test_trainer.py 96.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2018 the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
import dataclasses
17
import gc
18
import json
19
import math
20
import os
21
import random
Sylvain Gugger's avatar
Sylvain Gugger committed
22
import re
23
import subprocess
24
import sys
25
import tempfile
26
import time
Julien Chaumond's avatar
Julien Chaumond committed
27
import unittest
28
from pathlib import Path
29
from unittest.mock import Mock, patch
Julien Chaumond's avatar
Julien Chaumond committed
30

Sylvain Gugger's avatar
Sylvain Gugger committed
31
32
import numpy as np

33
from huggingface_hub import Repository, delete_repo, login
34
from parameterized import parameterized
Sylvain Gugger's avatar
Sylvain Gugger committed
35
from requests.exceptions import HTTPError
36
37
38
39
40
41
42
43
from transformers import (
    AutoTokenizer,
    IntervalStrategy,
    PretrainedConfig,
    TrainingArguments,
    is_torch_available,
    logging,
)
44
from transformers.testing_utils import (
Sylvain Gugger's avatar
Sylvain Gugger committed
45
46
47
    ENDPOINT_STAGING,
    PASS,
    USER,
48
    CaptureLogger,
49
    TestCasePlus,
50
    get_gpu_count,
51
    get_tests_dir,
Sylvain Gugger's avatar
Sylvain Gugger committed
52
    is_staging_test,
53
    require_intel_extension_for_pytorch,
54
    require_optuna,
55
    require_ray,
56
    require_sentencepiece,
57
    require_sigopt,
58
59
    require_tokenizers,
    require_torch,
60
    require_torch_bf16,
61
    require_torch_gpu,
62
    require_torch_multi_gpu,
63
    require_torch_non_multi_gpu,
64
    require_torch_tf32,
65
    require_torch_up_to_2_gpus,
66
    require_torchdynamo,
67
    require_wandb,
68
69
    slow,
)
70
from transformers.trainer_utils import PREFIX_CHECKPOINT_DIR
71
from transformers.training_args import OptimizerNames
72
from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME, is_apex_available, is_bitsandbytes_available
73
from transformers.utils.hp_naming import TrialShortNamer
Julien Chaumond's avatar
Julien Chaumond committed
74
75
76
77


if is_torch_available():
    import torch
78
    from torch import nn
79
80
    from torch.utils.data import IterableDataset

81
    import transformers.optimization
Julien Chaumond's avatar
Julien Chaumond committed
82
83
    from transformers import (
        AutoModelForSequenceClassification,
84
        EarlyStoppingCallback,
Julien Chaumond's avatar
Julien Chaumond committed
85
86
        GlueDataset,
        GlueDataTrainingArguments,
87
88
        GPT2Config,
        GPT2LMHeadModel,
89
        LineByLineTextDataset,
90
        PreTrainedModel,
91
        Trainer,
92
        TrainerState,
Julien Chaumond's avatar
Julien Chaumond committed
93
    )
94
    from transformers.modeling_utils import unwrap_model
Julien Chaumond's avatar
Julien Chaumond committed
95
96


97
PATH_SAMPLE_TEXT = f"{get_tests_dir()}/fixtures/sample_text.txt"
Julien Chaumond's avatar
Julien Chaumond committed
98
99


Sylvain Gugger's avatar
Sylvain Gugger committed
100
class RegressionDataset:
Sylvain Gugger's avatar
Sylvain Gugger committed
101
    def __init__(self, a=2, b=3, length=64, seed=42, label_names=None):
Sylvain Gugger's avatar
Sylvain Gugger committed
102
        np.random.seed(seed)
Sylvain Gugger's avatar
Sylvain Gugger committed
103
        self.label_names = ["labels"] if label_names is None else label_names
Sylvain Gugger's avatar
Sylvain Gugger committed
104
105
        self.length = length
        self.x = np.random.normal(size=(length,)).astype(np.float32)
Sylvain Gugger's avatar
Sylvain Gugger committed
106
107
        self.ys = [a * self.x + b + np.random.normal(scale=0.1, size=(length,)) for _ in self.label_names]
        self.ys = [y.astype(np.float32) for y in self.ys]
Julien Chaumond's avatar
Julien Chaumond committed
108

Sylvain Gugger's avatar
Sylvain Gugger committed
109
110
111
112
    def __len__(self):
        return self.length

    def __getitem__(self, i):
Sylvain Gugger's avatar
Sylvain Gugger committed
113
114
115
        result = {name: y[i] for name, y in zip(self.label_names, self.ys)}
        result["input_x"] = self.x[i]
        return result
Sylvain Gugger's avatar
Sylvain Gugger committed
116
117


118
119
120
121
122
@dataclasses.dataclass
class RegressionTrainingArguments(TrainingArguments):
    a: float = 0.0
    b: float = 0.0

123
124
125
126
127
    def __post_init__(self):
        super().__post_init__()
        # save resources not dealing with reporting (also avoids the warning when it's not set)
        self.report_to = []

128

129
130
131
132
133
134
135
136
137
138
139
140
class RepeatDataset:
    def __init__(self, x, length=64):
        self.x = x
        self.length = length

    def __len__(self):
        return self.length

    def __getitem__(self, i):
        return {"input_ids": self.x, "labels": self.x}


141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
class DynamicShapesDataset:
    def __init__(self, length=64, seed=42, batch_size=8):
        self.length = length
        np.random.seed(seed)
        sizes = np.random.randint(1, 20, (length // batch_size,))
        # For easy batching, we make every batch_size consecutive samples the same size.
        self.xs = [np.random.normal(size=(s,)) for s in sizes.repeat(batch_size)]
        self.ys = [np.random.normal(size=(s,)) for s in sizes.repeat(batch_size)]

    def __len__(self):
        return self.length

    def __getitem__(self, i):
        return {"input_x": self.xs[i], "labels": self.ys[i]}


Sylvain Gugger's avatar
Sylvain Gugger committed
157
158
159
160
161
162
163
164
class AlmostAccuracy:
    def __init__(self, thresh=0.25):
        self.thresh = thresh

    def __call__(self, eval_pred):
        predictions, labels = eval_pred
        true = np.abs(predictions - labels) <= self.thresh
        return {"accuracy": true.astype(np.float32).mean().item()}
165

Julien Chaumond's avatar
Julien Chaumond committed
166

167
class RegressionModelConfig(PretrainedConfig):
168
    def __init__(self, a=0, b=0, double_output=False, random_torch=True, **kwargs):
169
170
171
172
        super().__init__(**kwargs)
        self.a = a
        self.b = b
        self.double_output = double_output
173
        self.random_torch = random_torch
174
        self.hidden_size = 1
175
176


177
178
179
if is_torch_available():

    class SampleIterableDataset(IterableDataset):
180
181
        def __init__(self, a=2, b=3, length=64, seed=42, label_names=None):
            self.dataset = RegressionDataset(a=a, b=b, length=length, seed=seed, label_names=label_names)
182
183

        def __iter__(self):
184
185
            for i in range(len(self.dataset)):
                yield self.dataset[i]
186

187
188
189
190
191
192
193
194
195
196
    class FiniteIterableDataset(SampleIterableDataset):
        def __init__(self, a=2, b=3, length=64, seed=42, label_names=None):
            super().__init__(a, b, length, seed, label_names)
            self.current_sample = 0

        def __iter__(self):
            while self.current_sample < len(self.dataset):
                yield self.dataset[self.current_sample]
                self.current_sample += 1

197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
    class MultiLoader:
        def __init__(self, loaders):
            self.loaders = loaders

        def __len__(self):
            return sum(len(loader) for loader in self.loaders)

        def __iter__(self):
            for loader in self.loaders:
                yield from loader

    class CustomDataloaderTrainer(Trainer):
        def get_train_dataloader(self):
            dataloaders = [super().get_train_dataloader(), super().get_train_dataloader()]
            return MultiLoader(dataloaders)

        def get_eval_dataloader(self, eval_dataset):
            dataloaders = [super().get_eval_dataloader(eval_dataset), super().get_eval_dataloader(eval_dataset)]
            return MultiLoader(dataloaders)

217
    class RegressionModel(nn.Module):
218
        def __init__(self, a=0, b=0, double_output=False):
Sylvain Gugger's avatar
Sylvain Gugger committed
219
            super().__init__()
220
221
            self.a = nn.Parameter(torch.tensor(a).float())
            self.b = nn.Parameter(torch.tensor(b).float())
222
223
            self.double_output = double_output
            self.config = None
Sylvain Gugger's avatar
Sylvain Gugger committed
224

Stas Bekman's avatar
Stas Bekman committed
225
        def forward(self, input_x, labels=None, **kwargs):
Sylvain Gugger's avatar
Sylvain Gugger committed
226
227
            y = input_x * self.a + self.b
            if labels is None:
228
                return (y, y) if self.double_output else (y,)
229
            loss = nn.functional.mse_loss(y, labels)
230
            return (loss, y, y) if self.double_output else (loss, y)
Sylvain Gugger's avatar
Sylvain Gugger committed
231

232
    class RegressionDictModel(nn.Module):
233
234
        def __init__(self, a=0, b=0):
            super().__init__()
235
236
            self.a = nn.Parameter(torch.tensor(a).float())
            self.b = nn.Parameter(torch.tensor(b).float())
237
238
            self.config = None

Stas Bekman's avatar
Stas Bekman committed
239
        def forward(self, input_x, labels=None, **kwargs):
240
241
242
            y = input_x * self.a + self.b
            result = {"output": y}
            if labels is not None:
243
                result["loss"] = nn.functional.mse_loss(y, labels)
244
245
            return result

246
247
248
249
250
251
    class RegressionPreTrainedModel(PreTrainedModel):
        config_class = RegressionModelConfig
        base_model_prefix = "regression"

        def __init__(self, config):
            super().__init__(config)
252
253
            self.a = nn.Parameter(torch.tensor(config.a).float())
            self.b = nn.Parameter(torch.tensor(config.b).float())
254
255
            self.double_output = config.double_output

Stas Bekman's avatar
Stas Bekman committed
256
        def forward(self, input_x, labels=None, **kwargs):
257
258
259
            y = input_x * self.a + self.b
            if labels is None:
                return (y, y) if self.double_output else (y,)
260
            loss = nn.functional.mse_loss(y, labels)
261
262
            return (loss, y, y) if self.double_output else (loss, y)

263
264
265
266
267
268
    class RegressionRandomPreTrainedModel(PreTrainedModel):
        config_class = RegressionModelConfig
        base_model_prefix = "regression"

        def __init__(self, config):
            super().__init__(config)
269
270
            self.a = nn.Parameter(torch.tensor(config.a).float())
            self.b = nn.Parameter(torch.tensor(config.b).float())
271
            self.random_torch = config.random_torch
272
273
274

        def forward(self, input_x, labels=None, **kwargs):
            y = input_x * self.a + self.b
275
276
            if self.random_torch:
                torch_rand = torch.randn(1).squeeze()
277
278
279
            np_rand = np.random.rand()
            rand_rand = random.random()

280
281
282
            if self.random_torch:
                y += 0.05 * torch_rand
            y += 0.05 * torch.tensor(np_rand + rand_rand)
283
284
285

            if labels is None:
                return (y,)
286
            loss = nn.functional.mse_loss(y, labels)
287
288
            return (loss, y)

289
    class TstLayer(nn.Module):
290
291
        def __init__(self, hidden_size):
            super().__init__()
292
293
294
295
296
            self.linear1 = nn.Linear(hidden_size, hidden_size)
            self.ln1 = nn.LayerNorm(hidden_size)
            self.linear2 = nn.Linear(hidden_size, hidden_size)
            self.ln2 = nn.LayerNorm(hidden_size)
            self.bias = nn.Parameter(torch.zeros(hidden_size))
297
298

        def forward(self, x):
299
300
            h = self.ln1(nn.functional.relu(self.linear1(x)))
            h = nn.functional.relu(self.linear2(x))
301
302
            return self.ln2(x + h + self.bias)

303
    def get_regression_trainer(a=0, b=0, double_output=False, train_len=64, eval_len=64, pretrained=True, **kwargs):
Sylvain Gugger's avatar
Sylvain Gugger committed
304
305
306
        label_names = kwargs.get("label_names", None)
        train_dataset = RegressionDataset(length=train_len, label_names=label_names)
        eval_dataset = RegressionDataset(length=eval_len, label_names=label_names)
307
308
309
310

        model_init = kwargs.pop("model_init", None)
        if model_init is not None:
            model = None
311
        else:
312
313
314
315
316
317
            if pretrained:
                config = RegressionModelConfig(a=a, b=b, double_output=double_output)
                model = RegressionPreTrainedModel(config)
            else:
                model = RegressionModel(a=a, b=b, double_output=double_output)

