test_modeling_tf_xlm.py 12.6 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

thomwolf's avatar
thomwolf committed
16

17
18
import unittest

19
from transformers import is_tf_available
20
from transformers.testing_utils import require_tf, slow
thomwolf's avatar
thomwolf committed
21

22
from .test_configuration_common import ConfigTester
23
from .test_modeling_tf_common import TFModelTesterMixin, ids_tensor
Aymeric Augustin's avatar
Aymeric Augustin committed
24
25


thomwolf's avatar
thomwolf committed
26
27
if is_tf_available():
    import tensorflow as tf
28
29
30
31
32
33
    from transformers import (
        XLMConfig,
        TFXLMModel,
        TFXLMWithLMHeadModel,
        TFXLMForSequenceClassification,
        TFXLMForQuestionAnsweringSimple,
34
        TFXLMForTokenClassification,
35
        TFXLMForMultipleChoice,
36
        TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST,
37
38
    )

thomwolf's avatar
thomwolf committed
39

40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
class TFXLMModelTester:
    def __init__(
        self, parent,
    ):
        self.parent = parent
        self.batch_size = 13
        self.seq_length = 7
        self.is_training = True
        self.use_input_lengths = True
        self.use_token_type_ids = True
        self.use_labels = True
        self.gelu_activation = True
        self.sinusoidal_embeddings = False
        self.causal = False
        self.asm = False
        self.n_langs = 2
        self.vocab_size = 99
        self.n_special = 0
        self.hidden_size = 32
        self.num_hidden_layers = 5
        self.num_attention_heads = 4
        self.hidden_dropout_prob = 0.1
        self.attention_probs_dropout_prob = 0.1
        self.max_position_embeddings = 512
        self.type_vocab_size = 16
        self.type_sequence_label_size = 2
        self.initializer_range = 0.02
        self.num_labels = 3
        self.num_choices = 4
        self.summary_type = "last"
        self.use_proj = True
        self.scope = None
        self.bos_token_id = 0

    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
        input_mask = ids_tensor([self.batch_size, self.seq_length], 2, dtype=tf.float32)

        input_lengths = None
        if self.use_input_lengths:
            input_lengths = (
                ids_tensor([self.batch_size], vocab_size=2) + self.seq_length - 2
            )  # small variation of seq_length

        token_type_ids = None
        if self.use_token_type_ids:
            token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.n_langs)

        sequence_labels = None
        token_labels = None
        is_impossible_labels = None
        if self.use_labels:
            sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
            token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
            is_impossible_labels = ids_tensor([self.batch_size], 2, dtype=tf.float32)
95
            choice_labels = ids_tensor([self.batch_size], self.num_choices)
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117

        config = XLMConfig(
            vocab_size=self.vocab_size,
            n_special=self.n_special,
            emb_dim=self.hidden_size,
            n_layers=self.num_hidden_layers,
            n_heads=self.num_attention_heads,
            dropout=self.hidden_dropout_prob,
            attention_dropout=self.attention_probs_dropout_prob,
            gelu_activation=self.gelu_activation,
            sinusoidal_embeddings=self.sinusoidal_embeddings,
            asm=self.asm,
            causal=self.causal,
            n_langs=self.n_langs,
            max_position_embeddings=self.max_position_embeddings,
            initializer_range=self.initializer_range,
            summary_type=self.summary_type,
            use_proj=self.use_proj,
            bos_token_id=self.bos_token_id,
        )

        return (
118
119
120
121
122
123
124
            config,
            input_ids,
            token_type_ids,
            input_lengths,
            sequence_labels,
            token_labels,
            is_impossible_labels,
125
            choice_labels,
126
            input_mask,
127
128
129
130
131
132
133
134
135
136
137
        )

