test_modeling_tf_xlm.py 10.9 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

thomwolf's avatar
thomwolf committed
16

17
18
import unittest

19
from transformers import is_tf_available
thomwolf's avatar
thomwolf committed
20

21
from .test_configuration_common import ConfigTester
22
from .test_modeling_tf_common import TFModelTesterMixin, ids_tensor
Aymeric Augustin's avatar
Aymeric Augustin committed
23
24
25
from .utils import CACHE_DIR, require_tf, slow


thomwolf's avatar
thomwolf committed
26
27
if is_tf_available():
    import tensorflow as tf
28
29
30
31
32
33
34
35
36
    from transformers import (
        XLMConfig,
        TFXLMModel,
        TFXLMWithLMHeadModel,
        TFXLMForSequenceClassification,
        TFXLMForQuestionAnsweringSimple,
        TF_XLM_PRETRAINED_MODEL_ARCHIVE_MAP,
    )

thomwolf's avatar
thomwolf committed
37

38
@require_tf
39
class TFXLMModelTest(TFModelTesterMixin, unittest.TestCase):
thomwolf's avatar
thomwolf committed
40

41
42
43
44
45
    all_model_classes = (
        (TFXLMModel, TFXLMWithLMHeadModel, TFXLMForSequenceClassification, TFXLMForQuestionAnsweringSimple)
        if is_tf_available()
        else ()
    )
46
47
48
    all_generative_model_classes = (
        (TFXLMWithLMHeadModel,) if is_tf_available() else ()
    )  # TODO (PVP): Check other models whether language generation is also applicable
thomwolf's avatar
thomwolf committed
49
50

    class TFXLMModelTester(object):
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
        def __init__(
            self,
            parent,
            batch_size=13,
            seq_length=7,
            is_training=True,
            use_input_lengths=True,
            use_token_type_ids=True,
            use_labels=True,
            gelu_activation=True,
            sinusoidal_embeddings=False,
            causal=False,
            asm=False,
            n_langs=2,
            vocab_size=99,
            n_special=0,
            hidden_size=32,
            num_hidden_layers=5,
            num_attention_heads=4,
            hidden_dropout_prob=0.1,
            attention_probs_dropout_prob=0.1,
            max_position_embeddings=512,
            type_vocab_size=16,
            type_sequence_label_size=2,
            initializer_range=0.02,
            num_labels=3,
            num_choices=4,
            summary_type="last",
            use_proj=True,
            scope=None,
81
            bos_token_id=0,
82
        ):
thomwolf's avatar
thomwolf committed
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
            self.parent = parent
            self.batch_size = batch_size
            self.seq_length = seq_length
            self.is_training = is_training
            self.use_input_lengths = use_input_lengths
            self.use_token_type_ids = use_token_type_ids
            self.use_labels = use_labels
            self.gelu_activation = gelu_activation
            self.sinusoidal_embeddings = sinusoidal_embeddings
            self.asm = asm
            self.n_langs = n_langs
            self.vocab_size = vocab_size
            self.n_special = n_special
            self.summary_type = summary_type
            self.causal = causal
            self.use_proj = use_proj
            self.hidden_size = hidden_size
            self.num_hidden_layers = num_hidden_layers
            self.num_attention_heads = num_attention_heads
            self.hidden_dropout_prob = hidden_dropout_prob
            self.attention_probs_dropout_prob = attention_probs_dropout_prob
            self.max_position_embeddings = max_position_embeddings
            self.n_langs = n_langs
            self.type_sequence_label_size = type_sequence_label_size
            self.initializer_range = initializer_range
            self.summary_type = summary_type
            self.num_labels = num_labels
            self.num_choices = num_choices
            self.scope = scope
112
            self.bos_token_id = bos_token_id
thomwolf's avatar
thomwolf committed
113
114
115
116
117
118
119

        def prepare_config_and_inputs(self):
            input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
            input_mask = ids_tensor([self.batch_size, self.seq_length], 2, dtype=tf.float32)

            input_lengths = None
            if self.use_input_lengths:
120
121
122
                input_lengths = (
                    ids_tensor([self.batch_size], vocab_size=2) + self.seq_length - 2
                )  # small variation of seq_length
thomwolf's avatar
thomwolf committed
123
124
125
126
127
128
129
130
131
132
133
134
135
136

            token_type_ids = None
            if self.use_token_type_ids:
                token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.n_langs)

            sequence_labels = None
            token_labels = None
            is_impossible_labels = None
            if self.use_labels:
                sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
                token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
                is_impossible_labels = ids_tensor([self.batch_size], 2, dtype=tf.float32)

            config = XLMConfig(
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
                vocab_size=self.vocab_size,
                n_special=self.n_special,
                emb_dim=self.hidden_size,
                n_layers=self.num_hidden_layers,
                n_heads=self.num_attention_heads,
                dropout=self.hidden_dropout_prob,
                attention_dropout=self.attention_probs_dropout_prob,
                gelu_activation=self.gelu_activation,
                sinusoidal_embeddings=self.sinusoidal_embeddings,
                asm=self.asm,
                causal=self.causal,
                n_langs=self.n_langs,
                max_position_embeddings=self.max_position_embeddings,
                initializer_range=self.initializer_range,
                summary_type=self.summary_type,
                use_proj=self.use_proj,
153
                bos_token_id=self.bos_token_id,
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
            )