Sylvain Gugger's avatar
Sylvain Gugger committed
318
319
320
        compute_metrics = kwargs.pop("compute_metrics", None)
        data_collator = kwargs.pop("data_collator", None)
        optimizers = kwargs.pop("optimizers", (None, None))
321
        output_dir = kwargs.pop("output_dir", "./regression")
322
        preprocess_logits_for_metrics = kwargs.pop("preprocess_logits_for_metrics", None)
323
324

        args = RegressionTrainingArguments(output_dir, a=a, b=b, **kwargs)
Sylvain Gugger's avatar
Sylvain Gugger committed
325
326
327
328
329
330
331
332
        return Trainer(
            model,
            args,
            data_collator=data_collator,
            train_dataset=train_dataset,
            eval_dataset=eval_dataset,
            compute_metrics=compute_metrics,
            optimizers=optimizers,
333
            model_init=model_init,
334
            preprocess_logits_for_metrics=preprocess_logits_for_metrics,
Sylvain Gugger's avatar
Sylvain Gugger committed
335
336
        )

337

338
class TrainerIntegrationCommon:
339
    def check_saved_checkpoints(self, output_dir, freq, total, is_pretrained=True):
340
        file_list = [WEIGHTS_NAME, "training_args.bin", "optimizer.pt", "scheduler.pt", "trainer_state.json"]
341
342
343
344
345
346
347
348
349
350
351
352
        if is_pretrained:
            file_list.append("config.json")
        for step in range(freq, total, freq):
            checkpoint = os.path.join(output_dir, f"checkpoint-{step}")
            self.assertTrue(os.path.isdir(checkpoint))
            for filename in file_list:
                self.assertTrue(os.path.isfile(os.path.join(checkpoint, filename)))

    def check_best_model_has_been_loaded(
        self, output_dir, freq, total, trainer, metric, greater_is_better=False, is_pretrained=True
    ):
        checkpoint = os.path.join(output_dir, f"checkpoint-{(total // freq) * freq}")
353
        log_history = TrainerState.load_from_json(os.path.join(checkpoint, "trainer_state.json")).log_history
354
355
356
357
358
359
360
361
362
363
364
365

        values = [d[metric] for d in log_history]
        best_value = max(values) if greater_is_better else min(values)
        best_checkpoint = (values.index(best_value) + 1) * freq
        checkpoint = os.path.join(output_dir, f"checkpoint-{best_checkpoint}")
        if is_pretrained:
            best_model = RegressionPreTrainedModel.from_pretrained(checkpoint)
            best_model.to(trainer.args.device)
        else:
            best_model = RegressionModel()
            state_dict = torch.load(os.path.join(checkpoint, WEIGHTS_NAME))
            best_model.load_state_dict(state_dict)
366
            best_model.to(trainer.args.device)
367
368
369
370
371
372
        self.assertTrue(torch.allclose(best_model.a, trainer.model.a))
        self.assertTrue(torch.allclose(best_model.b, trainer.model.b))

        metrics = trainer.evaluate()
        self.assertEqual(metrics[metric], best_value)

373
374
375
376
377
378
379
380
    def check_trainer_state_are_the_same(self, trainer_state, trainer_state1):
        # We'll pop things so operate on copies.
        state = trainer_state.copy()
        state1 = trainer_state1.copy()
        # Log history main contain different logs for the time metrics (after resuming a training).
        log_history = state.pop("log_history", None)
        log_history1 = state1.pop("log_history", None)
        self.assertEqual(state, state1)
381
        skip_log_keys = ["train_runtime", "train_samples_per_second", "train_steps_per_second", "train_loss"]
382
        for log, log1 in zip(log_history, log_history1):
383
384
385
            for key in skip_log_keys:
                _ = log.pop(key, None)
                _ = log1.pop(key, None)
386
387
            self.assertEqual(log, log1)

388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
    def convert_to_sharded_checkpoint(self, folder):
        # Converts a checkpoint of a regression model to a sharded checkpoint.
        state_dict = torch.load(os.path.join(folder, WEIGHTS_NAME))
        os.remove(os.path.join(folder, WEIGHTS_NAME))
        keys = list(state_dict.keys())

        shard_files = [
            WEIGHTS_NAME.replace(".bin", f"-{idx+1:05d}-of-{len(keys):05d}.bin") for idx in range(len(keys))
        ]
        index = {"metadata": {}, "weight_map": {key: shard_files[i] for i, key in enumerate(keys)}}

        save_index_file = os.path.join(folder, WEIGHTS_INDEX_NAME)
        with open(save_index_file, "w", encoding="utf-8") as f:
            content = json.dumps(index, indent=2, sort_keys=True) + "\n"
            f.write(content)

        for param_name, shard_file in zip(keys, shard_files):
            torch.save({param_name: state_dict[param_name]}, os.path.join(folder, shard_file))

407
408
409
410

@require_torch
@require_sentencepiece
@require_tokenizers
411
412
413
414
415
416
417
418
class TrainerIntegrationPrerunTest(TestCasePlus, TrainerIntegrationCommon):
    """
    Only tests that want to tap into the auto-pre-run 2 trainings:
    - self.default_trained_model
    - self.alternate_trained_model
    directly, or via check_trained_model
    """

419
420
    def setUp(self):
        super().setUp()
421
        args = TrainingArguments("..")
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
        self.n_epochs = args.num_train_epochs
        self.batch_size = args.train_batch_size
        trainer = get_regression_trainer(learning_rate=0.1)
        trainer.train()
        self.default_trained_model = (trainer.model.a, trainer.model.b)

        trainer = get_regression_trainer(learning_rate=0.1, seed=314)
        trainer.train()
        self.alternate_trained_model = (trainer.model.a, trainer.model.b)

    def check_trained_model(self, model, alternate_seed=False):
        # Checks a training seeded with learning_rate = 0.1
        (a, b) = self.alternate_trained_model if alternate_seed else self.default_trained_model
        self.assertTrue(torch.allclose(model.a, a))
        self.assertTrue(torch.allclose(model.b, b))

438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
    def test_reproducible_training(self):
        # Checks that training worked, model trained and seed made a reproducible training.
        trainer = get_regression_trainer(learning_rate=0.1)
        trainer.train()
        self.check_trained_model(trainer.model)

        # Checks that a different seed gets different (reproducible) results.
        trainer = get_regression_trainer(learning_rate=0.1, seed=314)
        trainer.train()
        self.check_trained_model(trainer.model, alternate_seed=True)

    def test_trainer_with_datasets(self):
        import datasets

        np.random.seed(42)
        x = np.random.normal(size=(64,)).astype(np.float32)
        y = 2.0 * x + 3.0 + np.random.normal(scale=0.1, size=(64,))
        train_dataset = datasets.Dataset.from_dict({"input_x": x, "label": y})

        # Base training. Should have the same results as test_reproducible_training
        model = RegressionModel()
        args = TrainingArguments("./regression", learning_rate=0.1)
        trainer = Trainer(model, args, train_dataset=train_dataset)
        trainer.train()
        self.check_trained_model(trainer.model)

        # Can return tensors.
        train_dataset.set_format(type="torch", dtype=torch.float32)
        model = RegressionModel()
        trainer = Trainer(model, args, train_dataset=train_dataset)
        trainer.train()
        self.check_trained_model(trainer.model)

        # Adding one column not used by the model should have no impact
        z = np.random.normal(size=(64,)).astype(np.float32)
        train_dataset = datasets.Dataset.from_dict({"input_x": x, "label": y, "extra": z})
        model = RegressionModel()
        trainer = Trainer(model, args, train_dataset=train_dataset)
        trainer.train()
        self.check_trained_model(trainer.model)

    def test_model_init(self):
        train_dataset = RegressionDataset()
        args = TrainingArguments("./regression", learning_rate=0.1)
        trainer = Trainer(args=args, train_dataset=train_dataset, model_init=lambda: RegressionModel())
        trainer.train()
        self.check_trained_model(trainer.model)

        # Re-training should restart from scratch, thus lead the same results.
        trainer.train()
        self.check_trained_model(trainer.model)

        # Re-training should restart from scratch, thus lead the same results and new seed should be used.
        trainer.args.seed = 314
        trainer.train()
        self.check_trained_model(trainer.model, alternate_seed=True)

    def test_gradient_accumulation(self):
        # Training with half the batch size but accumulation steps as 2 should give the same results.
        trainer = get_regression_trainer(
            gradient_accumulation_steps=2, per_device_train_batch_size=4, learning_rate=0.1
        )
        trainer.train()
        self.check_trained_model(trainer.model)

503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
    def test_training_loss(self):
        n_gpus = max(1, get_gpu_count())

        # With even logs
        trainer = get_regression_trainer(logging_steps=64 / (8 * n_gpus))
        trainer.train()
        log_history = trainer.state.log_history

        losses = [log["loss"] for log in log_history if "loss" in log]
        train_loss = log_history[-1]["train_loss"]
        self.assertAlmostEqual(sum(losses) / len(losses), train_loss, places=4)

        # With uneven logs
        trainer = get_regression_trainer(logging_steps=5)
        trainer.train()
        log_history = trainer.state.log_history

        # Training loss should be the same as before
        new_train_loss = log_history[-1]["train_loss"]
        self.assertAlmostEqual(train_loss, new_train_loss, places=4)

524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
    def test_custom_optimizer(self):
        train_dataset = RegressionDataset()
        args = TrainingArguments("./regression")
        model = RegressionModel()
        optimizer = torch.optim.SGD(model.parameters(), lr=1.0)
        lr_scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda x: 1.0)
        trainer = Trainer(model, args, train_dataset=train_dataset, optimizers=(optimizer, lr_scheduler))
        trainer.train()

        (a, b) = self.default_trained_model
        self.assertFalse(torch.allclose(trainer.model.a, a))
        self.assertFalse(torch.allclose(trainer.model.b, b))
        self.assertEqual(trainer.optimizer.state_dict()["param_groups"][0]["lr"], 1.0)

    def test_adafactor_lr_none(self):
        # test the special case where lr=None, since Trainer can't not have lr_scheduler

        from transformers.optimization import Adafactor, AdafactorSchedule

        train_dataset = RegressionDataset()
        args = TrainingArguments("./regression")
        model = RegressionModel()
        optimizer = Adafactor(model.parameters(), scale_parameter=True, relative_step=True, warmup_init=True, lr=None)
        lr_scheduler = AdafactorSchedule(optimizer)
        trainer = Trainer(model, args, train_dataset=train_dataset, optimizers=(optimizer, lr_scheduler))
        trainer.train()

        (a, b) = self.default_trained_model
        self.assertFalse(torch.allclose(trainer.model.a, a))
        self.assertFalse(torch.allclose(trainer.model.b, b))
        self.assertGreater(trainer.optimizer.state_dict()["param_groups"][0]["lr"], 0)

556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
    @require_torch_gpu
    @require_torch_bf16
    def test_mixed_bf16(self):

        # very basic test
        trainer = get_regression_trainer(learning_rate=0.1, bf16=True)
        trainer.train()
        self.check_trained_model(trainer.model)

        # --bf16 --half_precision_backend apex can't be used together
        with self.assertRaises(ValueError):
            trainer = get_regression_trainer(learning_rate=0.1, bf16=True, half_precision_backend="apex")

        # will add more specific tests once there are some bugs to fix

571
572
573
574
575
576
577
578
579
    @require_torch_gpu
    @require_torch_tf32
    def test_tf32(self):

        # very basic test
        trainer = get_regression_trainer(learning_rate=0.1, tf32=True)
        trainer.train()
        self.check_trained_model(trainer.model)

580
581
582
583
584
585
586

@require_torch
@require_sentencepiece
@require_tokenizers
class TrainerIntegrationTest(TestCasePlus, TrainerIntegrationCommon):
    def setUp(self):
        super().setUp()
587
        args = TrainingArguments("..")
588
589
590
        self.n_epochs = args.num_train_epochs
        self.batch_size = args.train_batch_size

591
592
593
594
595
596
597
598
599
600
601
602
603
    def test_trainer_works_with_dict(self):
        # Edge case because Apex with mode O2 will change our models to return dicts. This test checks it doesn't break
        # anything.
        train_dataset = RegressionDataset()
        eval_dataset = RegressionDataset()
        model = RegressionDictModel()
        args = TrainingArguments("./regression")
        trainer = Trainer(model, args, train_dataset=train_dataset, eval_dataset=eval_dataset)
        trainer.train()
        _ = trainer.evaluate()
        _ = trainer.predict(eval_dataset)

    def test_evaluation_with_keys_to_drop(self):
604
        config = GPT2Config(vocab_size=100, n_positions=128, n_embd=32, n_layer=3, n_head=4)
605
606
607
608
609
610
611
612
613
614
615
616
617
        tiny_gpt2 = GPT2LMHeadModel(config)
        x = torch.randint(0, 100, (128,))
        eval_dataset = RepeatDataset(x)
        args = TrainingArguments("./test")
        trainer = Trainer(tiny_gpt2, args, eval_dataset=eval_dataset)
        # By default the past_key_values are removed
        result = trainer.predict(eval_dataset)
        self.assertTrue(isinstance(result.predictions, np.ndarray))
        # We can still get them by setting ignore_keys to []
        result = trainer.predict(eval_dataset, ignore_keys=[])
        self.assertTrue(isinstance(result.predictions, tuple))
        self.assertEqual(len(result.predictions), 2)

