Commit 4356f791 authored by thomwolf's avatar thomwolf
Browse files

XLM passing tests

parent 465870c3
...@@ -120,6 +120,13 @@ if _tf_available: ...@@ -120,6 +120,13 @@ if _tf_available:
load_xlnet_pt_weights_in_tf2, load_xlnet_pt_weights_in_tf2,
TF_XLNET_PRETRAINED_MODEL_ARCHIVE_MAP) TF_XLNET_PRETRAINED_MODEL_ARCHIVE_MAP)
from .modeling_tf_xlm import (TFXLMPreTrainedModel, TFXLMMainLayer,
TFXLMModel, TFXLMWithLMHeadModel,
TFXLMForSequenceClassification,
TFXLMForQuestionAnsweringSimple,
load_xlm_pt_weights_in_tf2,
TF_XLM_PRETRAINED_MODEL_ARCHIVE_MAP)
# Files and general utilities # Files and general utilities
from .file_utils import (PYTORCH_TRANSFORMERS_CACHE, PYTORCH_PRETRAINED_BERT_CACHE, from .file_utils import (PYTORCH_TRANSFORMERS_CACHE, PYTORCH_PRETRAINED_BERT_CACHE,
cached_path, add_start_docstrings, add_end_docstrings, cached_path, add_start_docstrings, add_end_docstrings,
......
This diff is collapsed.
...@@ -69,10 +69,8 @@ def load_xlnet_pt_weights_in_tf2(tf_model, config, pytorch_checkpoint_path): ...@@ -69,10 +69,8 @@ def load_xlnet_pt_weights_in_tf2(tf_model, config, pytorch_checkpoint_path):
all_pytorch_weights = set(list(state_dict.keys())) all_pytorch_weights = set(list(state_dict.keys()))
for symbolic_weight in symbolic_weights: for symbolic_weight in symbolic_weights:
name = symbolic_weight.name name = symbolic_weight.name
name = name.replace('cls_mlm', 'cls') # We had to split this layer in two in the TF model to be
name = name.replace('cls_nsp', 'cls') # able to do transfer learning (Keras only allow to remove full layers)
name = name.replace(':0', '') name = name.replace(':0', '')
name = name.replace('layer__', 'layer/') name = name.replace('__', '/')
name = name.split('/') name = name.split('/')
name = name[1:] name = name[1:]
...@@ -887,8 +885,6 @@ class TFXLNetLMHeadModel(TFXLNetPreTrainedModel): ...@@ -887,8 +885,6 @@ class TFXLNetLMHeadModel(TFXLNetPreTrainedModel):
""" """
def __init__(self, config, *inputs, **kwargs): def __init__(self, config, *inputs, **kwargs):
super(TFXLNetLMHeadModel, self).__init__(config, *inputs, **kwargs) super(TFXLNetLMHeadModel, self).__init__(config, *inputs, **kwargs)
self.n_token = config.n_token
self.transformer = TFXLNetMainLayer(config, name='transformer') self.transformer = TFXLNetMainLayer(config, name='transformer')
self.lm_loss = TFXLNetLMHead(config, self.transformer.word_embedding, name='lm_loss') self.lm_loss = TFXLNetLMHead(config, self.transformer.word_embedding, name='lm_loss')
...@@ -993,8 +989,6 @@ class TFXLNetForQuestionAnsweringSimple(TFXLNetPreTrainedModel): ...@@ -993,8 +989,6 @@ class TFXLNetForQuestionAnsweringSimple(TFXLNetPreTrainedModel):
""" """
def __init__(self, config, *inputs, **kwargs): def __init__(self, config, *inputs, **kwargs):
super(TFXLNetForQuestionAnsweringSimple, self).__init__(config, *inputs, **kwargs) super(TFXLNetForQuestionAnsweringSimple, self).__init__(config, *inputs, **kwargs)
self.num_labels = config.num_labels
self.transformer = TFXLNetMainLayer(config, name='transformer') self.transformer = TFXLNetMainLayer(config, name='transformer')
self.qa_outputs = tf.keras.layers.Dense(config.num_labels, name='qa_outputs') self.qa_outputs = tf.keras.layers.Dense(config.num_labels, name='qa_outputs')
......
