test_trainer.py 184 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2018 the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
import dataclasses
17
import gc
18
import json
19
import math
20
import os
21
import random
Sylvain Gugger's avatar
Sylvain Gugger committed
22
import re
23
import subprocess
24
import sys
25
import tempfile
Julien Chaumond's avatar
Julien Chaumond committed
26
import unittest
27
from functools import partial
28
from itertools import product
29
from pathlib import Path
30
from typing import Dict, List
31
from unittest.mock import Mock, patch
Julien Chaumond's avatar
Julien Chaumond committed
32

Sylvain Gugger's avatar
Sylvain Gugger committed
33
import numpy as np
34
from huggingface_hub import HfFolder, ModelCard, delete_repo, list_repo_commits, list_repo_files
35
from parameterized import parameterized
Sylvain Gugger's avatar
Sylvain Gugger committed
36
from requests.exceptions import HTTPError
37

38
39
40
41
from transformers import (
    AutoTokenizer,
    IntervalStrategy,
    PretrainedConfig,
42
    TrainerCallback,
43
    TrainingArguments,
44
    get_polynomial_decay_schedule_with_warmup,
45
46
47
    is_torch_available,
    logging,
)
48
from transformers.hyperparameter_search import ALL_HYPERPARAMETER_SEARCH_BACKENDS
49
from transformers.testing_utils import (
Sylvain Gugger's avatar
Sylvain Gugger committed
50
    ENDPOINT_STAGING,
51
    TOKEN,
Sylvain Gugger's avatar
Sylvain Gugger committed
52
    USER,
53
    CaptureLogger,
54
    LoggingLevel,
55
    TestCasePlus,
56
    backend_device_count,
57
    execute_subprocess_async,
58
    get_gpu_count,
59
    get_tests_dir,
Sylvain Gugger's avatar
Sylvain Gugger committed
60
    is_staging_test,
Yih-Dar's avatar
Yih-Dar committed
61
    require_accelerate,
62
    require_bitsandbytes,
63
    require_deepspeed,
64
    require_galore_torch,
65
    require_intel_extension_for_pytorch,
66
    require_lomo,
67
    require_optuna,
68
    require_peft,
69
    require_ray,
70
    require_safetensors,
71
    require_sentencepiece,
72
    require_sigopt,
73
    require_tensorboard,
74
75
    require_tokenizers,
    require_torch,
76
77
    require_torch_accelerator,
    require_torch_bf16,
78
    require_torch_gpu,
79
80
    require_torch_multi_accelerator,
    require_torch_non_multi_accelerator,
81
    require_torch_non_multi_gpu,
82
    require_torch_tensorrt_fx,
83
    require_torch_tf32,
84
    require_torch_up_to_2_accelerators,
85
    require_torchdynamo,
86
    require_wandb,
87
    slow,
88
    torch_device,
89
)
90
from transformers.trainer_utils import PREFIX_CHECKPOINT_DIR, HPSearchBackend, check_target_module_exists
91
from transformers.training_args import OptimizerNames
92
from transformers.utils import (
93
94
    SAFE_WEIGHTS_INDEX_NAME,
    SAFE_WEIGHTS_NAME,
95
96
    WEIGHTS_INDEX_NAME,
    WEIGHTS_NAME,
97
    is_accelerate_available,
98
99
    is_apex_available,
    is_bitsandbytes_available,
100
    is_safetensors_available,
101
102
    is_torchdistx_available,
)
103
from transformers.utils.hp_naming import TrialShortNamer
Julien Chaumond's avatar
Julien Chaumond committed
104
105
106
107


if is_torch_available():
    import torch
108
    from torch import nn
109
110
    from torch.utils.data import IterableDataset

111
    import transformers.optimization
Julien Chaumond's avatar
Julien Chaumond committed
112
    from transformers import (
113
        AutoModelForCausalLM,
Julien Chaumond's avatar
Julien Chaumond committed
114
        AutoModelForSequenceClassification,
115
        EarlyStoppingCallback,
Julien Chaumond's avatar
Julien Chaumond committed
116
117
        GlueDataset,
        GlueDataTrainingArguments,
118
119
        GPT2Config,
        GPT2LMHeadModel,
120
        LineByLineTextDataset,
121
122
        LlamaConfig,
        LlamaForCausalLM,
123
        PreTrainedModel,
124
        Trainer,
125
        TrainerState,
Julien Chaumond's avatar
Julien Chaumond committed
126
    )
127
    from transformers.trainer_pt_utils import AcceleratorConfig
Julien Chaumond's avatar
Julien Chaumond committed
128

129
130
131
    if is_safetensors_available():
        import safetensors.torch

132

133
134
# for version specific tests in TrainerIntegrationTest
require_accelerate_version_min_0_28 = partial(require_accelerate, min_version="0.28")
135
require_accelerate_version_min_0_30 = partial(require_accelerate, min_version="0.30")
136
GRAD_ACCUM_KWARGS_VERSION_AVAILABLE = is_accelerate_available("0.28")
137
138
139
140
if is_accelerate_available():
    from accelerate import Accelerator
    from accelerate.state import AcceleratorState

Julien Chaumond's avatar
Julien Chaumond committed
141

142
PATH_SAMPLE_TEXT = f"{get_tests_dir()}/fixtures/sample_text.txt"
Julien Chaumond's avatar
Julien Chaumond committed
143
144


Sylvain Gugger's avatar
Sylvain Gugger committed
145
class RegressionDataset:
Sylvain Gugger's avatar
Sylvain Gugger committed
146
    def __init__(self, a=2, b=3, length=64, seed=42, label_names=None):
Sylvain Gugger's avatar
Sylvain Gugger committed
147
        np.random.seed(seed)
Sylvain Gugger's avatar
Sylvain Gugger committed
148
        self.label_names = ["labels"] if label_names is None else label_names
Sylvain Gugger's avatar
Sylvain Gugger committed
149
150
        self.length = length
        self.x = np.random.normal(size=(length,)).astype(np.float32)
Sylvain Gugger's avatar
Sylvain Gugger committed
151
152
        self.ys = [a * self.x + b + np.random.normal(scale=0.1, size=(length,)) for _ in self.label_names]
        self.ys = [y.astype(np.float32) for y in self.ys]
Julien Chaumond's avatar
Julien Chaumond committed
153

Sylvain Gugger's avatar
Sylvain Gugger committed
154
155
156
157
    def __len__(self):
        return self.length

    def __getitem__(self, i):
Sylvain Gugger's avatar
Sylvain Gugger committed
158
159
160
        result = {name: y[i] for name, y in zip(self.label_names, self.ys)}
        result["input_x"] = self.x[i]
        return result
Sylvain Gugger's avatar
Sylvain Gugger committed
161
162


163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
# Converting Bytes to Megabytes
def bytes2megabytes(x):
    return int(x / 2**20)


# Copied from acclerate: https://github.com/huggingface/accelerate/blob/ee163b66fb7848892519e804688cb4ae981aacbe/src/accelerate/test_utils/scripts/external_deps/test_peak_memory_usage.py#L40C1-L73C68
class TorchTracemalloc:
    def __enter__(self):
        gc.collect()
        if torch.cuda.is_available():
            torch.cuda.empty_cache()
            torch.cuda.reset_max_memory_allocated()  # reset the peak gauge to zero
            self.begin = torch.cuda.memory_allocated()
        return self

    def __exit__(self, *exc):
        gc.collect()
        if torch.cuda.is_available():
            torch.cuda.empty_cache()
            self.end = torch.cuda.memory_allocated()
            self.peak = torch.cuda.max_memory_allocated()
        self.used = bytes2megabytes(self.end - self.begin)
        self.peaked = bytes2megabytes(self.peak - self.begin)


188
189
190
191
@dataclasses.dataclass
class RegressionTrainingArguments(TrainingArguments):
    a: float = 0.0
    b: float = 0.0
192
    keep_report_to: bool = False
193

194
    def __post_init__(self):
195
        super().__post_init__()
196
197
198
199
        # save resources not dealing with reporting unless specified (also avoids the warning when it's not set)
        # can be explicitly disabled via `keep_report_to`
        if not self.keep_report_to:
            self.report_to = []
200

201

202
203
204
205
206
207
208
209
210
211
212
213
class RepeatDataset:
    def __init__(self, x, length=64):
        self.x = x
        self.length = length

    def __len__(self):
        return self.length

    def __getitem__(self, i):
        return {"input_ids": self.x, "labels": self.x}


214
215
216
217
218
219
class DynamicShapesDataset:
    def __init__(self, length=64, seed=42, batch_size=8):
        self.length = length
        np.random.seed(seed)
        sizes = np.random.randint(1, 20, (length // batch_size,))
        # For easy batching, we make every batch_size consecutive samples the same size.
220
221
        self.xs = [np.random.normal(size=(s,)).astype(np.float32) for s in sizes.repeat(batch_size)]
        self.ys = [np.random.normal(size=(s,)).astype(np.float32) for s in sizes.repeat(batch_size)]
222
223
224
225
226
227
228
229

    def __len__(self):
        return self.length

    def __getitem__(self, i):
        return {"input_x": self.xs[i], "labels": self.ys[i]}


Sylvain Gugger's avatar
Sylvain Gugger committed
230
231
232
233
234
235
236
237
class AlmostAccuracy:
    def __init__(self, thresh=0.25):
        self.thresh = thresh

    def __call__(self, eval_pred):
        predictions, labels = eval_pred
        true = np.abs(predictions - labels) <= self.thresh
        return {"accuracy": true.astype(np.float32).mean().item()}
238

Julien Chaumond's avatar
Julien Chaumond committed
239

240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
class AlmostAccuracyBatched:
    def __init__(self, thresh=0.25):
        self.thresh = thresh
        self.batch_acc = []

    def __call__(self, eval_pred, compute_result):
        predictions, labels = eval_pred
        if isinstance(predictions, tuple):
            predictions = predictions[0]
        if isinstance(labels, tuple):
            labels = labels[0]
        batch_size = len(predictions)
        true = torch.abs(predictions - labels) <= self.thresh
        acc = true.type(torch.FloatTensor).mean().item()
        self.batch_acc.extend([acc] * batch_size)
        if compute_result:
            result = {"accuracy": np.mean(self.batch_acc).item()}
            self.batch_acc = []
            return result


261
class RegressionModelConfig(PretrainedConfig):
262
    def __init__(self, a=0, b=0, double_output=False, random_torch=True, **kwargs):
263
264
265
266
        super().__init__(**kwargs)
        self.a = a
        self.b = b
        self.double_output = double_output
267
        self.random_torch = random_torch
268
        self.hidden_size = 1
269
270


271
272
273
if is_torch_available():

    class SampleIterableDataset(IterableDataset):
274
275
        def __init__(self, a=2, b=3, length=64, seed=42, label_names=None):
            self.dataset = RegressionDataset(a=a, b=b, length=length, seed=seed, label_names=label_names)
276
277

        def __iter__(self):
278
279
            for i in range(len(self.dataset)):
                yield self.dataset[i]
280

281
282
283
284
285
286
287
288
289
290
    class FiniteIterableDataset(SampleIterableDataset):
        def __init__(self, a=2, b=3, length=64, seed=42, label_names=None):
            super().__init__(a, b, length, seed, label_names)
            self.current_sample = 0

        def __iter__(self):
            while self.current_sample < len(self.dataset):
                yield self.dataset[self.current_sample]
                self.current_sample += 1

291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
    class MultiLoader:
        def __init__(self, loaders):
            self.loaders = loaders

        def __len__(self):
            return sum(len(loader) for loader in self.loaders)

        def __iter__(self):
            for loader in self.loaders:
                yield from loader

    class CustomDataloaderTrainer(Trainer):
        def get_train_dataloader(self):
            dataloaders = [super().get_train_dataloader(), super().get_train_dataloader()]
            return MultiLoader(dataloaders)

        def get_eval_dataloader(self, eval_dataset):
            dataloaders = [super().get_eval_dataloader(eval_dataset), super().get_eval_dataloader(eval_dataset)]
            return MultiLoader(dataloaders)

311
    class RegressionModel(nn.Module):
312
        def __init__(self, a=0, b=0, double_output=False):
Sylvain Gugger's avatar
Sylvain Gugger committed
313
            super().__init__()
314
315
            self.a = nn.Parameter(torch.tensor(a).float())
            self.b = nn.Parameter(torch.tensor(b).float())
316
317
            self.double_output = double_output
            self.config = None
Sylvain Gugger's avatar
Sylvain Gugger committed
318

Stas Bekman's avatar
Stas Bekman committed
319
        def forward(self, input_x, labels=None, **kwargs):
Sylvain Gugger's avatar
Sylvain Gugger committed
320
321
            y = input_x * self.a + self.b
            if labels is None:
322
                return (y, y) if self.double_output else (y,)
323
            loss = nn.functional.mse_loss(y, labels)
324
            return (loss, y, y) if self.double_output else (loss, y)
Sylvain Gugger's avatar
Sylvain Gugger committed
325

326
    class RegressionDictModel(nn.Module):
327
328
        def __init__(self, a=0, b=0):
            super().__init__()
329
330
            self.a = nn.Parameter(torch.tensor(a).float())
            self.b = nn.Parameter(torch.tensor(b).float())
331
332
            self.config = None

Stas Bekman's avatar
Stas Bekman committed
333
        def forward(self, input_x, labels=None, **kwargs):
334
335
336
            y = input_x * self.a + self.b
            result = {"output": y}
            if labels is not None:
337
                result["loss"] = nn.functional.mse_loss(y, labels)
338
339
            return result

340
341
342
343
344
345
    class RegressionPreTrainedModel(PreTrainedModel):
        config_class = RegressionModelConfig
        base_model_prefix = "regression"

        def __init__(self, config):
            super().__init__(config)
346
347
            self.a = nn.Parameter(torch.tensor(config.a).float())
            self.b = nn.Parameter(torch.tensor(config.b).float())
348
349
            self.double_output = config.double_output

Stas Bekman's avatar
Stas Bekman committed
350
        def forward(self, input_x, labels=None, **kwargs):
351
352
353
            y = input_x * self.a + self.b
            if labels is None:
                return (y, y) if self.double_output else (y,)
354
            loss = nn.functional.mse_loss(y, labels)
355
356
            return (loss, y, y) if self.double_output else (loss, y)

357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
    class RegressionPreTrainedModelWithGradientCheckpointing(PreTrainedModel):
        config_class = RegressionModelConfig
        base_model_prefix = "regression"
        supports_gradient_checkpointing = True

        def __init__(self, config):
            super().__init__(config)
            self.layers = nn.ModuleList([nn.Linear(config.hidden_size, config.hidden_size) for _ in range(4)])
            self.head = nn.Linear(config.hidden_size, 1)
            self.gradient_checkpointing = False
            self.double_output = config.double_output

        def forward(self, input_x, labels=None, **kwargs):
            y = input_x.unsqueeze(0)

            for layer in self.layers:
                if self.training and self.gradient_checkpointing:
                    outputs = self._gradient_checkpointing_func(layer.__call__, y)
                else:
                    outputs = layer(y)

                y = outputs * 3

            logits = self.head(y)

            if labels is None:
                return (logits, logits) if self.double_output else (logits,)

            loss = nn.functional.mse_loss(logits, labels)

            return (loss, y, y) if self.double_output else (loss, y)

389
390
391
392
393
394
    class RegressionRandomPreTrainedModel(PreTrainedModel):
        config_class = RegressionModelConfig
        base_model_prefix = "regression"

        def __init__(self, config):
            super().__init__(config)
395
396
            self.a = nn.Parameter(torch.tensor(config.a).float())
            self.b = nn.Parameter(torch.tensor(config.b).float())
397
            self.random_torch = config.random_torch
398
399
400

        def forward(self, input_x, labels=None, **kwargs):
            y = input_x * self.a + self.b
401
402
            if self.random_torch:
                torch_rand = torch.randn(1).squeeze()
403
404
405
            np_rand = np.random.rand()
            rand_rand = random.random()

406
407
408
            if self.random_torch:
                y += 0.05 * torch_rand
            y += 0.05 * torch.tensor(np_rand + rand_rand)
409
410
411

            if labels is None:
                return (y,)
412
            loss = nn.functional.mse_loss(y, labels)
413
414
            return (loss, y)

415
    class TstLayer(nn.Module):
416
417
        def __init__(self, hidden_size):
            super().__init__()
418
419
420
421
422
            self.linear1 = nn.Linear(hidden_size, hidden_size)
            self.ln1 = nn.LayerNorm(hidden_size)
            self.linear2 = nn.Linear(hidden_size, hidden_size)
            self.ln2 = nn.LayerNorm(hidden_size)
            self.bias = nn.Parameter(torch.zeros(hidden_size))
423
424

        def forward(self, x):
425
426
            h = self.ln1(nn.functional.relu(self.linear1(x)))
            h = nn.functional.relu(self.linear2(x))
427
428
            return self.ln2(x + h + self.bias)

429
430
431
    def get_regression_trainer(
        a=0, b=0, double_output=False, train_len=64, eval_len=64, pretrained=True, keep_report_to=False, **kwargs
    ):
Sylvain Gugger's avatar
Sylvain Gugger committed
432
        label_names = kwargs.get("label_names", None)
433
        gradient_checkpointing = kwargs.get("gradient_checkpointing", False)
Sylvain Gugger's avatar
Sylvain Gugger committed
434
435
        train_dataset = RegressionDataset(length=train_len, label_names=label_names)
        eval_dataset = RegressionDataset(length=eval_len, label_names=label_names)
436
437
438
439

        model_init = kwargs.pop("model_init", None)
        if model_init is not None:
            model = None
440
        else:
441
442
            if pretrained:
                config = RegressionModelConfig(a=a, b=b, double_output=double_output)
443
444
445
446
447
448
449
                # We infer the correct model class if one uses gradient_checkpointing or not
                target_cls = (
                    RegressionPreTrainedModel
                    if not gradient_checkpointing
                    else RegressionPreTrainedModelWithGradientCheckpointing
                )
                model = target_cls(config)
450
451
452
            else:
                model = RegressionModel(a=a, b=b, double_output=double_output)

Sylvain Gugger's avatar
Sylvain Gugger committed
453
454
455
        compute_metrics = kwargs.pop("compute_metrics", None)
        data_collator = kwargs.pop("data_collator", None)
        optimizers = kwargs.pop("optimizers", (None, None))
456
        output_dir = kwargs.pop("output_dir", "./regression")
457
        preprocess_logits_for_metrics = kwargs.pop("preprocess_logits_for_metrics", None)
458

459
        args = RegressionTrainingArguments(output_dir, a=a, b=b, keep_report_to=keep_report_to, **kwargs)
Sylvain Gugger's avatar
Sylvain Gugger committed
460
461
462
463
464
465
466
467
        return Trainer(
            model,
            args,
            data_collator=data_collator,
            train_dataset=train_dataset,
            eval_dataset=eval_dataset,
            compute_metrics=compute_metrics,
            optimizers=optimizers,
468
            model_init=model_init,
469
            preprocess_logits_for_metrics=preprocess_logits_for_metrics,
Sylvain Gugger's avatar
Sylvain Gugger committed
470
471
        )

472

473
class TrainerIntegrationCommon:
474
    def check_saved_checkpoints(self, output_dir, freq, total, is_pretrained=True, safe_weights=True):
475
476
        weights_file = WEIGHTS_NAME if not safe_weights else SAFE_WEIGHTS_NAME
        file_list = [weights_file, "training_args.bin", "optimizer.pt", "scheduler.pt", "trainer_state.json"]
477
478
479
480
481
482
483
484
485
        if is_pretrained:
            file_list.append("config.json")
        for step in range(freq, total, freq):
            checkpoint = os.path.join(output_dir, f"checkpoint-{step}")
            self.assertTrue(os.path.isdir(checkpoint))
            for filename in file_list:
                self.assertTrue(os.path.isfile(os.path.join(checkpoint, filename)))

    def check_best_model_has_been_loaded(
486
        self, output_dir, freq, total, trainer, metric, greater_is_better=False, is_pretrained=True, safe_weights=True
487
488
    ):
        checkpoint = os.path.join(output_dir, f"checkpoint-{(total // freq) * freq}")
489
        log_history = TrainerState.load_from_json(os.path.join(checkpoint, "trainer_state.json")).log_history
490
491
492
493
494
495
496
497
498
499

        values = [d[metric] for d in log_history]
        best_value = max(values) if greater_is_better else min(values)
        best_checkpoint = (values.index(best_value) + 1) * freq
        checkpoint = os.path.join(output_dir, f"checkpoint-{best_checkpoint}")
        if is_pretrained:
            best_model = RegressionPreTrainedModel.from_pretrained(checkpoint)
            best_model.to(trainer.args.device)
        else:
            best_model = RegressionModel()
500
501
502
503
            if not safe_weights:
                state_dict = torch.load(os.path.join(checkpoint, WEIGHTS_NAME))
            else:
                state_dict = safetensors.torch.load_file(os.path.join(checkpoint, SAFE_WEIGHTS_NAME))
504
            best_model.load_state_dict(state_dict)
505
            best_model.to(trainer.args.device)
506
507
508
509
510
511
        self.assertTrue(torch.allclose(best_model.a, trainer.model.a))
        self.assertTrue(torch.allclose(best_model.b, trainer.model.b))

        metrics = trainer.evaluate()
        self.assertEqual(metrics[metric], best_value)

512
513
514
515
516
517
518
519
    def check_trainer_state_are_the_same(self, trainer_state, trainer_state1):
        # We'll pop things so operate on copies.
        state = trainer_state.copy()
        state1 = trainer_state1.copy()
        # Log history main contain different logs for the time metrics (after resuming a training).
        log_history = state.pop("log_history", None)
        log_history1 = state1.pop("log_history", None)
        self.assertEqual(state, state1)
520
        skip_log_keys = ["train_runtime", "train_samples_per_second", "train_steps_per_second", "train_loss"]
521
        for log, log1 in zip(log_history, log_history1):
522
523
524
            for key in skip_log_keys:
                _ = log.pop(key, None)
                _ = log1.pop(key, None)
525
526
            self.assertEqual(log, log1)

527
    def convert_to_sharded_checkpoint(self, folder, save_safe=True, load_safe=True):
528
        # Converts a checkpoint of a regression model to a sharded checkpoint.
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
        if load_safe:
            loader = safetensors.torch.load_file
            weights_file = os.path.join(folder, SAFE_WEIGHTS_NAME)
        else:
            loader = torch.load
            weights_file = os.path.join(folder, WEIGHTS_NAME)

        if save_safe:
            extension = "safetensors"
            saver = safetensors.torch.save_file
            index_file = os.path.join(folder, SAFE_WEIGHTS_INDEX_NAME)
            shard_name = SAFE_WEIGHTS_NAME
        else:
            extension = "bin"
            saver = torch.save
            index_file = os.path.join(folder, WEIGHTS_INDEX_NAME)
            shard_name = WEIGHTS_NAME

        state_dict = loader(weights_file)

        os.remove(weights_file)
550
551
552
        keys = list(state_dict.keys())

        shard_files = [
553
554
            shard_name.replace(f".{extension}", f"-{idx+1:05d}-of-{len(keys):05d}.{extension}")
            for idx in range(len(keys))
555
556
557
        ]
        index = {"metadata": {}, "weight_map": {key: shard_files[i] for i, key in enumerate(keys)}}

558
        with open(index_file, "w", encoding="utf-8") as f:
559
560
561
562
            content = json.dumps(index, indent=2, sort_keys=True) + "\n"
            f.write(content)

        for param_name, shard_file in zip(keys, shard_files):
563
            saver({param_name: state_dict[param_name]}, os.path.join(folder, shard_file))
564

565
566
567
568

@require_torch
@require_sentencepiece
@require_tokenizers
569
570
571
572
573
574
575
576
class TrainerIntegrationPrerunTest(TestCasePlus, TrainerIntegrationCommon):
    """
    Only tests that want to tap into the auto-pre-run 2 trainings:
    - self.default_trained_model
    - self.alternate_trained_model
    directly, or via check_trained_model
    """

577
578
    def setUp(self):
        super().setUp()
579
        args = TrainingArguments("..")
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
        self.n_epochs = args.num_train_epochs
        self.batch_size = args.train_batch_size
        trainer = get_regression_trainer(learning_rate=0.1)
        trainer.train()
        self.default_trained_model = (trainer.model.a, trainer.model.b)

        trainer = get_regression_trainer(learning_rate=0.1, seed=314)
        trainer.train()
        self.alternate_trained_model = (trainer.model.a, trainer.model.b)

    def check_trained_model(self, model, alternate_seed=False):
        # Checks a training seeded with learning_rate = 0.1
        (a, b) = self.alternate_trained_model if alternate_seed else self.default_trained_model
        self.assertTrue(torch.allclose(model.a, a))
        self.assertTrue(torch.allclose(model.b, b))

596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
    def test_reproducible_training(self):
        # Checks that training worked, model trained and seed made a reproducible training.
        trainer = get_regression_trainer(learning_rate=0.1)
        trainer.train()
        self.check_trained_model(trainer.model)

        # Checks that a different seed gets different (reproducible) results.
        trainer = get_regression_trainer(learning_rate=0.1, seed=314)
        trainer.train()
        self.check_trained_model(trainer.model, alternate_seed=True)

    def test_trainer_with_datasets(self):
        import datasets

        np.random.seed(42)
        x = np.random.normal(size=(64,)).astype(np.float32)
612
        y = 2.0 * x + 3.0 + np.random.normal(scale=0.1, size=(64,)).astype(np.float32)
613
614
615
616
        train_dataset = datasets.Dataset.from_dict({"input_x": x, "label": y})

        # Base training. Should have the same results as test_reproducible_training
        model = RegressionModel()
617
        args = TrainingArguments("./regression", learning_rate=0.1, report_to="none")
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
        trainer = Trainer(model, args, train_dataset=train_dataset)
        trainer.train()
        self.check_trained_model(trainer.model)

        # Can return tensors.
        train_dataset.set_format(type="torch", dtype=torch.float32)
        model = RegressionModel()
        trainer = Trainer(model, args, train_dataset=train_dataset)
        trainer.train()
        self.check_trained_model(trainer.model)

        # Adding one column not used by the model should have no impact
        z = np.random.normal(size=(64,)).astype(np.float32)
        train_dataset = datasets.Dataset.from_dict({"input_x": x, "label": y, "extra": z})
        model = RegressionModel()
        trainer = Trainer(model, args, train_dataset=train_dataset)
        trainer.train()
        self.check_trained_model(trainer.model)

    def test_model_init(self):
        train_dataset = RegressionDataset()
639
        args = TrainingArguments("./regression", learning_rate=0.1, report_to="none")
640
641
642
643
644
645
646
647
648
        trainer = Trainer(args=args, train_dataset=train_dataset, model_init=lambda: RegressionModel())
        trainer.train()
        self.check_trained_model(trainer.model)

        # Re-training should restart from scratch, thus lead the same results.
        trainer.train()
        self.check_trained_model(trainer.model)

        # Re-training should restart from scratch, thus lead the same results and new seed should be used.
649
        trainer.args.seed = 314
650
651
652
653
654
655
656
657
658
659
660
        trainer.train()
        self.check_trained_model(trainer.model, alternate_seed=True)

    def test_gradient_accumulation(self):
        # Training with half the batch size but accumulation steps as 2 should give the same results.
        trainer = get_regression_trainer(
            gradient_accumulation_steps=2, per_device_train_batch_size=4, learning_rate=0.1
        )
        trainer.train()
        self.check_trained_model(trainer.model)

661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
    def test_gradient_checkpointing(self):
        trainer = get_regression_trainer(
            per_device_train_batch_size=1,
            learning_rate=0.1,
            gradient_checkpointing=True,
            gradient_checkpointing_kwargs={"use_reentrant": False},
        )
        previous_params = {k: v.detach().clone() for k, v in trainer.model.named_parameters()}

        trainer.train()

        # Check if model weights have been updated
        for k, v in trainer.model.named_parameters():
            self.assertFalse(
                torch.allclose(previous_params[k], v, rtol=1e-4, atol=1e-4),
                f"Model weights for {k} have not been updated",
            )

679
    def test_training_loss(self):
680
        n_gpus = max(1, backend_device_count(torch_device))
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699

        # With even logs
        trainer = get_regression_trainer(logging_steps=64 / (8 * n_gpus))
        trainer.train()
        log_history = trainer.state.log_history

        losses = [log["loss"] for log in log_history if "loss" in log]
        train_loss = log_history[-1]["train_loss"]
        self.assertAlmostEqual(sum(losses) / len(losses), train_loss, places=4)

        # With uneven logs
        trainer = get_regression_trainer(logging_steps=5)
        trainer.train()
        log_history = trainer.state.log_history

        # Training loss should be the same as before
        new_train_loss = log_history[-1]["train_loss"]
        self.assertAlmostEqual(train_loss, new_train_loss, places=4)

700
701
    def test_custom_optimizer(self):
        train_dataset = RegressionDataset()
702
        args = TrainingArguments("./regression", report_to="none")
703
704
705
706
707
708
709
710
711
712
713
        model = RegressionModel()
        optimizer = torch.optim.SGD(model.parameters(), lr=1.0)
        lr_scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda x: 1.0)
        trainer = Trainer(model, args, train_dataset=train_dataset, optimizers=(optimizer, lr_scheduler))
        trainer.train()

        (a, b) = self.default_trained_model
        self.assertFalse(torch.allclose(trainer.model.a, a))
        self.assertFalse(torch.allclose(trainer.model.b, b))
        self.assertEqual(trainer.optimizer.state_dict()["param_groups"][0]["lr"], 1.0)

714
715
716
717
718
719
720
721
722
723
724
725
    def test_lr_scheduler_kwargs(self):
        # test scheduler kwargs passed via TrainingArguments
        train_dataset = RegressionDataset()
        model = RegressionModel()
        num_steps, num_warmup_steps = 10, 2
        extra_kwargs = {"power": 5.0, "lr_end": 1e-5}  # Non-default arguments
        args = TrainingArguments(
            "./regression",
            lr_scheduler_type="polynomial",
            lr_scheduler_kwargs=extra_kwargs,
            learning_rate=0.2,
            warmup_steps=num_warmup_steps,
726
            report_to="none",
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
        )
        trainer = Trainer(model, args, train_dataset=train_dataset)
        trainer.create_optimizer_and_scheduler(num_training_steps=num_steps)

        # Checking that the scheduler was created
        self.assertIsNotNone(trainer.lr_scheduler)

        # Checking that the correct args were passed
        sched1 = trainer.lr_scheduler
        sched2 = get_polynomial_decay_schedule_with_warmup(
            trainer.optimizer, num_warmup_steps=num_warmup_steps, num_training_steps=num_steps, **extra_kwargs
        )
        self.assertEqual(sched1.lr_lambdas[0].args, sched2.lr_lambdas[0].args)
        self.assertEqual(sched1.lr_lambdas[0].keywords, sched2.lr_lambdas[0].keywords)

742
743
744
745
746
747
748
749
750
751
752
    def test_cosine_with_min_lr_scheduler(self):
        train_dataset = RegressionDataset()
        model = RegressionModel()
        num_steps, num_warmup_steps = 10, 2
        extra_kwargs = {"min_lr": 1e-5}  # Non-default arguments
        args = TrainingArguments(
            "./regression",
            lr_scheduler_type="cosine_with_min_lr",
            lr_scheduler_kwargs=extra_kwargs,
            learning_rate=0.2,
            warmup_steps=num_warmup_steps,
753
            report_to="none",
754
755
756
757
758
759
760
761
762
763
764
765
        )
        trainer = Trainer(model, args, train_dataset=train_dataset)
        trainer.create_optimizer_and_scheduler(num_training_steps=num_steps)

        # Checking that the scheduler was created
        self.assertIsNotNone(trainer.lr_scheduler)

        # Check the last learning rate
        for _ in range(num_steps):
            trainer.lr_scheduler.step()
        self.assertEqual(trainer.lr_scheduler.get_last_lr()[0], 1e-5)

766
767
768
769
770
771
    def test_reduce_lr_on_plateau_args(self):
        # test passed arguments for a custom ReduceLROnPlateau scheduler
        train_dataset = RegressionDataset(length=64)
        eval_dataset = RegressionDataset(length=64)
        args = TrainingArguments(
            "./regression",
772
            eval_strategy="epoch",
773
            metric_for_best_model="eval_loss",
774
            report_to="none",
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
        )
        model = RegressionModel()
        optimizer = torch.optim.SGD(model.parameters(), lr=1.0)
        lr_scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, factor=0.2, patience=5, cooldown=2)
        trainer = Trainer(
            model, args, train_dataset=train_dataset, eval_dataset=eval_dataset, optimizers=(optimizer, lr_scheduler)
        )
        trainer.train()

        self.assertIsInstance(trainer.lr_scheduler, torch.optim.lr_scheduler.ReduceLROnPlateau)
        self.assertEqual(trainer.lr_scheduler.factor, 0.2)
        self.assertEqual(trainer.lr_scheduler.patience, 5)
        self.assertEqual(trainer.lr_scheduler.cooldown, 2)

    def test_reduce_lr_on_plateau(self):
        # test the ReduceLROnPlateau scheduler

        class TrainerWithLRLogs(Trainer):
            def log(self, logs):
                # the LR is computed after metrics and does not exist for the first epoch
                if hasattr(self.lr_scheduler, "_last_lr"):
796
                    logs["learning_rate"] = self.lr_scheduler._last_lr[0]
797
798
799
800
801
802
803
804
                super().log(logs)

        train_dataset = RegressionDataset(length=64)
        eval_dataset = RegressionDataset(length=64)

        args = TrainingArguments(
            "./regression",
            lr_scheduler_type="reduce_lr_on_plateau",
805
            eval_strategy="epoch",
806
807
808
            metric_for_best_model="eval_loss",
            num_train_epochs=10,
            learning_rate=0.2,
809
            report_to="none",
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
        )
        model = RegressionModel()
        trainer = TrainerWithLRLogs(model, args, train_dataset=train_dataset, eval_dataset=eval_dataset)
        trainer.train()

        self.assertIsInstance(trainer.lr_scheduler, torch.optim.lr_scheduler.ReduceLROnPlateau)
        patience = trainer.lr_scheduler.patience

        logs = trainer.state.log_history[1:]
        best_loss = logs[0]["eval_loss"]
        bad_epochs = 0
        for i, log in enumerate(logs[:-1]):  # Compare learning rate to next epoch's
            loss = log["eval_loss"]
            just_decreased = False
            if loss > best_loss:
                bad_epochs += 1
                if bad_epochs > patience:
827
                    self.assertLess(logs[i + 1]["learning_rate"], log["learning_rate"])
828
829
830
831
832
833
                    just_decreased = True
                    bad_epochs = 0
            else:
                best_loss = loss
                bad_epochs = 0
            if not just_decreased:
834
                self.assertEqual(logs[i + 1]["learning_rate"], log["learning_rate"])
835

836
837
838
839
840
841
    def test_adafactor_lr_none(self):
        # test the special case where lr=None, since Trainer can't not have lr_scheduler

        from transformers.optimization import Adafactor, AdafactorSchedule

        train_dataset = RegressionDataset()
842
        args = TrainingArguments("./regression", report_to="none")
843
844
845
846
847
848
849
850
851
852
853
        model = RegressionModel()
        optimizer = Adafactor(model.parameters(), scale_parameter=True, relative_step=True, warmup_init=True, lr=None)
        lr_scheduler = AdafactorSchedule(optimizer)
        trainer = Trainer(model, args, train_dataset=train_dataset, optimizers=(optimizer, lr_scheduler))
        trainer.train()

        (a, b) = self.default_trained_model
        self.assertFalse(torch.allclose(trainer.model.a, a))
        self.assertFalse(torch.allclose(trainer.model.b, b))
        self.assertGreater(trainer.optimizer.state_dict()["param_groups"][0]["lr"], 0)

854
855
    @require_torch_accelerator
    @require_torch_bf16
856
857
858
859
860
861
862
863
864
865
866
867
    def test_mixed_bf16(self):
        # very basic test
        trainer = get_regression_trainer(learning_rate=0.1, bf16=True)
        trainer.train()
        self.check_trained_model(trainer.model)

        # --bf16 --half_precision_backend apex can't be used together
        with self.assertRaises(ValueError):
            trainer = get_regression_trainer(learning_rate=0.1, bf16=True, half_precision_backend="apex")

        # will add more specific tests once there are some bugs to fix

868
869
870
871
872
873
874
875
    @require_torch_gpu
    @require_torch_tf32
    def test_tf32(self):
        # very basic test
        trainer = get_regression_trainer(learning_rate=0.1, tf32=True)
        trainer.train()
        self.check_trained_model(trainer.model)

876
877
878
879
880
881
882

@require_torch
@require_sentencepiece
@require_tokenizers
class TrainerIntegrationTest(TestCasePlus, TrainerIntegrationCommon):
    def setUp(self):
        super().setUp()
883
        args = TrainingArguments("..")
884
885
886
        self.n_epochs = args.num_train_epochs
        self.batch_size = args.train_batch_size

887
888
889
890
891
892
    def test_trainer_works_with_dict(self):
        # Edge case because Apex with mode O2 will change our models to return dicts. This test checks it doesn't break
        # anything.
        train_dataset = RegressionDataset()
        eval_dataset = RegressionDataset()
        model = RegressionDictModel()
893
        args = TrainingArguments("./regression", report_to="none")
894
895
896
897
898
899
        trainer = Trainer(model, args, train_dataset=train_dataset, eval_dataset=eval_dataset)
        trainer.train()
        _ = trainer.evaluate()
        _ = trainer.predict(eval_dataset)

    def test_evaluation_with_keys_to_drop(self):
900
        config = GPT2Config(vocab_size=100, n_positions=128, n_embd=32, n_layer=3, n_head=4)
901
902
903
        tiny_gpt2 = GPT2LMHeadModel(config)
        x = torch.randint(0, 100, (128,))
        eval_dataset = RepeatDataset(x)
904
        args = TrainingArguments("./test", report_to="none")
905
906
907
908
909
910
911
912
913
        trainer = Trainer(tiny_gpt2, args, eval_dataset=eval_dataset)
        # By default the past_key_values are removed
        result = trainer.predict(eval_dataset)
        self.assertTrue(isinstance(result.predictions, np.ndarray))
        # We can still get them by setting ignore_keys to []
        result = trainer.predict(eval_dataset, ignore_keys=[])
        self.assertTrue(isinstance(result.predictions, tuple))
        self.assertEqual(len(result.predictions), 2)

914
915
916
    def test_training_arguments_are_left_untouched(self):
        trainer = get_regression_trainer()
        trainer.train()
917
        args = TrainingArguments("./regression", report_to=[])
918
919
        dict1, dict2 = args.to_dict(), trainer.args.to_dict()
        for key in dict1.keys():
920
            # Logging dir can be slightly different as they default to something with the time.
Sylvain Gugger's avatar
Sylvain Gugger committed
921
            if key != "logging_dir":
922
                self.assertEqual(dict1[key], dict2[key])
923

Sylvain Gugger's avatar
Sylvain Gugger committed
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
    def test_number_of_steps_in_training(self):
        # Regular training has n_epochs * len(train_dl) steps
        trainer = get_regression_trainer(learning_rate=0.1)
        train_output = trainer.train()
        self.assertEqual(train_output.global_step, self.n_epochs * 64 / self.batch_size)

        # Check passing num_train_epochs works (and a float version too):
        trainer = get_regression_trainer(learning_rate=0.1, num_train_epochs=1.5)
        train_output = trainer.train()
        self.assertEqual(train_output.global_step, int(1.5 * 64 / self.batch_size))

        # If we pass a max_steps, num_train_epochs is ignored
        trainer = get_regression_trainer(learning_rate=0.1, max_steps=10)
        train_output = trainer.train()
        self.assertEqual(train_output.global_step, 10)

940
    @require_torch_bf16
941
942
943
944
    @require_intel_extension_for_pytorch
    def test_number_of_steps_in_training_with_ipex(self):
        for mix_bf16 in [True, False]:
            # Regular training has n_epochs * len(train_dl) steps
945
            trainer = get_regression_trainer(learning_rate=0.1, use_ipex=True, bf16=mix_bf16, use_cpu=True)
946
            train_output = trainer.train()
947
            self.assertEqual(train_output.global_step, self.n_epochs * 64 / trainer.args.train_batch_size)
948
949
950

            # Check passing num_train_epochs works (and a float version too):
            trainer = get_regression_trainer(
951
                learning_rate=0.1, num_train_epochs=1.5, use_ipex=True, bf16=mix_bf16, use_cpu=True
952
953
            )
            train_output = trainer.train()
954
            self.assertEqual(train_output.global_step, int(1.5 * 64 / trainer.args.train_batch_size))
955
956
957

            # If we pass a max_steps, num_train_epochs is ignored
            trainer = get_regression_trainer(
958
                learning_rate=0.1, max_steps=10, use_ipex=True, bf16=mix_bf16, use_cpu=True
959
960
961
962
            )
            train_output = trainer.train()
            self.assertEqual(train_output.global_step, 10)

963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
    @require_peft
    @require_bitsandbytes
    def test_bnb_compile(self):
        from peft import LoraConfig, get_peft_model

        # Simply tests if initializing a Trainer with a PEFT + compiled model works out of the box
        # QLoRA + torch compile is not really supported yet, but we should at least support the model
        # loading and let torch throw the
        tiny_model = AutoModelForCausalLM.from_pretrained(
            "hf-internal-testing/tiny-random-LlamaForCausalLM", load_in_4bit=True
        )

        peft_config = LoraConfig(
            r=8,
            lora_alpha=32,
            target_modules=["q_proj", "k_proj", "v_proj"],
            lora_dropout=0.05,
            bias="none",
            task_type="CAUSAL_LM",
        )
        tiny_model = get_peft_model(tiny_model, peft_config)

        tiny_model = torch.compile(tiny_model)

        x = torch.randint(0, 100, (128,))
        train_dataset = RepeatDataset(x)

        with tempfile.TemporaryDirectory() as tmp_dir:
            args = TrainingArguments(
                tmp_dir,
                learning_rate=1e-9,
                logging_steps=5,
            )
            with self.assertRaises(ValueError):
                _ = Trainer(tiny_model, args, train_dataset=train_dataset)  # noqa

999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
    @require_peft
    def test_multiple_peft_adapters(self):
        from peft import LoraConfig, get_peft_model

        # Tests if resuming from checkpoint works if the model has multiple adapters

        MODEL_ID = "hf-internal-testing/tiny-random-LlamaForCausalLM"
        tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
        tiny_model = AutoModelForCausalLM.from_pretrained(MODEL_ID)

        peft_config = LoraConfig(
            r=4,
            lora_alpha=16,
            lora_dropout=0.05,
            bias="none",
            task_type="CAUSAL_LM",
        )
        tiny_model = get_peft_model(tiny_model, peft_config, "adapter1")
        tiny_model.add_adapter("adapter2", peft_config)

        train_dataset = LineByLineTextDataset(
            tokenizer=tokenizer,
            file_path=PATH_SAMPLE_TEXT,
            block_size=tokenizer.max_len_single_sentence,
        )
        for example in train_dataset.examples:
            example["labels"] = example["input_ids"]

        tokenizer.pad_token = tokenizer.eos_token

        with tempfile.TemporaryDirectory() as tmpdir:
            args = TrainingArguments(
                tmpdir,
                per_device_train_batch_size=1,
                learning_rate=1e-9,
                save_steps=5,
                logging_steps=5,
                max_steps=10,
                use_cpu=True,
            )
            trainer = Trainer(tiny_model, args, tokenizer=tokenizer, train_dataset=train_dataset)

            trainer.train()
            parameters = dict(tiny_model.named_parameters())
            state = dataclasses.asdict(trainer.state)

            # Reinitialize trainer
            trainer = Trainer(tiny_model, args, tokenizer=tokenizer, train_dataset=train_dataset)

            checkpoint = os.path.join(tmpdir, "checkpoint-5")

            trainer.train(resume_from_checkpoint=checkpoint)
            parameters1 = dict(tiny_model.named_parameters())
            state1 = dataclasses.asdict(trainer.state)
            self.assertEqual(parameters, parameters1)
            self.check_trainer_state_are_the_same(state, state1)

1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
    @require_bitsandbytes
    def test_rmsprop_bnb(self):
        config = GPT2Config(vocab_size=100, n_positions=128, n_embd=32, n_layer=3, n_head=4)
        tiny_gpt2 = GPT2LMHeadModel(config)
        x = torch.randint(0, 100, (128,))
        train_dataset = RepeatDataset(x)

        with tempfile.TemporaryDirectory() as tmpdir:
            # Trainer without inf/nan filter
            args = TrainingArguments(
                tmpdir, learning_rate=1e-9, logging_steps=5, logging_nan_inf_filter=False, optim="rmsprop_bnb"
            )
            trainer = Trainer(tiny_gpt2, args, train_dataset=train_dataset)

            # Check that it trains without errors
            trainer.train()

    @require_bitsandbytes
    def test_rmsprop_bnb_8bit(self):
        config = GPT2Config(vocab_size=100, n_positions=128, n_embd=32, n_layer=3, n_head=4)
        tiny_gpt2 = GPT2LMHeadModel(config)
        x = torch.randint(0, 100, (128,))
        train_dataset = RepeatDataset(x)

        with tempfile.TemporaryDirectory() as tmpdir:
            # Trainer without inf/nan filter
            args = TrainingArguments(
                tmpdir, learning_rate=1e-9, logging_steps=5, logging_nan_inf_filter=False, optim="rmsprop_bnb_8bit"
            )
            trainer = Trainer(tiny_gpt2, args, train_dataset=train_dataset)

            # Check that it trains without errors
            trainer.train()

    @require_bitsandbytes
    def test_rmsprop_bnb_32bit(self):
        config = GPT2Config(vocab_size=100, n_positions=128, n_embd=32, n_layer=3, n_head=4)
        tiny_gpt2 = GPT2LMHeadModel(config)
        x = torch.randint(0, 100, (128,))
        train_dataset = RepeatDataset(x)
        with tempfile.TemporaryDirectory() as tmpdir:
            # Trainer without inf/nan filter
            args = TrainingArguments(
                tmpdir, learning_rate=1e-9, logging_steps=5, logging_nan_inf_filter=False, optim="rmsprop_bnb_32bit"
            )
            trainer = Trainer(tiny_gpt2, args, train_dataset=train_dataset)

            # Check that it trains without errors
            trainer.train()

1106
1107
1108
1109
1110
1111
1112
1113
    def test_neftune(self):
        config = GPT2Config(vocab_size=100, n_positions=128, n_embd=32, n_layer=3, n_head=4)
        tiny_gpt2 = GPT2LMHeadModel(config)
        x = torch.randint(0, 100, (128,))
        train_dataset = RepeatDataset(x)

        # Trainer without inf/nan filter
        args = TrainingArguments(
1114
1115
1116
1117
1118
1119
            "./test",
            learning_rate=1e-9,
            logging_steps=5,
            logging_nan_inf_filter=False,
            neftune_noise_alpha=0.4,
            report_to="none",
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
        )
        trainer = Trainer(tiny_gpt2, args, train_dataset=train_dataset)

        trainer.model = trainer._activate_neftune(trainer.model)

        dummy_input = torch.LongTensor([[1, 0, 1]]).to(torch_device)

        emb1 = trainer.model.get_input_embeddings()(dummy_input)
        emb2 = trainer.model.get_input_embeddings()(dummy_input)

        self.assertFalse(torch.allclose(emb1, emb2), "Neftune noise is not applied!")

        # redefine the model
        tiny_gpt2 = GPT2LMHeadModel(config)
        # Trainer without inf/nan filter
        args = TrainingArguments(
1136
1137
1138
1139
1140
1141
            "./test",
            learning_rate=1e-9,
            logging_steps=5,
            logging_nan_inf_filter=False,
            neftune_noise_alpha=0.4,
            report_to="none",
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
        )
        trainer = Trainer(tiny_gpt2, args, train_dataset=train_dataset)

        # Check that it trains without errors
        trainer.train()

        # Make sure forward pass works fine
        _ = trainer.model(dummy_input)
        self.assertTrue(len(trainer.model.get_input_embeddings()._forward_hooks) == 0)

        trainer.model.eval()

        # Check that we get identical embeddings just in case
        emb1 = trainer.model.get_input_embeddings()(dummy_input)
        emb2 = trainer.model.get_input_embeddings()(dummy_input)

        self.assertTrue(torch.allclose(emb1, emb2), "Neftune noise is still applied!")

1160
    def test_logging_inf_nan_filter(self):
1161
        config = GPT2Config(vocab_size=100, n_positions=128, n_embd=32, n_layer=3, n_head=4)
1162
1163
1164
1165
1166
        tiny_gpt2 = GPT2LMHeadModel(config)
        x = torch.randint(0, 100, (128,))
        train_dataset = RepeatDataset(x)

        # Trainer without inf/nan filter
1167
1168
1169
        args = TrainingArguments(
            "./test", learning_rate=1e9, logging_steps=5, logging_nan_inf_filter=False, report_to="none"
        )
1170
1171
1172
1173
1174
        trainer = Trainer(tiny_gpt2, args, train_dataset=train_dataset)
        trainer.train()
        log_history_no_filter = trainer.state.log_history

        # Trainer with inf/nan filter
1175
1176
1177
        args = TrainingArguments(
            "./test", learning_rate=1e9, logging_steps=5, logging_nan_inf_filter=True, report_to="none"
        )
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
        trainer = Trainer(tiny_gpt2, args, train_dataset=train_dataset)
        trainer.train()
        log_history_filter = trainer.state.log_history

        def is_any_loss_nan_or_inf(log_history):
            losses = [l["loss"] for l in log_history[:-1]]
            return any(math.isnan(x) for x in losses) or any(math.isinf(x) for x in losses)

        self.assertTrue(is_any_loss_nan_or_inf(log_history_no_filter))
        self.assertFalse(is_any_loss_nan_or_inf(log_history_filter))

Sylvain Gugger's avatar
Sylvain Gugger committed
1189
    def test_train_and_eval_dataloaders(self):
1190
1191
1192
1193
        if torch_device == "cuda":
            n_gpu = max(1, backend_device_count(torch_device))
        else:
            n_gpu = 1
Sylvain Gugger's avatar
Sylvain Gugger committed
1194
        trainer = get_regression_trainer(learning_rate=0.1, per_device_train_batch_size=16)
1195
        self.assertEqual(trainer.get_train_dataloader().total_batch_size, 16 * n_gpu)
Sylvain Gugger's avatar
Sylvain Gugger committed
1196
        trainer = get_regression_trainer(learning_rate=0.1, per_device_eval_batch_size=16)
1197
        self.assertEqual(trainer.get_eval_dataloader().total_batch_size, 16 * n_gpu)
Sylvain Gugger's avatar
Sylvain Gugger committed
1198
1199
1200
1201
1202

        # Check drop_last works
        trainer = get_regression_trainer(
            train_len=66, eval_len=74, learning_rate=0.1, per_device_train_batch_size=16, per_device_eval_batch_size=32
        )
1203
1204
        self.assertEqual(len(trainer.get_train_dataloader()), 66 // (16 * n_gpu) + 1)
        self.assertEqual(len(trainer.get_eval_dataloader()), 74 // (32 * n_gpu) + 1)
Sylvain Gugger's avatar
Sylvain Gugger committed
1205
1206
1207
1208
1209
1210
1211
1212
1213

        trainer = get_regression_trainer(
            train_len=66,
            eval_len=74,
            learning_rate=0.1,
            per_device_train_batch_size=16,
            per_device_eval_batch_size=32,
            dataloader_drop_last=True,
        )
1214
1215
        self.assertEqual(len(trainer.get_train_dataloader()), 66 // (16 * n_gpu))
        self.assertEqual(len(trainer.get_eval_dataloader()), 74 // (32 * n_gpu))
Sylvain Gugger's avatar
Sylvain Gugger committed
1216

1217
        # Check passing a new dataset for evaluation works
Sylvain Gugger's avatar
Sylvain Gugger committed
1218
        new_eval_dataset = RegressionDataset(length=128)
1219
        self.assertEqual(len(trainer.get_eval_dataloader(new_eval_dataset)), 128 // (32 * n_gpu))
Sylvain Gugger's avatar
Sylvain Gugger committed
1220

1221
1222
1223
    # tests that we do not require dataloader to have a .dataset attribute
    def test_dataloader_without_dataset(self):
        train_dataset = RegressionDataset(length=128)
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
        with tempfile.TemporaryDirectory() as tmp_dir:
            trainer = CustomDataloaderTrainer(
                model=RegressionModel(),
                train_dataset=train_dataset,
                eval_dataset=train_dataset,
                args=TrainingArguments(output_dir=tmp_dir, report_to="none"),
            )

            trainer.train()
            trainer.evaluate()
1234

1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
    def test_get_eval_dataloader_without_persistent_workers(self):
        train_dataset = RegressionDataset()
        config = GPT2Config(vocab_size=100, n_positions=128, n_embd=32, n_layer=3, n_head=4)
        tiny_gpt2 = GPT2LMHeadModel(config)
        args = TrainingArguments("./test", report_to="none", dataloader_persistent_workers=False)

        # Single evaluation dataset
        eval_dataset = RegressionDataset()
        trainer = Trainer(tiny_gpt2, args, train_dataset=train_dataset, eval_dataset=eval_dataset)
        # Mocking the prepare method to avoid the dataloader changing with each call to get_eval_dataloader
        trainer.accelerator.prepare = lambda x: x

        default_dataloader = trainer.get_eval_dataloader()
        dataloader_with_dataset = trainer.get_eval_dataloader(eval_dataset)

        self.assertEqual(default_dataloader.dataset, eval_dataset)
        self.assertEqual(dataloader_with_dataset.dataset, eval_dataset)
        self.assertNotEqual(default_dataloader, dataloader_with_dataset)

        # Multiple evaluation datasets
        first_dataset = RegressionDataset()
        second_dataset = RegressionDataset()
        trainer = Trainer(
            tiny_gpt2,
            args,
            train_dataset=train_dataset,
            eval_dataset={"first": first_dataset, "second": second_dataset},
        )
        # Mocking the prepare method to avoid the dataloader changing with each call to get_eval_dataloader
        trainer.accelerator.prepare = lambda x: x

        first_dataloader = trainer.get_eval_dataloader("first")
        first_dataloader_repeated = trainer.get_eval_dataloader("first")
        second_dataloader = trainer.get_eval_dataloader("second")
        second_dataloader_repeated = trainer.get_eval_dataloader("second")

        self.assertEqual(first_dataset, first_dataloader.dataset)
        self.assertEqual(first_dataloader.dataset, first_dataloader_repeated.dataset)
        self.assertEqual(second_dataset, second_dataloader.dataset)
        self.assertEqual(second_dataloader.dataset, second_dataloader_repeated.dataset)
        self.assertNotEqual(first_dataloader, first_dataloader_repeated)
        self.assertNotEqual(second_dataloader, second_dataloader_repeated)

    def test_get_eval_dataloader_with_persistent_workers(self):
        train_dataset = RegressionDataset()
        config = GPT2Config(vocab_size=100, n_positions=128, n_embd=32, n_layer=3, n_head=4)
        tiny_gpt2 = GPT2LMHeadModel(config)
        args = TrainingArguments(
            "./test",
            report_to="none",
            dataloader_persistent_workers=True,
            dataloader_num_workers=2,
        )

        # Single evaluation dataset
        eval_dataset = RegressionDataset()
        trainer = Trainer(tiny_gpt2, args, train_dataset=train_dataset, eval_dataset=eval_dataset)
        # Mocking the prepare method to avoid the dataloader changing with each call to get_eval_dataloader
        trainer.accelerator.prepare = lambda x: x

        default_dataloader = trainer.get_eval_dataloader()
        dataloader_with_dataset = trainer.get_eval_dataloader(eval_dataset)

        self.assertEqual(default_dataloader.dataset, eval_dataset)
        self.assertEqual(dataloader_with_dataset.dataset, eval_dataset)
        self.assertEqual(default_dataloader, dataloader_with_dataset)

        # Multiple evaluation datasets
        first_dataset = RegressionDataset()
        second_dataset = RegressionDataset()
        trainer = Trainer(
            tiny_gpt2,
            args,
            train_dataset=train_dataset,
            eval_dataset={"first": first_dataset, "second": second_dataset},
        )
        # Mocking the prepare method to avoid the dataloader changing with each call to get_eval_dataloader
        trainer.accelerator.prepare = lambda x: x

        first_dataloader = trainer.get_eval_dataloader("first")
        first_dataloader_repeated = trainer.get_eval_dataloader("first")
        second_dataloader = trainer.get_eval_dataloader("second")
        second_dataloader_repeated = trainer.get_eval_dataloader("second")

        self.assertEqual(first_dataset, first_dataloader.dataset)
        self.assertEqual(first_dataloader.dataset, first_dataloader_repeated.dataset)
        self.assertEqual(second_dataset, second_dataloader.dataset)
        self.assertEqual(second_dataloader.dataset, second_dataloader_repeated.dataset)
        self.assertEqual(first_dataloader, first_dataloader_repeated)
        self.assertEqual(second_dataloader, second_dataloader_repeated)

1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
    @require_lomo
    @require_torch_gpu
    def test_lomo(self):
        config = LlamaConfig(vocab_size=100, hidden_size=32, num_hidden_layers=3, num_attention_heads=4)
        tiny_llama = LlamaForCausalLM(config)

        previous_params = {n: p.clone() for n, p in tiny_llama.named_parameters()}

        x = torch.randint(0, 100, (128,))
        train_dataset = RepeatDataset(x)

        with tempfile.TemporaryDirectory() as tmpdir:
            # Trainer without inf/nan filter
            args = TrainingArguments(tmpdir, learning_rate=1e-2, logging_steps=5, optim="lomo", max_steps=20)
            trainer = Trainer(tiny_llama, args, train_dataset=train_dataset)

            # Check this works
            _ = trainer.train()

        for name, param in tiny_llama.named_parameters():
            self.assertFalse(torch.allclose(param, previous_params[name].to(param.device), rtol=1e-12, atol=1e-12))

    @require_lomo
    @require_torch_gpu
    def test_adalomo(self):
        config = LlamaConfig(vocab_size=100, hidden_size=32, num_hidden_layers=3, num_attention_heads=4)
        tiny_llama = LlamaForCausalLM(config)
        x = torch.randint(0, 100, (128,))
        train_dataset = RepeatDataset(x)

        with tempfile.TemporaryDirectory() as tmpdir:
            # Trainer without inf/nan filter
            args = TrainingArguments(
                tmpdir,
                learning_rate=1e-9,
                logging_steps=5,
                optim="adalomo",
            )
            trainer = Trainer(tiny_llama, args, train_dataset=train_dataset)

            # Check this works
            _ = trainer.train()

1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
    def test_galore_matched_modules(self):
        regex_patterns = [r".*.attn.*", r".*.mlp.*"]

        module_names = [
            "model.transformer.h.0.ln_1",
            "model.transformer.h.0.attn.q_proj",
            "model.lm_head",
            "model.transformer.h.0.mlp.up_proj",
        ]
        expected_values = [False, True, False, True]

        for expected_value, module_name in zip(expected_values, module_names):
            is_module_matched, is_regex = check_target_module_exists(regex_patterns, module_name, return_is_regex=True)
            self.assertTrue(is_module_matched == expected_value)
            if is_module_matched:
                self.assertTrue(is_regex)

        exact_patterns = ["q_proj", "up_proj"]

        module_names = [
            "model.transformer.h.0.ln_1",
            "model.transformer.h.0.attn.q_proj",
            "model.lm_head",
            "model.transformer.h.0.mlp.up_proj",
        ]
        expected_values = [False, True, False, True]

        for expected_value, module_name in zip(expected_values, module_names):
            is_module_matched, is_regex = check_target_module_exists(exact_patterns, module_name, return_is_regex=True)
            self.assertTrue(is_module_matched == expected_value)
            if is_module_matched:
                self.assertFalse(is_regex)

        simple_regex = r".*.attn.*"

        module_names = [
            "model.transformer.h.0.ln_1",
            "model.transformer.h.0.attn.q_proj",
            "model.lm_head",
            "model.transformer.h.0.mlp.up_proj",
        ]
        expected_values = [False, True, False, False]

        for expected_value, module_name in zip(expected_values, module_names):
            is_module_matched, is_regex = check_target_module_exists(simple_regex, module_name, return_is_regex=True)
            self.assertTrue(is_module_matched == expected_value)
            if is_module_matched:
                self.assertTrue(is_regex)

        simple_regex = "model.transformer.h.0.attn.q_proj"

        module_names = [
            "model.transformer.h.0.ln_1",
            "model.transformer.h.0.attn.q_proj",
            "model.lm_head",
            "model.transformer.h.0.mlp.up_proj",
        ]
        expected_values = [False, True, False, False]

        for expected_value, module_name in zip(expected_values, module_names):
            is_module_matched, is_regex = check_target_module_exists(simple_regex, module_name, return_is_regex=True)
            self.assertTrue(is_module_matched == expected_value)
            if is_module_matched:
                self.assertFalse(is_regex)

        target_modules = ["attn", "mlp"]

        module_names = [
            "model.transformer.h.0.ln_1",
            "model.transformer.h.0.attn.q_proj",
            "model.lm_head",
            "model.transformer.h.0.mlp.up_proj",
        ]
        expected_values = [False, True, False, True]

        for expected_value, module_name in zip(expected_values, module_names):
            is_module_matched, is_regex = check_target_module_exists(target_modules, module_name, return_is_regex=True)
            self.assertTrue(is_module_matched == expected_value)
            if is_module_matched:
                self.assertFalse(is_regex)

    @require_galore_torch
    @require_torch_gpu
    def test_galore(self):
        config = LlamaConfig(vocab_size=100, hidden_size=32, num_hidden_layers=3, num_attention_heads=4)
        tiny_llama = LlamaForCausalLM(config)
        x = torch.randint(0, 100, (128,))
        train_dataset = RepeatDataset(x)

        with tempfile.TemporaryDirectory() as tmpdir:
            # Trainer without inf/nan filter
            args = TrainingArguments(
                tmpdir,
                learning_rate=1e-9,
                logging_steps=5,
                optim="galore_adamw",
                optim_target_modules=[r".*attn.*", r".*mlp.*"],
            )
            trainer = Trainer(tiny_llama, args, train_dataset=train_dataset)

            # Check this works
            _ = trainer.train()

    @require_galore_torch
    @require_torch_gpu
    def test_galore_extra_args(self):
        config = LlamaConfig(vocab_size=100, hidden_size=32, num_hidden_layers=3, num_attention_heads=4)
        tiny_llama = LlamaForCausalLM(config)
        x = torch.randint(0, 100, (128,))
        train_dataset = RepeatDataset(x)

        with tempfile.TemporaryDirectory() as tmpdir:
            # Trainer without inf/nan filter
            args = TrainingArguments(
                tmpdir,
                learning_rate=1e-9,
                logging_steps=5,
                optim="galore_adamw",
                optim_args="rank=64, update_proj_gap=100, scale=0.10",
                optim_target_modules=[r".*attn.*", r".*mlp.*"],
            )
            trainer = Trainer(tiny_llama, args, train_dataset=train_dataset)

            # Check this works
            _ = trainer.train()

    @require_galore_torch
    @require_torch_gpu
    def test_galore_layerwise(self):
        config = LlamaConfig(vocab_size=100, hidden_size=32, num_hidden_layers=3, num_attention_heads=4)
        tiny_llama = LlamaForCausalLM(config)
        x = torch.randint(0, 100, (128,))
        train_dataset = RepeatDataset(x)

        with tempfile.TemporaryDirectory() as tmpdir:
            # Trainer without inf/nan filter
            args = TrainingArguments(
                tmpdir,
                learning_rate=1e-9,
                logging_steps=5,
                optim="galore_adamw_layerwise",
                optim_target_modules=[r".*attn.*", r".*mlp.*"],
            )
            trainer = Trainer(tiny_llama, args, train_dataset=train_dataset)

            # Check this works
            _ = trainer.train()

    @require_galore_torch
    @require_torch_gpu
    def test_galore_layerwise_with_scheduler(self):
        config = LlamaConfig(vocab_size=100, hidden_size=32, num_hidden_layers=3, num_attention_heads=4)
        tiny_llama = LlamaForCausalLM(config)
        x = torch.randint(0, 100, (128,))
        train_dataset = RepeatDataset(x)

        with tempfile.TemporaryDirectory() as tmpdir:
            # Trainer without inf/nan filter
            args = TrainingArguments(
                tmpdir,
                learning_rate=1e-9,
                logging_steps=5,
                optim="galore_adamw_layerwise",
                lr_scheduler_type="cosine",
                optim_target_modules=[r".*attn.*", r".*mlp.*"],
            )
            trainer = Trainer(tiny_llama, args, train_dataset=train_dataset)

            # Check this works
            _ = trainer.train()

    @require_galore_torch
    @require_torch_gpu
    def test_galore_adamw_8bit(self):
        config = LlamaConfig(vocab_size=100, hidden_size=32, num_hidden_layers=3, num_attention_heads=4)
        tiny_llama = LlamaForCausalLM(config)
        x = torch.randint(0, 100, (128,))
        train_dataset = RepeatDataset(x)

        with tempfile.TemporaryDirectory() as tmpdir:
            # Trainer without inf/nan filter
            args = TrainingArguments(
                tmpdir,
                learning_rate=1e-9,
                logging_steps=5,
                optim="galore_adamw_8bit",
                optim_target_modules=[r".*attn.*", r".*mlp.*"],
            )
            trainer = Trainer(tiny_llama, args, train_dataset=train_dataset)

            # Check this works
            _ = trainer.train()

    @require_galore_torch
    @require_torch_gpu
    def test_galore_adafactor(self):
        # These are the intervals of the peak memory usage of training such a tiny model
        # if the peak memory goes outside that range, then we know there might be a bug somewhere
        upper_bound_pm = 700
        lower_bound_pm = 650

        config = LlamaConfig(vocab_size=100, hidden_size=32, num_hidden_layers=3, num_attention_heads=4)
        tiny_llama = LlamaForCausalLM(config)
        x = torch.randint(0, 100, (128,))
        train_dataset = RepeatDataset(x)

        with tempfile.TemporaryDirectory() as tmpdir, TorchTracemalloc() as tracemalloc:
            # Trainer without inf/nan filter
            args = TrainingArguments(
                tmpdir,
                learning_rate=1e-9,
                logging_steps=5,
                optim="galore_adafactor",
                optim_target_modules=[r".*attn.*", r".*mlp.*"],
            )
            trainer = Trainer(tiny_llama, args, train_dataset=train_dataset)

            # Check this works
            _ = trainer.train()

        galore_peak_memory = tracemalloc.peaked + bytes2megabytes(tracemalloc.begin)

        self.assertTrue(galore_peak_memory < upper_bound_pm)
        self.assertTrue(lower_bound_pm < galore_peak_memory)

    @require_galore_torch
    @require_torch_gpu
    def test_galore_adafactor_attention_only(self):
        # These are the intervals of the peak memory usage of training such a tiny model
        # if the peak memory goes outside that range, then we know there might be a bug somewhere
        upper_bound_pm = 700
        lower_bound_pm = 650

        config = LlamaConfig(vocab_size=100, hidden_size=32, num_hidden_layers=3, num_attention_heads=4)
        tiny_llama = LlamaForCausalLM(config)
        x = torch.randint(0, 100, (128,))
        train_dataset = RepeatDataset(x)

        with tempfile.TemporaryDirectory() as tmpdir, TorchTracemalloc() as tracemalloc:
            # Trainer without inf/nan filter
            args = TrainingArguments(
                tmpdir,
                learning_rate=1e-9,
                logging_steps=5,
                optim="galore_adafactor",
                optim_target_modules=["q_proj", "k_proj", "v_proj"],
            )
            trainer = Trainer(tiny_llama, args, train_dataset=train_dataset)

            # Check this works
            _ = trainer.train()

        galore_peak_memory = tracemalloc.peaked + bytes2megabytes(tracemalloc.begin)
        self.assertTrue(galore_peak_memory < upper_bound_pm)
        self.assertTrue(lower_bound_pm < galore_peak_memory)

    @require_galore_torch
    @require_torch_gpu
    def test_galore_adafactor_all_linear(self):
        # These are the intervals of the peak memory usage of training such a tiny model
        # if the peak memory goes outside that range, then we know there might be a bug somewhere
        upper_bound_pm = 700
        lower_bound_pm = 650

        config = LlamaConfig(vocab_size=100, hidden_size=32, num_hidden_layers=3, num_attention_heads=4)
        tiny_llama = LlamaForCausalLM(config)
        x = torch.randint(0, 100, (128,))
        train_dataset = RepeatDataset(x)

        with tempfile.TemporaryDirectory() as tmpdir, TorchTracemalloc() as tracemalloc:
            # Trainer without inf/nan filter
            args = TrainingArguments(
                tmpdir,
                learning_rate=1e-9,
                logging_steps=5,
                optim="galore_adafactor",
                optim_target_modules="all-linear",
            )
            trainer = Trainer(tiny_llama, args, train_dataset=train_dataset)

            # Check this works
            _ = trainer.train()

        galore_peak_memory = tracemalloc.peaked + bytes2megabytes(tracemalloc.begin)
        self.assertTrue(galore_peak_memory < upper_bound_pm)
        self.assertTrue(lower_bound_pm < galore_peak_memory)

1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
    @require_galore_torch
    @require_torch_gpu
    def test_galore_lr_display_without_scheduler(self):
        config = LlamaConfig(vocab_size=100, hidden_size=32, num_hidden_layers=3, num_attention_heads=4)
        tiny_llama = LlamaForCausalLM(config)
        x = torch.randint(0, 100, (128,))
        train_dataset = RepeatDataset(x)

        with tempfile.TemporaryDirectory() as tmpdir:
            learning_rate = 1e-9
            num_steps = 10

            # Trainer without inf/nan filter
            args = TrainingArguments(
                tmpdir,
                learning_rate=learning_rate,
                logging_steps=5,
                optim="galore_adamw",
                optim_target_modules=[r".*attn.*", r".*mlp.*"],
            )
            trainer = Trainer(tiny_llama, args, train_dataset=train_dataset)
            trainer.create_optimizer_and_scheduler(num_training_steps=num_steps)

            # reflects displayed lr in trainer
            self.assertEqual(trainer.get_learning_rates(), [learning_rate, learning_rate])

    @require_galore_torch
    @require_torch_gpu
    def test_galore_lr_display_with_scheduler(self):
        config = LlamaConfig(vocab_size=100, hidden_size=32, num_hidden_layers=3, num_attention_heads=4)
        tiny_llama = LlamaForCausalLM(config)
        x = torch.randint(0, 100, (128,))
        train_dataset = RepeatDataset(x)

        with tempfile.TemporaryDirectory() as tmpdir:
            learning_rate = 2e-4
            num_train_epochs = 2
            num_warmup_steps = 5

            # Trainer without inf/nan filter
            args = TrainingArguments(
                tmpdir,
                num_train_epochs=num_train_epochs,
                learning_rate=learning_rate,
                warmup_steps=num_warmup_steps,
                lr_scheduler_type="cosine",
                logging_steps=1,
                optim="galore_adamw",
                optim_target_modules=[r".*attn.*", r".*mlp.*"],
            )
            trainer = Trainer(tiny_llama, args, train_dataset=train_dataset)

            # creating log history of trainer, results don't matter
            trainer.train()
            logs = trainer.state.log_history[1:][:-1]

            # reach given learning rate peak and end with 0 lr
            self.assertTrue(logs[num_warmup_steps - 2]["learning_rate"] == learning_rate)
            self.assertTrue(logs[-1]["learning_rate"] == 0)

            # increasing and decreasing pattern of lrs
            increasing_lrs = [
                logs[i]["learning_rate"] < logs[i + 1]["learning_rate"]
                for i in range(len(logs))
                if i < num_warmup_steps - 2
            ]
            decreasing_lrs = [
                logs[i]["learning_rate"] > logs[i + 1]["learning_rate"]
                for i in range(len(logs) - 1)
                if i >= num_warmup_steps - 2
            ]

            self.assertTrue(all(increasing_lrs))
            self.assertTrue(all(decreasing_lrs))

            # warm up steps << total steps
            self.assertTrue(len(decreasing_lrs) > len(increasing_lrs))

1734
    @require_torch_multi_accelerator
1735
1736
1737
1738
1739
    def test_data_is_not_parallelized_when_model_is_parallel(self):
        model = RegressionModel()
        # Make the Trainer believe it's a parallelized model
        model.is_parallelizable = True
        model.model_parallel = True
1740
1741
1742
        args = TrainingArguments(
            "./regression", per_device_train_batch_size=16, per_device_eval_batch_size=16, report_to="none"
        )
1743
        trainer = Trainer(model, args, train_dataset=RegressionDataset(), eval_dataset=RegressionDataset())
1744
1745
        # Check the Trainer was fooled
        self.assertTrue(trainer.is_model_parallel)
1746
        self.assertEqual(trainer.args.n_gpu, 1)
1747
1748

        # The batch size of the training and evaluation dataloaders should be 16, not 16 * n_gpu
1749
        self.assertEqual(trainer.get_train_dataloader().total_batch_size, 16)
1750
        self.assertEqual(len(trainer.get_train_dataloader()), 64 // 16)
1751
        self.assertEqual(trainer.get_eval_dataloader().total_batch_size, 16)
1752
1753
        self.assertEqual(len(trainer.get_eval_dataloader()), 64 // 16)

Sylvain Gugger's avatar
Sylvain Gugger committed
1754
1755
1756
1757
    def test_evaluate(self):
        trainer = get_regression_trainer(a=1.5, b=2.5, compute_metrics=AlmostAccuracy())
        results = trainer.evaluate()

Sylvain Gugger's avatar
Sylvain Gugger committed
1758
        x, y = trainer.eval_dataset.x, trainer.eval_dataset.ys[0]
Sylvain Gugger's avatar
Sylvain Gugger committed
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
        pred = 1.5 * x + 2.5
        expected_loss = ((pred - y) ** 2).mean()
        self.assertAlmostEqual(results["eval_loss"], expected_loss)
        expected_acc = AlmostAccuracy()((pred, y))["accuracy"]
        self.assertAlmostEqual(results["eval_accuracy"], expected_acc)

        # With a number of elements not a round multiple of the batch size
        trainer = get_regression_trainer(a=1.5, b=2.5, eval_len=66, compute_metrics=AlmostAccuracy())
        results = trainer.evaluate()

Sylvain Gugger's avatar
Sylvain Gugger committed
1769
        x, y = trainer.eval_dataset.x, trainer.eval_dataset.ys[0]
Sylvain Gugger's avatar
Sylvain Gugger committed
1770
1771
1772
1773
1774
1775
        pred = 1.5 * x + 2.5
        expected_loss = ((pred - y) ** 2).mean()
        self.assertAlmostEqual(results["eval_loss"], expected_loss)
        expected_acc = AlmostAccuracy()((pred, y))["accuracy"]
        self.assertAlmostEqual(results["eval_accuracy"], expected_acc)

1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
        # With logits preprocess
        trainer = get_regression_trainer(
            a=1.5,
            b=2.5,
            compute_metrics=AlmostAccuracy(),
            preprocess_logits_for_metrics=lambda logits, labels: logits + 1,
        )
        results = trainer.evaluate()

        x, y = trainer.eval_dataset.x, trainer.eval_dataset.ys[0]
        pred = 1.5 * x + 2.5
        expected_loss = ((pred - y) ** 2).mean()
        self.assertAlmostEqual(results["eval_loss"], expected_loss)
        expected_acc = AlmostAccuracy()((pred + 1, y))["accuracy"]
        self.assertAlmostEqual(results["eval_accuracy"], expected_acc)

1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
    def test_evaluate_with_batch_eval_metrics(self):
        trainer = get_regression_trainer(
            a=1.5, b=2.5, compute_metrics=AlmostAccuracyBatched(), batch_eval_metrics=True
        )
        results = trainer.evaluate()

        x, y = trainer.eval_dataset.x, trainer.eval_dataset.ys[0]
        pred = 1.5 * x + 2.5
        expected_loss = ((pred - y) ** 2).mean()
        self.assertAlmostEqual(results["eval_loss"], expected_loss)
        expected_acc = AlmostAccuracy()((pred, y))["accuracy"]
        self.assertAlmostEqual(results["eval_accuracy"], expected_acc)

        # With a number of elements not a round multiple of the batch size
        trainer = get_regression_trainer(
            a=1.5, b=2.5, eval_len=66, compute_metrics=AlmostAccuracyBatched(), batch_eval_metrics=True
        )
        results = trainer.evaluate()

        x, y = trainer.eval_dataset.x, trainer.eval_dataset.ys[0]
        pred = 1.5 * x + 2.5
        expected_loss = ((pred - y) ** 2).mean()
        self.assertAlmostEqual(results["eval_loss"], expected_loss)
        expected_acc = AlmostAccuracy()((pred, y))["accuracy"]
        self.assertAlmostEqual(results["eval_accuracy"], expected_acc)

        # With logits preprocess
        trainer = get_regression_trainer(
            a=1.5,
            b=2.5,
            compute_metrics=AlmostAccuracyBatched(),
            batch_eval_metrics=True,
            preprocess_logits_for_metrics=lambda logits, labels: logits + 1,
        )
        results = trainer.evaluate()

        x, y = trainer.eval_dataset.x, trainer.eval_dataset.ys[0]
        pred = 1.5 * x + 2.5
        expected_loss = ((pred - y) ** 2).mean()
        self.assertAlmostEqual(results["eval_loss"], expected_loss)
        expected_acc = AlmostAccuracy()((pred + 1, y))["accuracy"]
        self.assertAlmostEqual(results["eval_accuracy"], expected_acc)

1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
    def test_evaluate_with_jit(self):
        trainer = get_regression_trainer(a=1.5, b=2.5, compute_metrics=AlmostAccuracy(), jit_mode_eval=True)
        results = trainer.evaluate()

        x, y = trainer.eval_dataset.x, trainer.eval_dataset.ys[0]
        pred = 1.5 * x + 2.5
        expected_loss = ((pred - y) ** 2).mean()
        self.assertAlmostEqual(results["eval_loss"], expected_loss)
        expected_acc = AlmostAccuracy()((pred, y))["accuracy"]
        self.assertAlmostEqual(results["eval_accuracy"], expected_acc)

        # With a number of elements not a round multiple of the batch size
        trainer = get_regression_trainer(
            a=1.5, b=2.5, eval_len=66, compute_metrics=AlmostAccuracy(), jit_mode_eval=True
        )
        results = trainer.evaluate()

        x, y = trainer.eval_dataset.x, trainer.eval_dataset.ys[0]
        pred = 1.5 * x + 2.5
        expected_loss = ((pred - y) ** 2).mean()
        self.assertAlmostEqual(results["eval_loss"], expected_loss)
        expected_acc = AlmostAccuracy()((pred, y))["accuracy"]
        self.assertAlmostEqual(results["eval_accuracy"], expected_acc)

        # With logits preprocess
        trainer = get_regression_trainer(
            a=1.5,
            b=2.5,
            compute_metrics=AlmostAccuracy(),
            preprocess_logits_for_metrics=lambda logits, labels: logits + 1,
            jit_mode_eval=True,
        )
        results = trainer.evaluate()

        x, y = trainer.eval_dataset.x, trainer.eval_dataset.ys[0]
        pred = 1.5 * x + 2.5
        expected_loss = ((pred - y) ** 2).mean()
        self.assertAlmostEqual(results["eval_loss"], expected_loss)
        expected_acc = AlmostAccuracy()((pred + 1, y))["accuracy"]
        self.assertAlmostEqual(results["eval_accuracy"], expected_acc)

1876
    @require_torch_bf16
1877
1878
1879
1880
    @require_intel_extension_for_pytorch
    def test_evaluate_with_ipex(self):
        for mix_bf16 in [True, False]:
            trainer = get_regression_trainer(
1881
                a=1.5, b=2.5, use_ipex=True, compute_metrics=AlmostAccuracy(), bf16=mix_bf16, use_cpu=True
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
            )
            results = trainer.evaluate()

            x, y = trainer.eval_dataset.x, trainer.eval_dataset.ys[0]
            pred = 1.5 * x + 2.5
            expected_loss = ((pred - y) ** 2).mean()
            self.assertAlmostEqual(results["eval_loss"], expected_loss)
            expected_acc = AlmostAccuracy()((pred, y))["accuracy"]
            self.assertAlmostEqual(results["eval_accuracy"], expected_acc)

            # With a number of elements not a round multiple of the batch size
            trainer = get_regression_trainer(
                a=1.5,
                b=2.5,
                use_ipex=True,
                eval_len=66,
                compute_metrics=AlmostAccuracy(),
                bf16=mix_bf16,
1900
                use_cpu=True,
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
            )
            results = trainer.evaluate()

            x, y = trainer.eval_dataset.x, trainer.eval_dataset.ys[0]
            pred = 1.5 * x + 2.5
            expected_loss = ((pred - y) ** 2).mean()
            self.assertAlmostEqual(results["eval_loss"], expected_loss)
            expected_acc = AlmostAccuracy()((pred, y))["accuracy"]
            self.assertAlmostEqual(results["eval_accuracy"], expected_acc)

            # With logits preprocess
            trainer = get_regression_trainer(
                a=1.5,
                b=2.5,
                use_ipex=True,
                compute_metrics=AlmostAccuracy(),
                preprocess_logits_for_metrics=lambda logits, labels: logits + 1,
                bf16=mix_bf16,
1919
                use_cpu=True,
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
            )
            results = trainer.evaluate()

            x, y = trainer.eval_dataset.x, trainer.eval_dataset.ys[0]
            pred = 1.5 * x + 2.5
            expected_loss = ((pred - y) ** 2).mean()
            self.assertAlmostEqual(results["eval_loss"], expected_loss)
            expected_acc = AlmostAccuracy()((pred + 1, y))["accuracy"]
            self.assertAlmostEqual(results["eval_accuracy"], expected_acc)

Sylvain Gugger's avatar
Sylvain Gugger committed
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
    def test_predict(self):
        trainer = get_regression_trainer(a=1.5, b=2.5)
        preds = trainer.predict(trainer.eval_dataset).predictions
        x = trainer.eval_dataset.x
        self.assertTrue(np.allclose(preds, 1.5 * x + 2.5))

        # With a number of elements not a round multiple of the batch size
        trainer = get_regression_trainer(a=1.5, b=2.5, eval_len=66)
        preds = trainer.predict(trainer.eval_dataset).predictions
        x = trainer.eval_dataset.x
        self.assertTrue(np.allclose(preds, 1.5 * x + 2.5))

1942
1943
1944
1945
        # With more than one output of the model
        trainer = get_regression_trainer(a=1.5, b=2.5, double_output=True)
        preds = trainer.predict(trainer.eval_dataset).predictions
        x = trainer.eval_dataset.x
1946
        self.assertEqual(len(preds), 2)
1947
1948
1949
        self.assertTrue(np.allclose(preds[0], 1.5 * x + 2.5))
        self.assertTrue(np.allclose(preds[1], 1.5 * x + 2.5))

Sylvain Gugger's avatar
Sylvain Gugger committed
1950
1951
1952
1953
1954
1955
        # With more than one output/label of the model
        trainer = get_regression_trainer(a=1.5, b=2.5, double_output=True, label_names=["labels", "labels_2"])
        outputs = trainer.predict(trainer.eval_dataset)
        preds = outputs.predictions
        labels = outputs.label_ids
        x = trainer.eval_dataset.x
1956
1957
1958
1959
1960
1961
        self.assertEqual(len(preds), 2)
        self.assertTrue(np.allclose(preds[0], 1.5 * x + 2.5))
        self.assertTrue(np.allclose(preds[1], 1.5 * x + 2.5))
        self.assertTrue(np.array_equal(labels[0], trainer.eval_dataset.ys[0]))
        self.assertTrue(np.array_equal(labels[1], trainer.eval_dataset.ys[1]))

1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
    def test_predict_with_batch_eval_metrics(self):
        trainer = get_regression_trainer(
            a=1.5, b=2.5, compute_metrics=AlmostAccuracyBatched(), batch_eval_metrics=True
        )
        results = trainer.predict(trainer.eval_dataset)
        preds = results.predictions
        x, y = trainer.eval_dataset.x, trainer.eval_dataset.ys[0]
        gt = 1.5 * x + 2.5
        self.assertTrue(np.allclose(preds, gt))
        expected_acc = AlmostAccuracy()((preds, y))["accuracy"]
        self.assertAlmostEqual(results.metrics["test_accuracy"], expected_acc)

        # With a number of elements not a round multiple of the batch size
        trainer = get_regression_trainer(
            a=1.5, b=2.5, eval_len=66, compute_metrics=AlmostAccuracyBatched(), batch_eval_metrics=True
        )
        results = trainer.predict(trainer.eval_dataset)
        preds = results.predictions
        x, y = trainer.eval_dataset.x, trainer.eval_dataset.ys[0]
        self.assertTrue(np.allclose(preds, 1.5 * x + 2.5))
        expected_acc = AlmostAccuracy()((preds, y))["accuracy"]
        self.assertAlmostEqual(results.metrics["test_accuracy"], expected_acc)

        # With more than one output of the model
        trainer = get_regression_trainer(
            a=1.5, b=2.5, double_output=True, compute_metrics=AlmostAccuracyBatched(), batch_eval_metrics=True
        )
        preds = trainer.predict(trainer.eval_dataset).predictions
        x = trainer.eval_dataset.x
        self.assertEqual(len(preds), 2)
        self.assertTrue(np.allclose(preds[0], 1.5 * x + 2.5))
        self.assertTrue(np.allclose(preds[1], 1.5 * x + 2.5))

        # With more than one output/label of the model
        trainer = get_regression_trainer(
            a=1.5,
            b=2.5,
            double_output=True,
            label_names=["labels", "labels_2"],
            compute_metrics=AlmostAccuracyBatched(),
            batch_eval_metrics=True,
        )
        outputs = trainer.predict(trainer.eval_dataset)
        preds = outputs.predictions
        labels = outputs.label_ids
        x = trainer.eval_dataset.x
        self.assertEqual(len(preds), 2)
        self.assertTrue(np.allclose(preds[0], 1.5 * x + 2.5))
        self.assertTrue(np.allclose(preds[1], 1.5 * x + 2.5))
        self.assertTrue(np.array_equal(labels[0], trainer.eval_dataset.ys[0]))
        self.assertTrue(np.array_equal(labels[1], trainer.eval_dataset.ys[1]))

2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
    def test_predict_with_jit(self):
        trainer = get_regression_trainer(a=1.5, b=2.5, jit_mode_eval=True)
        preds = trainer.predict(trainer.eval_dataset).predictions
        x = trainer.eval_dataset.x
        self.assertTrue(np.allclose(preds, 1.5 * x + 2.5))

        # With a number of elements not a round multiple of the batch size
        trainer = get_regression_trainer(a=1.5, b=2.5, eval_len=66, jit_mode_eval=True)
        preds = trainer.predict(trainer.eval_dataset).predictions
        x = trainer.eval_dataset.x
        self.assertTrue(np.allclose(preds, 1.5 * x + 2.5))

        # With more than one output of the model
        trainer = get_regression_trainer(a=1.5, b=2.5, double_output=True, jit_mode_eval=True)
        preds = trainer.predict(trainer.eval_dataset).predictions
        x = trainer.eval_dataset.x
        self.assertEqual(len(preds), 2)
        self.assertTrue(np.allclose(preds[0], 1.5 * x + 2.5))
        self.assertTrue(np.allclose(preds[1], 1.5 * x + 2.5))

        # With more than one output/label of the model
        trainer = get_regression_trainer(
            a=1.5, b=2.5, double_output=True, label_names=["labels", "labels_2"], jit_mode_eval=True
        )
        outputs = trainer.predict(trainer.eval_dataset)
        preds = outputs.predictions
        labels = outputs.label_ids
        x = trainer.eval_dataset.x
2042
        self.assertEqual(len(preds), 2)
Sylvain Gugger's avatar
Sylvain Gugger committed
2043
2044
2045
2046
2047
        self.assertTrue(np.allclose(preds[0], 1.5 * x + 2.5))
        self.assertTrue(np.allclose(preds[1], 1.5 * x + 2.5))
        self.assertTrue(np.array_equal(labels[0], trainer.eval_dataset.ys[0]))
        self.assertTrue(np.array_equal(labels[1], trainer.eval_dataset.ys[1]))

2048
    @require_torch_bf16
2049
2050
2051
    @require_intel_extension_for_pytorch
    def test_predict_with_ipex(self):
        for mix_bf16 in [True, False]:
2052
            trainer = get_regression_trainer(a=1.5, b=2.5, use_ipex=True, bf16=mix_bf16, use_cpu=True)
2053
2054
2055
2056
2057
            preds = trainer.predict(trainer.eval_dataset).predictions
            x = trainer.eval_dataset.x
            self.assertTrue(np.allclose(preds, 1.5 * x + 2.5))

            # With a number of elements not a round multiple of the batch size
2058
            trainer = get_regression_trainer(a=1.5, b=2.5, eval_len=66, use_ipex=True, bf16=mix_bf16, use_cpu=True)
2059
2060
2061
2062
2063
2064
            preds = trainer.predict(trainer.eval_dataset).predictions
            x = trainer.eval_dataset.x
            self.assertTrue(np.allclose(preds, 1.5 * x + 2.5))

            # With more than one output of the model
            trainer = get_regression_trainer(
2065
                a=1.5, b=2.5, double_output=True, use_ipex=True, bf16=mix_bf16, use_cpu=True
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
            )
            preds = trainer.predict(trainer.eval_dataset).predictions
            x = trainer.eval_dataset.x
            self.assertEqual(len(preds), 2)
            self.assertTrue(np.allclose(preds[0], 1.5 * x + 2.5))
            self.assertTrue(np.allclose(preds[1], 1.5 * x + 2.5))

            # With more than one output/label of the model
            trainer = get_regression_trainer(
                a=1.5,
                b=2.5,
                double_output=True,
                label_names=["labels", "labels_2"],
                use_ipex=True,
                bf16=mix_bf16,
2081
                use_cpu=True,
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
            )
            outputs = trainer.predict(trainer.eval_dataset)
            preds = outputs.predictions
            labels = outputs.label_ids
            x = trainer.eval_dataset.x
            self.assertEqual(len(preds), 2)
            self.assertTrue(np.allclose(preds[0], 1.5 * x + 2.5))
            self.assertTrue(np.allclose(preds[1], 1.5 * x + 2.5))
            self.assertTrue(np.array_equal(labels[0], trainer.eval_dataset.ys[0]))
            self.assertTrue(np.array_equal(labels[1], trainer.eval_dataset.ys[1]))

2093
2094
2095
    def test_dynamic_shapes(self):
        eval_dataset = DynamicShapesDataset(batch_size=self.batch_size)
        model = RegressionModel(a=2, b=1)
2096
        args = TrainingArguments("./regression", report_to="none")
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
        trainer = Trainer(model, args, eval_dataset=eval_dataset)

        # Check evaluation can run to completion
        _ = trainer.evaluate()

        # Check predictions
        preds = trainer.predict(eval_dataset)
        for expected, seen in zip(eval_dataset.ys, preds.label_ids):
            self.assertTrue(np.array_equal(expected, seen[: expected.shape[0]]))
            self.assertTrue(np.all(seen[expected.shape[0] :] == -100))

        for expected, seen in zip(eval_dataset.xs, preds.predictions):
            self.assertTrue(np.array_equal(2 * expected + 1, seen[: expected.shape[0]]))
            self.assertTrue(np.all(seen[expected.shape[0] :] == -100))

        # Same tests with eval accumulation
2113
        args = TrainingArguments("./regression", eval_accumulation_steps=2, report_to="none")
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
        trainer = Trainer(model, args, eval_dataset=eval_dataset)

        # Check evaluation can run to completion
        _ = trainer.evaluate()

        # Check predictions
        preds = trainer.predict(eval_dataset)
        for expected, seen in zip(eval_dataset.ys, preds.label_ids):
            self.assertTrue(np.array_equal(expected, seen[: expected.shape[0]]))
            self.assertTrue(np.all(seen[expected.shape[0] :] == -100))

        for expected, seen in zip(eval_dataset.xs, preds.predictions):
            self.assertTrue(np.array_equal(2 * expected + 1, seen[: expected.shape[0]]))
            self.assertTrue(np.all(seen[expected.shape[0] :] == -100))

2129
    def test_log_level(self):
2130
        # testing only --log_level (--log_level_replica requires multiple gpus and DDP and is tested elsewhere)
2131
2132
2133
        logger = logging.get_logger()
        log_info_string = "Running training"

2134
2135
        # test with the default log_level - should be the same as before and thus we test depending on is_info
        is_info = logging.get_verbosity() <= 20
2136
2137
2138
        with CaptureLogger(logger) as cl:
            trainer = get_regression_trainer()
            trainer.train()
2139
2140
2141
2142
        if is_info:
            self.assertIn(log_info_string, cl.out)
        else:
            self.assertNotIn(log_info_string, cl.out)
2143

2144
2145
2146
2147
2148
2149
        with LoggingLevel(logging.INFO):
            # test with low log_level - lower than info
            with CaptureLogger(logger) as cl:
                trainer = get_regression_trainer(log_level="debug")
                trainer.train()
            self.assertIn(log_info_string, cl.out)
2150

2151
2152
2153
2154
2155
2156
        with LoggingLevel(logging.INFO):
            # test with high log_level - should be quiet
            with CaptureLogger(logger) as cl:
                trainer = get_regression_trainer(log_level="error")
                trainer.train()
            self.assertNotIn(log_info_string, cl.out)
2157

2158
2159
2160
2161
2162
2163
2164
2165
    def test_save_checkpoints(self):
        with tempfile.TemporaryDirectory() as tmpdir:
            trainer = get_regression_trainer(output_dir=tmpdir, save_steps=5)
            trainer.train()
            self.check_saved_checkpoints(tmpdir, 5, int(self.n_epochs * 64 / self.batch_size))

        # With a regular model that is not a PreTrainedModel
        with tempfile.TemporaryDirectory() as tmpdir:
2166
            trainer = get_regression_trainer(output_dir=tmpdir, save_steps=5, pretrained=False)
2167
2168
2169
            trainer.train()
            self.check_saved_checkpoints(tmpdir, 5, int(self.n_epochs * 64 / self.batch_size), False)

2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
    @require_safetensors
    def test_safe_checkpoints(self):
        for save_safetensors in [True, False]:
            with tempfile.TemporaryDirectory() as tmpdir:
                trainer = get_regression_trainer(output_dir=tmpdir, save_steps=5, save_safetensors=save_safetensors)
                trainer.train()
                self.check_saved_checkpoints(
                    tmpdir, 5, int(self.n_epochs * 64 / self.batch_size), safe_weights=save_safetensors
                )

            # With a regular model that is not a PreTrainedModel
            with tempfile.TemporaryDirectory() as tmpdir:
                trainer = get_regression_trainer(
                    output_dir=tmpdir, save_steps=5, pretrained=False, save_safetensors=save_safetensors
                )
                trainer.train()
                self.check_saved_checkpoints(
                    tmpdir, 5, int(self.n_epochs * 64 / self.batch_size), False, safe_weights=save_safetensors
                )

2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
    def test_load_best_model_with_save(self):
        with tempfile.TemporaryDirectory() as tmpdir:
            trainer = get_regression_trainer(
                output_dir=tmpdir,
                save_steps=5,
                evaluation_strategy="steps",
                eval_steps=5,
                max_steps=9,
            )
            trainer.train()
            # Check that we have the last known step:
            assert os.path.exists(
                os.path.join(tmpdir, f"checkpoint-{trainer.state.max_steps}")
            ), f"Could not find checkpoint-{trainer.state.max_steps}"
            # And then check the last step
            assert os.path.exists(os.path.join(tmpdir, "checkpoint-9")), "Could not find checkpoint-9"

        # Now test that using a limit works
        # Should result in:
        # - save at step 5 (but is deleted)
        # - save at step 10 (loaded in at the end when `load_best_model=True`)
        # - save at step 11
        with tempfile.TemporaryDirectory() as tmpdir:
            trainer = get_regression_trainer(
                output_dir=tmpdir,
                save_steps=5,
                evaluation_strategy="steps",
                eval_steps=5,
                load_best_model_at_end=True,
                save_total_limit=2,
                max_steps=11,
            )
            trainer.train()
            # Check that we have the last known step:
            assert os.path.exists(os.path.join(tmpdir, "checkpoint-11")), "Could not find checkpoint-11"
            # And then check the last multiple
            assert os.path.exists(os.path.join(tmpdir, "checkpoint-10")), "Could not find checkpoint-10"
            # Finally check that we don't have an old one
            assert not os.path.exists(os.path.join(tmpdir, "checkpoint-5")), "Found checkpoint-5, limit not respected"

            # Finally check that the right model was loaded in, checkpoint-10
            # this goes by the last `eval` step check to do so, so it won't be
            # the last model *saved*
            model_state = trainer.model.state_dict()
            final_model_weights = safetensors.torch.load_file(
                os.path.join(tmpdir, "checkpoint-10", "model.safetensors")
            )
            for k, v in model_state.items():
                assert torch.allclose(v, final_model_weights[k]), f"{k} is not the same"

2240
    @require_torch_multi_accelerator
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
    def test_run_seq2seq_double_train_wrap_once(self):
        # test that we don't wrap the model more than once
        # since wrapping primarily happens on multi-gpu setup we want multiple gpus to test for
        # example DataParallel(DataParallel(model))

        trainer = get_regression_trainer()
        trainer.train()
        model_wrapped_before = trainer.model_wrapped
        trainer.train()
        model_wrapped_after = trainer.model_wrapped
        self.assertIs(model_wrapped_before, model_wrapped_after, "should be not wrapped twice")

2253
    @require_torch_up_to_2_accelerators
2254
    def test_can_resume_training(self):
2255
2256
2257
        # This test will fail for more than 2 GPUs since the batch size will get bigger and with the number of
        # save_steps, the checkpoint will resume training at epoch 2 or more (so the data seen by the model
        # won't be the same since the training dataloader is shuffled).
2258

2259
        with tempfile.TemporaryDirectory() as tmpdir:
2260
2261
2262
2263
2264
2265
2266
            kwargs = {
                "output_dir": tmpdir,
                "train_len": 128,
                "save_steps": 5,
                "learning_rate": 0.1,
                "logging_steps": 5,
            }
2267
            trainer = get_regression_trainer(**kwargs)
2268
2269
2270
2271
2272
2273
            trainer.train()
            (a, b) = trainer.model.a.item(), trainer.model.b.item()
            state = dataclasses.asdict(trainer.state)

            checkpoint = os.path.join(tmpdir, "checkpoint-5")

2274
            # Reinitialize trainer
2275
            trainer = get_regression_trainer(**kwargs)
2276

2277
            trainer.train(resume_from_checkpoint=checkpoint)
2278
2279
2280
2281
            (a1, b1) = trainer.model.a.item(), trainer.model.b.item()
            state1 = dataclasses.asdict(trainer.state)
            self.assertEqual(a, a1)
            self.assertEqual(b, b1)
2282
            self.check_trainer_state_are_the_same(state, state1)
2283

2284
2285
2286
2287
            # Now check with a later checkpoint that it also works when we span over one epoch
            checkpoint = os.path.join(tmpdir, "checkpoint-15")

            # Reinitialize trainer and load model
2288
            trainer = get_regression_trainer(**kwargs)
2289

2290
            trainer.train(resume_from_checkpoint=checkpoint)
2291
2292
2293
2294
            (a1, b1) = trainer.model.a.item(), trainer.model.b.item()
            state1 = dataclasses.asdict(trainer.state)
            self.assertEqual(a, a1)
            self.assertEqual(b, b1)
2295
            self.check_trainer_state_are_the_same(state, state1)
2296

2297
2298
        # With a regular model that is not a PreTrainedModel
        with tempfile.TemporaryDirectory() as tmpdir:
2299
2300
2301
2302
2303
2304
2305
            kwargs = {
                "output_dir": tmpdir,
                "train_len": 128,
                "save_steps": 5,
                "learning_rate": 0.1,
                "pretrained": False,
            }
2306
2307

            trainer = get_regression_trainer(**kwargs)
2308
2309
2310
2311
2312
2313
2314
            trainer.train()
            (a, b) = trainer.model.a.item(), trainer.model.b.item()
            state = dataclasses.asdict(trainer.state)

            checkpoint = os.path.join(tmpdir, "checkpoint-5")

            # Reinitialize trainer and load model
2315
            trainer = get_regression_trainer(**kwargs)
2316

2317
            trainer.train(resume_from_checkpoint=checkpoint)
2318
2319
2320
2321
            (a1, b1) = trainer.model.a.item(), trainer.model.b.item()
            state1 = dataclasses.asdict(trainer.state)
            self.assertEqual(a, a1)
            self.assertEqual(b, b1)
2322
            self.check_trainer_state_are_the_same(state, state1)
2323

2324
2325
2326
2327
            # Now check with a later checkpoint that it also works when we span over one epoch
            checkpoint = os.path.join(tmpdir, "checkpoint-15")

            # Reinitialize trainer and load model
2328
            trainer = get_regression_trainer(**kwargs)
2329

2330
            trainer.train(resume_from_checkpoint=checkpoint)
2331
2332
2333
2334
            (a1, b1) = trainer.model.a.item(), trainer.model.b.item()
            state1 = dataclasses.asdict(trainer.state)
            self.assertEqual(a, a1)
            self.assertEqual(b, b1)
2335
            self.check_trainer_state_are_the_same(state, state1)
2336

2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
        # Now check failures

        # 1. fail to find a bogus checkpoint
        trainer = get_regression_trainer()
        with self.assertRaises(Exception) as context:
            trainer.train(resume_from_checkpoint=f"{checkpoint}-bogus")
        self.assertTrue("Can't find a valid checkpoint at" in str(context.exception))

        # 2. fail to find any checkpoint - due a fresh output_dir
        output_dir2 = self.get_auto_remove_tmp_dir()
        trainer = get_regression_trainer(output_dir=output_dir2)
        with self.assertRaises(Exception) as context:
            trainer.train(resume_from_checkpoint=True)
        self.assertTrue("No valid checkpoint found in output directory" in str(context.exception))

2352
2353
2354
    @unittest.skip(
        reason="@muellerzr: Fix once Trainer can take an accelerate configuration. Need to set `seedable_sampler=True`."
    )
2355
    def test_resume_training_with_randomness(self):
2356
2357
2358
2359
        # For more than 1 GPUs, since the randomness is introduced in the model and with DataParallel (which is used
        # in this test for more than 2 GPUs), the calls to the torch RNG will happen in a random order (sometimes
        # GPU 0 will call first and sometimes GPU 1).
        random_torch = not torch.cuda.is_available() or torch.cuda.device_count() <= 1
2360
2361
2362
2363
2364
2365

        if torch.cuda.is_available():
            torch.backends.cudnn.deterministic = True
        train_dataset = RegressionDataset(length=128)
        eval_dataset = RegressionDataset()

2366
2367
2368
        with self.subTest("Test every step"):
            config = RegressionModelConfig(a=0, b=2, random_torch=random_torch)
            model = RegressionRandomPreTrainedModel(config)
2369

2370
2371
2372
            tmp_dir = self.get_auto_remove_tmp_dir()
            args = RegressionTrainingArguments(tmp_dir, save_steps=5, learning_rate=0.1)
            trainer = Trainer(model, args, train_dataset=train_dataset, eval_dataset=eval_dataset)
2373

2374
2375
            trainer.train()
            (a, b) = trainer.model.a.item(), trainer.model.b.item()
2376

2377
2378
2379
2380
2381
            model = RegressionRandomPreTrainedModel(config)
            trainer = Trainer(model, args, train_dataset=train_dataset, eval_dataset=eval_dataset)
            trainer.train(resume_from_checkpoint=os.path.join(tmp_dir, "checkpoint-15"))
            (a1, b1) = trainer.model.a.item(), trainer.model.b.item()

2382
2383
            self.assertAlmostEqual(a, a1, delta=1e-5)
            self.assertAlmostEqual(b, b1, delta=1e-5)
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405

        with self.subTest("Test every epoch"):
            config = RegressionModelConfig(a=0, b=2, random_torch=random_torch)
            model = RegressionRandomPreTrainedModel(config)

            tmp_dir = self.get_auto_remove_tmp_dir()
            args = RegressionTrainingArguments(tmp_dir, save_strategy="epoch", learning_rate=0.1)
            trainer = Trainer(model, args, train_dataset=train_dataset, eval_dataset=eval_dataset)

            trainer.train()
            (a, b) = trainer.model.a.item(), trainer.model.b.item()

            model = RegressionRandomPreTrainedModel(config)
            trainer = Trainer(model, args, train_dataset=train_dataset, eval_dataset=eval_dataset)

            checkpoints = [d for d in os.listdir(tmp_dir) if d.startswith("checkpoint-")]
            # There should be one checkpoint per epoch.
            self.assertEqual(len(checkpoints), 3)
            checkpoint_dir = sorted(checkpoints, key=lambda x: int(x.replace("checkpoint-", "")))[0]

            trainer.train(resume_from_checkpoint=os.path.join(tmp_dir, checkpoint_dir))
            (a1, b1) = trainer.model.a.item(), trainer.model.b.item()
2406

2407
2408
            self.assertAlmostEqual(a, a1, delta=1e-5)
            self.assertAlmostEqual(b, b1, delta=1e-5)
2409

2410
    @slow
Yih-Dar's avatar
Yih-Dar committed
2411
    @require_accelerate
2412
    @require_torch_non_multi_accelerator
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
    def test_auto_batch_size_finder(self):
        if torch.cuda.is_available():
            torch.backends.cudnn.deterministic = True

        SRC_DIR = os.path.abspath(
            os.path.join(os.path.dirname(__file__), "..", "..", "examples", "pytorch", "text-classification")
        )
        sys.path.append(SRC_DIR)
        import run_glue

        with tempfile.TemporaryDirectory() as tmpdir:
            testargs = f"""
                run_glue.py
2426
                --model_name_or_path distilbert/distilbert-base-uncased
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
                --task_name mrpc
                --do_train
                --do_eval
                --max_seq_len 128
                --per_device_train_batch_size 4096
                --learning_rate 2e-5
                --num_train_epochs 1
                --output_dir {tmpdir}
                --auto_find_batch_size 0
                """.split()
            with self.assertRaises(RuntimeError):
                with patch.object(sys, "argv", testargs):
                    run_glue.main()

        testargs[-1] = "1"
        with patch.object(sys, "argv", testargs):
            run_glue.main()

2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
    @require_deepspeed
    def test_auto_batch_size_with_resume_from_checkpoint_with_deepspeed(self):
        train_dataset = RegressionDataset(length=128)

        config = RegressionModelConfig(a=0, b=2)
        model = RegressionRandomPreTrainedModel(config)

        tmp_dir = self.get_auto_remove_tmp_dir()

        class MockCudaOOMCallback(TrainerCallback):
            def on_step_end(self, args, state, control, **kwargs):
                # simulate OOM on the first step
                if state.train_batch_size >= 16:
                    raise RuntimeError("CUDA out of memory.")

        deepspeed = {
            "zero_optimization": {
                "stage": 1,
            },
            "train_batch_size": "auto",
            "train_micro_batch_size_per_gpu": "auto",
        }

        args = RegressionTrainingArguments(
            tmp_dir,
            do_train=True,
            max_steps=2,
            save_steps=1,
            per_device_train_batch_size=16,
            auto_find_batch_size=True,
            deepspeed=deepspeed,
        )
2477
2478
2479
2480
        # Note: This can have issues, for now we don't support this functionality
        # ref: https://github.com/huggingface/transformers/pull/29057
        with self.assertRaises(NotImplementedError):
            _ = Trainer(model, args, train_dataset=train_dataset, callbacks=[MockCudaOOMCallback()])
2481

2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
    def test_auto_batch_size_with_resume_from_checkpoint(self):
        train_dataset = RegressionDataset(length=128)

        config = RegressionModelConfig(a=0, b=2)
        model = RegressionRandomPreTrainedModel(config)

        tmp_dir = self.get_auto_remove_tmp_dir()

        class MockCudaOOMCallback(TrainerCallback):
            def on_step_end(self, args, state, control, **kwargs):
                # simulate OOM on the first step
2493
                if state.train_batch_size >= 16:
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
                    raise RuntimeError("CUDA out of memory.")

        args = RegressionTrainingArguments(
            tmp_dir,
            do_train=True,
            max_steps=2,
            save_steps=1,
            per_device_train_batch_size=16,
            auto_find_batch_size=True,
        )
        trainer = Trainer(model, args, train_dataset=train_dataset, callbacks=[MockCudaOOMCallback()])
        trainer.train()
        # After `auto_find_batch_size` is ran we should now be at 8
        self.assertEqual(trainer._train_batch_size, 8)

        # We can then make a new Trainer
        trainer = Trainer(model, args, train_dataset=train_dataset)
        # Check we are at 16 to start
2512
        self.assertEqual(trainer._train_batch_size, 16 * max(trainer.args.n_gpu, 1))
2513
2514
2515
2516
        trainer.train(resume_from_checkpoint=True)
        # We should be back to 8 again, picking up based upon the last ran Trainer
        self.assertEqual(trainer._train_batch_size, 8)

2517
    # regression for this issue: https://github.com/huggingface/transformers/issues/12970
2518
    def test_training_with_resume_from_checkpoint_false(self):
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
        train_dataset = RegressionDataset(length=128)
        eval_dataset = RegressionDataset()

        config = RegressionModelConfig(a=0, b=2)
        model = RegressionRandomPreTrainedModel(config)

        tmp_dir = self.get_auto_remove_tmp_dir()
        args = RegressionTrainingArguments(tmp_dir, save_steps=5, learning_rate=0.1)
        trainer = Trainer(model, args, train_dataset=train_dataset, eval_dataset=eval_dataset)

        trainer.train(resume_from_checkpoint=False)

2531
    @require_torch_up_to_2_accelerators
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
    def test_resume_training_with_shard_checkpoint(self):
        # This test will fail for more than 2 GPUs since the batch size will get bigger and with the number of
        # save_steps, the checkpoint will resume training at epoch 2 or more (so the data seen by the model
        # won't be the same since the training dataloader is shuffled).

        with tempfile.TemporaryDirectory() as tmpdir:
            trainer = get_regression_trainer(output_dir=tmpdir, train_len=128, save_steps=5, learning_rate=0.1)
            trainer.train()
            (a, b) = trainer.model.a.item(), trainer.model.b.item()
            state = dataclasses.asdict(trainer.state)

            checkpoint = os.path.join(tmpdir, "checkpoint-5")
            self.convert_to_sharded_checkpoint(checkpoint)

            # Reinitialize trainer
            trainer = get_regression_trainer(output_dir=tmpdir, train_len=128, save_steps=5, learning_rate=0.1)

            trainer.train(resume_from_checkpoint=checkpoint)
            (a1, b1) = trainer.model.a.item(), trainer.model.b.item()
            state1 = dataclasses.asdict(trainer.state)
            self.assertEqual(a, a1)
            self.assertEqual(b, b1)
            self.check_trainer_state_are_the_same(state, state1)

2556
    @require_safetensors
2557
    @require_torch_up_to_2_accelerators
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
    def test_resume_training_with_safe_checkpoint(self):
        # This test will fail for more than 2 GPUs since the batch size will get bigger and with the number of
        # save_steps, the checkpoint will resume training at epoch 2 or more (so the data seen by the model
        # won't be the same since the training dataloader is shuffled).

        for initial_safe in [False, True]:
            for loaded_safe in [False, True]:
                with tempfile.TemporaryDirectory() as tmpdir:
                    trainer = get_regression_trainer(
                        output_dir=tmpdir,
                        train_len=128,
                        save_steps=5,
                        learning_rate=0.1,
                        save_safetensors=initial_safe,
                    )
                    trainer.train()
                    (a, b) = trainer.model.a.item(), trainer.model.b.item()
                    state = dataclasses.asdict(trainer.state)

                    checkpoint = os.path.join(tmpdir, "checkpoint-5")
                    self.convert_to_sharded_checkpoint(checkpoint, load_safe=initial_safe, save_safe=loaded_safe)

                    # Reinitialize trainer
                    trainer = get_regression_trainer(
                        output_dir=tmpdir, train_len=128, save_steps=5, learning_rate=0.1, save_safetensors=loaded_safe
                    )

                    trainer.train(resume_from_checkpoint=checkpoint)
                    (a1, b1) = trainer.model.a.item(), trainer.model.b.item()
                    state1 = dataclasses.asdict(trainer.state)
                    self.assertEqual(a, a1)
                    self.assertEqual(b, b1)
                    self.check_trainer_state_are_the_same(state, state1)

2592
    @require_torch_up_to_2_accelerators
2593
    def test_resume_training_with_gradient_accumulation(self):
2594
2595
2596
2597
        # This test will fail for more than 2 GPUs since the batch size will get bigger and with the number of
        # save_steps, the checkpoint will resume training at epoch 2 or more (so the data seen by the model
        # won't be the same since the training dataloader is shuffled).

2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
        with tempfile.TemporaryDirectory() as tmpdir:
            trainer = get_regression_trainer(
                output_dir=tmpdir,
                train_len=128,
                gradient_accumulation_steps=2,
                per_device_train_batch_size=4,
                save_steps=5,
                learning_rate=0.1,
            )
            trainer.train()
            (a, b) = trainer.model.a.item(), trainer.model.b.item()
            state = dataclasses.asdict(trainer.state)

            checkpoint = os.path.join(tmpdir, "checkpoint-5")

2613
2614
2615
2616
2617
2618
2619
2620
2621
            # Reinitialize trainer
            trainer = get_regression_trainer(
                output_dir=tmpdir,
                train_len=128,
                gradient_accumulation_steps=2,
                per_device_train_batch_size=4,
                save_steps=5,
                learning_rate=0.1,
            )
2622

2623
            trainer.train(resume_from_checkpoint=checkpoint)
2624
            (a1, b1) = trainer.model.a.item(), trainer.model.b.item()
2625
2626
2627
2628
2629
            state1 = dataclasses.asdict(trainer.state)
            self.assertEqual(a, a1)
            self.assertEqual(b, b1)
            self.check_trainer_state_are_the_same(state, state1)

2630
    @require_torch_up_to_2_accelerators
2631
    def test_resume_training_with_frozen_params(self):
2632
2633
2634
2635
        # This test will fail for more than 2 GPUs since the batch size will get bigger and with the number of
        # save_steps, the checkpoint will resume training at epoch 2 or more (so the data seen by the model
        # won't be the same since the training dataloader is shuffled).

2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
        with tempfile.TemporaryDirectory() as tmpdir:
            trainer = get_regression_trainer(
                output_dir=tmpdir,
                train_len=128,
                per_device_train_batch_size=4,
                save_steps=5,
                learning_rate=0.1,
            )
            trainer.model.a.requires_grad_(False)
            trainer.train()
            (a, b) = trainer.model.a.item(), trainer.model.b.item()
            state = dataclasses.asdict(trainer.state)

            checkpoint = os.path.join(tmpdir, "checkpoint-5")

            # Reinitialize trainer
            trainer = get_regression_trainer(
                output_dir=tmpdir,
                train_len=128,
                per_device_train_batch_size=4,
                save_steps=5,
                learning_rate=0.1,
            )
            trainer.model.a.requires_grad_(False)

            trainer.train(resume_from_checkpoint=checkpoint)

            self.assertFalse(trainer.model.a.requires_grad)
            (a1, b1) = trainer.model.a.item(), trainer.model.b.item()
2665
2666
2667
            state1 = dataclasses.asdict(trainer.state)
            self.assertEqual(a, a1)
            self.assertEqual(b, b1)
2668
            self.check_trainer_state_are_the_same(state, state1)
2669

2670
2671
2672
2673
2674
2675
2676
2677
2678
    def test_load_best_model_at_end(self):
        total = int(self.n_epochs * 64 / self.batch_size)
        with tempfile.TemporaryDirectory() as tmpdir:
            trainer = get_regression_trainer(
                a=1.5,
                b=2.5,
                output_dir=tmpdir,
                learning_rate=0.1,
                eval_steps=5,
2679
                eval_strategy="steps",
2680
                save_steps=5,
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
                load_best_model_at_end=True,
            )
            self.assertFalse(trainer.args.greater_is_better)
            trainer.train()
            self.check_saved_checkpoints(tmpdir, 5, total)
            self.check_best_model_has_been_loaded(tmpdir, 5, total, trainer, "eval_loss")

        with tempfile.TemporaryDirectory() as tmpdir:
            trainer = get_regression_trainer(
                a=1.5,
                b=2.5,
                output_dir=tmpdir,
                learning_rate=0.1,
                eval_steps=5,
2695
                eval_strategy="steps",
2696
                save_steps=5,
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
                load_best_model_at_end=True,
                metric_for_best_model="accuracy",
                compute_metrics=AlmostAccuracy(),
            )
            self.assertTrue(trainer.args.greater_is_better)
            trainer.train()
            self.check_saved_checkpoints(tmpdir, 5, total)
            self.check_best_model_has_been_loaded(tmpdir, 5, total, trainer, "eval_accuracy", greater_is_better=True)

        with tempfile.TemporaryDirectory() as tmpdir:
            trainer = get_regression_trainer(
                a=1.5,
                b=2.5,
                output_dir=tmpdir,
                learning_rate=0.1,
2712
                eval_strategy="epoch",
2713
                save_strategy="epoch",
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
                load_best_model_at_end=True,
                metric_for_best_model="accuracy",
                compute_metrics=AlmostAccuracy(),
            )
            self.assertTrue(trainer.args.greater_is_better)
            trainer.train()
            self.check_saved_checkpoints(tmpdir, 64 // self.batch_size, total)
            self.check_best_model_has_been_loaded(
                tmpdir, 64 // self.batch_size, total, trainer, "eval_accuracy", greater_is_better=True
            )

        # Test this works with a non PreTrainedModel
        with tempfile.TemporaryDirectory() as tmpdir:
            trainer = get_regression_trainer(
                output_dir=tmpdir,
                learning_rate=0.1,
                eval_steps=5,
2731
                eval_strategy="steps",
2732
                save_steps=5,
2733
                load_best_model_at_end=True,
2734
                pretrained=False,
2735
2736
2737
2738
2739
2740
            )
            self.assertFalse(trainer.args.greater_is_better)
            trainer.train()
            self.check_saved_checkpoints(tmpdir, 5, total, is_pretrained=False)
            self.check_best_model_has_been_loaded(tmpdir, 5, total, trainer, "eval_loss", is_pretrained=False)

2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
    @require_safetensors
    def test_load_best_model_from_safetensors(self):
        total = int(self.n_epochs * 64 / self.batch_size)
        for save_safetensors, pretrained in product([False, True], [False, True]):
            with tempfile.TemporaryDirectory() as tmpdir:
                trainer = get_regression_trainer(
                    a=1.5,
                    b=2.5,
                    output_dir=tmpdir,
                    learning_rate=0.1,
                    eval_steps=5,
2752
                    eval_strategy="steps",
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
                    save_steps=5,
                    load_best_model_at_end=True,
                    save_safetensors=save_safetensors,
                    pretrained=pretrained,
                )
                self.assertFalse(trainer.args.greater_is_better)
                trainer.train()
                self.check_saved_checkpoints(tmpdir, 5, total, is_pretrained=pretrained, safe_weights=save_safetensors)
                self.check_best_model_has_been_loaded(
                    tmpdir, 5, total, trainer, "eval_loss", is_pretrained=pretrained, safe_weights=save_safetensors
                )

2765
    @slow
Julien Chaumond's avatar
Julien Chaumond committed
2766
    def test_trainer_eval_mrpc(self):
2767
        MODEL_ID = "google-bert/bert-base-cased-finetuned-mrpc"
Julien Chaumond's avatar
Julien Chaumond committed
2768
2769
2770
        tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
        model = AutoModelForSequenceClassification.from_pretrained(MODEL_ID)
        data_args = GlueDataTrainingArguments(
2771
            task_name="mrpc", data_dir=f"{get_tests_dir()}/fixtures/tests_samples/MRPC", overwrite_cache=True
Julien Chaumond's avatar
Julien Chaumond committed
2772
        )
2773
        eval_dataset = GlueDataset(data_args, tokenizer=tokenizer, mode="dev")
Julien Chaumond's avatar
Julien Chaumond committed
2774

2775
        training_args = TrainingArguments(output_dir="./examples", use_cpu=True, report_to="none")
Julien Chaumond's avatar
Julien Chaumond committed
2776
2777
        trainer = Trainer(model=model, args=training_args, eval_dataset=eval_dataset)
        result = trainer.evaluate()
2778
        self.assertLess(result["eval_loss"], 0.2)
Julien Chaumond's avatar
Julien Chaumond committed
2779

2780
2781
    @slow
    def test_trainer_eval_multiple(self):
2782
        MODEL_ID = "openai-community/gpt2"
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
        tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
        model = AutoModelForCausalLM.from_pretrained(MODEL_ID)
        dataset = LineByLineTextDataset(
            tokenizer=tokenizer,
            file_path=PATH_SAMPLE_TEXT,
            block_size=tokenizer.max_len_single_sentence,
        )
        for example in dataset.examples:
            example["labels"] = example["input_ids"]
        training_args = TrainingArguments(
            output_dir="./examples",
            use_cpu=True,
            per_device_eval_batch_size=1,
2796
            report_to="none",
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
        )
        trainer = Trainer(
            model=model,
            args=training_args,
            eval_dataset={
                "data1": dataset,
                "data2": dataset,
            },
        )
        result = trainer.evaluate()
        self.assertIn("eval_data1_loss", result)
        self.assertIn("eval_data2_loss", result)

2810
    @slow
Julien Chaumond's avatar
Julien Chaumond committed
2811
    def test_trainer_eval_lm(self):
2812
        MODEL_ID = "distilbert/distilroberta-base"
Julien Chaumond's avatar
Julien Chaumond committed
2813
2814
        tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
        dataset = LineByLineTextDataset(
Lysandre's avatar
Lysandre committed
2815
2816
2817
            tokenizer=tokenizer,
            file_path=PATH_SAMPLE_TEXT,
            block_size=tokenizer.max_len_single_sentence,
Julien Chaumond's avatar
Julien Chaumond committed
2818
2819
        )
        self.assertEqual(len(dataset), 31)
2820

2821
    def test_training_iterable_dataset(self):
2822
2823
        config = RegressionModelConfig()
        model = RegressionPreTrainedModel(config)
2824
2825
        # Adding one column not used by the model should have no impact
        train_dataset = SampleIterableDataset(label_names=["labels", "extra"])
2826

2827
        args = RegressionTrainingArguments(output_dir="./examples", max_steps=4)
2828
        trainer = Trainer(model=model, args=args, train_dataset=train_dataset)
2829
        trainer.train()
2830
        self.assertEqual(trainer.state.global_step, 4)
2831

2832
2833
        loader = trainer.get_train_dataloader()
        self.assertIsInstance(loader, torch.utils.data.DataLoader)
2834
2835
        self.assertIsInstance(loader.sampler, torch.utils.data.dataloader._InfiniteConstantSampler)

2836
2837
2838
    def test_evaluation_iterable_dataset(self):
        config = RegressionModelConfig(a=1.5, b=2.5)
        model = RegressionPreTrainedModel(config)
2839
2840
        # Adding one column not used by the model should have no impact
        eval_dataset = SampleIterableDataset(label_names=["labels", "extra"])
2841
2842
2843
2844

        args = RegressionTrainingArguments(output_dir="./examples")
        trainer = Trainer(model=model, args=args, eval_dataset=eval_dataset, compute_metrics=AlmostAccuracy())
        results = trainer.evaluate()
2845

2846
2847
2848
2849
2850
2851
        x, y = trainer.eval_dataset.dataset.x, trainer.eval_dataset.dataset.ys[0]
        pred = 1.5 * x + 2.5
        expected_loss = ((pred - y) ** 2).mean()
        self.assertAlmostEqual(results["eval_loss"], expected_loss)
        expected_acc = AlmostAccuracy()((pred, y))["accuracy"]
        self.assertAlmostEqual(results["eval_accuracy"], expected_acc)
2852

2853
2854
2855
        # With a number of elements not a round multiple of the batch size
        eval_dataset = SampleIterableDataset(length=66)
        results = trainer.evaluate(eval_dataset)
2856

2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
        x, y = eval_dataset.dataset.x, eval_dataset.dataset.ys[0]
        pred = 1.5 * x + 2.5
        expected_loss = ((pred - y) ** 2).mean()
        self.assertAlmostEqual(results["eval_loss"], expected_loss)
        expected_acc = AlmostAccuracy()((pred, y))["accuracy"]
        self.assertAlmostEqual(results["eval_accuracy"], expected_acc)

    def test_predict_iterable_dataset(self):
        config = RegressionModelConfig(a=1.5, b=2.5)
        model = RegressionPreTrainedModel(config)
        eval_dataset = SampleIterableDataset()

        args = RegressionTrainingArguments(output_dir="./examples")
        trainer = Trainer(model=model, args=args, eval_dataset=eval_dataset, compute_metrics=AlmostAccuracy())

        preds = trainer.predict(trainer.eval_dataset).predictions
        x = eval_dataset.dataset.x
        self.assertTrue(np.allclose(preds, 1.5 * x + 2.5))

        # With a number of elements not a round multiple of the batch size
2877
2878
        # Adding one column not used by the model should have no impact
        test_dataset = SampleIterableDataset(length=66, label_names=["labels", "extra"])
2879
2880
2881
        preds = trainer.predict(test_dataset).predictions
        x = test_dataset.dataset.x
        self.assertTrue(np.allclose(preds, 1.5 * x + 2.5))
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896

    def test_num_train_epochs_in_training(self):
        # len(train_dl) < gradient_accumulation_steps shouldn't give ``ZeroDivisionError`` when ``max_steps`` is given.
        # It should give 1 update step for each epoch.
        trainer = get_regression_trainer(
            max_steps=3, train_len=64, per_device_train_batch_size=16, gradient_accumulation_steps=5
        )
        train_output = trainer.train()
        self.assertEqual(train_output.global_step, 3)

        # Even ``max_steps`` is not specified, we still expect 1 update step for each epoch if
        # len(train_dl) < gradient_accumulation_steps.
        trainer = get_regression_trainer(train_len=64, per_device_train_batch_size=16, gradient_accumulation_steps=5)
        train_output = trainer.train()
        self.assertEqual(train_output.global_step, int(self.n_epochs))
Marcin Zabłocki's avatar
Marcin Zabłocki committed
2897

2898
2899
    def test_early_stopping_callback(self):
        # early stopping stops training before num_training_epochs
2900
2901
2902
2903
2904
2905
2906
        with tempfile.TemporaryDirectory() as tmp_dir:
            trainer = get_regression_trainer(
                output_dir=tmp_dir,
                num_train_epochs=20,
                gradient_accumulation_steps=1,
                per_device_train_batch_size=16,
                load_best_model_at_end=True,
2907
                eval_strategy=IntervalStrategy.EPOCH,
2908
                save_strategy=IntervalStrategy.EPOCH,
2909
2910
2911
2912
2913
2914
                compute_metrics=AlmostAccuracy(),
                metric_for_best_model="accuracy",
            )
            trainer.add_callback(EarlyStoppingCallback(1, 0.0001))
            train_output = trainer.train()
            self.assertLess(train_output.global_step, 20 * 64 / 16)
2915
2916

        # Invalid inputs to trainer with early stopping callback result in assertion error
2917
2918
2919
2920
2921
2922
        with tempfile.TemporaryDirectory() as tmp_dir:
            trainer = get_regression_trainer(
                output_dir=tmp_dir,
                num_train_epochs=20,
                gradient_accumulation_steps=1,
                per_device_train_batch_size=16,
2923
                eval_strategy=IntervalStrategy.EPOCH,
2924
2925
2926
2927
                compute_metrics=AlmostAccuracy(),
                metric_for_best_model="accuracy",
            )
            trainer.add_callback(EarlyStoppingCallback(1))
2928
            self.assertEqual(trainer.state.global_step, 0)
2929
2930
2931
2932
            try:
                trainer.train()
            except AssertionError:
                self.assertEqual(trainer.state.global_step, 0)
2933

Marcin Zabłocki's avatar
Marcin Zabłocki committed
2934
2935
2936
2937
    def test_flos_extraction(self):
        trainer = get_regression_trainer(learning_rate=0.1)

        def assert_flos_extraction(trainer, wrapped_model_to_check):
2938
2939
2940
2941
            self.assertEqual(trainer.model, trainer.accelerator.unwrap_model(wrapped_model_to_check))
            self.assertGreaterEqual(
                getattr(trainer.accelerator.unwrap_model(wrapped_model_to_check).config, "total_flos", 0), 0
            )
Marcin Zabłocki's avatar
Marcin Zabłocki committed
2942
2943
2944
2945
2946

        # with plain model
        assert_flos_extraction(trainer, trainer.model)

        # with enforced DataParallel
2947
        assert_flos_extraction(trainer, nn.DataParallel(trainer.model))
2948

2949
2950
2951
        trainer.train()
        self.assertTrue(isinstance(trainer.state.total_flos, float))

2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
    def check_checkpoint_deletion(self, trainer, output_dir, expected):
        # Make fake checkpoints
        for n in [5, 10, 15, 20, 25]:
            os.makedirs(os.path.join(output_dir, f"{PREFIX_CHECKPOINT_DIR}-{n}"), exist_ok=True)
        trainer._rotate_checkpoints(output_dir=output_dir)
        glob_checkpoints = [str(x) for x in Path(output_dir).glob(f"{PREFIX_CHECKPOINT_DIR}-*")]
        values = [int(re.match(f".*{PREFIX_CHECKPOINT_DIR}-([0-9]+)", d).groups()[0]) for d in glob_checkpoints]
        self.assertSetEqual(set(values), set(expected))

    def test_checkpoint_rotation(self):
        with tempfile.TemporaryDirectory() as tmp_dir:
            # Without best model at end
            trainer = get_regression_trainer(output_dir=tmp_dir, save_total_limit=2)
            self.check_checkpoint_deletion(trainer, tmp_dir, [20, 25])

            # With best model at end
2968
            trainer = get_regression_trainer(
2969
                output_dir=tmp_dir, eval_strategy="steps", load_best_model_at_end=True, save_total_limit=2
2970
            )
2971
2972
2973
2974
2975
            trainer.state.best_model_checkpoint = os.path.join(tmp_dir, "checkpoint-5")
            self.check_checkpoint_deletion(trainer, tmp_dir, [5, 25])

            # Edge case: we don't always honor save_total_limit=1 if load_best_model_at_end=True to be able to resume
            # from checkpoint
2976
            trainer = get_regression_trainer(
2977
                output_dir=tmp_dir, eval_strategy="steps", load_best_model_at_end=True, save_total_limit=1
2978
            )
2979
2980
2981
2982
2983
2984
            trainer.state.best_model_checkpoint = os.path.join(tmp_dir, "checkpoint-25")
            self.check_checkpoint_deletion(trainer, tmp_dir, [25])

            trainer.state.best_model_checkpoint = os.path.join(tmp_dir, "checkpoint-5")
            self.check_checkpoint_deletion(trainer, tmp_dir, [5, 25])

2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
    def test_compare_trainer_and_checkpoint_args_logging(self):
        logger = logging.get_logger()

        with tempfile.TemporaryDirectory() as tmpdir, CaptureLogger(logger) as cl:
            trainer = get_regression_trainer(
                output_dir=tmpdir,
                train_len=128,
                eval_steps=5,
                gradient_accumulation_steps=2,
                per_device_train_batch_size=4,
                save_steps=5,
                learning_rate=0.1,
            )
            trainer.train()

            checkpoint = os.path.join(tmpdir, "checkpoint-5")
            checkpoint_trainer = get_regression_trainer(
                output_dir=tmpdir,
                train_len=256,
                eval_steps=10,
                gradient_accumulation_steps=4,
                per_device_train_batch_size=8,
                save_steps=10,
                learning_rate=0.1,
            )
            checkpoint_trainer.train(resume_from_checkpoint=checkpoint)

3012
3013
        self.assertIn("save_steps: 10 (from args) != 5 (from trainer_state.json)", cl.out)

3014
        self.assertIn(
3015
            "per_device_train_batch_size: 8 (from args) != 4 (from trainer_state.json)",
3016
3017
3018
            cl.out,
        )
        self.assertIn(
3019
            "eval_steps: 10 (from args) != 5 (from trainer_state.json)",
3020
3021
3022
            cl.out,
        )

3023
3024
3025
3026
    def check_mem_metrics(self, trainer, check_func):
        metrics = trainer.train().metrics
        check_func("init_mem_cpu_alloc_delta", metrics)
        check_func("train_mem_cpu_alloc_delta", metrics)
3027
        if backend_device_count(torch_device) > 0:
3028
3029
3030
3031
3032
            check_func("init_mem_gpu_alloc_delta", metrics)
            check_func("train_mem_gpu_alloc_delta", metrics)

        metrics = trainer.evaluate()
        check_func("eval_mem_cpu_alloc_delta", metrics)
3033
        if backend_device_count(torch_device) > 0:
3034
3035
3036
3037
            check_func("eval_mem_gpu_alloc_delta", metrics)

        metrics = trainer.predict(RegressionDataset()).metrics
        check_func("test_mem_cpu_alloc_delta", metrics)
3038
        if backend_device_count(torch_device) > 0:
3039
3040
3041
3042
            check_func("test_mem_gpu_alloc_delta", metrics)

    def test_mem_metrics(self):
        # with mem metrics enabled
3043
        trainer = get_regression_trainer(skip_memory_metrics=False)
3044
3045
3046
3047
3048
3049
        self.check_mem_metrics(trainer, self.assertIn)

        # with mem metrics disabled
        trainer = get_regression_trainer(skip_memory_metrics=True)
        self.check_mem_metrics(trainer, self.assertNotIn)

3050
    @require_torch_accelerator
3051
3052
3053
3054
    def test_fp16_full_eval(self):
        # this is a sensitive test so let's keep debugging printouts in place for quick diagnosis.
        # it's using pretty large safety margins, but small enough to detect broken functionality.
        debug = 0
3055
        n_gpus = backend_device_count(torch_device)
3056
3057

        bs = 8
3058
        eval_len = 16 * n_gpus
3059
3060
3061
3062
3063
        # make the params somewhat big so that there will be enough RAM consumed to be able to
        # measure things. We should get about 64KB for a+b in fp32
        a = torch.ones(1000, bs) + 0.001
        b = torch.ones(1000, bs) - 0.001

3064
        # 1. with fp16_full_eval disabled
3065
        trainer = get_regression_trainer(a=a, b=b, eval_len=eval_len, skip_memory_metrics=False)
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
        metrics = trainer.evaluate()
        del trainer
        gc.collect()

        fp32_init = metrics["init_mem_gpu_alloc_delta"]
        fp32_eval = metrics["eval_mem_gpu_alloc_delta"]

        if debug:
            print(f"fp32_init {fp32_init}")
            print(f"fp32_eval {fp32_eval}")

        # here we expect the model to be preloaded in trainer.__init__ and consume around 64K gpu ram.
        # perfect world: fp32_init == 64<<10
        self.assertGreater(fp32_init, 59_000)
        # after eval should be no extra memory allocated - with a small margin (other than the peak
        # memory consumption for the forward calculation that gets recovered)
        # perfect world: fp32_eval == close to zero
        self.assertLess(fp32_eval, 5_000)

3085
        # 2. with fp16_full_eval enabled
3086
        trainer = get_regression_trainer(a=a, b=b, eval_len=eval_len, fp16_full_eval=True, skip_memory_metrics=False)
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
        metrics = trainer.evaluate()
        fp16_init = metrics["init_mem_gpu_alloc_delta"]
        fp16_eval = metrics["eval_mem_gpu_alloc_delta"]

        if debug:
            print(f"fp16_init {fp16_init}")
            print(f"fp16_eval {fp16_eval}")

        # here we expect the model to not be preloaded in trainer.__init__, so with a small margin it should be close to 0
        # perfect world: fp16_init == close to zero
        self.assertLess(fp16_init, 5_000)
        # here we put the model on device in eval and only `half()` of it, i.e. about 32K,(again we ignore the peak margin which gets returned back)
        # perfect world: fp32_init == 32<<10
        self.assertGreater(fp16_eval, 27_000)

        # 3. relative comparison fp32 vs full fp16
        # should be about half of fp16_init
        # perfect world: fp32_init/2 == fp16_eval
        self.assertAlmostEqual(fp16_eval, fp32_init / 2, delta=5_000)

3107
3108
    @require_torch_non_multi_gpu
    @require_torchdynamo
3109
    @require_torch_tensorrt_fx
3110
    def test_torchdynamo_full_eval(self):
Yih-Dar's avatar
Yih-Dar committed
3111
3112
        import torchdynamo

3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
        # torchdynamo at the moment doesn't support DP/DDP, therefore require a single gpu
        n_gpus = get_gpu_count()

        bs = 8
        eval_len = 16 * n_gpus
        # make the params are somewhat big so that there will be enough RAM consumed to be able to
        # measure things. We should get about 64KB for a+b in fp32
        a = torch.ones(1000, bs) + 0.001
        b = torch.ones(1000, bs) - 0.001

        # 1. Default - without TorchDynamo
        trainer = get_regression_trainer(a=a, b=b, eval_len=eval_len)
        metrics = trainer.evaluate()
        original_eval_loss = metrics["eval_loss"]
        del trainer

        # 2. TorchDynamo eager
        trainer = get_regression_trainer(a=a, b=b, eval_len=eval_len, torchdynamo="eager")
        metrics = trainer.evaluate()
        self.assertAlmostEqual(metrics["eval_loss"], original_eval_loss)
        del trainer
Yih-Dar's avatar
Yih-Dar committed
3134
        torchdynamo.reset()
3135
3136
3137
3138
3139

        # 3. TorchDynamo nvfuser
        trainer = get_regression_trainer(a=a, b=b, eval_len=eval_len, torchdynamo="nvfuser")
        metrics = trainer.evaluate()
        self.assertAlmostEqual(metrics["eval_loss"], original_eval_loss)
Yih-Dar's avatar
Yih-Dar committed
3140
        torchdynamo.reset()
3141

3142
3143
3144
3145
        # 4. TorchDynamo fx2trt
        trainer = get_regression_trainer(a=a, b=b, eval_len=eval_len, torchdynamo="fx2trt")
        metrics = trainer.evaluate()
        self.assertAlmostEqual(metrics["eval_loss"], original_eval_loss)
Yih-Dar's avatar
Yih-Dar committed
3146
        torchdynamo.reset()
3147

amyeroberts's avatar
amyeroberts committed
3148
    @unittest.skip(reason="torch 2.0.0 gives `ModuleNotFoundError: No module named 'torchdynamo'`.")
3149
3150
3151
3152
    @require_torch_non_multi_gpu
    @require_torchdynamo
    def test_torchdynamo_memory(self):
        # torchdynamo at the moment doesn't support DP/DDP, therefore require a single gpu
Yih-Dar's avatar
Yih-Dar committed
3153
3154
        import torchdynamo

3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
        class CustomTrainer(Trainer):
            def compute_loss(self, model, inputs, return_outputs=False):
                x = inputs["x"]
                output = model(x)
                if self.args.n_gpu == 1:
                    return output.mean()
                return output

        class MyModule(torch.nn.Module):
            """Simple module that does aggressive fusion"""

            def __init__(self):
                super().__init__()

            def forward(self, x):
                for _ in range(20):
Yih-Dar's avatar
Yih-Dar committed
3171
                    x = torch.cos(x)
3172
3173
3174
3175
                return x

        mod = MyModule()

3176
        # 1. without TorchDynamo (eager baseline)
3177
3178
3179
3180
3181
3182
3183
        a = torch.ones(1024, 1024, device="cuda", requires_grad=True)
        a.grad = None
        trainer = CustomTrainer(model=mod)
        # warmup
        for _ in range(10):
            orig_loss = trainer.training_step(mod, {"x": a})

3184
3185
3186
        # resets
        gc.collect()
        torch.cuda.empty_cache()
3187
        torch.cuda.reset_peak_memory_stats()
3188

3189
3190
        orig_loss = trainer.training_step(mod, {"x": a})
        orig_peak_mem = torch.cuda.max_memory_allocated()
Yih-Dar's avatar
Yih-Dar committed
3191
        torchdynamo.reset()
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
        del trainer

        # 2. TorchDynamo nvfuser
        a = torch.ones(1024, 1024, device="cuda", requires_grad=True)
        a.grad = None
        args = TrainingArguments(output_dir="None", torchdynamo="nvfuser")
        trainer = CustomTrainer(model=mod, args=args)
        # warmup
        for _ in range(10):
            loss = trainer.training_step(mod, {"x": a})

3203
3204
3205
        # resets
        gc.collect()
        torch.cuda.empty_cache()
3206
        torch.cuda.reset_peak_memory_stats()
3207

3208
3209
        loss = trainer.training_step(mod, {"x": a})
        peak_mem = torch.cuda.max_memory_allocated()
Yih-Dar's avatar
Yih-Dar committed
3210
        torchdynamo.reset()
3211
3212
3213
3214
3215
3216
3217
3218
3219
        del trainer

        # Functional check
        self.assertAlmostEqual(loss, orig_loss)

        # AOT Autograd recomputaion and nvfuser recomputation optimization
        # aggressively fuses the operations and reduce the memory footprint.
        self.assertGreater(orig_peak_mem, peak_mem * 2)

3220
3221
    @require_torch_accelerator
    @require_torch_bf16
3222
3223
3224
3225
3226
3227
    def test_bf16_full_eval(self):
        # note: most of the logic is the same as test_fp16_full_eval

        # this is a sensitive test so let's keep debugging printouts in place for quick diagnosis.
        # it's using pretty large safety margins, but small enough to detect broken functionality.
        debug = 0
3228
        n_gpus = backend_device_count(torch_device)
3229
3230
3231
3232
3233
3234
3235
3236

        bs = 8
        eval_len = 16 * n_gpus
        # make the params somewhat big so that there will be enough RAM consumed to be able to
        # measure things. We should get about 64KB for a+b in fp32
        a = torch.ones(1000, bs) + 0.001
        b = torch.ones(1000, bs) - 0.001

3237
        # 1. with bf16_full_eval disabled
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
        trainer = get_regression_trainer(a=a, b=b, eval_len=eval_len, skip_memory_metrics=False)
        metrics = trainer.evaluate()
        del trainer
        gc.collect()

        fp32_init = metrics["init_mem_gpu_alloc_delta"]
        fp32_eval = metrics["eval_mem_gpu_alloc_delta"]

        if debug:
            print(f"fp32_init {fp32_init}")
            print(f"fp32_eval {fp32_eval}")

        # here we expect the model to be preloaded in trainer.__init__ and consume around 64K gpu ram.
        # perfect world: fp32_init == 64<<10
        self.assertGreater(fp32_init, 59_000)
        # after eval should be no extra memory allocated - with a small margin (other than the peak
        # memory consumption for the forward calculation that gets recovered)
        # perfect world: fp32_eval == close to zero
        self.assertLess(fp32_eval, 5_000)

3258
        # 2. with bf16_full_eval enabled
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
        trainer = get_regression_trainer(a=a, b=b, eval_len=eval_len, bf16_full_eval=True, skip_memory_metrics=False)
        metrics = trainer.evaluate()
        bf16_init = metrics["init_mem_gpu_alloc_delta"]
        bf16_eval = metrics["eval_mem_gpu_alloc_delta"]

        if debug:
            print(f"bf16_init {bf16_init}")
            print(f"bf16_eval {bf16_eval}")

        # here we expect the model to not be preloaded in trainer.__init__, so with a small margin it should be close to 0
        # perfect world: bf16_init == close to zero
        self.assertLess(bf16_init, 5_000)
        # here we put the model on device in eval and only `half()` of it, i.e. about 32K,(again we ignore the peak margin which gets returned back)
        # perfect world: fp32_init == 32<<10
        self.assertGreater(bf16_eval, 27_000)

        # 3. relative comparison fp32 vs full bf16
        # should be about half of bf16_init
        # perfect world: fp32_init/2 == bf16_eval
        self.assertAlmostEqual(bf16_eval, fp32_init / 2, delta=5_000)

3280
    def test_no_wd_param_group(self):
3281
        model = nn.Sequential(TstLayer(128), nn.ModuleList([TstLayer(128), TstLayer(128)]))
3282
3283
3284
3285
3286
3287
3288
3289
        with tempfile.TemporaryDirectory() as tmp_dir:
            trainer = Trainer(model=model, args=TrainingArguments(output_dir=tmp_dir, report_to="none"))
            trainer.create_optimizer_and_scheduler(10)
            wd_names = ['0.linear1.weight', '0.linear2.weight', '1.0.linear1.weight', '1.0.linear2.weight', '1.1.linear1.weight', '1.1.linear2.weight']  # fmt: skip
            wd_params = [p for n, p in model.named_parameters() if n in wd_names]
            no_wd_params = [p for n, p in model.named_parameters() if n not in wd_names]
            self.assertListEqual(trainer.optimizer.param_groups[0]["params"], wd_params)
            self.assertListEqual(trainer.optimizer.param_groups[1]["params"], no_wd_params)
3290

