test_trainer.py 164 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2018 the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
import dataclasses
17
import gc
18
import json
19
import math
20
import os
21
import random
Sylvain Gugger's avatar
Sylvain Gugger committed
22
import re
23
import subprocess
24
import sys
25
import tempfile
Julien Chaumond's avatar
Julien Chaumond committed
26
import unittest
27
from functools import partial
28
from itertools import product
29
from pathlib import Path
30
from typing import Dict, List
31
from unittest.mock import Mock, patch
Julien Chaumond's avatar
Julien Chaumond committed
32

Sylvain Gugger's avatar
Sylvain Gugger committed
33
import numpy as np
34
from huggingface_hub import HfFolder, ModelCard, delete_repo, list_repo_commits, list_repo_files
35
from parameterized import parameterized
Sylvain Gugger's avatar
Sylvain Gugger committed
36
from requests.exceptions import HTTPError
37

38
39
40
41
from transformers import (
    AutoTokenizer,
    IntervalStrategy,
    PretrainedConfig,
42
    TrainerCallback,
43
    TrainingArguments,
44
    get_polynomial_decay_schedule_with_warmup,
45
46
47
    is_torch_available,
    logging,
)
48
from transformers.hyperparameter_search import ALL_HYPERPARAMETER_SEARCH_BACKENDS
49
from transformers.testing_utils import (
Sylvain Gugger's avatar
Sylvain Gugger committed
50
    ENDPOINT_STAGING,
51
    TOKEN,
Sylvain Gugger's avatar
Sylvain Gugger committed
52
    USER,
53
    CaptureLogger,
54
    LoggingLevel,
55
    TestCasePlus,
56
    backend_device_count,
57
    execute_subprocess_async,
58
    get_gpu_count,
59
    get_tests_dir,
Sylvain Gugger's avatar
Sylvain Gugger committed
60
    is_staging_test,
Yih-Dar's avatar
Yih-Dar committed
61
    require_accelerate,
62
    require_bitsandbytes,
63
    require_deepspeed,
64
    require_galore_torch,
65
    require_intel_extension_for_pytorch,
66
    require_optuna,
67
    require_peft,
68
    require_ray,
69
    require_safetensors,
70
    require_sentencepiece,
71
    require_sigopt,
72
    require_tensorboard,
73
74
    require_tokenizers,
    require_torch,
75
76
    require_torch_accelerator,
    require_torch_bf16,
77
    require_torch_gpu,
78
79
    require_torch_multi_accelerator,
    require_torch_non_multi_accelerator,
80
    require_torch_non_multi_gpu,
81
    require_torch_tensorrt_fx,
82
    require_torch_tf32,
83
    require_torch_up_to_2_accelerators,
84
    require_torchdynamo,
85
    require_wandb,
86
    slow,
87
    torch_device,
88
)
89
from transformers.trainer_utils import PREFIX_CHECKPOINT_DIR, HPSearchBackend, check_target_module_exists
90
from transformers.training_args import OptimizerNames
91
from transformers.utils import (
92
93
    SAFE_WEIGHTS_INDEX_NAME,
    SAFE_WEIGHTS_NAME,
94
95
    WEIGHTS_INDEX_NAME,
    WEIGHTS_NAME,
96
    is_accelerate_available,
97
98
    is_apex_available,
    is_bitsandbytes_available,
99
    is_safetensors_available,
100
101
    is_torchdistx_available,
)
102
from transformers.utils.hp_naming import TrialShortNamer
Julien Chaumond's avatar
Julien Chaumond committed
103
104
105
106


if is_torch_available():
    import torch
107
    from torch import nn
108
109
    from torch.utils.data import IterableDataset

