"examples/question-answering/run_squad_trainer.py" did not exist on "5e7fe8b5853fd72287e93194fc8be8c39008b6e3"
test_modeling_tf_xlm.py 10.7 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15
from __future__ import absolute_import, division, print_function
thomwolf's avatar
thomwolf committed
16

17
from transformers import is_tf_available
thomwolf's avatar
thomwolf committed
18

19
20
from .test_configuration_common import ConfigTester
from .test_modeling_tf_common import TFCommonTestCases, ids_tensor
Aymeric Augustin's avatar
Aymeric Augustin committed
21
22
23
from .utils import CACHE_DIR, require_tf, slow


thomwolf's avatar
thomwolf committed
24
25
if is_tf_available():
    import tensorflow as tf
26
27
28
29
30
31
32
33
34
    from transformers import (
        XLMConfig,
        TFXLMModel,
        TFXLMWithLMHeadModel,
        TFXLMForSequenceClassification,
        TFXLMForQuestionAnsweringSimple,
        TF_XLM_PRETRAINED_MODEL_ARCHIVE_MAP,
    )

thomwolf's avatar
thomwolf committed
35

36
@require_tf
thomwolf's avatar
thomwolf committed
37
38
class TFXLMModelTest(TFCommonTestCases.TFCommonModelTester):

39
40
41
42
43
    all_model_classes = (
        (TFXLMModel, TFXLMWithLMHeadModel, TFXLMForSequenceClassification, TFXLMForQuestionAnsweringSimple)
        if is_tf_available()
        else ()
    )
thomwolf's avatar
thomwolf committed
44
45

    class TFXLMModelTester(object):
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
        def __init__(
            self,
            parent,
            batch_size=13,
            seq_length=7,
            is_training=True,
            use_input_lengths=True,
            use_token_type_ids=True,
            use_labels=True,
            gelu_activation=True,
            sinusoidal_embeddings=False,
            causal=False,
            asm=False,
            n_langs=2,
            vocab_size=99,
            n_special=0,
            hidden_size=32,
            num_hidden_layers=5,
            num_attention_heads=4,
            hidden_dropout_prob=0.1,
            attention_probs_dropout_prob=0.1,
            max_position_embeddings=512,
            type_vocab_size=16,
            type_sequence_label_size=2,
            initializer_range=0.02,
            num_labels=3,
            num_choices=4,
            summary_type="last",
            use_proj=True,
            scope=None,
        ):
thomwolf's avatar
thomwolf committed
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
            self.parent = parent
            self.batch_size = batch_size
            self.seq_length = seq_length
            self.is_training = is_training
            self.use_input_lengths = use_input_lengths
            self.use_token_type_ids = use_token_type_ids
            self.use_labels = use_labels
            self.gelu_activation = gelu_activation
            self.sinusoidal_embeddings = sinusoidal_embeddings
            self.asm = asm
            self.n_langs = n_langs
            self.vocab_size = vocab_size
            self.n_special = n_special
            self.summary_type = summary_type
            self.causal = causal
            self.use_proj = use_proj
            self.hidden_size = hidden_size
            self.num_hidden_layers = num_hidden_layers
            self.num_attention_heads = num_attention_heads
            self.hidden_dropout_prob = hidden_dropout_prob
            self.attention_probs_dropout_prob = attention_probs_dropout_prob
            self.max_position_embeddings = max_position_embeddings
            self.n_langs = n_langs
            self.type_sequence_label_size = type_sequence_label_size
            self.initializer_range = initializer_range
            self.summary_type = summary_type
            self.num_labels = num_labels
            self.num_choices = num_choices
            self.scope = scope

        def prepare_config_and_inputs(self):
            input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
            input_mask = ids_tensor([self.batch_size, self.seq_length], 2, dtype=tf.float32)

            input_lengths = None
            if self.use_input_lengths:
113
114
115
                input_lengths = (
                    ids_tensor([self.batch_size], vocab_size=2) + self.seq_length - 2
                )  # small variation of seq_length
thomwolf's avatar
thomwolf committed
116
117
118
119
120
121
122
123
124
125
126
127
128
129

            token_type_ids = None
            if self.use_token_type_ids:
                token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.n_langs)

            sequence_labels = None
            token_labels = None
            is_impossible_labels = None
            if self.use_labels:
                sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
                token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
                is_impossible_labels = ids_tensor([self.batch_size], 2, dtype=tf.float32)

            config = XLMConfig(
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
                vocab_size=self.vocab_size,
                n_special=self.n_special,
                emb_dim=self.hidden_size,
                n_layers=self.num_hidden_layers,
                n_heads=self.num_attention_heads,
                dropout=self.hidden_dropout_prob,
                attention_dropout=self.attention_probs_dropout_prob,
                gelu_activation=self.gelu_activation,
                sinusoidal_embeddings=self.sinusoidal_embeddings,
                asm=self.asm,
                causal=self.causal,
                n_langs=self.n_langs,
                max_position_embeddings=self.max_position_embeddings,
                initializer_range=self.initializer_range,
                summary_type=self.summary_type,
                use_proj=self.use_proj,
            )