3291
    @slow
3292
    @require_torch_multi_accelerator
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
    def test_end_to_end_example(self):
        # Tests that `translation.py` will run without issues
        script_path = os.path.abspath(
            os.path.join(
                os.path.dirname(__file__), "..", "..", "examples", "pytorch", "translation", "run_translation.py"
            )
        )

        with tempfile.TemporaryDirectory() as tmpdir:
            command = [
                "accelerate",
                "launch",
                script_path,
                "--model_name_or_path",
3307
                "google-t5/t5-small",
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
                "--per_device_train_batch_size",
                "1",
                "--output_dir",
                tmpdir,
                "--overwrite_output_dir",
                "--do_train",
                "--max_train_samples",
                "64",
                "--num_train_epochs",
                "1",
                "--dataset_name",
                "wmt16",
                "--dataset_config",
                "ro-en",
                "--source_lang",
                "en",
                "--target_lang",
                "ro",
                "--do_predict",
                "--max_predict_samples",
                "64",
                "--predict_with_generate",
                "--ddp_timeout",
                "60",
3332
3333
                "--report_to",
                "none",
3334
3335
3336
3337
            ]
            execute_subprocess_async(command)
            # successful return here == success - any errors would have caused an error or a timeout in the sub-call

3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
    def test_accelerator_config_empty(self):
        # Checks that a config can be made with the defaults if not passed
        with tempfile.TemporaryDirectory() as tmp_dir:
            config = RegressionModelConfig(a=1.5, b=2.5)
            model = RegressionPreTrainedModel(config)
            eval_dataset = SampleIterableDataset()

            # Leaves one option as something *not* basic
            args = RegressionTrainingArguments(
                output_dir=tmp_dir,
            )
            trainer = Trainer(model=model, args=args, eval_dataset=eval_dataset)
            self.assertEqual(trainer.accelerator.split_batches, False)
            self.assertEqual(trainer.accelerator.dispatch_batches, None)
            self.assertEqual(trainer.accelerator.even_batches, True)
            self.assertEqual(trainer.accelerator.use_seedable_sampler, True)

3355
3356
3357
3358
            if GRAD_ACCUM_KWARGS_VERSION_AVAILABLE:
                # gradient accumulation kwargs configures gradient_state
                self.assertNotIn("sync_each_batch", trainer.accelerator.gradient_state.plugin_kwargs)

3359
3360
3361
3362
3363
3364
3365
3366
    def test_accelerator_config_from_dict(self):
        # Checks that accelerator kwargs can be passed through
        # and the accelerator is initialized respectively
        with tempfile.TemporaryDirectory() as tmp_dir:
            config = RegressionModelConfig(a=1.5, b=2.5)
            model = RegressionPreTrainedModel(config)
            eval_dataset = SampleIterableDataset()

3367
3368
3369
3370
3371
3372
3373
3374
3375
            accelerator_config = {
                "split_batches": True,
                "dispatch_batches": True,
                "even_batches": False,
                "use_seedable_sampler": True,
            }
            if GRAD_ACCUM_KWARGS_VERSION_AVAILABLE:
                accelerator_config["gradient_accumulation_kwargs"] = {"sync_each_batch": True}

3376
3377
3378
            # Leaves all options as something *not* basic
            args = RegressionTrainingArguments(
                output_dir=tmp_dir,
3379
                accelerator_config=accelerator_config,
3380
3381
3382
3383
3384
3385
3386
            )
            trainer = Trainer(model=model, args=args, eval_dataset=eval_dataset)
            self.assertEqual(trainer.accelerator.split_batches, True)
            self.assertEqual(trainer.accelerator.dispatch_batches, True)
            self.assertEqual(trainer.accelerator.even_batches, False)
            self.assertEqual(trainer.accelerator.use_seedable_sampler, True)

3387
3388
3389
            if GRAD_ACCUM_KWARGS_VERSION_AVAILABLE:
                self.assertEqual(trainer.accelerator.gradient_state.plugin_kwargs["sync_each_batch"], True)

3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
    def test_accelerator_config_from_yaml(self):
        # Checks that accelerator kwargs can be passed through
        # and the accelerator is initialized respectively
        with tempfile.TemporaryDirectory() as tmp_dir:
            path_file = Path(tmp_dir) / "accelerator_config.json"
            with open(path_file, "w") as f:
                accelerator_config = {
                    "split_batches": True,
                    "dispatch_batches": True,
                    "even_batches": False,
                    "use_seedable_sampler": False,
                }
3402
3403
                if GRAD_ACCUM_KWARGS_VERSION_AVAILABLE:
                    accelerator_config["gradient_accumulation_kwargs"] = {"sync_each_batch": True}
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
                json.dump(accelerator_config, f)
            config = RegressionModelConfig(a=1.5, b=2.5)
            model = RegressionPreTrainedModel(config)
            eval_dataset = SampleIterableDataset()

            # Leaves all options as something *not* basic
            args = RegressionTrainingArguments(output_dir=tmp_dir, accelerator_config=path_file)
            trainer = Trainer(model=model, args=args, eval_dataset=eval_dataset)
            self.assertEqual(trainer.accelerator.split_batches, True)
            self.assertEqual(trainer.accelerator.dispatch_batches, True)
            self.assertEqual(trainer.accelerator.even_batches, False)
            self.assertEqual(trainer.accelerator.use_seedable_sampler, False)

3417
3418
3419
            if GRAD_ACCUM_KWARGS_VERSION_AVAILABLE:
                self.assertEqual(trainer.accelerator.gradient_state.plugin_kwargs["sync_each_batch"], True)

3420
3421
3422
    def test_accelerator_config_from_dataclass(self):
        # Checks that accelerator kwargs can be passed through
        # and the accelerator is initialized respectively
3423

3424
        accelerator_config = AcceleratorConfig(
3425
3426
3427
3428
            split_batches=True,
            dispatch_batches=True,
            even_batches=False,
            use_seedable_sampler=False,
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
        )
        config = RegressionModelConfig(a=1.5, b=2.5)
        model = RegressionPreTrainedModel(config)
        eval_dataset = SampleIterableDataset()
        with tempfile.TemporaryDirectory() as tmp_dir:
            args = RegressionTrainingArguments(output_dir=tmp_dir, accelerator_config=accelerator_config)
            trainer = Trainer(model=model, args=args, eval_dataset=eval_dataset)
            self.assertEqual(trainer.accelerator.split_batches, True)
            self.assertEqual(trainer.accelerator.dispatch_batches, True)
            self.assertEqual(trainer.accelerator.even_batches, False)
            self.assertEqual(trainer.accelerator.use_seedable_sampler, False)

3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
    @require_accelerate_version_min_0_28
    def test_accelerate_config_from_dataclass_grad_accum(self):
        # Checks that accelerator kwargs can be passed through
        # and the accelerator is initialized respectively

        grad_acc_kwargs = {
            "num_steps": 10,
            "adjust_scheduler": False,
            "sync_with_dataloader": False,
            "sync_each_batch": True,
        }
        accelerator_config = AcceleratorConfig(
            split_batches=True,
            dispatch_batches=True,
            even_batches=False,
            use_seedable_sampler=False,
            gradient_accumulation_kwargs=grad_acc_kwargs,
        )
        config = RegressionModelConfig(a=1.5, b=2.5)
        model = RegressionPreTrainedModel(config)
        eval_dataset = SampleIterableDataset()
        with tempfile.TemporaryDirectory() as tmp_dir:
            args = RegressionTrainingArguments(output_dir=tmp_dir, accelerator_config=accelerator_config)
            trainer = Trainer(model=model, args=args, eval_dataset=eval_dataset)
            self.assertEqual(trainer.accelerator.gradient_state.plugin_kwargs["num_steps"], 10)
            self.assertEqual(trainer.accelerator.gradient_state.plugin_kwargs["adjust_scheduler"], False)
            self.assertEqual(trainer.accelerator.gradient_state.plugin_kwargs["sync_with_dataloader"], False)
            self.assertEqual(trainer.accelerator.gradient_state.plugin_kwargs["sync_each_batch"], True)

3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
    def test_accelerator_config_from_partial(self):
        # Checks that accelerator kwargs can be passed through
        # and the accelerator is initialized respectively
        with tempfile.TemporaryDirectory() as tmp_dir:
            config = RegressionModelConfig(a=1.5, b=2.5)
            model = RegressionPreTrainedModel(config)
            eval_dataset = SampleIterableDataset()

            # Leaves one option as something *not* basic
            args = RegressionTrainingArguments(
                output_dir=tmp_dir,
                accelerator_config={
                    "split_batches": True,
                },
            )
            trainer = Trainer(model=model, args=args, eval_dataset=eval_dataset)
            self.assertEqual(trainer.accelerator.split_batches, True)
            self.assertEqual(trainer.accelerator.dispatch_batches, None)
            self.assertEqual(trainer.accelerator.even_batches, True)
            self.assertEqual(trainer.accelerator.use_seedable_sampler, True)

    def test_accelerator_config_from_dict_with_deprecated_args(self):
        # Checks that accelerator kwargs can be passed through
        # and the accelerator is initialized respectively
        # and maintains the deprecated args if passed in
        with tempfile.TemporaryDirectory() as tmp_dir:
            config = RegressionModelConfig(a=1.5, b=2.5)
            model = RegressionPreTrainedModel(config)
            eval_dataset = SampleIterableDataset()

            # Leaves all options as something *not* basic
            with self.assertWarns(FutureWarning) as cm:
                args = RegressionTrainingArguments(
                    output_dir=tmp_dir,
                    accelerator_config={
                        "split_batches": True,
                    },
                    dispatch_batches=False,
                )
                self.assertIn("dispatch_batches", str(cm.warnings[0].message))
            trainer = Trainer(model=model, args=args, eval_dataset=eval_dataset)
            self.assertEqual(trainer.accelerator.dispatch_batches, False)
            self.assertEqual(trainer.accelerator.split_batches, True)
            with self.assertWarns(FutureWarning) as cm:
                args = RegressionTrainingArguments(
                    output_dir=tmp_dir,
                    accelerator_config={
                        "even_batches": False,
                    },
                    split_batches=True,
                )
                self.assertIn("split_batches", str(cm.warnings[0].message))
            trainer = Trainer(model=model, args=args, eval_dataset=eval_dataset)
            self.assertEqual(trainer.accelerator.split_batches, True)
            self.assertEqual(trainer.accelerator.even_batches, False)
            self.assertEqual(trainer.accelerator.dispatch_batches, None)

3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
    def test_accelerator_config_only_deprecated_args(self):
        with tempfile.TemporaryDirectory() as tmp_dir:
            with self.assertWarns(FutureWarning) as cm:
                args = RegressionTrainingArguments(
                    output_dir=tmp_dir,
                    split_batches=True,
                )
                self.assertIn("split_batches", str(cm.warnings[0].message))
                config = RegressionModelConfig(a=1.5, b=2.5)
                model = RegressionPreTrainedModel(config)
                eval_dataset = SampleIterableDataset()
                trainer = Trainer(model=model, args=args, eval_dataset=eval_dataset)
                self.assertEqual(trainer.accelerator.split_batches, True)

3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
    def test_accelerator_custom_state(self):
        AcceleratorState._reset_state(reset_partial_state=True)
        with tempfile.TemporaryDirectory() as tmp_dir:
            with self.assertRaises(ValueError) as cm:
                _ = RegressionTrainingArguments(output_dir=tmp_dir, accelerator_config={"use_configured_state": True})
                self.assertIn("Please define this beforehand", str(cm.warnings[0].message))
            _ = Accelerator()
            _ = RegressionTrainingArguments(output_dir=tmp_dir, accelerator_config={"use_configured_state": True})
        AcceleratorState._reset_state(reset_partial_state=True)

3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
    @require_accelerate_version_min_0_28
    def test_accelerator_config_from_dict_grad_accum_num_steps(self):
        with tempfile.TemporaryDirectory() as tmp_dir:
            config = RegressionModelConfig(a=1.5, b=2.5)
            model = RegressionPreTrainedModel(config)
            eval_dataset = SampleIterableDataset()

            # case - TrainingArguments.gradient_accumulation_steps == 1
            #      - gradient_accumulation_kwargs['num_steps] == 1
            # results in grad accum set to 1
            args = RegressionTrainingArguments(
                output_dir=tmp_dir,
                gradient_accumulation_steps=1,
                accelerator_config={
                    "gradient_accumulation_kwargs": {
                        "num_steps": 1,
                    }
                },
            )
            trainer = Trainer(model=model, args=args, eval_dataset=eval_dataset)
            self.assertEqual(trainer.accelerator.gradient_state.plugin_kwargs["num_steps"], 1)

            # case - TrainingArguments.gradient_accumulation_steps > 1
            #      - gradient_accumulation_kwargs['num_steps] specified
            # results in exception raised
            args = RegressionTrainingArguments(
                output_dir=tmp_dir,
                gradient_accumulation_steps=2,
                accelerator_config={
                    "gradient_accumulation_kwargs": {
                        "num_steps": 10,
                    }
                },
            )
            with self.assertRaises(Exception) as context:
                trainer = Trainer(model=model, args=args, eval_dataset=eval_dataset)
            self.assertTrue("The `AcceleratorConfig`'s `num_steps` is set but" in str(context.exception))

3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
    def test_accelerator_config_not_instantiated(self):
        # Checks that accelerator kwargs can be passed through
        # and the accelerator is initialized respectively
        with tempfile.TemporaryDirectory() as tmp_dir:
            with self.assertRaises(NotImplementedError) as context:
                _ = RegressionTrainingArguments(
                    output_dir=tmp_dir,
                    accelerator_config=AcceleratorConfig,
                )
            self.assertTrue("Tried passing in a callable to `accelerator_config`" in str(context.exception))

        # Now test with a custom subclass
        @dataclasses.dataclass
        class CustomAcceleratorConfig(AcceleratorConfig):
            pass

        @dataclasses.dataclass
        class CustomTrainingArguments(TrainingArguments):
            accelerator_config: dict = dataclasses.field(
                default=CustomAcceleratorConfig,
            )

        with tempfile.TemporaryDirectory() as tmp_dir:
            with self.assertRaises(NotImplementedError) as context:
                _ = CustomTrainingArguments(
                    output_dir=tmp_dir,
                )
            self.assertTrue("Tried passing in a callable to `accelerator_config`" in str(context.exception))

3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
    def test_torch_dtype_to_json(self):
        @dataclasses.dataclass
        class TorchDtypeTrainingArguments(TrainingArguments):
            torch_dtype: torch.dtype = dataclasses.field(
                default=torch.float32,
            )

        for dtype in [
            "float32",
            "float64",
            "complex64",
            "complex128",
            "float16",
            "bfloat16",
            "uint8",
            "int8",
            "int16",
            "int32",
            "int64",
            "bool",
        ]:
            torch_dtype = getattr(torch, dtype)
            with tempfile.TemporaryDirectory() as tmp_dir:
                args = TorchDtypeTrainingArguments(output_dir=tmp_dir, torch_dtype=torch_dtype)

                args_dict = args.to_dict()
                self.assertIn("torch_dtype", args_dict)
                self.assertEqual(args_dict["torch_dtype"], dtype)

3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
    @require_accelerate_version_min_0_30
    def test_eval_use_gather_object(self):
        train_dataset = RegressionDataset()
        eval_dataset = RegressionDataset()
        model = RegressionDictModel()
        args = TrainingArguments("./regression", report_to="none", eval_use_gather_object=True)
        trainer = Trainer(model, args, train_dataset=train_dataset, eval_dataset=eval_dataset)
        trainer.train()
        _ = trainer.evaluate()
        _ = trainer.predict(eval_dataset)

3658

Sylvain Gugger's avatar
Sylvain Gugger committed
3659
3660
3661
3662
3663
@require_torch
@is_staging_test
class TrainerIntegrationWithHubTester(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
3664
3665
        cls._token = TOKEN
        HfFolder.save_token(TOKEN)
Sylvain Gugger's avatar
Sylvain Gugger committed
3666
3667
3668

    @classmethod
    def tearDownClass(cls):
3669
3670
3671
3672
3673
3674
3675
        for model in [
            "test-trainer",
            "test-trainer-epoch",
            "test-trainer-step",
            "test-trainer-tensorboard",
            "test-trainer-tags",
        ]:
3676
            try:
3677
                delete_repo(token=cls._token, repo_id=model)
3678
3679
            except HTTPError:
                pass
Sylvain Gugger's avatar
Sylvain Gugger committed
3680
3681

        try:
3682
            delete_repo(token=cls._token, repo_id="valid_org/test-trainer-org")
Sylvain Gugger's avatar
Sylvain Gugger committed
3683
3684
3685
3686
3687
        except HTTPError:
            pass

    def test_push_to_hub(self):
        with tempfile.TemporaryDirectory() as tmp_dir:
3688
3689
3690
            trainer = get_regression_trainer(
                output_dir=os.path.join(tmp_dir, "test-trainer"),
                push_to_hub=True,
3691
                hub_token=self._token,
3692
3693
            )
            url = trainer.push_to_hub()
Sylvain Gugger's avatar
Sylvain Gugger committed
3694
3695
3696
3697
3698
3699

            # Extract repo_name from the url
            re_search = re.search(ENDPOINT_STAGING + r"/([^/]+/[^/]+)/", url)
            self.assertTrue(re_search is not None)
            repo_name = re_search.groups()[0]

3700
            self.assertEqual(repo_name, f"{USER}/test-trainer")
Sylvain Gugger's avatar
Sylvain Gugger committed
3701
3702
3703
3704
3705
3706
3707
3708
3709

            model = RegressionPreTrainedModel.from_pretrained(repo_name)
            self.assertEqual(model.a.item(), trainer.model.a.item())
            self.assertEqual(model.b.item(), trainer.model.b.item())

    def test_push_to_hub_in_organization(self):
        with tempfile.TemporaryDirectory() as tmp_dir:
            trainer = get_regression_trainer(output_dir=tmp_dir)
            trainer.save_model()
3710
3711
3712
            trainer = get_regression_trainer(
                output_dir=os.path.join(tmp_dir, "test-trainer-org"),
                push_to_hub=True,
3713
3714
                hub_model_id="valid_org/test-trainer-org",
                hub_token=self._token,
3715
            )
3716
            url = trainer.push_to_hub()
Sylvain Gugger's avatar
Sylvain Gugger committed
3717
3718
3719
3720
3721

            # Extract repo_name from the url
            re_search = re.search(ENDPOINT_STAGING + r"/([^/]+/[^/]+)/", url)
            self.assertTrue(re_search is not None)
            repo_name = re_search.groups()[0]
3722
            self.assertEqual(repo_name, "valid_org/test-trainer-org")
Sylvain Gugger's avatar
Sylvain Gugger committed
3723

3724
            model = RegressionPreTrainedModel.from_pretrained("valid_org/test-trainer-org")
Sylvain Gugger's avatar
Sylvain Gugger committed
3725
3726
3727
            self.assertEqual(model.a.item(), trainer.model.a.item())
            self.assertEqual(model.b.item(), trainer.model.b.item())

3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
    def get_commit_history(self, repo):
        commit_logs = subprocess.run(
            "git log".split(),
            stderr=subprocess.PIPE,
            stdout=subprocess.PIPE,
            check=True,
            encoding="utf-8",
            cwd=repo,
        ).stdout
        commits = commit_logs.split("\n\n")[1::2]
        return [commit.strip() for commit in commits]

    def test_push_to_hub_with_saves_each_epoch(self):
        with tempfile.TemporaryDirectory() as tmp_dir:
            trainer = get_regression_trainer(
                output_dir=os.path.join(tmp_dir, "test-trainer-epoch"),
                push_to_hub=True,
                hub_token=self._token,
3746
3747
                # To avoid any flakiness if the training goes faster than the uploads.
                hub_always_push=True,
3748
3749
3750
3751
                save_strategy="epoch",
            )
            trainer.train()

3752
3753
3754
3755
3756
        commits = list_repo_commits(f"{USER}/test-trainer-epoch", token=self._token)
        commits = [c.title for c in commits]
        self.assertIn("initial commit", commits)
        for i in range(1, 4):
            self.assertIn(f"Training in progress, epoch {i}", commits)
3757
3758

    def test_push_to_hub_with_saves_each_n_steps(self):
3759
        num_gpus = max(1, backend_device_count(torch_device))
3760
        if num_gpus > 2:
amyeroberts's avatar
amyeroberts committed
3761
            self.skipTest(reason="More than 2 GPUs available")
3762

3763
3764
3765
3766
3767
        with tempfile.TemporaryDirectory() as tmp_dir:
            trainer = get_regression_trainer(
                output_dir=os.path.join(tmp_dir, "test-trainer-step"),
                push_to_hub=True,
                hub_token=self._token,
3768
3769
                # To avoid any flakiness if the training goes faster than the uploads.
                hub_always_push=True,
3770
3771
3772
3773
3774
                save_strategy="steps",
                save_steps=5,
            )
            trainer.train()

3775
3776
3777
        commits = list_repo_commits(f"{USER}/test-trainer-step", token=self._token)
        commits = [c.title for c in commits]
        self.assertIn("initial commit", commits)
3778

3779
3780
3781
3782
        # max_steps depend on the number of available GPUs
        max_steps = math.ceil(trainer.args.num_train_epochs * len(trainer.get_train_dataloader()))
        for i in range(5, max_steps, 5):
            self.assertIn(f"Training in progress, step {i}", commits)
3783

3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
    @require_tensorboard
    def test_push_to_hub_with_tensorboard_logs(self):
        with tempfile.TemporaryDirectory() as tmp_dir:
            trainer = get_regression_trainer(
                output_dir=os.path.join(tmp_dir, "test-trainer-tensorboard"),
                hub_token=self._token,
                save_strategy="epoch",
                report_to=["tensorboard"],
                keep_report_to=True,
            )
            trainer.train()
            # Push the runs via `push_to_hub()`
            trainer.push_to_hub()

        files = list_repo_files(f"{USER}/test-trainer-tensorboard", token=self._token)
        found_log = False
        for f in files:
            if len(f.split("runs")) > 1 and "events.out.tfevents" in f:
                found_log = True

        assert found_log is True, "No tensorboard log found in repo"

3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
    def test_push_to_hub_tags(self):
        # Checks if `trainer.push_to_hub()` works correctly by adding the desired
        # tag without having to pass `tags` in `push_to_hub`
        # see:
        with tempfile.TemporaryDirectory() as tmp_dir:
            trainer = get_regression_trainer(
                output_dir=os.path.join(tmp_dir, "test-trainer-tags"),
                push_to_hub=True,
                hub_token=self._token,
            )

            trainer.model.add_model_tags(["test-trainer-tags"])

            url = trainer.push_to_hub()

            # Extract repo_name from the url
            re_search = re.search(ENDPOINT_STAGING + r"/([^/]+/[^/]+)/", url)
            self.assertTrue(re_search is not None)
            repo_name = re_search.groups()[0]

            self.assertEqual(repo_name, f"{USER}/test-trainer-tags")

            model_card = ModelCard.load(repo_name)
            self.assertTrue("test-trainer-tags" in model_card.data.tags)

Sylvain Gugger's avatar
Sylvain Gugger committed
3831

3832
3833
@require_torch
@require_optuna
3834
class TrainerHyperParameterOptunaIntegrationTest(unittest.TestCase):
3835
    def setUp(self):
3836
        args = TrainingArguments("..")
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
        self.n_epochs = args.num_train_epochs
        self.batch_size = args.train_batch_size

    def test_hyperparameter_search(self):
        class MyTrialShortNamer(TrialShortNamer):
            DEFAULTS = {"a": 0, "b": 0}

        def hp_space(trial):
            return {}

        def model_init(trial):
            if trial is not None:
                a = trial.suggest_int("a", -4, 4)
                b = trial.suggest_int("b", -4, 4)
            else:
                a = 0
                b = 0
            config = RegressionModelConfig(a=a, b=b, double_output=False)

            return RegressionPreTrainedModel(config)

        def hp_name(trial):
            return MyTrialShortNamer.shortname(trial.params)

3861
3862
3863
3864
3865
        with tempfile.TemporaryDirectory() as tmp_dir:
            trainer = get_regression_trainer(
                output_dir=tmp_dir,
                learning_rate=0.1,
                logging_steps=1,
3866
                eval_strategy=IntervalStrategy.EPOCH,
3867
                save_strategy=IntervalStrategy.EPOCH,
3868
3869
3870
3871
3872
3873
3874
3875
                num_train_epochs=4,
                disable_tqdm=True,
                load_best_model_at_end=True,
                logging_dir="runs",
                run_name="test",
                model_init=model_init,
            )
            trainer.hyperparameter_search(direction="minimize", hp_space=hp_space, hp_name=hp_name, n_trials=4)
3876
3877


