self.gelu_activation = True
        self.sinusoidal_embeddings = False
        self.causal = False
        self.asm = False
        self.n_langs = 2
        self.vocab_size = 99
        self.n_special = 0
        self.hidden_size = 32
        self.num_hidden_layers = 5
        self.num_attention_heads = 4
        self.hidden_dropout_prob = 0.1
        self.attention_probs_dropout_prob = 0.1
        self.max_position_embeddings = 512
        self.type_vocab_size = 16
        self.type_sequence_label_size = 2
        self.initializer_range = 0.02
        self.num_labels = 3
        self.num_choices = 4
        self.summary_type = "last"
        self.use_proj = True
        self.scope = None
        self.bos_token_id = 0

    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
        input_mask = ids_tensor([self.batch_size, self.seq_length], 2, dtype=tf.float32)

        input_lengths = None
        if self.use_input_lengths:
            input_lengths = (
                ids_tensor([self.batch_size], vocab_size=2) + self.seq_length - 2
            )  # small variation of seq_length

        token_type_ids = None
        if self.use_token_type_ids:
            token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.n_langs)

        sequence_labels = None
        token_labels = None
        is_impossible_labels = None
        if self.use_labels:
            sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
            token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
            is_impossible_labels = ids_tensor([self.batch_size], 2, dtype=tf.float32)
96
            choice_labels = ids_tensor([self.batch_size], self.num_choices)
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115

        config = XLMConfig(
            vocab_size=self.vocab_size,
            n_special=self.n_special,
            emb_dim=self.hidden_size,
            n_layers=self.num_hidden_layers,
            n_heads=self.num_attention_heads,
            dropout=self.hidden_dropout_prob,
            attention_dropout=self.attention_probs_dropout_prob,
            gelu_activation=self.gelu_activation,
            sinusoidal_embeddings=self.sinusoidal_embeddings,
            asm=self.asm,
            causal=self.causal,
            n_langs=self.n_langs,
            max_position_embeddings=self.max_position_embeddings,
            initializer_range=self.initializer_range,
            summary_type=self.summary_type,
            use_proj=self.use_proj,
            bos_token_id=self.bos_token_id,
Sylvain Gugger's avatar
Sylvain Gugger committed
116
            return_dict=True,
117
118
119
        )

        return (
120
121
122
123
124
125
126
            config,
            input_ids,
            token_type_ids,
            input_lengths,
            sequence_labels,
            token_labels,
            is_impossible_labels,
127
            choice_labels,
128
            input_mask,
129
130
131
132
133
134
135
136
137
138
139
        )

    def create_and_check_xlm_model(
        self,
        config,
        input_ids,
        token_type_ids,
        input_lengths,
        sequence_labels,
        token_labels,
        is_impossible_labels,
140
        choice_labels,
141
142
143
144
        input_mask,
    ):
        model = TFXLMModel(config=config)
        inputs = {"input_ids": input_ids, "lengths": input_lengths, "langs": token_type_ids}
Sylvain Gugger's avatar
Sylvain Gugger committed
145
        result = model(inputs)
146
147

        inputs = [input_ids, input_mask]
Sylvain Gugger's avatar
Sylvain Gugger committed
148
        result = model(inputs)
149
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
150
151
152
153
154
155
156
157
158
159

    def create_and_check_xlm_lm_head(
        self,
        config,
        input_ids,
        token_type_ids,
        input_lengths,
        sequence_labels,
        token_labels,
        is_impossible_labels,
160
        choice_labels,
161
162
163
164
165
166
167
        input_mask,
    ):
        model = TFXLMWithLMHeadModel(config)

        inputs = {"input_ids": input_ids, "lengths": input_lengths, "langs": token_type_ids}
        outputs = model(inputs)

Sylvain Gugger's avatar
Sylvain Gugger committed
168
        result = outputs
169

170
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
171
172
173
174
175
176
177
178
179
180

    def create_and_check_xlm_qa(
        self,
        config,
        input_ids,
        token_type_ids,
        input_lengths,
        sequence_labels,
        token_labels,
        is_impossible_labels,
181
        choice_labels,
182
183
184
185
186
187
        input_mask,
    ):
        model = TFXLMForQuestionAnsweringSimple(config)

        inputs = {"input_ids": input_ids, "lengths": input_lengths}

Sylvain Gugger's avatar
Sylvain Gugger committed
188
        result = model(inputs)
189

190
191
        self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length))
        self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length))
192
193
194
195
196
197
198
199
200
201

    def create_and_check_xlm_sequence_classif(
        self,
        config,
        input_ids,
        token_type_ids,
        input_lengths,
        sequence_labels,
        token_labels,
        is_impossible_labels,
202
        choice_labels,
203
204
205
206
207
208
        input_mask,
    ):
        model = TFXLMForSequenceClassification(config)

        inputs = {"input_ids": input_ids, "lengths": input_lengths}

Sylvain Gugger's avatar
Sylvain Gugger committed
209
        result = model(inputs)
210