            return (
                config,
                input_ids,
                token_type_ids,
                input_lengths,
                sequence_labels,
                token_labels,
                is_impossible_labels,
                input_mask,
            )

        def create_and_check_xlm_model(
            self,
            config,
            input_ids,
            token_type_ids,
            input_lengths,
            sequence_labels,
            token_labels,
            is_impossible_labels,
            input_mask,
        ):
thomwolf's avatar
thomwolf committed
170
            model = TFXLMModel(config=config)
171
            inputs = {"input_ids": input_ids, "lengths": input_lengths, "langs": token_type_ids}
thomwolf's avatar
thomwolf committed
172
173
174
175
176
177
178
179
180
            outputs = model(inputs)

            inputs = [input_ids, input_mask]
            outputs = model(inputs)
            sequence_output = outputs[0]
            result = {
                "sequence_output": sequence_output.numpy(),
            }
            self.parent.assertListEqual(
181
182
183
184
185
186
187
188
189
190
191
192
193
194
                list(result["sequence_output"].shape), [self.batch_size, self.seq_length, self.hidden_size]
            )

        def create_and_check_xlm_lm_head(
            self,
            config,
            input_ids,
            token_type_ids,
            input_lengths,
            sequence_labels,
            token_labels,
            is_impossible_labels,
            input_mask,
        ):
thomwolf's avatar
thomwolf committed
195
196
            model = TFXLMWithLMHeadModel(config)

197
            inputs = {"input_ids": input_ids, "lengths": input_lengths, "langs": token_type_ids}
thomwolf's avatar
thomwolf committed
198
199
200
201
202
203
204
205
206
            outputs = model(inputs)

            logits = outputs[0]

            result = {
                "logits": logits.numpy(),
            }

            self.parent.assertListEqual(
207
208
209
210
211
212
213
214
215
216
217
218
219
220
                list(result["logits"].shape), [self.batch_size, self.seq_length, self.vocab_size]
            )

        def create_and_check_xlm_qa(
            self,
            config,
            input_ids,
            token_type_ids,
            input_lengths,
            sequence_labels,
            token_labels,
            is_impossible_labels,
            input_mask,
        ):
thomwolf's avatar
thomwolf committed
221
222
            model = TFXLMForQuestionAnsweringSimple(config)

223
            inputs = {"input_ids": input_ids, "lengths": input_lengths}
thomwolf's avatar
thomwolf committed
224
225
226
227
228
229
230
231
232

            outputs = model(inputs)
            start_logits, end_logits = model(inputs)

            result = {
                "start_logits": start_logits.numpy(),
                "end_logits": end_logits.numpy(),
            }

233
234
235
236
237
238
239
240
241
242
243
244
245
246
            self.parent.assertListEqual(list(result["start_logits"].shape), [self.batch_size, self.seq_length])
            self.parent.assertListEqual(list(result["end_logits"].shape), [self.batch_size, self.seq_length])

        def create_and_check_xlm_sequence_classif(
            self,
            config,
            input_ids,
            token_type_ids,
            input_lengths,
            sequence_labels,
            token_labels,
            is_impossible_labels,
            input_mask,
        ):
thomwolf's avatar
thomwolf committed
247
248
            model = TFXLMForSequenceClassification(config)

249
            inputs = {"input_ids": input_ids, "lengths": input_lengths}
thomwolf's avatar
thomwolf committed
250
251
252
253
254
255
256

            (logits,) = model(inputs)

            result = {
                "logits": logits.numpy(),
            }

257
            self.parent.assertListEqual(list(result["logits"].shape), [self.batch_size, self.type_sequence_label_size])
thomwolf's avatar
thomwolf committed
258
259
260

        def prepare_config_and_inputs_for_common(self):
            config_and_inputs = self.prepare_config_and_inputs()
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
            (
                config,
                input_ids,
                token_type_ids,
                input_lengths,
                sequence_labels,
                token_labels,
                is_impossible_labels,
                input_mask,
            ) = config_and_inputs
            inputs_dict = {
                "input_ids": input_ids,
                "token_type_ids": token_type_ids,
                "langs": token_type_ids,
                "lengths": input_lengths,
            }
thomwolf's avatar
thomwolf committed
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
            return config, inputs_dict

    def setUp(self):
        self.model_tester = TFXLMModelTest.TFXLMModelTester(self)
        self.config_tester = ConfigTester(self, config_class=XLMConfig, emb_dim=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_xlm_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_xlm_model(*config_and_inputs)

    def test_xlm_lm_head(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_xlm_lm_head(*config_and_inputs)

    def test_xlm_qa(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_xlm_qa(*config_and_inputs)

    def test_xlm_sequence_classif(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_xlm_sequence_classif(*config_and_inputs)

302
    @slow
thomwolf's avatar
thomwolf committed
303
304
    def test_model_from_pretrained(self):
        for model_name in list(TF_XLM_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
Aymeric Augustin's avatar
Aymeric Augustin committed
305
            model = TFXLMModel.from_pretrained(model_name, cache_dir=CACHE_DIR)
thomwolf's avatar
thomwolf committed
306
            self.assertIsNotNone(model)