618
619
620
    def test_training_arguments_are_left_untouched(self):
        trainer = get_regression_trainer()
        trainer.train()
621
        args = TrainingArguments("./regression", report_to=[])
622
623
        dict1, dict2 = args.to_dict(), trainer.args.to_dict()
        for key in dict1.keys():
624
            # Logging dir can be slightly different as they default to something with the time.
Sylvain Gugger's avatar
Sylvain Gugger committed
625
            if key != "logging_dir":
626
                self.assertEqual(dict1[key], dict2[key])
627

Sylvain Gugger's avatar
Sylvain Gugger committed
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
    def test_number_of_steps_in_training(self):
        # Regular training has n_epochs * len(train_dl) steps
        trainer = get_regression_trainer(learning_rate=0.1)
        train_output = trainer.train()
        self.assertEqual(train_output.global_step, self.n_epochs * 64 / self.batch_size)

        # Check passing num_train_epochs works (and a float version too):
        trainer = get_regression_trainer(learning_rate=0.1, num_train_epochs=1.5)
        train_output = trainer.train()
        self.assertEqual(train_output.global_step, int(1.5 * 64 / self.batch_size))

        # If we pass a max_steps, num_train_epochs is ignored
        trainer = get_regression_trainer(learning_rate=0.1, max_steps=10)
        train_output = trainer.train()
        self.assertEqual(train_output.global_step, 10)

644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
    @require_torch_bf16
    @require_intel_extension_for_pytorch
    def test_number_of_steps_in_training_with_ipex(self):
        for mix_bf16 in [True, False]:
            # Regular training has n_epochs * len(train_dl) steps
            trainer = get_regression_trainer(learning_rate=0.1, use_ipex=True, bf16=mix_bf16, no_cuda=True)
            train_output = trainer.train()
            self.assertEqual(train_output.global_step, self.n_epochs * 64 / self.batch_size)

            # Check passing num_train_epochs works (and a float version too):
            trainer = get_regression_trainer(
                learning_rate=0.1, num_train_epochs=1.5, use_ipex=True, bf16=mix_bf16, no_cuda=True
            )
            train_output = trainer.train()
            self.assertEqual(train_output.global_step, int(1.5 * 64 / self.batch_size))

            # If we pass a max_steps, num_train_epochs is ignored
            trainer = get_regression_trainer(
                learning_rate=0.1, max_steps=10, use_ipex=True, bf16=mix_bf16, no_cuda=True
            )
            train_output = trainer.train()
            self.assertEqual(train_output.global_step, 10)

667
    def test_logging_inf_nan_filter(self):
668
        config = GPT2Config(vocab_size=100, n_positions=128, n_embd=32, n_layer=3, n_head=4)
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
        tiny_gpt2 = GPT2LMHeadModel(config)
        x = torch.randint(0, 100, (128,))
        train_dataset = RepeatDataset(x)

        # Trainer without inf/nan filter
        args = TrainingArguments("./test", learning_rate=1e9, logging_steps=5, logging_nan_inf_filter=False)
        trainer = Trainer(tiny_gpt2, args, train_dataset=train_dataset)
        trainer.train()
        log_history_no_filter = trainer.state.log_history

        # Trainer with inf/nan filter
        args = TrainingArguments("./test", learning_rate=1e9, logging_steps=5, logging_nan_inf_filter=True)
        trainer = Trainer(tiny_gpt2, args, train_dataset=train_dataset)
        trainer.train()
        log_history_filter = trainer.state.log_history

        def is_any_loss_nan_or_inf(log_history):
            losses = [l["loss"] for l in log_history[:-1]]
            return any(math.isnan(x) for x in losses) or any(math.isinf(x) for x in losses)

        self.assertTrue(is_any_loss_nan_or_inf(log_history_no_filter))
        self.assertFalse(is_any_loss_nan_or_inf(log_history_filter))

Sylvain Gugger's avatar
Sylvain Gugger committed
692
    def test_train_and_eval_dataloaders(self):
693
        n_gpu = max(1, torch.cuda.device_count())
Sylvain Gugger's avatar
Sylvain Gugger committed
694
        trainer = get_regression_trainer(learning_rate=0.1, per_device_train_batch_size=16)
695
        self.assertEqual(trainer.get_train_dataloader().batch_size, 16 * n_gpu)
Sylvain Gugger's avatar
Sylvain Gugger committed
696
        trainer = get_regression_trainer(learning_rate=0.1, per_device_eval_batch_size=16)
697
        self.assertEqual(trainer.get_eval_dataloader().batch_size, 16 * n_gpu)
Sylvain Gugger's avatar
Sylvain Gugger committed
698
699
700
701
702

        # Check drop_last works
        trainer = get_regression_trainer(
            train_len=66, eval_len=74, learning_rate=0.1, per_device_train_batch_size=16, per_device_eval_batch_size=32
        )
703
704
        self.assertEqual(len(trainer.get_train_dataloader()), 66 // (16 * n_gpu) + 1)
        self.assertEqual(len(trainer.get_eval_dataloader()), 74 // (32 * n_gpu) + 1)
Sylvain Gugger's avatar
Sylvain Gugger committed
705
706
707
708
709
710
711
712
713

        trainer = get_regression_trainer(
            train_len=66,
            eval_len=74,
            learning_rate=0.1,
            per_device_train_batch_size=16,
            per_device_eval_batch_size=32,
            dataloader_drop_last=True,
        )
714
715
        self.assertEqual(len(trainer.get_train_dataloader()), 66 // (16 * n_gpu))
        self.assertEqual(len(trainer.get_eval_dataloader()), 74 // (32 * n_gpu))
Sylvain Gugger's avatar
Sylvain Gugger committed
716

717
        # Check passing a new dataset for evaluation works
Sylvain Gugger's avatar
Sylvain Gugger committed
718
        new_eval_dataset = RegressionDataset(length=128)
719
        self.assertEqual(len(trainer.get_eval_dataloader(new_eval_dataset)), 128 // (32 * n_gpu))
Sylvain Gugger's avatar
Sylvain Gugger committed
720

721
722
723
724
725
726
727
728
729
    # tests that we do not require dataloader to have a .dataset attribute
    def test_dataloader_without_dataset(self):
        train_dataset = RegressionDataset(length=128)
        trainer = CustomDataloaderTrainer(
            model=RegressionModel(), train_dataset=train_dataset, eval_dataset=train_dataset
        )
        trainer.train()
        trainer.evaluate()

730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
    def test_sampler_seed(self):
        # nb: we don't want to inherit from IterableDataset to hit the right code path
        class DummyDataset(torch.utils.data.Dataset):
            def __init__(self, length: int = 101):
                self.length = length

            def __len__(self):
                return self.length

            def __getitem__(self, i):
                if (i < 0) or (i >= self.length):
                    raise IndexError
                return {"input_ids": [i]}

        class DummyModel(PreTrainedModel):
            def __init__(self, num_params: int):
                super().__init__(PretrainedConfig())
                # Add some (unused) params. the point here is that randomness in model_init shouldn't influence
                # data loader order.
                self.params = nn.Parameter(torch.randn(num_params))

            def forward(self, input_ids, labels=None):
                if labels is not None:
                    return torch.tensor(0.0, device=input_ids.device), input_ids
                else:
                    return input_ids

        def _get_first_data_sample(num_params, seed, data_seed, **kwargs):
            with tempfile.TemporaryDirectory() as tmpdir:
                trainer = Trainer(
                    model_init=lambda: DummyModel(num_params),
                    args=TrainingArguments(
                        output_dir=tmpdir,
                        **kwargs,
                        seed=seed,
                        data_seed=data_seed,
                        local_rank=-1,
                    ),
                    train_dataset=DummyDataset(),
                )

                return next(iter(trainer.get_train_dataloader()))

        # test that the seed is passed to the sampler
        # the codepath we want to hit is world_size <= 1, and both group_by_length
        for group_by_length in [True, False]:
            sample42_1 = _get_first_data_sample(num_params=10, seed=42, data_seed=42, group_by_length=group_by_length)
            sample42_2 = _get_first_data_sample(num_params=11, seed=42, data_seed=42, group_by_length=group_by_length)
            self.assertTrue(torch.equal(sample42_1["input_ids"], sample42_2["input_ids"]))

            # should get same samples with different seed, so long as data_seed is the same
            sample42_3 = _get_first_data_sample(num_params=11, seed=11, data_seed=42, group_by_length=group_by_length)
            self.assertTrue(torch.equal(sample42_1["input_ids"], sample42_3["input_ids"]))

            # make sure we have some randomness in the samples if data_seed is different
            others = [
                _get_first_data_sample(num_params=i, seed=42, data_seed=i, group_by_length=group_by_length)
                for i in range(10)
            ]
            self.assertTrue(any(not torch.equal(sample42_1["input_ids"], sample["input_ids"]) for sample in others))

791
792
793
794
795
796
    @require_torch_multi_gpu
    def test_data_is_not_parallelized_when_model_is_parallel(self):
        model = RegressionModel()
        # Make the Trainer believe it's a parallelized model
        model.is_parallelizable = True
        model.model_parallel = True
797
798
        args = TrainingArguments("./regression", per_device_train_batch_size=16, per_device_eval_batch_size=16)
        trainer = Trainer(model, args, train_dataset=RegressionDataset(), eval_dataset=RegressionDataset())
799
800
        # Check the Trainer was fooled
        self.assertTrue(trainer.is_model_parallel)
801
        self.assertEqual(trainer.args.n_gpu, 1)
802
803
804
805
806
807
808

        # The batch size of the training and evaluation dataloaders should be 16, not 16 * n_gpu
        self.assertEqual(trainer.get_train_dataloader().batch_size, 16)
        self.assertEqual(len(trainer.get_train_dataloader()), 64 // 16)
        self.assertEqual(trainer.get_eval_dataloader().batch_size, 16)
        self.assertEqual(len(trainer.get_eval_dataloader()), 64 // 16)

Sylvain Gugger's avatar
Sylvain Gugger committed
809
810
811
812
    def test_evaluate(self):
        trainer = get_regression_trainer(a=1.5, b=2.5, compute_metrics=AlmostAccuracy())
        results = trainer.evaluate()

Sylvain Gugger's avatar
Sylvain Gugger committed
813
        x, y = trainer.eval_dataset.x, trainer.eval_dataset.ys[0]
Sylvain Gugger's avatar
Sylvain Gugger committed
814
815
816
817
818
819
820
821
822
823
        pred = 1.5 * x + 2.5
        expected_loss = ((pred - y) ** 2).mean()
        self.assertAlmostEqual(results["eval_loss"], expected_loss)
        expected_acc = AlmostAccuracy()((pred, y))["accuracy"]
        self.assertAlmostEqual(results["eval_accuracy"], expected_acc)

        # With a number of elements not a round multiple of the batch size
        trainer = get_regression_trainer(a=1.5, b=2.5, eval_len=66, compute_metrics=AlmostAccuracy())
        results = trainer.evaluate()

Sylvain Gugger's avatar
Sylvain Gugger committed
824
        x, y = trainer.eval_dataset.x, trainer.eval_dataset.ys[0]
Sylvain Gugger's avatar
Sylvain Gugger committed
825
826
827
828
829
830
        pred = 1.5 * x + 2.5
        expected_loss = ((pred - y) ** 2).mean()
        self.assertAlmostEqual(results["eval_loss"], expected_loss)
        expected_acc = AlmostAccuracy()((pred, y))["accuracy"]
        self.assertAlmostEqual(results["eval_accuracy"], expected_acc)

831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
        # With logits preprocess
        trainer = get_regression_trainer(
            a=1.5,
            b=2.5,
            compute_metrics=AlmostAccuracy(),
            preprocess_logits_for_metrics=lambda logits, labels: logits + 1,
        )
        results = trainer.evaluate()

        x, y = trainer.eval_dataset.x, trainer.eval_dataset.ys[0]
        pred = 1.5 * x + 2.5
        expected_loss = ((pred - y) ** 2).mean()
        self.assertAlmostEqual(results["eval_loss"], expected_loss)
        expected_acc = AlmostAccuracy()((pred + 1, y))["accuracy"]
        self.assertAlmostEqual(results["eval_accuracy"], expected_acc)

847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
    @require_torch_bf16
    @require_intel_extension_for_pytorch
    def test_evaluate_with_ipex(self):
        for mix_bf16 in [True, False]:
            trainer = get_regression_trainer(
                a=1.5, b=2.5, use_ipex=True, compute_metrics=AlmostAccuracy(), bf16=mix_bf16, no_cuda=True
            )
            results = trainer.evaluate()

            x, y = trainer.eval_dataset.x, trainer.eval_dataset.ys[0]
            pred = 1.5 * x + 2.5
            expected_loss = ((pred - y) ** 2).mean()
            self.assertAlmostEqual(results["eval_loss"], expected_loss)
            expected_acc = AlmostAccuracy()((pred, y))["accuracy"]
            self.assertAlmostEqual(results["eval_accuracy"], expected_acc)

            # With a number of elements not a round multiple of the batch size
            trainer = get_regression_trainer(
                a=1.5,
                b=2.5,
                use_ipex=True,
                eval_len=66,
                compute_metrics=AlmostAccuracy(),
                bf16=mix_bf16,
                no_cuda=True,
            )
            results = trainer.evaluate()

            x, y = trainer.eval_dataset.x, trainer.eval_dataset.ys[0]
            pred = 1.5 * x + 2.5
            expected_loss = ((pred - y) ** 2).mean()
            self.assertAlmostEqual(results["eval_loss"], expected_loss)
            expected_acc = AlmostAccuracy()((pred, y))["accuracy"]
            self.assertAlmostEqual(results["eval_accuracy"], expected_acc)