110
    import transformers.optimization
Julien Chaumond's avatar
Julien Chaumond committed
111
    from transformers import (
112
        AutoModelForCausalLM,
Julien Chaumond's avatar
Julien Chaumond committed
113
        AutoModelForSequenceClassification,
114
        EarlyStoppingCallback,
Julien Chaumond's avatar
Julien Chaumond committed
115
116
        GlueDataset,
        GlueDataTrainingArguments,
117
118
        GPT2Config,
        GPT2LMHeadModel,
119
        LineByLineTextDataset,
120
121
        LlamaConfig,
        LlamaForCausalLM,
122
        PreTrainedModel,
123
        Trainer,
124
        TrainerState,
Julien Chaumond's avatar
Julien Chaumond committed
125
    )
126
    from transformers.trainer_pt_utils import AcceleratorConfig
Julien Chaumond's avatar
Julien Chaumond committed
127

128
129
130
    if is_safetensors_available():
        import safetensors.torch

131
132
133
# for version specific tests in TrainerIntegrationTest
require_accelerate_version_min_0_28 = partial(require_accelerate, min_version="0.28")
GRAD_ACCUM_KWARGS_VERSION_AVAILABLE = is_accelerate_available("0.28")
Julien Chaumond's avatar
Julien Chaumond committed
134

135
PATH_SAMPLE_TEXT = f"{get_tests_dir()}/fixtures/sample_text.txt"
Julien Chaumond's avatar
Julien Chaumond committed
136
137


Sylvain Gugger's avatar
Sylvain Gugger committed
138
class RegressionDataset:
Sylvain Gugger's avatar
Sylvain Gugger committed
139
    def __init__(self, a=2, b=3, length=64, seed=42, label_names=None):
Sylvain Gugger's avatar
Sylvain Gugger committed
140
        np.random.seed(seed)
Sylvain Gugger's avatar
Sylvain Gugger committed
141
        self.label_names = ["labels"] if label_names is None else label_names
Sylvain Gugger's avatar
Sylvain Gugger committed
142
143
        self.length = length
        self.x = np.random.normal(size=(length,)).astype(np.float32)
Sylvain Gugger's avatar
Sylvain Gugger committed
144
145
        self.ys = [a * self.x + b + np.random.normal(scale=0.1, size=(length,)) for _ in self.label_names]
        self.ys = [y.astype(np.float32) for y in self.ys]
Julien Chaumond's avatar
Julien Chaumond committed
146

Sylvain Gugger's avatar
Sylvain Gugger committed
147
148
149
150
    def __len__(self):
        return self.length

    def __getitem__(self, i):
Sylvain Gugger's avatar
Sylvain Gugger committed
151
152
153
        result = {name: y[i] for name, y in zip(self.label_names, self.ys)}
        result["input_x"] = self.x[i]
        return result
Sylvain Gugger's avatar
Sylvain Gugger committed
154
155


156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
# Converting Bytes to Megabytes
def bytes2megabytes(x):
    return int(x / 2**20)


# Copied from acclerate: https://github.com/huggingface/accelerate/blob/ee163b66fb7848892519e804688cb4ae981aacbe/src/accelerate/test_utils/scripts/external_deps/test_peak_memory_usage.py#L40C1-L73C68
class TorchTracemalloc:
    def __enter__(self):
        gc.collect()
        if torch.cuda.is_available():
            torch.cuda.empty_cache()
            torch.cuda.reset_max_memory_allocated()  # reset the peak gauge to zero
            self.begin = torch.cuda.memory_allocated()
        return self

    def __exit__(self, *exc):
        gc.collect()
        if torch.cuda.is_available():
            torch.cuda.empty_cache()
            self.end = torch.cuda.memory_allocated()
            self.peak = torch.cuda.max_memory_allocated()
        self.used = bytes2megabytes(self.end - self.begin)
        self.peaked = bytes2megabytes(self.peak - self.begin)


181
182
183
184
@dataclasses.dataclass
class RegressionTrainingArguments(TrainingArguments):
    a: float = 0.0
    b: float = 0.0
185
    keep_report_to: bool = False
186

187
    def __post_init__(self):
188
        super().__post_init__()
189
190
191
192
        # save resources not dealing with reporting unless specified (also avoids the warning when it's not set)
        # can be explicitly disabled via `keep_report_to`
        if not self.keep_report_to:
            self.report_to = []
193