...@@ -337,11 +337,6 @@ class XLMModel(XLMPreTrainedModel): ...@@ -337,11 +337,6 @@ class XLMModel(XLMPreTrainedModel):
last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple
""" """
ATTRIBUTES = ['encoder', 'eos_index', 'pad_index', # 'with_output',
'n_langs', 'use_lang_emb', 'n_words', 'dim', 'n_layers', 'n_heads',
'hidden_dim', 'dropout', 'attention_dropout', 'asm',
'asm_cutoffs', 'asm_div_value']
def __init__(self, config): #, dico, is_encoder, with_output): def __init__(self, config): #, dico, is_encoder, with_output):
super(XLMModel, self).__init__(config) super(XLMModel, self).__init__(config)
self.output_attentions = config.output_attentions self.output_attentions = config.output_attentions
......
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import unittest
import shutil
import pytest
from pytorch_transformers import is_tf_available
if is_tf_available():
import tensorflow as tf
from pytorch_transformers import (XLMConfig, TFXLMModel,
TFXLMWithLMHeadModel,
TFXLMForSequenceClassification,
TFXLMForQuestionAnsweringSimple,
TF_XLM_PRETRAINED_MODEL_ARCHIVE_MAP)
else:
pytestmark = pytest.mark.skip("Require TensorFlow")
from .modeling_tf_common_test import (TFCommonTestCases, ids_tensor)
from .configuration_common_test import ConfigTester
class TFXLMModelTest(TFCommonTestCases.TFCommonModelTester):
all_model_classes = (TFXLMModel, TFXLMWithLMHeadModel,
TFXLMForSequenceClassification,
TFXLMForQuestionAnsweringSimple) if is_tf_available() else ()
class TFXLMModelTester(object):
def __init__(self,
parent,
batch_size=13,
seq_length=7,
is_training=True,
use_input_lengths=True,
use_token_type_ids=True,
use_labels=True,
gelu_activation=True,
sinusoidal_embeddings=False,
causal=False,
asm=False,
n_langs=2,
vocab_size=99,
n_special=0,
hidden_size=32,
num_hidden_layers=5,
num_attention_heads=4,
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=16,
type_sequence_label_size=2,
initializer_range=0.02,
num_labels=3,
num_choices=4,
summary_type="last",
use_proj=True,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_input_lengths = use_input_lengths
self.use_token_type_ids = use_token_type_ids
self.use_labels = use_labels
self.gelu_activation = gelu_activation
self.sinusoidal_embeddings = sinusoidal_embeddings
self.asm = asm
self.n_langs = n_langs
self.vocab_size = vocab_size
self.n_special = n_special
self.summary_type = summary_type
self.causal = causal
self.use_proj = use_proj
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.n_langs = n_langs
self.type_sequence_label_size = type_sequence_label_size
self.initializer_range = initializer_range
self.summary_type = summary_type
self.num_labels = num_labels
self.num_choices = num_choices
self.scope = scope
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_mask = ids_tensor([self.batch_size, self.seq_length], 2, dtype=tf.float32)
input_lengths = None
if self.use_input_lengths:
input_lengths = ids_tensor([self.batch_size], vocab_size=2) + self.seq_length - 2 # small variation of seq_length
token_type_ids = None
if self.use_token_type_ids:
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.n_langs)
sequence_labels = None
token_labels = None
is_impossible_labels = None
if self.use_labels:
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
is_impossible_labels = ids_tensor([self.batch_size], 2, dtype=tf.float32)
config = XLMConfig(
vocab_size_or_config_json_file=self.vocab_size,
n_special=self.n_special,
emb_dim=self.hidden_size,
n_layers=self.num_hidden_layers,
n_heads=self.num_attention_heads,
dropout=self.hidden_dropout_prob,
attention_dropout=self.attention_probs_dropout_prob,
gelu_activation=self.gelu_activation,
sinusoidal_embeddings=self.sinusoidal_embeddings,
asm=self.asm,
causal=self.causal,
n_langs=self.n_langs,
max_position_embeddings=self.max_position_embeddings,
initializer_range=self.initializer_range,
summary_type=self.summary_type,
use_proj=self.use_proj)
return config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, input_mask
def create_and_check_xlm_model(self, config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, input_mask):
model = TFXLMModel(config=config)
inputs = {'input_ids': input_ids,
'lengths': input_lengths,
'langs': token_type_ids}
outputs = model(inputs)
inputs = [input_ids, input_mask]
outputs = model(inputs)
sequence_output = outputs[0]
result = {
"sequence_output": sequence_output.numpy(),