            # With logits preprocess
            trainer = get_regression_trainer(
                a=1.5,
                b=2.5,
                use_ipex=True,
                compute_metrics=AlmostAccuracy(),
                preprocess_logits_for_metrics=lambda logits, labels: logits + 1,
                bf16=mix_bf16,
                no_cuda=True,
            )
            results = trainer.evaluate()

            x, y = trainer.eval_dataset.x, trainer.eval_dataset.ys[0]
            pred = 1.5 * x + 2.5
            expected_loss = ((pred - y) ** 2).mean()
            self.assertAlmostEqual(results["eval_loss"], expected_loss)
            expected_acc = AlmostAccuracy()((pred + 1, y))["accuracy"]
            self.assertAlmostEqual(results["eval_accuracy"], expected_acc)

Sylvain Gugger's avatar
Sylvain Gugger committed
901
902
903
904
905
906
907
908
909
910
911
912
    def test_predict(self):
        trainer = get_regression_trainer(a=1.5, b=2.5)
        preds = trainer.predict(trainer.eval_dataset).predictions
        x = trainer.eval_dataset.x
        self.assertTrue(np.allclose(preds, 1.5 * x + 2.5))

        # With a number of elements not a round multiple of the batch size
        trainer = get_regression_trainer(a=1.5, b=2.5, eval_len=66)
        preds = trainer.predict(trainer.eval_dataset).predictions
        x = trainer.eval_dataset.x
        self.assertTrue(np.allclose(preds, 1.5 * x + 2.5))

913
914
915
916
        # With more than one output of the model
        trainer = get_regression_trainer(a=1.5, b=2.5, double_output=True)
        preds = trainer.predict(trainer.eval_dataset).predictions
        x = trainer.eval_dataset.x
917
        self.assertEqual(len(preds), 2)
918
919
920
        self.assertTrue(np.allclose(preds[0], 1.5 * x + 2.5))
        self.assertTrue(np.allclose(preds[1], 1.5 * x + 2.5))

Sylvain Gugger's avatar
Sylvain Gugger committed
921
922
923
924
925
926
        # With more than one output/label of the model
        trainer = get_regression_trainer(a=1.5, b=2.5, double_output=True, label_names=["labels", "labels_2"])
        outputs = trainer.predict(trainer.eval_dataset)
        preds = outputs.predictions
        labels = outputs.label_ids
        x = trainer.eval_dataset.x
927
        self.assertEqual(len(preds), 2)
Sylvain Gugger's avatar
Sylvain Gugger committed
928
929
930
931
932
        self.assertTrue(np.allclose(preds[0], 1.5 * x + 2.5))
        self.assertTrue(np.allclose(preds[1], 1.5 * x + 2.5))
        self.assertTrue(np.array_equal(labels[0], trainer.eval_dataset.ys[0]))
        self.assertTrue(np.array_equal(labels[1], trainer.eval_dataset.ys[1]))

933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
    @require_torch_bf16
    @require_intel_extension_for_pytorch
    def test_predict_with_ipex(self):
        for mix_bf16 in [True, False]:
            trainer = get_regression_trainer(a=1.5, b=2.5, use_ipex=True, bf16=mix_bf16, no_cuda=True)
            preds = trainer.predict(trainer.eval_dataset).predictions
            x = trainer.eval_dataset.x
            self.assertTrue(np.allclose(preds, 1.5 * x + 2.5))

            # With a number of elements not a round multiple of the batch size
            trainer = get_regression_trainer(a=1.5, b=2.5, eval_len=66, use_ipex=True, bf16=mix_bf16, no_cuda=True)
            preds = trainer.predict(trainer.eval_dataset).predictions
            x = trainer.eval_dataset.x
            self.assertTrue(np.allclose(preds, 1.5 * x + 2.5))

            # With more than one output of the model
            trainer = get_regression_trainer(
                a=1.5, b=2.5, double_output=True, use_ipex=True, bf16=mix_bf16, no_cuda=True
            )
            preds = trainer.predict(trainer.eval_dataset).predictions
            x = trainer.eval_dataset.x
            self.assertEqual(len(preds), 2)
            self.assertTrue(np.allclose(preds[0], 1.5 * x + 2.5))
            self.assertTrue(np.allclose(preds[1], 1.5 * x + 2.5))

            # With more than one output/label of the model
            trainer = get_regression_trainer(
                a=1.5,
                b=2.5,
                double_output=True,
                label_names=["labels", "labels_2"],
                use_ipex=True,
                bf16=mix_bf16,
                no_cuda=True,
            )
            outputs = trainer.predict(trainer.eval_dataset)
            preds = outputs.predictions
            labels = outputs.label_ids
            x = trainer.eval_dataset.x
            self.assertEqual(len(preds), 2)
            self.assertTrue(np.allclose(preds[0], 1.5 * x + 2.5))
            self.assertTrue(np.allclose(preds[1], 1.5 * x + 2.5))
            self.assertTrue(np.array_equal(labels[0], trainer.eval_dataset.ys[0]))
            self.assertTrue(np.array_equal(labels[1], trainer.eval_dataset.ys[1]))

978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
    def test_dynamic_shapes(self):
        eval_dataset = DynamicShapesDataset(batch_size=self.batch_size)
        model = RegressionModel(a=2, b=1)
        args = TrainingArguments("./regression")
        trainer = Trainer(model, args, eval_dataset=eval_dataset)

        # Check evaluation can run to completion
        _ = trainer.evaluate()

        # Check predictions
        preds = trainer.predict(eval_dataset)
        for expected, seen in zip(eval_dataset.ys, preds.label_ids):
            self.assertTrue(np.array_equal(expected, seen[: expected.shape[0]]))
            self.assertTrue(np.all(seen[expected.shape[0] :] == -100))

        for expected, seen in zip(eval_dataset.xs, preds.predictions):
            self.assertTrue(np.array_equal(2 * expected + 1, seen[: expected.shape[0]]))
            self.assertTrue(np.all(seen[expected.shape[0] :] == -100))

        # Same tests with eval accumulation
        args = TrainingArguments("./regression", eval_accumulation_steps=2)
        trainer = Trainer(model, args, eval_dataset=eval_dataset)

        # Check evaluation can run to completion
        _ = trainer.evaluate()

        # Check predictions
        preds = trainer.predict(eval_dataset)
        for expected, seen in zip(eval_dataset.ys, preds.label_ids):
            self.assertTrue(np.array_equal(expected, seen[: expected.shape[0]]))
            self.assertTrue(np.all(seen[expected.shape[0] :] == -100))

        for expected, seen in zip(eval_dataset.xs, preds.predictions):
            self.assertTrue(np.array_equal(2 * expected + 1, seen[: expected.shape[0]]))
            self.assertTrue(np.all(seen[expected.shape[0] :] == -100))

1014
    def test_log_level(self):
1015
        # testing only --log_level (--log_level_replica requires multiple gpus and DDP and is tested elsewhere)
1016
1017
1018
        logger = logging.get_logger()
        log_info_string = "Running training"

1019
        # test with the default log_level - should be info and thus log on the main process
1020
1021
1022
1023
1024
        with CaptureLogger(logger) as cl:
            trainer = get_regression_trainer()
            trainer.train()
        self.assertIn(log_info_string, cl.out)

1025
        # test with low log_level - lower than info
1026
1027
1028
1029
1030
        with CaptureLogger(logger) as cl:
            trainer = get_regression_trainer(log_level="debug")
            trainer.train()
        self.assertIn(log_info_string, cl.out)

1031
        # test with high log_level - should be quiet
1032
1033
1034
1035
1036
        with CaptureLogger(logger) as cl:
            trainer = get_regression_trainer(log_level="error")
            trainer.train()
        self.assertNotIn(log_info_string, cl.out)

1037
1038
1039
1040
1041
1042
1043
1044
    def test_save_checkpoints(self):
        with tempfile.TemporaryDirectory() as tmpdir:
            trainer = get_regression_trainer(output_dir=tmpdir, save_steps=5)
            trainer.train()
            self.check_saved_checkpoints(tmpdir, 5, int(self.n_epochs * 64 / self.batch_size))

        # With a regular model that is not a PreTrainedModel
        with tempfile.TemporaryDirectory() as tmpdir:
1045
            trainer = get_regression_trainer(output_dir=tmpdir, save_steps=5, pretrained=False)
1046
1047
1048
            trainer.train()
            self.check_saved_checkpoints(tmpdir, 5, int(self.n_epochs * 64 / self.batch_size), False)

1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
    @require_torch_multi_gpu
    def test_run_seq2seq_double_train_wrap_once(self):
        # test that we don't wrap the model more than once
        # since wrapping primarily happens on multi-gpu setup we want multiple gpus to test for
        # example DataParallel(DataParallel(model))

        trainer = get_regression_trainer()
        trainer.train()
        model_wrapped_before = trainer.model_wrapped
        trainer.train()
        model_wrapped_after = trainer.model_wrapped
        self.assertIs(model_wrapped_before, model_wrapped_after, "should be not wrapped twice")

1062
    @require_torch_up_to_2_gpus
1063
    def test_can_resume_training(self):
1064
1065
1066
        # This test will fail for more than 2 GPUs since the batch size will get bigger and with the number of
        # save_steps, the checkpoint will resume training at epoch 2 or more (so the data seen by the model
        # won't be the same since the training dataloader is shuffled).
1067

1068
        with tempfile.TemporaryDirectory() as tmpdir:
1069
1070
            kwargs = dict(output_dir=tmpdir, train_len=128, save_steps=5, learning_rate=0.1)
            trainer = get_regression_trainer(**kwargs)
1071
1072
1073
1074
1075
1076
            trainer.train()
            (a, b) = trainer.model.a.item(), trainer.model.b.item()
            state = dataclasses.asdict(trainer.state)

            checkpoint = os.path.join(tmpdir, "checkpoint-5")

1077
            # Reinitialize trainer
1078
            trainer = get_regression_trainer(**kwargs)
1079

1080
            trainer.train(resume_from_checkpoint=checkpoint)
1081
1082
1083
1084
            (a1, b1) = trainer.model.a.item(), trainer.model.b.item()
            state1 = dataclasses.asdict(trainer.state)
            self.assertEqual(a, a1)
            self.assertEqual(b, b1)
1085
            self.check_trainer_state_are_the_same(state, state1)
1086

1087
1088
1089
1090
            # Now check with a later checkpoint that it also works when we span over one epoch
            checkpoint = os.path.join(tmpdir, "checkpoint-15")

            # Reinitialize trainer and load model
1091
            trainer = get_regression_trainer(**kwargs)
1092

1093
            trainer.train(resume_from_checkpoint=checkpoint)
1094
1095
1096
1097
            (a1, b1) = trainer.model.a.item(), trainer.model.b.item()
            state1 = dataclasses.asdict(trainer.state)
            self.assertEqual(a, a1)
            self.assertEqual(b, b1)
1098
            self.check_trainer_state_are_the_same(state, state1)
1099

1100
1101
        # With a regular model that is not a PreTrainedModel
        with tempfile.TemporaryDirectory() as tmpdir:
1102
1103
1104
            kwargs = dict(output_dir=tmpdir, train_len=128, save_steps=5, learning_rate=0.1, pretrained=False)

            trainer = get_regression_trainer(**kwargs)
1105
1106
1107
1108
1109
1110
1111
            trainer.train()
            (a, b) = trainer.model.a.item(), trainer.model.b.item()
            state = dataclasses.asdict(trainer.state)

            checkpoint = os.path.join(tmpdir, "checkpoint-5")

            # Reinitialize trainer and load model
1112
            trainer = get_regression_trainer(**kwargs)
1113

1114
            trainer.train(resume_from_checkpoint=checkpoint)
1115
1116
1117
1118
            (a1, b1) = trainer.model.a.item(), trainer.model.b.item()
            state1 = dataclasses.asdict(trainer.state)
            self.assertEqual(a, a1)
            self.assertEqual(b, b1)
1119
            self.check_trainer_state_are_the_same(state, state1)
1120

1121
1122
1123
1124
            # Now check with a later checkpoint that it also works when we span over one epoch
            checkpoint = os.path.join(tmpdir, "checkpoint-15")

            # Reinitialize trainer and load model
1125
            trainer = get_regression_trainer(**kwargs)
1126

1127
            trainer.train(resume_from_checkpoint=checkpoint)
1128
1129
1130
1131
            (a1, b1) = trainer.model.a.item(), trainer.model.b.item()
            state1 = dataclasses.asdict(trainer.state)
            self.assertEqual(a, a1)
            self.assertEqual(b, b1)
1132
            self.check_trainer_state_are_the_same(state, state1)
1133

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
        # Now check failures

        # 1. fail to find a bogus checkpoint
        trainer = get_regression_trainer()
        with self.assertRaises(Exception) as context:
            trainer.train(resume_from_checkpoint=f"{checkpoint}-bogus")
        self.assertTrue("Can't find a valid checkpoint at" in str(context.exception))