3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
@require_torch
@require_optuna
class TrainerHyperParameterMultiObjectOptunaIntegrationTest(unittest.TestCase):
    def setUp(self):
        args = TrainingArguments("..")
        self.n_epochs = args.num_train_epochs
        self.batch_size = args.train_batch_size

    def test_hyperparameter_search(self):
        class MyTrialShortNamer(TrialShortNamer):
            DEFAULTS = {"a": 0, "b": 0}

        def hp_space(trial):
            return {}

        def model_init(trial):
            if trial is not None:
                a = trial.suggest_int("a", -4, 4)
                b = trial.suggest_int("b", -4, 4)
            else:
                a = 0
                b = 0
            config = RegressionModelConfig(a=a, b=b, double_output=False)

            return RegressionPreTrainedModel(config)

        def hp_name(trial):
            return MyTrialShortNamer.shortname(trial.params)

        def compute_objective(metrics: Dict[str, float]) -> List[float]:
            return metrics["eval_loss"], metrics["eval_accuracy"]

        with tempfile.TemporaryDirectory() as tmp_dir:
            trainer = get_regression_trainer(
                output_dir=tmp_dir,
                learning_rate=0.1,
                logging_steps=1,
3915
                eval_strategy=IntervalStrategy.EPOCH,
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
                save_strategy=IntervalStrategy.EPOCH,
                num_train_epochs=10,
                disable_tqdm=True,
                load_best_model_at_end=True,
                logging_dir="runs",
                run_name="test",
                model_init=model_init,
                compute_metrics=AlmostAccuracy(),
            )
            trainer.hyperparameter_search(
                direction=["minimize", "maximize"],
                hp_space=hp_space,
                hp_name=hp_name,
                n_trials=4,
                compute_objective=compute_objective,
            )


3934
3935
3936
3937
@require_torch
@require_ray
class TrainerHyperParameterRayIntegrationTest(unittest.TestCase):
    def setUp(self):
3938
        args = TrainingArguments("..")
3939
3940
3941
        self.n_epochs = args.num_train_epochs
        self.batch_size = args.train_batch_size

3942
    def ray_hyperparameter_search(self):
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
        class MyTrialShortNamer(TrialShortNamer):
            DEFAULTS = {"a": 0, "b": 0}

        def hp_space(trial):
            from ray import tune

            return {
                "a": tune.randint(-4, 4),
                "b": tune.randint(-4, 4),
            }

        def model_init(config):
3955
3956
3957
3958
3959
3960
3961
            if config is None:
                a = 0
                b = 0
            else:
                a = config["a"]
                b = config["b"]
            model_config = RegressionModelConfig(a=a, b=b, double_output=False)
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972

            return RegressionPreTrainedModel(model_config)

        def hp_name(params):
            return MyTrialShortNamer.shortname(params)

        with tempfile.TemporaryDirectory() as tmp_dir:
            trainer = get_regression_trainer(
                output_dir=tmp_dir,
                learning_rate=0.1,
                logging_steps=1,
3973
                eval_strategy=IntervalStrategy.EPOCH,
3974
                save_strategy=IntervalStrategy.EPOCH,
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
                num_train_epochs=4,
                disable_tqdm=True,
                load_best_model_at_end=True,
                logging_dir="runs",
                run_name="test",
                model_init=model_init,
            )
            trainer.hyperparameter_search(
                direction="minimize", hp_space=hp_space, hp_name=hp_name, backend="ray", n_trials=4
            )
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995

    def test_hyperparameter_search(self):
        self.ray_hyperparameter_search()

    def test_hyperparameter_search_ray_client(self):
        import ray
        from ray.util.client.ray_client_helpers import ray_start_client_server

        with ray_start_client_server():
            assert ray.util.client.ray.is_connected()
            self.ray_hyperparameter_search()
3996
3997


3998
@slow
3999
4000
4001
4002
@require_torch
@require_sigopt
class TrainerHyperParameterSigOptIntegrationTest(unittest.TestCase):
    def setUp(self):
4003
        args = TrainingArguments("..")
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
        self.n_epochs = args.num_train_epochs
        self.batch_size = args.train_batch_size

    def test_hyperparameter_search(self):
        class MyTrialShortNamer(TrialShortNamer):
            DEFAULTS = {"a": 0, "b": 0}

        def hp_space(trial):
            return [
                {"bounds": {"min": -4, "max": 4}, "name": "a", "type": "int"},
                {"bounds": {"min": -4, "max": 4}, "name": "b", "type": "int"},
            ]

        def model_init(trial):
            if trial is not None:
                a = trial.assignments["a"]
                b = trial.assignments["b"]
            else:
                a = 0
                b = 0
            config = RegressionModelConfig(a=a, b=b, double_output=False)

            return RegressionPreTrainedModel(config)

        def hp_name(trial):
            return MyTrialShortNamer.shortname(trial.assignments)

        with tempfile.TemporaryDirectory() as tmp_dir:
            trainer = get_regression_trainer(
                output_dir=tmp_dir,
                learning_rate=0.1,
                logging_steps=1,
4036
                eval_strategy=IntervalStrategy.EPOCH,
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
                save_strategy=IntervalStrategy.EPOCH,
                num_train_epochs=4,
                disable_tqdm=True,
                load_best_model_at_end=True,
                logging_dir="runs",
                run_name="test",
                model_init=model_init,
            )
            trainer.hyperparameter_search(
                direction="minimize", hp_space=hp_space, hp_name=hp_name, backend="sigopt", n_trials=4
            )
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057


optim_test_params = []
if is_torch_available():
    default_adam_kwargs = {
        "betas": (TrainingArguments.adam_beta1, TrainingArguments.adam_beta2),
        "eps": TrainingArguments.adam_epsilon,
        "lr": TrainingArguments.learning_rate,
    }

4058
4059
4060
4061
4062
    default_lion_kwargs = {
        "betas": (TrainingArguments.adam_beta1, TrainingArguments.adam_beta2),
        "lr": TrainingArguments.learning_rate,
    }

4063
4064
4065
4066
4067
4068
4069
    default_anyprecision_kwargs = {
        "use_kahan_summation": False,
        "momentum_dtype": torch.float32,
        "variance_dtype": torch.float32,
        "compensation_buffer_dtype": torch.bfloat16,
    }

4070
4071
    optim_test_params = [
        (
4072
            TrainingArguments(optim=OptimizerNames.ADAMW_HF, output_dir="None"),
4073
4074
4075
4076
            transformers.optimization.AdamW,
            default_adam_kwargs,
        ),
        (
4077
            TrainingArguments(optim=OptimizerNames.ADAMW_HF.value, output_dir="None"),
4078
4079
4080
4081
            transformers.optimization.AdamW,
            default_adam_kwargs,
        ),
        (
4082
            TrainingArguments(optim=OptimizerNames.ADAMW_TORCH, output_dir="None"),
4083
4084
4085
4086
            torch.optim.AdamW,
            default_adam_kwargs,
        ),
        (
4087
            TrainingArguments(optim=OptimizerNames.ADAFACTOR, output_dir="None"),
4088
4089
4090
4091
4092
4093
4094
4095
            transformers.optimization.Adafactor,
            {
                "scale_parameter": False,
                "relative_step": False,
                "lr": TrainingArguments.learning_rate,
            },
        ),
    ]
4096

4097
4098
4099
4100
4101
    if is_apex_available():
        import apex

        optim_test_params.append(
            (
4102
                TrainingArguments(optim=OptimizerNames.ADAMW_APEX_FUSED, output_dir="None"),
4103
4104
4105
4106
4107
                apex.optimizers.FusedAdam,
                default_adam_kwargs,
            )
        )

4108
4109
4110
4111
4112
    if is_bitsandbytes_available():
        import bitsandbytes as bnb

        optim_test_params.append(
            (
4113
                TrainingArguments(optim=OptimizerNames.ADAMW_BNB, output_dir="None"),
4114
                bnb.optim.AdamW,
4115
4116
4117
4118
                default_adam_kwargs,
            )
        )

4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
        optim_test_params.append(
            (
                TrainingArguments(optim=OptimizerNames.ADAMW_8BIT, output_dir="None"),
                bnb.optim.AdamW,
                default_adam_kwargs,
            )
        )

        optim_test_params.append(
            (
                TrainingArguments(optim=OptimizerNames.PAGED_ADAMW, output_dir="None"),
                bnb.optim.AdamW,
                default_adam_kwargs,
            )
        )

        optim_test_params.append(
            (
                TrainingArguments(optim=OptimizerNames.PAGED_ADAMW_8BIT, output_dir="None"),
                bnb.optim.AdamW,
                default_adam_kwargs,
            )
        )

        optim_test_params.append(
            (
                TrainingArguments(optim=OptimizerNames.LION, output_dir="None"),
                bnb.optim.Lion,
                default_lion_kwargs,
            )
        )

        optim_test_params.append(
            (
                TrainingArguments(optim=OptimizerNames.LION_8BIT, output_dir="None"),
                bnb.optim.Lion,
                default_lion_kwargs,
            )
        )

        optim_test_params.append(
            (
                TrainingArguments(optim=OptimizerNames.PAGED_LION_8BIT, output_dir="None"),
                bnb.optim.Lion,
                default_lion_kwargs,
            )
        )

4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
    if is_torchdistx_available():
        import torchdistx

        optim_test_params.append(
            (
                TrainingArguments(optim=OptimizerNames.ADAMW_ANYPRECISION, output_dir="None"),
                torchdistx.optimizers.AnyPrecisionAdamW,
                dict(default_adam_kwargs, **default_anyprecision_kwargs),
            )
        )

4178
4179
4180

@require_torch
class TrainerOptimizerChoiceTest(unittest.TestCase):
4181
4182
    def check_optim_and_kwargs(self, training_args: TrainingArguments, expected_cls, expected_kwargs):
        actual_cls, optim_kwargs = Trainer.get_optimizer_cls_and_kwargs(training_args)
4183
4184
4185
        self.assertEqual(expected_cls, actual_cls)
        self.assertIsNotNone(optim_kwargs)

4186
        for p, v in expected_kwargs.items():
4187
4188
4189
4190
4191
            self.assertTrue(p in optim_kwargs)
            actual_v = optim_kwargs[p]
            self.assertTrue(actual_v == v, f"Failed check for {p}. Expected {v}, but got {actual_v}.")

    @parameterized.expand(optim_test_params, skip_on_empty=True)
4192
    def test_optim_supported(self, training_args: TrainingArguments, expected_cls, expected_kwargs):
4193
        # exercises all the valid --optim options
4194
        self.check_optim_and_kwargs(training_args, expected_cls, expected_kwargs)
4195

4196
        trainer = get_regression_trainer(**training_args.to_dict())
4197
4198
4199
4200
        trainer.train()

    def test_fused_adam(self):
        # Pretend that apex is installed and mock apex.optimizers.FusedAdam exists.
4201
4202
        # Trainer.get_optimizer_cls_and_kwargs does not use FusedAdam. It only has to return the
        # class given, so mocking apex.optimizers.FusedAdam should be fine for testing and allow
4203
4204
4205
4206
4207
4208
4209
4210
4211
        # the test to run without requiring an apex installation.
        mock = Mock()
        modules = {
            "apex": mock,
            "apex.optimizers": mock.optimizers,
            "apex.optimizers.FusedAdam": mock.optimizers.FusedAdam,
        }
        with patch.dict("sys.modules", modules):
            self.check_optim_and_kwargs(
4212
                TrainingArguments(optim=OptimizerNames.ADAMW_APEX_FUSED, output_dir="None"),
4213
                mock.optimizers.FusedAdam,
4214
                default_adam_kwargs,
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
            )

    def test_fused_adam_no_apex(self):
        args = TrainingArguments(optim=OptimizerNames.ADAMW_APEX_FUSED, output_dir="None")

        # Pretend that apex does not exist, even if installed. By setting apex to None, importing
        # apex will fail even if apex is installed.
        with patch.dict("sys.modules", {"apex.optimizers": None}):
            with self.assertRaises(ValueError):
                Trainer.get_optimizer_cls_and_kwargs(args)
4225

4226
4227
4228
4229
4230
4231
4232
4233
4234
    def test_bnb_adam8bit(self):
        # Pretend that Bits and Bytes is installed and mock bnb.optim.Adam8bit exists.
        # Trainer.get_optimizer_cls_and_kwargs does not use Adam8bit. It only has to return the
        # class given, so mocking bnb.optim.Adam8bit should be fine for testing and allow
        # the test to run without requiring a bnb installation.
        mock = Mock()
        modules = {
            "bitsandbytes": mock,
            "bitsandbytes.optim": mock.optim,
4235
            "bitsandbytes.optim.AdamW": mock.optim.AdamW,
4236
4237
4238
        }
        with patch.dict("sys.modules", modules):
            self.check_optim_and_kwargs(
4239
                TrainingArguments(optim=OptimizerNames.ADAMW_BNB, output_dir="None"),
4240
                mock.optim.AdamW,
4241
                default_adam_kwargs,
4242
4243
            )

4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
    def test_bnb_paged_adam8bit_alias(self):
        mock = Mock()
        modules = {
            "bitsandbytes": mock,
            "bitsandbytes.optim": mock.optim,
            "bitsandbytes.optim.AdamW": mock.optim.AdamW,
        }
        with patch.dict("sys.modules", modules):
            self.check_optim_and_kwargs(
                TrainingArguments(optim=OptimizerNames.ADAMW_8BIT, output_dir="None"),
                mock.optim.AdamW,
                default_adam_kwargs,
            )

    def test_bnb_paged_adam(self):
        mock = Mock()
        modules = {
            "bitsandbytes": mock,
            "bitsandbytes.optim": mock.optim,
            "bitsandbytes.optim.AdamW": mock.optim.AdamW,
        }
        with patch.dict("sys.modules", modules):
            self.check_optim_and_kwargs(
                TrainingArguments(optim=OptimizerNames.PAGED_ADAMW, output_dir="None"),
                mock.optim.AdamW,
                default_adam_kwargs,
            )

    def test_bnb_paged_adam8bit(self):
        mock = Mock()
        modules = {
            "bitsandbytes": mock,
            "bitsandbytes.optim": mock.optim,
            "bitsandbytes.optim.AdamW": mock.optim.AdamW,
        }
        with patch.dict("sys.modules", modules):
            self.check_optim_and_kwargs(
                TrainingArguments(optim=OptimizerNames.PAGED_ADAMW_8BIT, output_dir="None"),
                mock.optim.AdamW,
                default_adam_kwargs,
            )

    def test_bnb_lion(self):
        mock = Mock()
        modules = {
            "bitsandbytes": mock,
            "bitsandbytes.optim": mock.optim,
            "bitsandbytes.optim.Lion": mock.optim.Lion,
        }
        with patch.dict("sys.modules", modules):
            self.check_optim_and_kwargs(
                TrainingArguments(optim=OptimizerNames.LION, output_dir="None"),
                mock.optim.Lion,
                default_lion_kwargs,
            )

    def test_bnb_lion8bit(self):
        mock = Mock()
        modules = {
            "bitsandbytes": mock,
            "bitsandbytes.optim": mock.optim,
            "bitsandbytes.optim.Lion": mock.optim.Lion,
        }
        with patch.dict("sys.modules", modules):
            self.check_optim_and_kwargs(
                TrainingArguments(optim=OptimizerNames.LION_8BIT, output_dir="None"),
                mock.optim.Lion,
                default_lion_kwargs,
            )

    def test_bnb_paged_lion8bit(self):
        mock = Mock()
        modules = {
            "bitsandbytes": mock,
            "bitsandbytes.optim": mock.optim,
            "bitsandbytes.optim.Lion": mock.optim.Lion,
        }
        with patch.dict("sys.modules", modules):
            self.check_optim_and_kwargs(
                TrainingArguments(optim=OptimizerNames.PAGED_LION_8BIT, output_dir="None"),
                mock.optim.Lion,
                default_lion_kwargs,
            )

    def test_bnb_paged_lion(self):
        mock = Mock()
        modules = {
            "bitsandbytes": mock,
            "bitsandbytes.optim": mock.optim,
            "bitsandbytes.optim.Lion": mock.optim.Lion,
        }
        with patch.dict("sys.modules", modules):
            self.check_optim_and_kwargs(
                TrainingArguments(optim=OptimizerNames.PAGED_LION, output_dir="None"),
                mock.optim.Lion,
                default_lion_kwargs,
            )

4342
4343
4344
4345
4346
    def test_bnb_adam8bit_no_bnb(self):
        args = TrainingArguments(optim=OptimizerNames.ADAMW_BNB, output_dir="None")

        # Pretend that bnb does not exist, even if installed. By setting bnb to None, importing
        # bnb will fail even if bnb is installed.
Younes Belkada's avatar
Younes Belkada committed
4347
        with patch.dict("sys.modules", {"bitsandbytes.optim": None}):
4348
4349
4350
            with self.assertRaises(ValueError):
                Trainer.get_optimizer_cls_and_kwargs(args)

4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
    def test_bnb_paged_adam_no_bnb(self):
        args = TrainingArguments(optim=OptimizerNames.PAGED_ADAMW, output_dir="None")

        # Pretend that bnb does not exist, even if installed. By setting bnb to None, importing
        # bnb will fail even if bnb is installed.
        with patch.dict("sys.modules", {"bitsandbytes.optim": None}):
            with self.assertRaises(ValueError):
                Trainer.get_optimizer_cls_and_kwargs(args)

    def test_bnb_paged_adam8bit_no_bnb(self):
        args = TrainingArguments(optim=OptimizerNames.PAGED_ADAMW_8BIT, output_dir="None")

        # Pretend that bnb does not exist, even if installed. By setting bnb to None, importing
        # bnb will fail even if bnb is installed.
        with patch.dict("sys.modules", {"bitsandbytes.optim": None}):
            with self.assertRaises(ValueError):
                Trainer.get_optimizer_cls_and_kwargs(args)

    def test_bnb_paged_lion_no_bnb(self):
        args = TrainingArguments(optim=OptimizerNames.PAGED_LION, output_dir="None")

        # Pretend that bnb does not exist, even if installed. By setting bnb to None, importing
        # bnb will fail even if bnb is installed.
        with patch.dict("sys.modules", {"bitsandbytes.optim": None}):
            with self.assertRaises(ValueError):
                Trainer.get_optimizer_cls_and_kwargs(args)

    def test_bnb_paged_lion8bit_no_bnb(self):
        args = TrainingArguments(optim=OptimizerNames.PAGED_LION_8BIT, output_dir="None")

        # Pretend that bnb does not exist, even if installed. By setting bnb to None, importing
        # bnb will fail even if bnb is installed.
        with patch.dict("sys.modules", {"bitsandbytes.optim": None}):
            with self.assertRaises(ValueError):
                Trainer.get_optimizer_cls_and_kwargs(args)

4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
    def test_anyprecision_adamw(self):
        # Pretend that torchdistx is installed and mock torchdistx.optimizers.AnyPrecisionAdamW exists.
        # Trainer.get_optimizer_cls_and_kwargs does not use AnyPrecisioinAdamW. It only has to return the
        # class given, so mocking torchdistx.optimizers.AnyPrecisionAdamW should be fine for testing and allow
        # the test to run without requiring a bnb installation.
        mock = Mock()
        modules = {
            "torchdistx": mock,
            "torchdistx.optimizers": mock.optimizers,
            "torchdistx.optimizers.AnyPrecisionAdamW.": mock.optimizers.AnyPrecisionAdamW,
        }
        with patch.dict("sys.modules", modules):
            self.check_optim_and_kwargs(
                TrainingArguments(optim=OptimizerNames.ADAMW_ANYPRECISION, output_dir="None"),
                mock.optimizers.AnyPrecisionAdamW,
                dict(default_adam_kwargs, **default_anyprecision_kwargs),
            )

    def test_no_torchdistx_anyprecision_adamw(self):
        args = TrainingArguments(optim=OptimizerNames.ADAMW_ANYPRECISION, output_dir="None")

        # Pretend that torchdistx does not exist, even if installed. By setting torchdistx to None, importing
        # torchdistx.optimizers will fail even if torchdistx is installed.
        with patch.dict("sys.modules", {"torchdistx.optimizers": None}):
            with self.assertRaises(ValueError):
                Trainer.get_optimizer_cls_and_kwargs(args)

4414
4415
4416
4417
4418

@require_torch
@require_wandb
class TrainerHyperParameterWandbIntegrationTest(unittest.TestCase):
    def setUp(self):
4419
        args = TrainingArguments("..")
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
        self.n_epochs = args.num_train_epochs
        self.batch_size = args.train_batch_size

    def test_hyperparameter_search(self):
        class MyTrialShortNamer(TrialShortNamer):
            DEFAULTS = {"a": 0, "b": 0}

        def hp_space(trial):
            return {
                "method": "random",
                "metric": {},
                "parameters": {
                    "a": {"distribution": "uniform", "min": 1e-6, "max": 1e-4},
                    "b": {"distribution": "int_uniform", "min": 1, "max": 6},
                },
            }

        def model_init(config):
            if config is None:
                a = 0
                b = 0
            else:
                a = config["a"]
                b = config["b"]
            model_config = RegressionModelConfig(a=a, b=b, double_output=False)

            return RegressionPreTrainedModel(model_config)

        def hp_name(params):
            return MyTrialShortNamer.shortname(params)

        with tempfile.TemporaryDirectory() as tmp_dir:
            trainer = get_regression_trainer(
                output_dir=tmp_dir,
                learning_rate=0.1,
                logging_steps=1,
4456
                eval_strategy=IntervalStrategy.EPOCH,
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
                save_strategy=IntervalStrategy.EPOCH,
                num_train_epochs=4,
                disable_tqdm=True,
                load_best_model_at_end=True,
                logging_dir="runs",
                run_name="test",
                model_init=model_init,
            )
            trainer.hyperparameter_search(
                direction="minimize", hp_space=hp_space, hp_name=hp_name, backend="wandb", n_trials=4, anonymous="must"
            )
4468
4469
4470
4471
4472
4473
4474
4475


class HyperParameterSearchBackendsTest(unittest.TestCase):
    def test_hyperparameter_search_backends(self):
        self.assertEqual(
            list(ALL_HYPERPARAMETER_SEARCH_BACKENDS.keys()),
            list(HPSearchBackend),
        )
4476
4477
4478
4479
4480
4481
4482
4483
4484


@require_torch
class OptimizerAndModelInspectionTest(unittest.TestCase):
    def test_get_num_trainable_parameters(self):
        model = nn.Sequential(nn.Linear(128, 64), nn.Linear(64, 32))
        # in_features * out_features + bias
        layer_1 = 128 * 64 + 64
        layer_2 = 64 * 32 + 32
4485
4486
4487
4488
4489
4490
4491
        with tempfile.TemporaryDirectory() as tmp_dir:
            trainer = Trainer(model=model, args=TrainingArguments(output_dir=tmp_dir, report_to="none"))
            self.assertEqual(trainer.get_num_trainable_parameters(), layer_1 + layer_2)
            # Freeze the last layer
            for param in model[-1].parameters():
                param.requires_grad = False
            self.assertEqual(trainer.get_num_trainable_parameters(), layer_1)
4492
4493
4494

    def test_get_learning_rates(self):
        model = nn.Sequential(nn.Linear(128, 64))
4495
4496
4497
4498
4499
4500
        with tempfile.TemporaryDirectory() as tmp_dir:
            trainer = Trainer(model=model, args=TrainingArguments(output_dir=tmp_dir, report_to="none"))
            with self.assertRaises(ValueError):
                trainer.get_learning_rates()
            trainer.create_optimizer()
            self.assertEqual(trainer.get_learning_rates(), [5e-05, 5e-05])
4501
4502
4503

    def test_get_optimizer_group(self):
        model = nn.Sequential(nn.Linear(128, 64))
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
        with tempfile.TemporaryDirectory() as tmp_dir:
            trainer = Trainer(model=model, args=TrainingArguments(output_dir=tmp_dir, report_to="none"))
            # ValueError is raised if optimizer is None
            with self.assertRaises(ValueError):
                trainer.get_optimizer_group()
            trainer.create_optimizer()
            # Get groups
            num_groups = len(trainer.get_optimizer_group())
            self.assertEqual(num_groups, 2)
            # Get group of parameter
            param = next(model.parameters())
            group = trainer.get_optimizer_group(param)
            self.assertIn(param, group["params"])