}
self.parent.assertListEqual(
list(result["sequence_output"].shape),
[self.batch_size, self.seq_length, self.hidden_size])
def create_and_check_xlm_lm_head(self, config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, input_mask):
model = TFXLMWithLMHeadModel(config)
inputs = {'input_ids': input_ids,
'lengths': input_lengths,
'langs': token_type_ids}
outputs = model(inputs)
logits = outputs[0]
result = {
"logits": logits.numpy(),
}
self.parent.assertListEqual(
list(result["logits"].shape),
[self.batch_size, self.seq_length, self.vocab_size])
def create_and_check_xlm_qa(self, config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, input_mask):
model = TFXLMForQuestionAnsweringSimple(config)
inputs = {'input_ids': input_ids,
'lengths': input_lengths}
outputs = model(inputs)
start_logits, end_logits = model(inputs)
result = {
"start_logits": start_logits.numpy(),
"end_logits": end_logits.numpy(),
}
self.parent.assertListEqual(
list(result["start_logits"].shape),
[self.batch_size, self.seq_length])
self.parent.assertListEqual(
list(result["end_logits"].shape),
[self.batch_size, self.seq_length])
def create_and_check_xlm_sequence_classif(self, config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, input_mask):
model = TFXLMForSequenceClassification(config)
inputs = {'input_ids': input_ids,
'lengths': input_lengths}
(logits,) = model(inputs)
result = {
"logits": logits.numpy(),
}
self.parent.assertListEqual(
list(result["logits"].shape),
[self.batch_size, self.type_sequence_label_size])
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(config, input_ids, token_type_ids, input_lengths,
sequence_labels, token_labels, is_impossible_labels, input_mask) = config_and_inputs
inputs_dict = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'lengths': input_lengths}
return config, inputs_dict
def setUp(self):
self.model_tester = TFXLMModelTest.TFXLMModelTester(self)
self.config_tester = ConfigTester(self, config_class=XLMConfig, emb_dim=37)
def test_config(self):
self.config_tester.run_common_tests()
def test_xlm_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_model(*config_and_inputs)
def test_xlm_lm_head(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_lm_head(*config_and_inputs)
def test_xlm_qa(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_qa(*config_and_inputs)
def test_xlm_sequence_classif(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_sequence_classif(*config_and_inputs)
@pytest.mark.slow
def test_model_from_pretrained(self):
cache_dir = "/tmp/pytorch_transformers_test/"
for model_name in list(TF_XLM_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
model = XLMModel.from_pretrained(model_name, cache_dir=cache_dir)
shutil.rmtree(cache_dir)
self.assertIsNotNone(model)
if __name__ == "__main__":
unittest.main()
...@@ -272,20 +272,17 @@ class XLMModelTest(CommonTestCases.CommonModelTester): ...@@ -272,20 +272,17 @@ class XLMModelTest(CommonTestCases.CommonModelTester):
config_and_inputs = self.model_tester.prepare_config_and_inputs() config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_model(*config_and_inputs) self.model_tester.create_and_check_xlm_model(*config_and_inputs)
# config_and_inputs = tester.prepare_config_and_inputs() def test_xlm_lm_head(self):
# tester.create_and_check_xlm_for_masked_lm(*config_and_inputs) config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_lm_head(*config_and_inputs)
# config_and_inputs = tester.prepare_config_and_inputs()
# tester.create_and_check_xlm_for_multiple_choice(*config_and_inputs)
# config_and_inputs = tester.prepare_config_and_inputs()
# tester.create_and_check_xlm_for_question_answering(*config_and_inputs)
# config_and_inputs = tester.prepare_config_and_inputs() def test_xlm_qa(self):
# tester.create_and_check_xlm_for_sequence_classification(*config_and_inputs) config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_qa(*config_and_inputs)
# config_and_inputs = tester.prepare_config_and_inputs() def test_xlm_sequence_classif(self):
# tester.create_and_check_xlm_for_token_classification(*config_and_inputs) config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_sequence_classif(*config_and_inputs)
@pytest.mark.slow @pytest.mark.slow
def test_model_from_pretrained(self): def test_model_from_pretrained(self):
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment