test_modeling_tf_xlm.py 11.1 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

thomwolf's avatar
thomwolf committed
16

17
18
import unittest

19
from transformers import is_tf_available
thomwolf's avatar
thomwolf committed
20

21
from .test_configuration_common import ConfigTester
22
from .test_modeling_tf_common import TFModelTesterMixin, ids_tensor
23
from .utils import require_tf, slow
Aymeric Augustin's avatar
Aymeric Augustin committed
24
25


thomwolf's avatar
thomwolf committed
26
27
if is_tf_available():
    import tensorflow as tf
28
29
30
31
32
33
    from transformers import (
        XLMConfig,
        TFXLMModel,
        TFXLMWithLMHeadModel,
        TFXLMForSequenceClassification,
        TFXLMForQuestionAnsweringSimple,
34
        TFXLMForTokenClassification,
35
        TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST,
36
37
    )

thomwolf's avatar
thomwolf committed
38

39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
class TFXLMModelTester:
    def __init__(
        self, parent,
    ):
        self.parent = parent
        self.batch_size = 13
        self.seq_length = 7
        self.is_training = True
        self.use_input_lengths = True
        self.use_token_type_ids = True
        self.use_labels = True
        self.gelu_activation = True
        self.sinusoidal_embeddings = False
        self.causal = False
        self.asm = False
        self.n_langs = 2
        self.vocab_size = 99
        self.n_special = 0
        self.hidden_size = 32
        self.num_hidden_layers = 5
        self.num_attention_heads = 4
        self.hidden_dropout_prob = 0.1
        self.attention_probs_dropout_prob = 0.1
        self.max_position_embeddings = 512
        self.type_vocab_size = 16
        self.type_sequence_label_size = 2
        self.initializer_range = 0.02
        self.num_labels = 3
        self.num_choices = 4
        self.summary_type = "last"
        self.use_proj = True
        self.scope = None
        self.bos_token_id = 0

    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
        input_mask = ids_tensor([self.batch_size, self.seq_length], 2, dtype=tf.float32)

        input_lengths = None
        if self.use_input_lengths:
            input_lengths = (
                ids_tensor([self.batch_size], vocab_size=2) + self.seq_length - 2
            )  # small variation of seq_length

        token_type_ids = None
        if self.use_token_type_ids:
            token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.n_langs)

        sequence_labels = None
        token_labels = None
        is_impossible_labels = None
        if self.use_labels:
            sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
            token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
            is_impossible_labels = ids_tensor([self.batch_size], 2, dtype=tf.float32)

        config = XLMConfig(
            vocab_size=self.vocab_size,
            n_special=self.n_special,
            emb_dim=self.hidden_size,
            n_layers=self.num_hidden_layers,
            n_heads=self.num_attention_heads,
            dropout=self.hidden_dropout_prob,
            attention_dropout=self.attention_probs_dropout_prob,
            gelu_activation=self.gelu_activation,
            sinusoidal_embeddings=self.sinusoidal_embeddings,
            asm=self.asm,
            causal=self.causal,
            n_langs=self.n_langs,
            max_position_embeddings=self.max_position_embeddings,
            initializer_range=self.initializer_range,
            summary_type=self.summary_type,
            use_proj=self.use_proj,
            bos_token_id=self.bos_token_id,
        )

        return (
116
117
118
119
120
121
122
123
            config,
            input_ids,
            token_type_ids,
            input_lengths,
            sequence_labels,
            token_labels,
            is_impossible_labels,
            input_mask,
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
        )

    def create_and_check_xlm_model(
        self,
        config,
        input_ids,
        token_type_ids,
        input_lengths,
        sequence_labels,
        token_labels,
        is_impossible_labels,
        input_mask,
    ):
        model = TFXLMModel(config=config)
        inputs = {"input_ids": input_ids, "lengths": input_lengths, "langs": token_type_ids}
        outputs = model(inputs)

        inputs = [input_ids, input_mask]
        outputs = model(inputs)
        sequence_output = outputs[0]
        result = {
            "sequence_output": sequence_output.numpy(),
        }
        self.parent.assertListEqual(
            list(result["sequence_output"].shape), [self.batch_size, self.seq_length, self.hidden_size]
        )

    def create_and_check_xlm_lm_head(
        self,
        config,
        input_ids,
        token_type_ids,
        input_lengths,
        sequence_labels,
        token_labels,
        is_impossible_labels,
        input_mask,
    ):
        model = TFXLMWithLMHeadModel(config)

        inputs = {"input_ids": input_ids, "lengths": input_lengths, "langs": token_type_ids}
        outputs = model(inputs)

        logits = outputs[0]

        result = {
            "logits": logits.numpy(),
        }

        self.parent.assertListEqual(list(result["logits"].shape), [self.batch_size, self.seq_length, self.vocab_size])

    def create_and_check_xlm_qa(
        self,
        config,
        input_ids,
        token_type_ids,
        input_lengths,
        sequence_labels,
        token_labels,
        is_impossible_labels,
        input_mask,
    ):
        model = TFXLMForQuestionAnsweringSimple(config)