194

195
196
197
198
199
200
201
202
203
204
205
206
class RepeatDataset:
    def __init__(self, x, length=64):
        self.x = x
        self.length = length

    def __len__(self):
        return self.length

    def __getitem__(self, i):
        return {"input_ids": self.x, "labels": self.x}


207
208
209
210
211
212
class DynamicShapesDataset:
    def __init__(self, length=64, seed=42, batch_size=8):
        self.length = length
        np.random.seed(seed)
        sizes = np.random.randint(1, 20, (length // batch_size,))
        # For easy batching, we make every batch_size consecutive samples the same size.
213
214
        self.xs = [np.random.normal(size=(s,)).astype(np.float32) for s in sizes.repeat(batch_size)]
        self.ys = [np.random.normal(size=(s,)).astype(np.float32) for s in sizes.repeat(batch_size)]
215
216
217
218
219
220
221
222

    def __len__(self):
        return self.length

    def __getitem__(self, i):
        return {"input_x": self.xs[i], "labels": self.ys[i]}


Sylvain Gugger's avatar
Sylvain Gugger committed
223
224
225
226
227
228
229
230
class AlmostAccuracy:
    def __init__(self, thresh=0.25):
        self.thresh = thresh

    def __call__(self, eval_pred):
        predictions, labels = eval_pred
        true = np.abs(predictions - labels) <= self.thresh
        return {"accuracy": true.astype(np.float32).mean().item()}
231

Julien Chaumond's avatar
Julien Chaumond committed
232

233
class RegressionModelConfig(PretrainedConfig):
234
    def __init__(self, a=0, b=0, double_output=False, random_torch=True, **kwargs):
235
236
237
238
        super().__init__(**kwargs)
        self.a = a
        self.b = b
        self.double_output = double_output
239
        self.random_torch = random_torch
240
        self.hidden_size = 1
241
242


243
244
245
if is_torch_available():

    class SampleIterableDataset(IterableDataset):
246
247
        def __init__(self, a=2, b=3, length=64, seed=42, label_names=None):
            self.dataset = RegressionDataset(a=a, b=b, length=length, seed=seed, label_names=label_names)
248
249

        def __iter__(self):
250
251
            for i in range(len(self.dataset)):
                yield self.dataset[i]
252

253
254
255
256
257
258
259
260
261
262
    class FiniteIterableDataset(SampleIterableDataset):
        def __init__(self, a=2, b=3, length=64, seed=42, label_names=None):
            super().__init__(a, b, length, seed, label_names)
            self.current_sample = 0

        def __iter__(self):
            while self.current_sample < len(self.dataset):
                yield self.dataset[self.current_sample]
                self.current_sample += 1

263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
    class MultiLoader:
        def __init__(self, loaders):
            self.loaders = loaders

        def __len__(self):
            return sum(len(loader) for loader in self.loaders)

        def __iter__(self):
            for loader in self.loaders:
                yield from loader

    class CustomDataloaderTrainer(Trainer):
        def get_train_dataloader(self):
            dataloaders = [super().get_train_dataloader(), super().get_train_dataloader()]
            return MultiLoader(dataloaders)

        def get_eval_dataloader(self, eval_dataset):
            dataloaders = [super().get_eval_dataloader(eval_dataset), super().get_eval_dataloader(eval_dataset)]
            return MultiLoader(dataloaders)

283
    class RegressionModel(nn.Module):
284
        def __init__(self, a=0, b=0, double_output=False):
Sylvain Gugger's avatar
Sylvain Gugger committed
285
            super().__init__()
286
287
            self.a = nn.Parameter(torch.tensor(a).float())
            self.b = nn.Parameter(torch.tensor(b).float())
288
289
            self.double_output = double_output
            self.config = None
Sylvain Gugger's avatar
Sylvain Gugger committed
290