            return (
                config,
                input_ids,
                token_type_ids,
                input_lengths,
                sequence_labels,
                token_labels,
                is_impossible_labels,
                input_mask,
            )

        def create_and_check_xlm_model(
            self,
            config,
            input_ids,
            token_type_ids,
            input_lengths,
            sequence_labels,
            token_labels,
            is_impossible_labels,
            input_mask,
        ):
thomwolf's avatar
thomwolf committed
178
            model = TFXLMModel(config=config)
179
            inputs = {"input_ids": input_ids, "lengths": input_lengths, "langs": token_type_ids}
thomwolf's avatar
thomwolf committed
180
181
182
183
184
185
186
187
188
            outputs = model(inputs)

            inputs = [input_ids, input_mask]
            outputs = model(inputs)
            sequence_output = outputs[0]
            result = {
                "sequence_output": sequence_output.numpy(),
            }
            self.parent.assertListEqual(
189
190
191
192
193
194
195
196
197
198
199
200
201
202
                list(result["sequence_output"].shape), [self.batch_size, self.seq_length, self.hidden_size]
            )

        def create_and_check_xlm_lm_head(
            self,
            config,
            input_ids,
            token_type_ids,
            input_lengths,
            sequence_labels,
            token_labels,
            is_impossible_labels,
            input_mask,
        ):
thomwolf's avatar
thomwolf committed
203
204
            model = TFXLMWithLMHeadModel(config)

205
            inputs = {"input_ids": input_ids, "lengths": input_lengths, "langs": token_type_ids}
thomwolf's avatar
thomwolf committed
206
207
208
209
210
211
212
213
214
            outputs = model(inputs)

            logits = outputs[0]

            result = {
                "logits": logits.numpy(),
            }

            self.parent.assertListEqual(
215
216
217
218
219
220
221
222
223
224
225
226
227
228
                list(result["logits"].shape), [self.batch_size, self.seq_length, self.vocab_size]
            )

        def create_and_check_xlm_qa(
            self,
            config,
            input_ids,
            token_type_ids,
            input_lengths,
            sequence_labels,
            token_labels,
            is_impossible_labels,
            input_mask,
        ):
thomwolf's avatar
thomwolf committed
229
230
            model = TFXLMForQuestionAnsweringSimple(config)

231
            inputs = {"input_ids": input_ids, "lengths": input_lengths}
thomwolf's avatar
thomwolf committed
232
233
234
235
236
237
238
239

            start_logits, end_logits = model(inputs)

            result = {
                "start_logits": start_logits.numpy(),
                "end_logits": end_logits.numpy(),
            }

240
241
242
243
244
245
246
247
248
249
250
251
252
253
            self.parent.assertListEqual(list(result["start_logits"].shape), [self.batch_size, self.seq_length])
            self.parent.assertListEqual(list(result["end_logits"].shape), [self.batch_size, self.seq_length])

        def create_and_check_xlm_sequence_classif(
            self,
            config,
            input_ids,
            token_type_ids,
            input_lengths,
            sequence_labels,
            token_labels,
            is_impossible_labels,
            input_mask,
        ):
thomwolf's avatar
thomwolf committed
254
255
            model = TFXLMForSequenceClassification(config)

256
            inputs = {"input_ids": input_ids, "lengths": input_lengths}
thomwolf's avatar
thomwolf committed
257
258
259
260
261
262
263

            (logits,) = model(inputs)

            result = {
                "logits": logits.numpy(),
            }

264
            self.parent.assertListEqual(list(result["logits"].shape), [self.batch_size, self.type_sequence_label_size])
thomwolf's avatar
thomwolf committed
265
266
267

        def prepare_config_and_inputs_for_common(self):
            config_and_inputs = self.prepare_config_and_inputs()
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
            (
                config,
                input_ids,
                token_type_ids,
                input_lengths,
                sequence_labels,
                token_labels,
                is_impossible_labels,
                input_mask,
            ) = config_and_inputs
            inputs_dict = {
                "input_ids": input_ids,
                "token_type_ids": token_type_ids,
                "langs": token_type_ids,
                "lengths": input_lengths,
            }
thomwolf's avatar
thomwolf committed
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
            return config, inputs_dict

    def setUp(self):
        self.model_tester = TFXLMModelTest.TFXLMModelTester(self)
        self.config_tester = ConfigTester(self, config_class=XLMConfig, emb_dim=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_xlm_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_xlm_model(*config_and_inputs)

    def test_xlm_lm_head(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_xlm_lm_head(*config_and_inputs)

    def test_xlm_qa(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_xlm_qa(*config_and_inputs)

    def test_xlm_sequence_classif(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_xlm_sequence_classif(*config_and_inputs)

309
    @slow
thomwolf's avatar
thomwolf committed
310
311
    def test_model_from_pretrained(self):
        for model_name in list(TF_XLM_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
Aymeric Augustin's avatar
Aymeric Augustin committed
312
            model = TFXLMModel.from_pretrained(model_name, cache_dir=CACHE_DIR)
thomwolf's avatar
thomwolf committed
313
            self.assertIsNotNone(model)