    def create_and_check_xlm_model(
        self,
        config,
        input_ids,
        token_type_ids,
        input_lengths,
        sequence_labels,
        token_labels,
        is_impossible_labels,
138
        choice_labels,
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
        input_mask,
    ):
        model = TFXLMModel(config=config)
        inputs = {"input_ids": input_ids, "lengths": input_lengths, "langs": token_type_ids}
        outputs = model(inputs)

        inputs = [input_ids, input_mask]
        outputs = model(inputs)
        sequence_output = outputs[0]
        result = {
            "sequence_output": sequence_output.numpy(),
        }
        self.parent.assertListEqual(
            list(result["sequence_output"].shape), [self.batch_size, self.seq_length, self.hidden_size]
        )

    def create_and_check_xlm_lm_head(
        self,
        config,
        input_ids,
        token_type_ids,
        input_lengths,
        sequence_labels,
        token_labels,
        is_impossible_labels,
164
        choice_labels,
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
        input_mask,
    ):
        model = TFXLMWithLMHeadModel(config)

        inputs = {"input_ids": input_ids, "lengths": input_lengths, "langs": token_type_ids}
        outputs = model(inputs)

        logits = outputs[0]

        result = {
            "logits": logits.numpy(),
        }

        self.parent.assertListEqual(list(result["logits"].shape), [self.batch_size, self.seq_length, self.vocab_size])

    def create_and_check_xlm_qa(
        self,
        config,
        input_ids,
        token_type_ids,
        input_lengths,
        sequence_labels,
        token_labels,
        is_impossible_labels,
189
        choice_labels,
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
        input_mask,
    ):
        model = TFXLMForQuestionAnsweringSimple(config)

        inputs = {"input_ids": input_ids, "lengths": input_lengths}

        start_logits, end_logits = model(inputs)

        result = {
            "start_logits": start_logits.numpy(),
            "end_logits": end_logits.numpy(),
        }

        self.parent.assertListEqual(list(result["start_logits"].shape), [self.batch_size, self.seq_length])
        self.parent.assertListEqual(list(result["end_logits"].shape), [self.batch_size, self.seq_length])

    def create_and_check_xlm_sequence_classif(
        self,
        config,
        input_ids,
        token_type_ids,
        input_lengths,
        sequence_labels,
        token_labels,
        is_impossible_labels,
215
        choice_labels,
216
217
218
219
220
221
222
223
224
225
226
227
228
229
        input_mask,
    ):
        model = TFXLMForSequenceClassification(config)

        inputs = {"input_ids": input_ids, "lengths": input_lengths}

        (logits,) = model(inputs)

        result = {
            "logits": logits.numpy(),
        }

        self.parent.assertListEqual(list(result["logits"].shape), [self.batch_size, self.type_sequence_label_size])

230
231
232
233
234
235
236
237
238
    def create_and_check_xlm_for_token_classification(
        self,
        config,
        input_ids,
        token_type_ids,
        input_lengths,
        sequence_labels,
        token_labels,
        is_impossible_labels,
239
        choice_labels,
240
241
242
243
244
245
246
247
248
249
250
        input_mask,
    ):
        config.num_labels = self.num_labels
        model = TFXLMForTokenClassification(config=config)
        inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
        (logits,) = model(inputs)
        result = {
            "logits": logits.numpy(),
        }
        self.parent.assertListEqual(list(result["logits"].shape), [self.batch_size, self.seq_length, self.num_labels])

251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
    def create_and_check_xlm_for_multiple_choice(
        self,
        config,
        input_ids,
        token_type_ids,
        input_lengths,
        sequence_labels,
        token_labels,
        is_impossible_labels,
        choice_labels,
        input_mask,
    ):
        config.num_choices = self.num_choices
        model = TFXLMForMultipleChoice(config=config)
        multiple_choice_inputs_ids = tf.tile(tf.expand_dims(input_ids, 1), (1, self.num_choices, 1))
        multiple_choice_input_mask = tf.tile(tf.expand_dims(input_mask, 1), (1, self.num_choices, 1))
        multiple_choice_token_type_ids = tf.tile(tf.expand_dims(token_type_ids, 1), (1, self.num_choices, 1))
        inputs = {
            "input_ids": multiple_choice_inputs_ids,
            "attention_mask": multiple_choice_input_mask,
            "token_type_ids": multiple_choice_token_type_ids,
        }
        (logits,) = model(inputs)
        result = {"logits": logits.numpy()}
        self.parent.assertListEqual(list(result["logits"].shape), [self.batch_size, self.num_choices])