Stas Bekman's avatar
Stas Bekman committed
291
        def forward(self, input_x, labels=None, **kwargs):
Sylvain Gugger's avatar
Sylvain Gugger committed
292
293
            y = input_x * self.a + self.b
            if labels is None:
294
                return (y, y) if self.double_output else (y,)
295
            loss = nn.functional.mse_loss(y, labels)
296
            return (loss, y, y) if self.double_output else (loss, y)
Sylvain Gugger's avatar
Sylvain Gugger committed
297

298
    class RegressionDictModel(nn.Module):
299
300
        def __init__(self, a=0, b=0):
            super().__init__()
301
302
            self.a = nn.Parameter(torch.tensor(a).float())
            self.b = nn.Parameter(torch.tensor(b).float())
303
304
            self.config = None

Stas Bekman's avatar
Stas Bekman committed
305
        def forward(self, input_x, labels=None, **kwargs):
306
307
308
            y = input_x * self.a + self.b
            result = {"output": y}
            if labels is not None:
309
                result["loss"] = nn.functional.mse_loss(y, labels)
310
311
            return result

312
313
314
315
316
317
    class RegressionPreTrainedModel(PreTrainedModel):
        config_class = RegressionModelConfig
        base_model_prefix = "regression"

        def __init__(self, config):
            super().__init__(config)
318
319
            self.a = nn.Parameter(torch.tensor(config.a).float())
            self.b = nn.Parameter(torch.tensor(config.b).float())
320
321
            self.double_output = config.double_output

Stas Bekman's avatar
Stas Bekman committed
322
        def forward(self, input_x, labels=None, **kwargs):
323
324
325
            y = input_x * self.a + self.b
            if labels is None:
                return (y, y) if self.double_output else (y,)
326
            loss = nn.functional.mse_loss(y, labels)
327
328
            return (loss, y, y) if self.double_output else (loss, y)

329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
    class RegressionPreTrainedModelWithGradientCheckpointing(PreTrainedModel):
        config_class = RegressionModelConfig
        base_model_prefix = "regression"
        supports_gradient_checkpointing = True

        def __init__(self, config):
            super().__init__(config)
            self.layers = nn.ModuleList([nn.Linear(config.hidden_size, config.hidden_size) for _ in range(4)])
            self.head = nn.Linear(config.hidden_size, 1)
            self.gradient_checkpointing = False
            self.double_output = config.double_output

        def forward(self, input_x, labels=None, **kwargs):
            y = input_x.unsqueeze(0)

            for layer in self.layers:
                if self.training and self.gradient_checkpointing:
                    outputs = self._gradient_checkpointing_func(layer.__call__, y)
                else:
                    outputs = layer(y)

                y = outputs * 3

            logits = self.head(y)

            if labels is None:
                return (logits, logits) if self.double_output else (logits,)

            loss = nn.functional.mse_loss(logits, labels)

            return (loss, y, y) if self.double_output else (loss, y)

361
362
363
364
365
366
    class RegressionRandomPreTrainedModel(PreTrainedModel):
        config_class = RegressionModelConfig
        base_model_prefix = "regression"

        def __init__(self, config):
            super().__init__(config)
367
368
            self.a = nn.Parameter(torch.tensor(config.a).float())
            self.b = nn.Parameter(torch.tensor(config.b).float())
369
            self.random_torch = config.random_torch
370
371
372

        def forward(self, input_x, labels=None, **kwargs):
            y = input_x * self.a + self.b
373
374
            if self.random_torch:
                torch_rand = torch.randn(1).squeeze()
375
376
377
            np_rand = np.random.rand()
            rand_rand = random.random()

378
379
380
            if self.random_torch:
                y += 0.05 * torch_rand
            y += 0.05 * torch.tensor(np_rand + rand_rand)
381
382
383

            if labels is None:
                return (y,)
384
            loss = nn.functional.mse_loss(y, labels)
385
386
            return (loss, y)