211
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size))
212

213
214
215
216
217
218
219
220
221
    def create_and_check_xlm_for_token_classification(
        self,
        config,
        input_ids,
        token_type_ids,
        input_lengths,
        sequence_labels,
        token_labels,
        is_impossible_labels,
222
        choice_labels,
223
224
225
226
227
        input_mask,
    ):
        config.num_labels = self.num_labels
        model = TFXLMForTokenClassification(config=config)
        inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
Sylvain Gugger's avatar
Sylvain Gugger committed
228
        result = model(inputs)
229
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels))
230

231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
    def create_and_check_xlm_for_multiple_choice(
        self,
        config,
        input_ids,
        token_type_ids,
        input_lengths,
        sequence_labels,
        token_labels,
        is_impossible_labels,
        choice_labels,
        input_mask,
    ):
        config.num_choices = self.num_choices
        model = TFXLMForMultipleChoice(config=config)
        multiple_choice_inputs_ids = tf.tile(tf.expand_dims(input_ids, 1), (1, self.num_choices, 1))
        multiple_choice_input_mask = tf.tile(tf.expand_dims(input_mask, 1), (1, self.num_choices, 1))
        multiple_choice_token_type_ids = tf.tile(tf.expand_dims(token_type_ids, 1), (1, self.num_choices, 1))
        inputs = {
            "input_ids": multiple_choice_inputs_ids,
            "attention_mask": multiple_choice_input_mask,
            "token_type_ids": multiple_choice_token_type_ids,
        }
Sylvain Gugger's avatar
Sylvain Gugger committed
253
        result = model(inputs)
254
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices))
255

256
257
258
    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        (
259
260
261
262
263
264
265
            config,
            input_ids,
            token_type_ids,
            input_lengths,
            sequence_labels,
            token_labels,
            is_impossible_labels,
266
            choice_labels,
267
            input_mask,
268
269
270
271
272
273
274
275
        ) = config_and_inputs
        inputs_dict = {
            "input_ids": input_ids,
            "token_type_ids": token_type_ids,
            "langs": token_type_ids,
            "lengths": input_lengths,
        }
        return config, inputs_dict
thomwolf's avatar
thomwolf committed
276
277


278
279
@require_tf
class TFXLMModelTest(TFModelTesterMixin, unittest.TestCase):
280

281
    all_model_classes = (
282
283
284
285
286
287
        (
            TFXLMModel,
            TFXLMWithLMHeadModel,
            TFXLMForSequenceClassification,
            TFXLMForQuestionAnsweringSimple,
            TFXLMForTokenClassification,
288
            TFXLMForMultipleChoice,
289
        )
290
291
292
293
294
295
        if is_tf_available()
        else ()
    )
    all_generative_model_classes = (
        (TFXLMWithLMHeadModel,) if is_tf_available() else ()
    )  # TODO (PVP): Check other models whether language generation is also applicable
thomwolf's avatar
thomwolf committed
296
297

    def setUp(self):
298
        self.model_tester = TFXLMModelTester(self)
thomwolf's avatar
thomwolf committed
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
        self.config_tester = ConfigTester(self, config_class=XLMConfig, emb_dim=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_xlm_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_xlm_model(*config_and_inputs)

    def test_xlm_lm_head(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_xlm_lm_head(*config_and_inputs)

    def test_xlm_qa(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_xlm_qa(*config_and_inputs)

    def test_xlm_sequence_classif(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_xlm_sequence_classif(*config_and_inputs)

320
321
322
323
    def test_for_token_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_xlm_for_token_classification(*config_and_inputs)

324
325
326
327
    def test_for_multiple_choice(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_xlm_for_multiple_choice(*config_and_inputs)

328
    @slow
thomwolf's avatar
thomwolf committed
329
    def test_model_from_pretrained(self):
330
        for model_name in TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
331
            model = TFXLMModel.from_pretrained(model_name)
thomwolf's avatar
thomwolf committed
332
            self.assertIsNotNone(model)
patrickvonplaten's avatar
patrickvonplaten committed
333
334


335
@require_tf
patrickvonplaten's avatar
patrickvonplaten committed
336
337
338
339
class TFXLMModelLanguageGenerationTest(unittest.TestCase):
    @slow
    def test_lm_generate_xlm_mlm_en_2048(self):
        model = TFXLMWithLMHeadModel.from_pretrained("xlm-mlm-en-2048")
340
        input_ids = tf.convert_to_tensor([[14, 447]], dtype=tf.int32)  # the president
patrickvonplaten's avatar
patrickvonplaten committed
341
342
        expected_output_ids = [
            14,
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
            447,
            14,
            447,
            14,
            447,
            14,
            447,
            14,
            447,
            14,
            447,
            14,
            447,
            14,
            447,
            14,
            447,
            14,
            447,
        ]  # the president the president the president the president the president the president the president the president the president the president
        # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference
Patrick von Platen's avatar
Patrick von Platen committed
364
365
        output_ids = model.generate(input_ids, do_sample=False)
        self.assertListEqual(output_ids[0].numpy().tolist(), expected_output_ids)