277
278
279
    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        (
280
281
282
283
284
285
286
            config,
            input_ids,
            token_type_ids,
            input_lengths,
            sequence_labels,
            token_labels,
            is_impossible_labels,
287
            choice_labels,
288
            input_mask,
289
290
291
292
293
294
295
296
        ) = config_and_inputs
        inputs_dict = {
            "input_ids": input_ids,
            "token_type_ids": token_type_ids,
            "langs": token_type_ids,
            "lengths": input_lengths,
        }
        return config, inputs_dict
thomwolf's avatar
thomwolf committed
297
298


299
300
@require_tf
class TFXLMModelTest(TFModelTesterMixin, unittest.TestCase):
301

302
    all_model_classes = (
303
304
305
306
307
308
        (
            TFXLMModel,
            TFXLMWithLMHeadModel,
            TFXLMForSequenceClassification,
            TFXLMForQuestionAnsweringSimple,
            TFXLMForTokenClassification,
309
            TFXLMForMultipleChoice,
310
        )
311
312
313
314
315
316
        if is_tf_available()
        else ()
    )
    all_generative_model_classes = (
        (TFXLMWithLMHeadModel,) if is_tf_available() else ()
    )  # TODO (PVP): Check other models whether language generation is also applicable
thomwolf's avatar
thomwolf committed
317
318

    def setUp(self):
319
        self.model_tester = TFXLMModelTester(self)
thomwolf's avatar
thomwolf committed
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
        self.config_tester = ConfigTester(self, config_class=XLMConfig, emb_dim=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_xlm_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_xlm_model(*config_and_inputs)

    def test_xlm_lm_head(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_xlm_lm_head(*config_and_inputs)

    def test_xlm_qa(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_xlm_qa(*config_and_inputs)

    def test_xlm_sequence_classif(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_xlm_sequence_classif(*config_and_inputs)

341
342
343
344
    def test_for_token_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_xlm_for_token_classification(*config_and_inputs)

345
346
347
348
    def test_for_multiple_choice(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_xlm_for_multiple_choice(*config_and_inputs)

349
    @slow
thomwolf's avatar
thomwolf committed
350
    def test_model_from_pretrained(self):
351
        for model_name in TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
352
            model = TFXLMModel.from_pretrained(model_name)
thomwolf's avatar
thomwolf committed
353
            self.assertIsNotNone(model)
patrickvonplaten's avatar
patrickvonplaten committed
354
355


356
@require_tf
patrickvonplaten's avatar
patrickvonplaten committed
357
358
359
360
class TFXLMModelLanguageGenerationTest(unittest.TestCase):
    @slow
    def test_lm_generate_xlm_mlm_en_2048(self):
        model = TFXLMWithLMHeadModel.from_pretrained("xlm-mlm-en-2048")
361
        input_ids = tf.convert_to_tensor([[14, 447]], dtype=tf.int32)  # the president
patrickvonplaten's avatar
patrickvonplaten committed
362
363
        expected_output_ids = [
            14,
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
            447,
            14,
            447,
            14,
            447,
            14,
            447,
            14,
            447,
            14,
            447,
            14,
            447,
            14,
            447,
            14,
            447,
            14,
            447,
        ]  # the president the president the president the president the president the president the president the president the president the president
        # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference
Patrick von Platen's avatar
Patrick von Platen committed
385
386
        output_ids = model.generate(input_ids, do_sample=False)
        self.assertListEqual(output_ids[0].numpy().tolist(), expected_output_ids)