        # 2. fail to find any checkpoint - due a fresh output_dir
        output_dir2 = self.get_auto_remove_tmp_dir()
        trainer = get_regression_trainer(output_dir=output_dir2)
        with self.assertRaises(Exception) as context:
            trainer.train(resume_from_checkpoint=True)
        self.assertTrue("No valid checkpoint found in output directory" in str(context.exception))

1149
    def test_resume_training_with_randomness(self):
1150
1151
1152
1153
        # For more than 1 GPUs, since the randomness is introduced in the model and with DataParallel (which is used
        # in this test for more than 2 GPUs), the calls to the torch RNG will happen in a random order (sometimes
        # GPU 0 will call first and sometimes GPU 1).
        random_torch = not torch.cuda.is_available() or torch.cuda.device_count() <= 1
1154
1155
1156
1157
1158
1159

        if torch.cuda.is_available():
            torch.backends.cudnn.deterministic = True
        train_dataset = RegressionDataset(length=128)
        eval_dataset = RegressionDataset()

1160
1161
1162
        with self.subTest("Test every step"):
            config = RegressionModelConfig(a=0, b=2, random_torch=random_torch)
            model = RegressionRandomPreTrainedModel(config)
1163

1164
1165
1166
            tmp_dir = self.get_auto_remove_tmp_dir()
            args = RegressionTrainingArguments(tmp_dir, save_steps=5, learning_rate=0.1)
            trainer = Trainer(model, args, train_dataset=train_dataset, eval_dataset=eval_dataset)
1167

1168
1169
            trainer.train()
            (a, b) = trainer.model.a.item(), trainer.model.b.item()
1170

1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
            model = RegressionRandomPreTrainedModel(config)
            trainer = Trainer(model, args, train_dataset=train_dataset, eval_dataset=eval_dataset)
            trainer.train(resume_from_checkpoint=os.path.join(tmp_dir, "checkpoint-15"))
            (a1, b1) = trainer.model.a.item(), trainer.model.b.item()

            self.assertAlmostEqual(a, a1, delta=1e-8)
            self.assertAlmostEqual(b, b1, delta=1e-8)

        with self.subTest("Test every epoch"):
            config = RegressionModelConfig(a=0, b=2, random_torch=random_torch)
            model = RegressionRandomPreTrainedModel(config)

            tmp_dir = self.get_auto_remove_tmp_dir()
            args = RegressionTrainingArguments(tmp_dir, save_strategy="epoch", learning_rate=0.1)
            trainer = Trainer(model, args, train_dataset=train_dataset, eval_dataset=eval_dataset)

            trainer.train()
            (a, b) = trainer.model.a.item(), trainer.model.b.item()

            model = RegressionRandomPreTrainedModel(config)
            trainer = Trainer(model, args, train_dataset=train_dataset, eval_dataset=eval_dataset)

            checkpoints = [d for d in os.listdir(tmp_dir) if d.startswith("checkpoint-")]
            # There should be one checkpoint per epoch.
            self.assertEqual(len(checkpoints), 3)
            checkpoint_dir = sorted(checkpoints, key=lambda x: int(x.replace("checkpoint-", "")))[0]

            trainer.train(resume_from_checkpoint=os.path.join(tmp_dir, checkpoint_dir))
            (a1, b1) = trainer.model.a.item(), trainer.model.b.item()
1200

1201
1202
            self.assertAlmostEqual(a, a1, delta=1e-8)
            self.assertAlmostEqual(b, b1, delta=1e-8)
1203

1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
    @slow
    @require_torch_non_multi_gpu
    def test_auto_batch_size_finder(self):

        if torch.cuda.is_available():
            torch.backends.cudnn.deterministic = True

        SRC_DIR = os.path.abspath(
            os.path.join(os.path.dirname(__file__), "..", "..", "examples", "pytorch", "text-classification")
        )
        sys.path.append(SRC_DIR)
        import run_glue

        with tempfile.TemporaryDirectory() as tmpdir:
            testargs = f"""
                run_glue.py
                --model_name_or_path distilbert-base-uncased
                --task_name mrpc
                --do_train
                --do_eval
                --max_seq_len 128
                --per_device_train_batch_size 4096
                --learning_rate 2e-5
                --num_train_epochs 1
                --output_dir {tmpdir}
                --auto_find_batch_size 0
                """.split()
            with self.assertRaises(RuntimeError):
                with patch.object(sys, "argv", testargs):
                    run_glue.main()

        testargs[-1] = "1"
        with patch.object(sys, "argv", testargs):
            run_glue.main()

1239
    # regression for this issue: https://github.com/huggingface/transformers/issues/12970
1240
    def test_training_with_resume_from_checkpoint_false(self):
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
        train_dataset = RegressionDataset(length=128)
        eval_dataset = RegressionDataset()

        config = RegressionModelConfig(a=0, b=2)
        model = RegressionRandomPreTrainedModel(config)

        tmp_dir = self.get_auto_remove_tmp_dir()
        args = RegressionTrainingArguments(tmp_dir, save_steps=5, learning_rate=0.1)
        trainer = Trainer(model, args, train_dataset=train_dataset, eval_dataset=eval_dataset)

        trainer.train(resume_from_checkpoint=False)

1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
    @require_torch_up_to_2_gpus
    def test_resume_training_with_shard_checkpoint(self):
        # This test will fail for more than 2 GPUs since the batch size will get bigger and with the number of
        # save_steps, the checkpoint will resume training at epoch 2 or more (so the data seen by the model
        # won't be the same since the training dataloader is shuffled).

        with tempfile.TemporaryDirectory() as tmpdir:
            trainer = get_regression_trainer(output_dir=tmpdir, train_len=128, save_steps=5, learning_rate=0.1)
            trainer.train()
            (a, b) = trainer.model.a.item(), trainer.model.b.item()
            state = dataclasses.asdict(trainer.state)

            checkpoint = os.path.join(tmpdir, "checkpoint-5")
            self.convert_to_sharded_checkpoint(checkpoint)

            # Reinitialize trainer
            trainer = get_regression_trainer(output_dir=tmpdir, train_len=128, save_steps=5, learning_rate=0.1)

            trainer.train(resume_from_checkpoint=checkpoint)
            (a1, b1) = trainer.model.a.item(), trainer.model.b.item()
            state1 = dataclasses.asdict(trainer.state)
            self.assertEqual(a, a1)
            self.assertEqual(b, b1)
            self.check_trainer_state_are_the_same(state, state1)

1278
    @require_torch_up_to_2_gpus
1279
    def test_resume_training_with_gradient_accumulation(self):
1280
1281
1282
1283
        # This test will fail for more than 2 GPUs since the batch size will get bigger and with the number of
        # save_steps, the checkpoint will resume training at epoch 2 or more (so the data seen by the model
        # won't be the same since the training dataloader is shuffled).

1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
        with tempfile.TemporaryDirectory() as tmpdir:
            trainer = get_regression_trainer(
                output_dir=tmpdir,
                train_len=128,
                gradient_accumulation_steps=2,
                per_device_train_batch_size=4,
                save_steps=5,
                learning_rate=0.1,
            )
            trainer.train()
            (a, b) = trainer.model.a.item(), trainer.model.b.item()
            state = dataclasses.asdict(trainer.state)

            checkpoint = os.path.join(tmpdir, "checkpoint-5")

1299
1300
1301
1302
1303
1304
1305
1306
1307
            # Reinitialize trainer
            trainer = get_regression_trainer(
                output_dir=tmpdir,
                train_len=128,
                gradient_accumulation_steps=2,
                per_device_train_batch_size=4,
                save_steps=5,
                learning_rate=0.1,
            )
1308

1309
            trainer.train(resume_from_checkpoint=checkpoint)
1310
            (a1, b1) = trainer.model.a.item(), trainer.model.b.item()
1311
1312
1313
1314
1315
            state1 = dataclasses.asdict(trainer.state)
            self.assertEqual(a, a1)
            self.assertEqual(b, b1)
            self.check_trainer_state_are_the_same(state, state1)

1316
    @require_torch_up_to_2_gpus
1317
    def test_resume_training_with_frozen_params(self):
1318
1319
1320
1321
        # This test will fail for more than 2 GPUs since the batch size will get bigger and with the number of
        # save_steps, the checkpoint will resume training at epoch 2 or more (so the data seen by the model
        # won't be the same since the training dataloader is shuffled).

1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
        with tempfile.TemporaryDirectory() as tmpdir:
            trainer = get_regression_trainer(
                output_dir=tmpdir,
                train_len=128,
                per_device_train_batch_size=4,
                save_steps=5,
                learning_rate=0.1,
            )
            trainer.model.a.requires_grad_(False)
            trainer.train()
            (a, b) = trainer.model.a.item(), trainer.model.b.item()
            state = dataclasses.asdict(trainer.state)

            checkpoint = os.path.join(tmpdir, "checkpoint-5")

            # Reinitialize trainer
            trainer = get_regression_trainer(
                output_dir=tmpdir,
                train_len=128,
                per_device_train_batch_size=4,
                save_steps=5,
                learning_rate=0.1,
            )
            trainer.model.a.requires_grad_(False)

            trainer.train(resume_from_checkpoint=checkpoint)

            self.assertFalse(trainer.model.a.requires_grad)
            (a1, b1) = trainer.model.a.item(), trainer.model.b.item()
1351
1352
1353
            state1 = dataclasses.asdict(trainer.state)
            self.assertEqual(a, a1)
            self.assertEqual(b, b1)
1354
            self.check_trainer_state_are_the_same(state, state1)
1355

1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
    def test_load_best_model_at_end(self):
        total = int(self.n_epochs * 64 / self.batch_size)
        with tempfile.TemporaryDirectory() as tmpdir:
            trainer = get_regression_trainer(
                a=1.5,
                b=2.5,
                output_dir=tmpdir,
                learning_rate=0.1,
                eval_steps=5,
                evaluation_strategy="steps",
1366
                save_steps=5,
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
                load_best_model_at_end=True,
            )
            self.assertFalse(trainer.args.greater_is_better)
            trainer.train()
            self.check_saved_checkpoints(tmpdir, 5, total)
            self.check_best_model_has_been_loaded(tmpdir, 5, total, trainer, "eval_loss")

        with tempfile.TemporaryDirectory() as tmpdir:
            trainer = get_regression_trainer(
                a=1.5,
                b=2.5,
                output_dir=tmpdir,
                learning_rate=0.1,
                eval_steps=5,
                evaluation_strategy="steps",
1382
                save_steps=5,
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
                load_best_model_at_end=True,
                metric_for_best_model="accuracy",
                compute_metrics=AlmostAccuracy(),
            )
            self.assertTrue(trainer.args.greater_is_better)
            trainer.train()
            self.check_saved_checkpoints(tmpdir, 5, total)
            self.check_best_model_has_been_loaded(tmpdir, 5, total, trainer, "eval_accuracy", greater_is_better=True)

        with tempfile.TemporaryDirectory() as tmpdir:
            trainer = get_regression_trainer(
                a=1.5,
                b=2.5,
                output_dir=tmpdir,
                learning_rate=0.1,
                evaluation_strategy="epoch",
1399
                save_strategy="epoch",
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
                load_best_model_at_end=True,
                metric_for_best_model="accuracy",
                compute_metrics=AlmostAccuracy(),
            )
            self.assertTrue(trainer.args.greater_is_better)
            trainer.train()
            self.check_saved_checkpoints(tmpdir, 64 // self.batch_size, total)
            self.check_best_model_has_been_loaded(
                tmpdir, 64 // self.batch_size, total, trainer, "eval_accuracy", greater_is_better=True
            )

        # Test this works with a non PreTrainedModel
        with tempfile.TemporaryDirectory() as tmpdir:
            trainer = get_regression_trainer(
                output_dir=tmpdir,
                learning_rate=0.1,
                eval_steps=5,
                evaluation_strategy="steps",
1418
                save_steps=5,
1419
                load_best_model_at_end=True,
1420
                pretrained=False,
1421
1422
1423
1424
1425
1426
            )
            self.assertFalse(trainer.args.greater_is_better)
            trainer.train()
            self.check_saved_checkpoints(tmpdir, 5, total, is_pretrained=False)
            self.check_best_model_has_been_loaded(tmpdir, 5, total, trainer, "eval_loss", is_pretrained=False)

1427
    @slow
Julien Chaumond's avatar
Julien Chaumond committed
1428
1429
1430
1431
1432
    def test_trainer_eval_mrpc(self):
        MODEL_ID = "bert-base-cased-finetuned-mrpc"
        tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
        model = AutoModelForSequenceClassification.from_pretrained(MODEL_ID)
        data_args = GlueDataTrainingArguments(
1433
            task_name="mrpc", data_dir=f"{get_tests_dir()}/fixtures/tests_samples/MRPC", overwrite_cache=True
Julien Chaumond's avatar
Julien Chaumond committed
1434
        )
1435
        eval_dataset = GlueDataset(data_args, tokenizer=tokenizer, mode="dev")
Julien Chaumond's avatar
Julien Chaumond committed
1436
1437
1438
1439

        training_args = TrainingArguments(output_dir="./examples", no_cuda=True)
        trainer = Trainer(model=model, args=training_args, eval_dataset=eval_dataset)
        result = trainer.evaluate()
1440
        self.assertLess(result["eval_loss"], 0.2)
Julien Chaumond's avatar
Julien Chaumond committed
1441