387
    class TstLayer(nn.Module):
388
389
        def __init__(self, hidden_size):
            super().__init__()
390
391
392
393
394
            self.linear1 = nn.Linear(hidden_size, hidden_size)
            self.ln1 = nn.LayerNorm(hidden_size)
            self.linear2 = nn.Linear(hidden_size, hidden_size)
            self.ln2 = nn.LayerNorm(hidden_size)
            self.bias = nn.Parameter(torch.zeros(hidden_size))
395
396

        def forward(self, x):
397
398
            h = self.ln1(nn.functional.relu(self.linear1(x)))
            h = nn.functional.relu(self.linear2(x))
399
400
            return self.ln2(x + h + self.bias)

401
402
403
    def get_regression_trainer(
        a=0, b=0, double_output=False, train_len=64, eval_len=64, pretrained=True, keep_report_to=False, **kwargs
    ):
Sylvain Gugger's avatar
Sylvain Gugger committed
404
        label_names = kwargs.get("label_names", None)
405
        gradient_checkpointing = kwargs.get("gradient_checkpointing", False)
Sylvain Gugger's avatar
Sylvain Gugger committed
406
407
        train_dataset = RegressionDataset(length=train_len, label_names=label_names)
        eval_dataset = RegressionDataset(length=eval_len, label_names=label_names)
408
409
410
411

        model_init = kwargs.pop("model_init", None)
        if model_init is not None:
            model = None
412
        else:
413
414
            if pretrained:
                config = RegressionModelConfig(a=a, b=b, double_output=double_output)
415
416
417
418
419
420
421
                # We infer the correct model class if one uses gradient_checkpointing or not
                target_cls = (
                    RegressionPreTrainedModel
                    if not gradient_checkpointing
                    else RegressionPreTrainedModelWithGradientCheckpointing
                )
                model = target_cls(config)
422
423
424
            else:
                model = RegressionModel(a=a, b=b, double_output=double_output)

Sylvain Gugger's avatar
Sylvain Gugger committed
425
426
427
        compute_metrics = kwargs.pop("compute_metrics", None)
        data_collator = kwargs.pop("data_collator", None)
        optimizers = kwargs.pop("optimizers", (None, None))
428
        output_dir = kwargs.pop("output_dir", "./regression")
429
        preprocess_logits_for_metrics = kwargs.pop("preprocess_logits_for_metrics", None)
430

431
        args = RegressionTrainingArguments(output_dir, a=a, b=b, keep_report_to=keep_report_to, **kwargs)
Sylvain Gugger's avatar
Sylvain Gugger committed
432
433
434
435
436
437
438
439
        return Trainer(
            model,
            args,
            data_collator=data_collator,
            train_dataset=train_dataset,
            eval_dataset=eval_dataset,
            compute_metrics=compute_metrics,
            optimizers=optimizers,
440
            model_init=model_init,
441
            preprocess_logits_for_metrics=preprocess_logits_for_metrics,
Sylvain Gugger's avatar
Sylvain Gugger committed
442
443
        )

444

445
class TrainerIntegrationCommon:
446
    def check_saved_checkpoints(self, output_dir, freq, total, is_pretrained=True, safe_weights=True):
447
448
        weights_file = WEIGHTS_NAME if not safe_weights else SAFE_WEIGHTS_NAME
        file_list = [weights_file, "training_args.bin", "optimizer.pt", "scheduler.pt", "trainer_state.json"]
449
450
451
452
453
454
455
456
457
        if is_pretrained:
            file_list.append("config.json")
        for step in range(freq, total, freq):
            checkpoint = os.path.join(output_dir, f"checkpoint-{step}")
            self.assertTrue(os.path.isdir(checkpoint))
            for filename in file_list:
                self.assertTrue(os.path.isfile(os.path.join(checkpoint, filename)))

    def check_best_model_has_been_loaded(
458
        self, output_dir, freq, total, trainer, metric, greater_is_better=False, is_pretrained=True, safe_weights=True
459
460
    ):
        checkpoint = os.path.join(output_dir, f"checkpoint-{(total // freq) * freq}")
461
        log_history = TrainerState.load_from_json(os.path.join(checkpoint, "trainer_state.json")).log_history
462
463
464
465
466
467
468
469
470
471