        inputs = {"input_ids": input_ids, "lengths": input_lengths}

        start_logits, end_logits = model(inputs)

        result = {
            "start_logits": start_logits.numpy(),
            "end_logits": end_logits.numpy(),
        }

        self.parent.assertListEqual(list(result["start_logits"].shape), [self.batch_size, self.seq_length])
        self.parent.assertListEqual(list(result["end_logits"].shape), [self.batch_size, self.seq_length])

    def create_and_check_xlm_sequence_classif(
        self,
        config,
        input_ids,
        token_type_ids,
        input_lengths,
        sequence_labels,
        token_labels,
        is_impossible_labels,
        input_mask,
    ):
        model = TFXLMForSequenceClassification(config)

        inputs = {"input_ids": input_ids, "lengths": input_lengths}

        (logits,) = model(inputs)

        result = {
            "logits": logits.numpy(),
        }

        self.parent.assertListEqual(list(result["logits"].shape), [self.batch_size, self.type_sequence_label_size])

223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
    def create_and_check_xlm_for_token_classification(
        self,
        config,
        input_ids,
        token_type_ids,
        input_lengths,
        sequence_labels,
        token_labels,
        is_impossible_labels,
        input_mask,
    ):
        config.num_labels = self.num_labels
        model = TFXLMForTokenClassification(config=config)
        inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
        (logits,) = model(inputs)
        result = {
            "logits": logits.numpy(),
        }
        self.parent.assertListEqual(list(result["logits"].shape), [self.batch_size, self.seq_length, self.num_labels])

243
244
245
    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        (
246
247
248
249
250
251
252
253
            config,
            input_ids,
            token_type_ids,
            input_lengths,
            sequence_labels,
            token_labels,
            is_impossible_labels,
            input_mask,
254
255
256
257
258
259
260
261
        ) = config_and_inputs
        inputs_dict = {
            "input_ids": input_ids,
            "token_type_ids": token_type_ids,
            "langs": token_type_ids,
            "lengths": input_lengths,
        }
        return config, inputs_dict
thomwolf's avatar
thomwolf committed
262
263


264
265
@require_tf
class TFXLMModelTest(TFModelTesterMixin, unittest.TestCase):
266

267
    all_model_classes = (
268
269
270
271
272
273
274
275
        # TODO The multiple choice model is missing and should be added.
        (
            TFXLMModel,
            TFXLMWithLMHeadModel,
            TFXLMForSequenceClassification,
            TFXLMForQuestionAnsweringSimple,
            TFXLMForTokenClassification,
        )
276
277
278
279
280
281
        if is_tf_available()
        else ()
    )
    all_generative_model_classes = (
        (TFXLMWithLMHeadModel,) if is_tf_available() else ()
    )  # TODO (PVP): Check other models whether language generation is also applicable
thomwolf's avatar
thomwolf committed
282
283

    def setUp(self):
284
        self.model_tester = TFXLMModelTester(self)
thomwolf's avatar
thomwolf committed
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
        self.config_tester = ConfigTester(self, config_class=XLMConfig, emb_dim=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_xlm_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_xlm_model(*config_and_inputs)

    def test_xlm_lm_head(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_xlm_lm_head(*config_and_inputs)

    def test_xlm_qa(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_xlm_qa(*config_and_inputs)

    def test_xlm_sequence_classif(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_xlm_sequence_classif(*config_and_inputs)

306
307
308
309
    def test_for_token_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_xlm_for_token_classification(*config_and_inputs)

310
    @slow
thomwolf's avatar
thomwolf committed
311
    def test_model_from_pretrained(self):
312
        for model_name in TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
313
            model = TFXLMModel.from_pretrained(model_name)
thomwolf's avatar
thomwolf committed
314
            self.assertIsNotNone(model)
patrickvonplaten's avatar
patrickvonplaten committed
315
316


317
@require_tf
patrickvonplaten's avatar
patrickvonplaten committed
318
319
320
321
class TFXLMModelLanguageGenerationTest(unittest.TestCase):
    @slow
    def test_lm_generate_xlm_mlm_en_2048(self):
        model = TFXLMWithLMHeadModel.from_pretrained("xlm-mlm-en-2048")
322
        input_ids = tf.convert_to_tensor([[14, 447]], dtype=tf.int32)  # the president
patrickvonplaten's avatar
patrickvonplaten committed
323
324
        expected_output_ids = [
            14,
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
            447,
            14,
            447,
            14,
            447,
            14,
            447,
            14,
            447,
            14,
            447,
            14,
            447,
            14,
            447,
            14,
            447,
            14,
            447,
        ]  # the president the president the president the president the president the president the president the president the president the president
        # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference
Patrick von Platen's avatar
Patrick von Platen committed
346
347
        output_ids = model.generate(input_ids, do_sample=False)
        self.assertListEqual(output_ids[0].numpy().tolist(), expected_output_ids)