1442
    @slow
Julien Chaumond's avatar
Julien Chaumond committed
1443
1444
1445
1446
    def test_trainer_eval_lm(self):
        MODEL_ID = "distilroberta-base"
        tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
        dataset = LineByLineTextDataset(
Lysandre's avatar
Lysandre committed
1447
1448
1449
            tokenizer=tokenizer,
            file_path=PATH_SAMPLE_TEXT,
            block_size=tokenizer.max_len_single_sentence,
Julien Chaumond's avatar
Julien Chaumond committed
1450
1451
        )
        self.assertEqual(len(dataset), 31)
1452

1453
    def test_training_iterable_dataset(self):
1454
1455
        config = RegressionModelConfig()
        model = RegressionPreTrainedModel(config)
1456
1457
        # Adding one column not used by the model should have no impact
        train_dataset = SampleIterableDataset(label_names=["labels", "extra"])
1458

1459
        args = RegressionTrainingArguments(output_dir="./examples", max_steps=4)
1460
        trainer = Trainer(model=model, args=args, train_dataset=train_dataset)
1461
        trainer.train()
1462
        self.assertEqual(trainer.state.global_step, 4)
1463

1464
1465
        loader = trainer.get_train_dataloader()
        self.assertIsInstance(loader, torch.utils.data.DataLoader)
1466
1467
        self.assertIsInstance(loader.sampler, torch.utils.data.dataloader._InfiniteConstantSampler)

1468
1469
1470
1471
1472
1473
1474
    def test_training_finite_iterable_dataset(self):
        config = RegressionModelConfig()
        model = RegressionPreTrainedModel(config)

        batch_size = 1
        num_samples = 10

1475
        available_steps = num_samples // batch_size
1476
1477
1478

        data = FiniteIterableDataset(length=num_samples)
        train_args = TrainingArguments(
1479
            "..",
1480
1481
1482
1483
1484
1485
1486
1487
            max_steps=available_steps + 1,  # set a higher number than actually available
            per_device_train_batch_size=batch_size,
        )
        trainer = Trainer(model, train_dataset=data, args=train_args)
        with self.assertLogs("transformers.trainer", level="WARNING") as logs:
            trainer.train()
        self.assertIn(f"stopping training at step {available_steps}!", logs.output[0])

1488
1489
1490
    def test_evaluation_iterable_dataset(self):
        config = RegressionModelConfig(a=1.5, b=2.5)
        model = RegressionPreTrainedModel(config)
1491
1492
        # Adding one column not used by the model should have no impact
        eval_dataset = SampleIterableDataset(label_names=["labels", "extra"])
1493
1494
1495
1496

        args = RegressionTrainingArguments(output_dir="./examples")
        trainer = Trainer(model=model, args=args, eval_dataset=eval_dataset, compute_metrics=AlmostAccuracy())
        results = trainer.evaluate()
1497

1498
1499
1500
1501
1502
1503
        x, y = trainer.eval_dataset.dataset.x, trainer.eval_dataset.dataset.ys[0]
        pred = 1.5 * x + 2.5
        expected_loss = ((pred - y) ** 2).mean()
        self.assertAlmostEqual(results["eval_loss"], expected_loss)
        expected_acc = AlmostAccuracy()((pred, y))["accuracy"]
        self.assertAlmostEqual(results["eval_accuracy"], expected_acc)
1504

1505
1506
1507
        # With a number of elements not a round multiple of the batch size
        eval_dataset = SampleIterableDataset(length=66)
        results = trainer.evaluate(eval_dataset)
1508

1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
        x, y = eval_dataset.dataset.x, eval_dataset.dataset.ys[0]
        pred = 1.5 * x + 2.5
        expected_loss = ((pred - y) ** 2).mean()
        self.assertAlmostEqual(results["eval_loss"], expected_loss)
        expected_acc = AlmostAccuracy()((pred, y))["accuracy"]
        self.assertAlmostEqual(results["eval_accuracy"], expected_acc)

    def test_predict_iterable_dataset(self):
        config = RegressionModelConfig(a=1.5, b=2.5)
        model = RegressionPreTrainedModel(config)
        eval_dataset = SampleIterableDataset()

        args = RegressionTrainingArguments(output_dir="./examples")
        trainer = Trainer(model=model, args=args, eval_dataset=eval_dataset, compute_metrics=AlmostAccuracy())

        preds = trainer.predict(trainer.eval_dataset).predictions
        x = eval_dataset.dataset.x
        self.assertTrue(np.allclose(preds, 1.5 * x + 2.5))

        # With a number of elements not a round multiple of the batch size
1529
1530
        # Adding one column not used by the model should have no impact
        test_dataset = SampleIterableDataset(length=66, label_names=["labels", "extra"])
1531
1532
1533
        preds = trainer.predict(test_dataset).predictions
        x = test_dataset.dataset.x
        self.assertTrue(np.allclose(preds, 1.5 * x + 2.5))
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548

    def test_num_train_epochs_in_training(self):
        # len(train_dl) < gradient_accumulation_steps shouldn't give ``ZeroDivisionError`` when ``max_steps`` is given.
        # It should give 1 update step for each epoch.
        trainer = get_regression_trainer(
            max_steps=3, train_len=64, per_device_train_batch_size=16, gradient_accumulation_steps=5
        )
        train_output = trainer.train()
        self.assertEqual(train_output.global_step, 3)

        # Even ``max_steps`` is not specified, we still expect 1 update step for each epoch if
        # len(train_dl) < gradient_accumulation_steps.
        trainer = get_regression_trainer(train_len=64, per_device_train_batch_size=16, gradient_accumulation_steps=5)
        train_output = trainer.train()
        self.assertEqual(train_output.global_step, int(self.n_epochs))
Marcin Zab艂ocki's avatar
Marcin Zab艂ocki committed
1549

1550
1551
    def test_early_stopping_callback(self):
        # early stopping stops training before num_training_epochs
1552
1553
1554
1555
1556
1557
1558
        with tempfile.TemporaryDirectory() as tmp_dir:
            trainer = get_regression_trainer(
                output_dir=tmp_dir,
                num_train_epochs=20,
                gradient_accumulation_steps=1,
                per_device_train_batch_size=16,
                load_best_model_at_end=True,
1559
                evaluation_strategy=IntervalStrategy.EPOCH,
1560
                save_strategy=IntervalStrategy.EPOCH,
1561
1562
1563
1564
1565
1566
                compute_metrics=AlmostAccuracy(),
                metric_for_best_model="accuracy",
            )
            trainer.add_callback(EarlyStoppingCallback(1, 0.0001))
            train_output = trainer.train()
            self.assertLess(train_output.global_step, 20 * 64 / 16)
1567
1568

        # Invalid inputs to trainer with early stopping callback result in assertion error
1569
1570
1571
1572
1573
1574
        with tempfile.TemporaryDirectory() as tmp_dir:
            trainer = get_regression_trainer(
                output_dir=tmp_dir,
                num_train_epochs=20,
                gradient_accumulation_steps=1,
                per_device_train_batch_size=16,
1575
                evaluation_strategy=IntervalStrategy.EPOCH,
1576
1577
1578
1579
                compute_metrics=AlmostAccuracy(),
                metric_for_best_model="accuracy",
            )
            trainer.add_callback(EarlyStoppingCallback(1))
1580
            self.assertEqual(trainer.state.global_step, 0)
1581
1582
1583
1584
            try:
                trainer.train()
            except AssertionError:
                self.assertEqual(trainer.state.global_step, 0)
1585

Marcin Zab艂ocki's avatar
Marcin Zab艂ocki committed
1586
1587
1588
1589
    def test_flos_extraction(self):
        trainer = get_regression_trainer(learning_rate=0.1)

        def assert_flos_extraction(trainer, wrapped_model_to_check):
1590
1591
            self.assertEqual(trainer.model, unwrap_model(wrapped_model_to_check))
            self.assertGreaterEqual(getattr(unwrap_model(wrapped_model_to_check).config, "total_flos", 0), 0)
Marcin Zab艂ocki's avatar
Marcin Zab艂ocki committed
1592
1593
1594
1595
1596

        # with plain model
        assert_flos_extraction(trainer, trainer.model)

        # with enforced DataParallel
1597
        assert_flos_extraction(trainer, nn.DataParallel(trainer.model))
1598

1599
1600
1601
        trainer.train()
        self.assertTrue(isinstance(trainer.state.total_flos, float))

1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
    def check_checkpoint_deletion(self, trainer, output_dir, expected):
        # Make fake checkpoints
        for n in [5, 10, 15, 20, 25]:
            os.makedirs(os.path.join(output_dir, f"{PREFIX_CHECKPOINT_DIR}-{n}"), exist_ok=True)
        trainer._rotate_checkpoints(output_dir=output_dir)
        glob_checkpoints = [str(x) for x in Path(output_dir).glob(f"{PREFIX_CHECKPOINT_DIR}-*")]
        values = [int(re.match(f".*{PREFIX_CHECKPOINT_DIR}-([0-9]+)", d).groups()[0]) for d in glob_checkpoints]
        self.assertSetEqual(set(values), set(expected))

    def test_checkpoint_rotation(self):
        with tempfile.TemporaryDirectory() as tmp_dir:
            # Without best model at end
            trainer = get_regression_trainer(output_dir=tmp_dir, save_total_limit=2)
            self.check_checkpoint_deletion(trainer, tmp_dir, [20, 25])

            # With best model at end
1618
1619
1620
            trainer = get_regression_trainer(
                output_dir=tmp_dir, evaluation_strategy="steps", load_best_model_at_end=True, save_total_limit=2
            )
1621
1622
1623
1624
1625
            trainer.state.best_model_checkpoint = os.path.join(tmp_dir, "checkpoint-5")
            self.check_checkpoint_deletion(trainer, tmp_dir, [5, 25])

            # Edge case: we don't always honor save_total_limit=1 if load_best_model_at_end=True to be able to resume
            # from checkpoint
1626
1627
1628
            trainer = get_regression_trainer(
                output_dir=tmp_dir, evaluation_strategy="steps", load_best_model_at_end=True, save_total_limit=1
            )
1629
1630
1631
1632
1633
1634
            trainer.state.best_model_checkpoint = os.path.join(tmp_dir, "checkpoint-25")
            self.check_checkpoint_deletion(trainer, tmp_dir, [25])

            trainer.state.best_model_checkpoint = os.path.join(tmp_dir, "checkpoint-5")
            self.check_checkpoint_deletion(trainer, tmp_dir, [5, 25])

1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
    def check_mem_metrics(self, trainer, check_func):
        metrics = trainer.train().metrics
        check_func("init_mem_cpu_alloc_delta", metrics)
        check_func("train_mem_cpu_alloc_delta", metrics)
        if torch.cuda.device_count() > 0:
            check_func("init_mem_gpu_alloc_delta", metrics)
            check_func("train_mem_gpu_alloc_delta", metrics)

        metrics = trainer.evaluate()
        check_func("eval_mem_cpu_alloc_delta", metrics)
        if torch.cuda.device_count() > 0:
            check_func("eval_mem_gpu_alloc_delta", metrics)

        metrics = trainer.predict(RegressionDataset()).metrics
        check_func("test_mem_cpu_alloc_delta", metrics)
        if torch.cuda.device_count() > 0:
            check_func("test_mem_gpu_alloc_delta", metrics)

    def test_mem_metrics(self):

        # with mem metrics enabled
1656
        trainer = get_regression_trainer(skip_memory_metrics=False)
1657
1658
1659
1660
1661
1662
        self.check_mem_metrics(trainer, self.assertIn)

        # with mem metrics disabled
        trainer = get_regression_trainer(skip_memory_metrics=True)
        self.check_mem_metrics(trainer, self.assertNotIn)

1663
1664
1665
1666
1667
1668
    @require_torch_gpu
    def test_fp16_full_eval(self):

        # this is a sensitive test so let's keep debugging printouts in place for quick diagnosis.
        # it's using pretty large safety margins, but small enough to detect broken functionality.
        debug = 0
1669
        n_gpus = get_gpu_count()
1670
1671

        bs = 8
1672
        eval_len = 16 * n_gpus
1673
1674
1675
1676
1677
        # make the params somewhat big so that there will be enough RAM consumed to be able to
        # measure things. We should get about 64KB for a+b in fp32
        a = torch.ones(1000, bs) + 0.001
        b = torch.ones(1000, bs) - 0.001

1678
        # 1. with fp16_full_eval disabled
1679
        trainer = get_regression_trainer(a=a, b=b, eval_len=eval_len, skip_memory_metrics=False)
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
        metrics = trainer.evaluate()
        del trainer
        gc.collect()

        fp32_init = metrics["init_mem_gpu_alloc_delta"]
        fp32_eval = metrics["eval_mem_gpu_alloc_delta"]

        if debug:
            print(f"fp32_init {fp32_init}")
            print(f"fp32_eval {fp32_eval}")