        values = [d[metric] for d in log_history]
        best_value = max(values) if greater_is_better else min(values)
        best_checkpoint = (values.index(best_value) + 1) * freq
        checkpoint = os.path.join(output_dir, f"checkpoint-{best_checkpoint}")
        if is_pretrained:
            best_model = RegressionPreTrainedModel.from_pretrained(checkpoint)
            best_model.to(trainer.args.device)
        else:
            best_model = RegressionModel()
472
473
474
475
            if not safe_weights:
                state_dict = torch.load(os.path.join(checkpoint, WEIGHTS_NAME))
            else:
                state_dict = safetensors.torch.load_file(os.path.join(checkpoint, SAFE_WEIGHTS_NAME))
476
            best_model.load_state_dict(state_dict)
477
            best_model.to(trainer.args.device)
478
479
480
481
482
483
        self.assertTrue(torch.allclose(best_model.a, trainer.model.a))
        self.assertTrue(torch.allclose(best_model.b, trainer.model.b))

        metrics = trainer.evaluate()
        self.assertEqual(metrics[metric], best_value)

484
485
486
487
488
489
490
491
    def check_trainer_state_are_the_same(self, trainer_state, trainer_state1):
        # We'll pop things so operate on copies.
        state = trainer_state.copy()
        state1 = trainer_state1.copy()
        # Log history main contain different logs for the time metrics (after resuming a training).
        log_history = state.pop("log_history", None)
        log_history1 = state1.pop("log_history", None)
        self.assertEqual(state, state1)
492
        skip_log_keys = ["train_runtime", "train_samples_per_second", "train_steps_per_second", "train_loss"]
493
        for log, log1 in zip(log_history, log_history1):
494
495
496
            for key in skip_log_keys:
                _ = log.pop(key, None)
                _ = log1.pop(key, None)
497
498
            self.assertEqual(log, log1)

499
    def convert_to_sharded_checkpoint(self, folder, save_safe=True, load_safe=True):
500
        # Converts a checkpoint of a regression model to a sharded checkpoint.
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
        if load_safe:
            loader = safetensors.torch.load_file
            weights_file = os.path.join(folder, SAFE_WEIGHTS_NAME)
        else:
            loader = torch.load
            weights_file = os.path.join(folder, WEIGHTS_NAME)

        if save_safe:
            extension = "safetensors"
            saver = safetensors.torch.save_file
            index_file = os.path.join(folder, SAFE_WEIGHTS_INDEX_NAME)
            shard_name = SAFE_WEIGHTS_NAME
        else:
            extension = "bin"
            saver = torch.save
            index_file = os.path.join(folder, WEIGHTS_INDEX_NAME)
            shard_name = WEIGHTS_NAME

        state_dict = loader(weights_file)

        os.remove(weights_file)
522
523
524
        keys = list(state_dict.keys())

        shard_files = [
525
526
            shard_name.replace(f".{extension}", f"-{idx+1:05d}-of-{len(keys):05d}.{extension}")
            for idx in range(len(keys))
527
528
529
        ]
        index = {"metadata": {}, "weight_map": {key: shard_files[i] for i, key in enumerate(keys)}}

530
        with open(index_file, "w", encoding="utf-8") as f:
531
532
533
534
            content = json.dumps(index, indent=2, sort_keys=True) + "\n"
            f.write(content)

        for param_name, shard_file in zip(keys, shard_files):
535
            saver({param_name: state_dict[param_name]}, os.path.join(folder, shard_file))
536

537
538
539
540

@require_torch
@require_sentencepiece
@require_tokenizers
541
542
543
544
545
546
547
548
class TrainerIntegrationPrerunTest(TestCasePlus, TrainerIntegrationCommon):
    """
    Only tests that want to tap into the auto-pre-run 2 trainings:
    - self.default_trained_model
    - self.alternate_trained_model
    directly, or via check_trained_model
    """