        # here we expect the model to be preloaded in trainer.__init__ and consume around 64K gpu ram.
        # perfect world: fp32_init == 64<<10
        self.assertGreater(fp32_init, 59_000)
        # after eval should be no extra memory allocated - with a small margin (other than the peak
        # memory consumption for the forward calculation that gets recovered)
        # perfect world: fp32_eval == close to zero
        self.assertLess(fp32_eval, 5_000)

1699
        # 2. with fp16_full_eval enabled
1700
        trainer = get_regression_trainer(a=a, b=b, eval_len=eval_len, fp16_full_eval=True, skip_memory_metrics=False)
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
        metrics = trainer.evaluate()
        fp16_init = metrics["init_mem_gpu_alloc_delta"]
        fp16_eval = metrics["eval_mem_gpu_alloc_delta"]

        if debug:
            print(f"fp16_init {fp16_init}")
            print(f"fp16_eval {fp16_eval}")

        # here we expect the model to not be preloaded in trainer.__init__, so with a small margin it should be close to 0
        # perfect world: fp16_init == close to zero
        self.assertLess(fp16_init, 5_000)
        # here we put the model on device in eval and only `half()` of it, i.e. about 32K,(again we ignore the peak margin which gets returned back)
        # perfect world: fp32_init == 32<<10
        self.assertGreater(fp16_eval, 27_000)

        # 3. relative comparison fp32 vs full fp16
        # should be about half of fp16_init
        # perfect world: fp32_init/2 == fp16_eval
        self.assertAlmostEqual(fp16_eval, fp32_init / 2, delta=5_000)

1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
    @require_torch_non_multi_gpu
    @require_torchdynamo
    def test_torchdynamo_full_eval(self):
        # torchdynamo at the moment doesn't support DP/DDP, therefore require a single gpu
        n_gpus = get_gpu_count()

        bs = 8
        eval_len = 16 * n_gpus
        # make the params are somewhat big so that there will be enough RAM consumed to be able to
        # measure things. We should get about 64KB for a+b in fp32
        a = torch.ones(1000, bs) + 0.001
        b = torch.ones(1000, bs) - 0.001

        # 1. Default - without TorchDynamo
        trainer = get_regression_trainer(a=a, b=b, eval_len=eval_len)
        metrics = trainer.evaluate()
        original_eval_loss = metrics["eval_loss"]
        del trainer

        # 2. TorchDynamo eager
        trainer = get_regression_trainer(a=a, b=b, eval_len=eval_len, torchdynamo="eager")
        metrics = trainer.evaluate()
        self.assertAlmostEqual(metrics["eval_loss"], original_eval_loss)
        del trainer

        # 3. TorchDynamo nvfuser
        trainer = get_regression_trainer(a=a, b=b, eval_len=eval_len, torchdynamo="nvfuser")
        metrics = trainer.evaluate()
        self.assertAlmostEqual(metrics["eval_loss"], original_eval_loss)

    @require_torch_non_multi_gpu
    @require_torchdynamo
    def test_torchdynamo_memory(self):
        # torchdynamo at the moment doesn't support DP/DDP, therefore require a single gpu
        class CustomTrainer(Trainer):
            def compute_loss(self, model, inputs, return_outputs=False):
                x = inputs["x"]
                output = model(x)
                if self.args.n_gpu == 1:
                    return output.mean()
                return output

        class MyModule(torch.nn.Module):
            """Simple module that does aggressive fusion"""

            def __init__(self):
                super().__init__()

            def forward(self, x):
                for _ in range(20):
                    x = torch.nn.functional.relu(x)
                return x

        mod = MyModule()

        # 1. Default - without TorchDynamo
        a = torch.ones(1024, 1024, device="cuda", requires_grad=True)
        a.grad = None
        trainer = CustomTrainer(model=mod)
        # warmup
        for _ in range(10):
            orig_loss = trainer.training_step(mod, {"x": a})

        torch.cuda.reset_peak_memory_stats()
        orig_loss = trainer.training_step(mod, {"x": a})
        orig_peak_mem = torch.cuda.max_memory_allocated()
        del trainer

        # Reset the peak for another measurement
        gc.collect()
        torch.cuda.empty_cache()
        torch.cuda.reset_peak_memory_stats()

        # 2. TorchDynamo nvfuser
        a = torch.ones(1024, 1024, device="cuda", requires_grad=True)
        a.grad = None
        args = TrainingArguments(output_dir="None", torchdynamo="nvfuser")
        trainer = CustomTrainer(model=mod, args=args)
        # warmup
        for _ in range(10):
            loss = trainer.training_step(mod, {"x": a})

        torch.cuda.reset_peak_memory_stats()
        loss = trainer.training_step(mod, {"x": a})
        peak_mem = torch.cuda.max_memory_allocated()
        del trainer

        # Functional check
        self.assertAlmostEqual(loss, orig_loss)

        # AOT Autograd recomputaion and nvfuser recomputation optimization
        # aggressively fuses the operations and reduce the memory footprint.
        self.assertGreater(orig_peak_mem, peak_mem * 2)

1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
    @require_torch_gpu
    @require_torch_bf16
    def test_bf16_full_eval(self):
        # note: most of the logic is the same as test_fp16_full_eval

        # this is a sensitive test so let's keep debugging printouts in place for quick diagnosis.
        # it's using pretty large safety margins, but small enough to detect broken functionality.
        debug = 0
        n_gpus = get_gpu_count()

        bs = 8
        eval_len = 16 * n_gpus
        # make the params somewhat big so that there will be enough RAM consumed to be able to
        # measure things. We should get about 64KB for a+b in fp32
        a = torch.ones(1000, bs) + 0.001
        b = torch.ones(1000, bs) - 0.001

1832
        # 1. with bf16_full_eval disabled
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
        trainer = get_regression_trainer(a=a, b=b, eval_len=eval_len, skip_memory_metrics=False)
        metrics = trainer.evaluate()
        del trainer
        gc.collect()

        fp32_init = metrics["init_mem_gpu_alloc_delta"]
        fp32_eval = metrics["eval_mem_gpu_alloc_delta"]

        if debug:
            print(f"fp32_init {fp32_init}")
            print(f"fp32_eval {fp32_eval}")

        # here we expect the model to be preloaded in trainer.__init__ and consume around 64K gpu ram.
        # perfect world: fp32_init == 64<<10
        self.assertGreater(fp32_init, 59_000)
        # after eval should be no extra memory allocated - with a small margin (other than the peak
        # memory consumption for the forward calculation that gets recovered)
        # perfect world: fp32_eval == close to zero
        self.assertLess(fp32_eval, 5_000)

1853
        # 2. with bf16_full_eval enabled
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
        trainer = get_regression_trainer(a=a, b=b, eval_len=eval_len, bf16_full_eval=True, skip_memory_metrics=False)
        metrics = trainer.evaluate()
        bf16_init = metrics["init_mem_gpu_alloc_delta"]
        bf16_eval = metrics["eval_mem_gpu_alloc_delta"]

        if debug:
            print(f"bf16_init {bf16_init}")
            print(f"bf16_eval {bf16_eval}")

        # here we expect the model to not be preloaded in trainer.__init__, so with a small margin it should be close to 0
        # perfect world: bf16_init == close to zero
        self.assertLess(bf16_init, 5_000)
        # here we put the model on device in eval and only `half()` of it, i.e. about 32K,(again we ignore the peak margin which gets returned back)
        # perfect world: fp32_init == 32<<10
        self.assertGreater(bf16_eval, 27_000)

        # 3. relative comparison fp32 vs full bf16
        # should be about half of bf16_init
        # perfect world: fp32_init/2 == bf16_eval
        self.assertAlmostEqual(bf16_eval, fp32_init / 2, delta=5_000)

1875
    def test_no_wd_param_group(self):
1876
        model = nn.Sequential(TstLayer(128), nn.ModuleList([TstLayer(128), TstLayer(128)]))
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
        trainer = Trainer(model=model)
        trainer.create_optimizer_and_scheduler(10)
        # fmt: off
        wd_names = ['0.linear1.weight', '0.linear2.weight', '1.0.linear1.weight', '1.0.linear2.weight', '1.1.linear1.weight', '1.1.linear2.weight']
        # fmt: on
        wd_params = [p for n, p in model.named_parameters() if n in wd_names]
        no_wd_params = [p for n, p in model.named_parameters() if n not in wd_names]
        self.assertListEqual(trainer.optimizer.param_groups[0]["params"], wd_params)
        self.assertListEqual(trainer.optimizer.param_groups[1]["params"], no_wd_params)

1887

Sylvain Gugger's avatar
Sylvain Gugger committed
1888
1889
1890
1891
1892
@require_torch
@is_staging_test
class TrainerIntegrationWithHubTester(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
1893
        cls._token = login(username=USER, password=PASS)
Sylvain Gugger's avatar
Sylvain Gugger committed
1894
1895
1896

    @classmethod
    def tearDownClass(cls):
1897
1898
        for model in ["test-trainer", "test-trainer-epoch", "test-trainer-step"]:
            try:
1899
                delete_repo(token=cls._token, name=model)
1900
1901
            except HTTPError:
                pass
Sylvain Gugger's avatar
Sylvain Gugger committed
1902
1903

        try:
1904
            delete_repo(token=cls._token, name="test-trainer-org", organization="valid_org")
Sylvain Gugger's avatar
Sylvain Gugger committed
1905
1906
1907
1908
1909
        except HTTPError:
            pass

    def test_push_to_hub(self):
        with tempfile.TemporaryDirectory() as tmp_dir:
1910
1911
1912
            trainer = get_regression_trainer(
                output_dir=os.path.join(tmp_dir, "test-trainer"),
                push_to_hub=True,
1913
                hub_token=self._token,
1914
1915
            )
            url = trainer.push_to_hub()
Sylvain Gugger's avatar
Sylvain Gugger committed
1916
1917
1918
1919
1920
1921

            # Extract repo_name from the url
            re_search = re.search(ENDPOINT_STAGING + r"/([^/]+/[^/]+)/", url)
            self.assertTrue(re_search is not None)
            repo_name = re_search.groups()[0]

1922
            self.assertEqual(repo_name, f"{USER}/test-trainer")
Sylvain Gugger's avatar
Sylvain Gugger committed
1923
1924
1925
1926
1927
1928
1929
1930
1931

            model = RegressionPreTrainedModel.from_pretrained(repo_name)
            self.assertEqual(model.a.item(), trainer.model.a.item())
            self.assertEqual(model.b.item(), trainer.model.b.item())

    def test_push_to_hub_in_organization(self):
        with tempfile.TemporaryDirectory() as tmp_dir:
            trainer = get_regression_trainer(output_dir=tmp_dir)
            trainer.save_model()
1932
1933
1934
            trainer = get_regression_trainer(
                output_dir=os.path.join(tmp_dir, "test-trainer-org"),
                push_to_hub=True,
1935
1936
                hub_model_id="valid_org/test-trainer-org",
                hub_token=self._token,
1937
            )
1938
            url = trainer.push_to_hub()
Sylvain Gugger's avatar
Sylvain Gugger committed
1939
1940
1941
1942
1943

            # Extract repo_name from the url
            re_search = re.search(ENDPOINT_STAGING + r"/([^/]+/[^/]+)/", url)
            self.assertTrue(re_search is not None)
            repo_name = re_search.groups()[0]
1944
            self.assertEqual(repo_name, "valid_org/test-trainer-org")
Sylvain Gugger's avatar
Sylvain Gugger committed
1945

1946
            model = RegressionPreTrainedModel.from_pretrained("valid_org/test-trainer-org")
Sylvain Gugger's avatar
Sylvain Gugger committed
1947
1948
1949
            self.assertEqual(model.a.item(), trainer.model.a.item())
            self.assertEqual(model.b.item(), trainer.model.b.item())

1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
    def get_commit_history(self, repo):
        commit_logs = subprocess.run(
            "git log".split(),
            stderr=subprocess.PIPE,
            stdout=subprocess.PIPE,
            check=True,
            encoding="utf-8",
            cwd=repo,
        ).stdout
        commits = commit_logs.split("\n\n")[1::2]
        return [commit.strip() for commit in commits]

    def test_push_to_hub_with_saves_each_epoch(self):
        with tempfile.TemporaryDirectory() as tmp_dir:
            trainer = get_regression_trainer(
                output_dir=os.path.join(tmp_dir, "test-trainer-epoch"),
                push_to_hub=True,
                hub_token=self._token,
                save_strategy="epoch",
            )
            trainer.train()

1972
1973
1974
1975
            # Wait for the async pushes to be finished
            while trainer.push_in_progress is not None and not trainer.push_in_progress.is_done:
                time.sleep(0.5)

1976
1977
1978
        with tempfile.TemporaryDirectory() as tmp_dir:
            _ = Repository(tmp_dir, clone_from=f"{USER}/test-trainer-epoch", use_auth_token=self._token)
            commits = self.get_commit_history(tmp_dir)
1979
1980
1981
1982
            self.assertIn("initial commit", commits)
            # We can't test that epoch 2 and 3 are in the commits without being flaky as those might be skipped if
            # the push for epoch 1 wasn't finished at the time.
            self.assertIn("Training in progress, epoch 1", commits)
1983
1984

    def test_push_to_hub_with_saves_each_n_steps(self):
1985
1986
1987
1988
        num_gpus = max(1, get_gpu_count())
        if num_gpus > 2:
            return

1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
        with tempfile.TemporaryDirectory() as tmp_dir:
            trainer = get_regression_trainer(
                output_dir=os.path.join(tmp_dir, "test-trainer-step"),
                push_to_hub=True,
                hub_token=self._token,
                save_strategy="steps",
                save_steps=5,
            )
            trainer.train()

1999
2000
2001
2002
            # Wait for the async pushes to be finished
            while trainer.push_in_progress is not None and not trainer.push_in_progress.is_done:
                time.sleep(0.5)

2003
2004
2005
        with tempfile.TemporaryDirectory() as tmp_dir:
            _ = Repository(tmp_dir, clone_from=f"{USER}/test-trainer-step", use_auth_token=self._token)
            commits = self.get_commit_history(tmp_dir)
2006
2007
2008
2009
            self.assertIn("initial commit", commits)
            # We can't test that epoch 2 and 3 are in the commits without being flaky as those might be skipped if
            # the push for epoch 1 wasn't finished at the time.
            self.assertIn("Training in progress, step 5", commits)
2010

Sylvain Gugger's avatar
Sylvain Gugger committed
2011

2012
2013
@require_torch
@require_optuna
2014
class TrainerHyperParameterOptunaIntegrationTest(unittest.TestCase):
2015
    def setUp(self):
2016
        args = TrainingArguments("..")
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
        self.n_epochs = args.num_train_epochs
        self.batch_size = args.train_batch_size

    def test_hyperparameter_search(self):
        class MyTrialShortNamer(TrialShortNamer):
            DEFAULTS = {"a": 0, "b": 0}

        def hp_space(trial):
            return {}

        def model_init(trial):
            if trial is not None:
                a = trial.suggest_int("a", -4, 4)
                b = trial.suggest_int("b", -4, 4)
            else:
                a = 0
                b = 0
            config = RegressionModelConfig(a=a, b=b, double_output=False)

            return RegressionPreTrainedModel(config)

        def hp_name(trial):
            return MyTrialShortNamer.shortname(trial.params)

2041
2042
2043
2044
2045
        with tempfile.TemporaryDirectory() as tmp_dir:
            trainer = get_regression_trainer(
                output_dir=tmp_dir,
                learning_rate=0.1,
                logging_steps=1,
2046
                evaluation_strategy=IntervalStrategy.EPOCH,
2047
                save_strategy=IntervalStrategy.EPOCH,
2048
2049
2050
2051
2052
2053
2054
2055
                num_train_epochs=4,
                disable_tqdm=True,
                load_best_model_at_end=True,
                logging_dir="runs",
                run_name="test",
                model_init=model_init,
            )
            trainer.hyperparameter_search(direction="minimize", hp_space=hp_space, hp_name=hp_name, n_trials=4)
2056
2057
2058
2059
2060
2061


@require_torch
@require_ray
class TrainerHyperParameterRayIntegrationTest(unittest.TestCase):
    def setUp(self):
2062
        args = TrainingArguments("..")
2063
2064
2065
        self.n_epochs = args.num_train_epochs
        self.batch_size = args.train_batch_size

2066
    def ray_hyperparameter_search(self):
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
        class MyTrialShortNamer(TrialShortNamer):
            DEFAULTS = {"a": 0, "b": 0}

        def hp_space(trial):
            from ray import tune

            return {
                "a": tune.randint(-4, 4),
                "b": tune.randint(-4, 4),
            }

        def model_init(config):
2079
2080
2081
2082
2083
2084
2085
            if config is None:
                a = 0
                b = 0
            else:
                a = config["a"]
                b = config["b"]
            model_config = RegressionModelConfig(a=a, b=b, double_output=False)
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096

            return RegressionPreTrainedModel(model_config)

        def hp_name(params):
            return MyTrialShortNamer.shortname(params)

        with tempfile.TemporaryDirectory() as tmp_dir:
            trainer = get_regression_trainer(
                output_dir=tmp_dir,
                learning_rate=0.1,
                logging_steps=1,
2097
                evaluation_strategy=IntervalStrategy.EPOCH,
2098
                save_strategy=IntervalStrategy.EPOCH,
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
                num_train_epochs=4,
                disable_tqdm=True,
                load_best_model_at_end=True,
                logging_dir="runs",
                run_name="test",
                model_init=model_init,
            )
            trainer.hyperparameter_search(
                direction="minimize", hp_space=hp_space, hp_name=hp_name, backend="ray", n_trials=4
            )
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119

    def test_hyperparameter_search(self):
        self.ray_hyperparameter_search()

    def test_hyperparameter_search_ray_client(self):
        import ray
        from ray.util.client.ray_client_helpers import ray_start_client_server

        with ray_start_client_server():
            assert ray.util.client.ray.is_connected()
            self.ray_hyperparameter_search()
2120
2121


2122
@slow
2123
2124
2125
2126
@require_torch
@require_sigopt
class TrainerHyperParameterSigOptIntegrationTest(unittest.TestCase):
    def setUp(self):
2127
        args = TrainingArguments("..")
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
        self.n_epochs = args.num_train_epochs
        self.batch_size = args.train_batch_size

    def test_hyperparameter_search(self):
        class MyTrialShortNamer(TrialShortNamer):
            DEFAULTS = {"a": 0, "b": 0}

        def hp_space(trial):
            return [
                {"bounds": {"min": -4, "max": 4}, "name": "a", "type": "int"},
                {"bounds": {"min": -4, "max": 4}, "name": "b", "type": "int"},
            ]

        def model_init(trial):
            if trial is not None:
                a = trial.assignments["a"]
                b = trial.assignments["b"]
            else:
                a = 0
                b = 0
            config = RegressionModelConfig(a=a, b=b, double_output=False)

            return RegressionPreTrainedModel(config)

        def hp_name(trial):
            return MyTrialShortNamer.shortname(trial.assignments)

        with tempfile.TemporaryDirectory() as tmp_dir:
            trainer = get_regression_trainer(
                output_dir=tmp_dir,
                learning_rate=0.1,
                logging_steps=1,
                evaluation_strategy=IntervalStrategy.EPOCH,
                save_strategy=IntervalStrategy.EPOCH,
                num_train_epochs=4,
                disable_tqdm=True,
                load_best_model_at_end=True,
                logging_dir="runs",
                run_name="test",
                model_init=model_init,
            )
            trainer.hyperparameter_search(
                direction="minimize", hp_space=hp_space, hp_name=hp_name, backend="sigopt", n_trials=4
            )
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207


optim_test_params = []
if is_torch_available():
    default_adam_kwargs = {
        "betas": (TrainingArguments.adam_beta1, TrainingArguments.adam_beta2),
        "eps": TrainingArguments.adam_epsilon,
        "lr": TrainingArguments.learning_rate,
    }

    optim_test_params = [
        (
            OptimizerNames.ADAMW_HF,
            transformers.optimization.AdamW,
            default_adam_kwargs,
        ),
        (
            OptimizerNames.ADAMW_HF.value,
            transformers.optimization.AdamW,
            default_adam_kwargs,
        ),
        (
            OptimizerNames.ADAMW_TORCH,
            torch.optim.AdamW,
            default_adam_kwargs,
        ),
        (
            OptimizerNames.ADAFACTOR,
            transformers.optimization.Adafactor,
            {
                "scale_parameter": False,
                "relative_step": False,
                "lr": TrainingArguments.learning_rate,
            },
        ),
    ]
2208

2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
    if is_apex_available():
        import apex

        optim_test_params.append(
            (
                OptimizerNames.ADAMW_APEX_FUSED,
                apex.optimizers.FusedAdam,
                default_adam_kwargs,
            )
        )

2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
    if is_bitsandbytes_available():
        import bitsandbytes as bnb

        optim_test_params.append(
            (
                OptimizerNames.ADAMW_BNB,
                bnb.optim.Adam8bit,
                default_adam_kwargs,
            )
        )

2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254

@require_torch
class TrainerOptimizerChoiceTest(unittest.TestCase):
    def check_optim_and_kwargs(self, optim: OptimizerNames, mandatory_kwargs, expected_cls):
        args = TrainingArguments(optim=optim, output_dir="None")
        actual_cls, optim_kwargs = Trainer.get_optimizer_cls_and_kwargs(args)
        self.assertEqual(expected_cls, actual_cls)
        self.assertIsNotNone(optim_kwargs)

        for p, v in mandatory_kwargs.items():
            self.assertTrue(p in optim_kwargs)
            actual_v = optim_kwargs[p]
            self.assertTrue(actual_v == v, f"Failed check for {p}. Expected {v}, but got {actual_v}.")

    @parameterized.expand(optim_test_params, skip_on_empty=True)
    def test_optim_supported(self, name: str, expected_cls, mandatory_kwargs):
        # exercises all the valid --optim options
        self.check_optim_and_kwargs(name, mandatory_kwargs, expected_cls)

        trainer = get_regression_trainer(optim=name)
        trainer.train()

    def test_fused_adam(self):
        # Pretend that apex is installed and mock apex.optimizers.FusedAdam exists.
2255
2256
        # Trainer.get_optimizer_cls_and_kwargs does not use FusedAdam. It only has to return the
        # class given, so mocking apex.optimizers.FusedAdam should be fine for testing and allow
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
        # the test to run without requiring an apex installation.
        mock = Mock()
        modules = {
            "apex": mock,
            "apex.optimizers": mock.optimizers,
            "apex.optimizers.FusedAdam": mock.optimizers.FusedAdam,
        }
        with patch.dict("sys.modules", modules):
            self.check_optim_and_kwargs(
                OptimizerNames.ADAMW_APEX_FUSED,
                default_adam_kwargs,
                mock.optimizers.FusedAdam,
            )

    def test_fused_adam_no_apex(self):
        args = TrainingArguments(optim=OptimizerNames.ADAMW_APEX_FUSED, output_dir="None")

        # Pretend that apex does not exist, even if installed. By setting apex to None, importing
        # apex will fail even if apex is installed.
        with patch.dict("sys.modules", {"apex.optimizers": None}):
            with self.assertRaises(ValueError):
                Trainer.get_optimizer_cls_and_kwargs(args)
2279

2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
    def test_bnb_adam8bit(self):
        # Pretend that Bits and Bytes is installed and mock bnb.optim.Adam8bit exists.
        # Trainer.get_optimizer_cls_and_kwargs does not use Adam8bit. It only has to return the
        # class given, so mocking bnb.optim.Adam8bit should be fine for testing and allow
        # the test to run without requiring a bnb installation.
        mock = Mock()
        modules = {
            "bitsandbytes": mock,
            "bitsandbytes.optim": mock.optim,
            "bitsandbytes.optim.Adam8bit": mock.optim.Adam8bit,
        }
        with patch.dict("sys.modules", modules):
            self.check_optim_and_kwargs(
                OptimizerNames.ADAMW_BNB,
                default_adam_kwargs,
                mock.optim.Adam8bit,
            )

    def test_bnb_adam8bit_no_bnb(self):
        args = TrainingArguments(optim=OptimizerNames.ADAMW_BNB, output_dir="None")

        # Pretend that bnb does not exist, even if installed. By setting bnb to None, importing
        # bnb will fail even if bnb is installed.
        with patch.dict("sys.modules", {"bnb.optim": None}):
            with self.assertRaises(ValueError):
                Trainer.get_optimizer_cls_and_kwargs(args)

2307
2308
2309
2310
2311

@require_torch
@require_wandb
class TrainerHyperParameterWandbIntegrationTest(unittest.TestCase):
    def setUp(self):
2312
        args = TrainingArguments("..")
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
        self.n_epochs = args.num_train_epochs
        self.batch_size = args.train_batch_size

    def test_hyperparameter_search(self):
        class MyTrialShortNamer(TrialShortNamer):
            DEFAULTS = {"a": 0, "b": 0}

        def hp_space(trial):

            return {
                "method": "random",
                "metric": {},
                "parameters": {
                    "a": {"distribution": "uniform", "min": 1e-6, "max": 1e-4},
                    "b": {"distribution": "int_uniform", "min": 1, "max": 6},
                },
            }

        def model_init(config):
            if config is None:
                a = 0
                b = 0
            else:
                a = config["a"]
                b = config["b"]
            model_config = RegressionModelConfig(a=a, b=b, double_output=False)

            return RegressionPreTrainedModel(model_config)

        def hp_name(params):
            return MyTrialShortNamer.shortname(params)

        with tempfile.TemporaryDirectory() as tmp_dir:
            trainer = get_regression_trainer(
                output_dir=tmp_dir,
                learning_rate=0.1,
                logging_steps=1,
                evaluation_strategy=IntervalStrategy.EPOCH,
                save_strategy=IntervalStrategy.EPOCH,
                num_train_epochs=4,
                disable_tqdm=True,
                load_best_model_at_end=True,
                logging_dir="runs",
                run_name="test",
                model_init=model_init,
            )
            trainer.hyperparameter_search(
                direction="minimize", hp_space=hp_space, hp_name=hp_name, backend="wandb", n_trials=4, anonymous="must"
            )