549
550
    def setUp(self):
        super().setUp()
551
        args = TrainingArguments("..")
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
        self.n_epochs = args.num_train_epochs
        self.batch_size = args.train_batch_size
        trainer = get_regression_trainer(learning_rate=0.1)
        trainer.train()
        self.default_trained_model = (trainer.model.a, trainer.model.b)

        trainer = get_regression_trainer(learning_rate=0.1, seed=314)
        trainer.train()
        self.alternate_trained_model = (trainer.model.a, trainer.model.b)

    def check_trained_model(self, model, alternate_seed=False):
        # Checks a training seeded with learning_rate = 0.1
        (a, b) = self.alternate_trained_model if alternate_seed else self.default_trained_model
        self.assertTrue(torch.allclose(model.a, a))
        self.assertTrue(torch.allclose(model.b, b))

568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
    def test_reproducible_training(self):
        # Checks that training worked, model trained and seed made a reproducible training.
        trainer = get_regression_trainer(learning_rate=0.1)
        trainer.train()
        self.check_trained_model(trainer.model)

        # Checks that a different seed gets different (reproducible) results.
        trainer = get_regression_trainer(learning_rate=0.1, seed=314)
        trainer.train()
        self.check_trained_model(trainer.model, alternate_seed=True)

    def test_trainer_with_datasets(self):
        import datasets

        np.random.seed(42)
        x = np.random.normal(size=(64,)).astype(np.float32)
584
        y = 2.0 * x + 3.0 + np.random.normal(scale=0.1, size=(64,)).astype(np.float32)
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
        train_dataset = datasets.Dataset.from_dict({"input_x": x, "label": y})

        # Base training. Should have the same results as test_reproducible_training
        model = RegressionModel()
        args = TrainingArguments("./regression", learning_rate=0.1)
        trainer = Trainer(model, args, train_dataset=train_dataset)
        trainer.train()
        self.check_trained_model(trainer.model)

        # Can return tensors.
        train_dataset.set_format(type="torch", dtype=torch.float32)
        model = RegressionModel()
        trainer = Trainer(model, args, train_dataset=train_dataset)
        trainer.train()
        self.check_trained_model(trainer.model)

        # Adding one column not used by the model should have no impact
        z = np.random.normal(size=(64,)).astype(np.float32)
        train_dataset = datasets.Dataset.from_dict({"input_x": x, "label": y, "extra": z})
        model = RegressionModel()
        trainer = Trainer(model, args, train_dataset=train_dataset)
        trainer.train()
        self.check_trained_model(trainer.model)

    def test_model_init(self):
        train_dataset = RegressionDataset()
        args = TrainingArguments("./regression", learning_rate=0.1)
        trainer = Trainer(args=args, train_dataset=train_dataset, model_init=lambda: RegressionModel())
        trainer.train()
        self.check_trained_model(trainer.model)

        # Re-training should restart from scratch, thus lead the same results.
        trainer.train()
        self.check_trained_model(trainer.model)

        # Re-training should restart from scratch, thus lead the same results and new seed should be used.
621
        trainer.args.seed = 314
622
623
624
625
626
627
628
629
630
631
632
        trainer.train()
        self.check_trained_model(trainer.model, alternate_seed=True)

    def test_gradient_accumulation(self):
        # Training with half the batch size but accumulation steps as 2 should give the same results.
        trainer = get_regression_trainer(
            gradient_accumulation_steps=2, per_device_train_batch_size=4, learning_rate=0.1
        )
        trainer.train()
        self.check_trained_model(trainer.model)

633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
    def test_gradient_checkpointing(self):
        trainer = get_regression_trainer(
            per_device_train_batch_size=1,
            learning_rate=0.1,
            gradient_checkpointing=True,
            gradient_checkpointing_kwargs={"use_reentrant": False},
        )
        previous_params = {k: v.detach().clone() for k, v in trainer.model.named_parameters()}

        trainer.train()

        # Check if model weights have been updated
        for k, v in trainer.model.named_parameters():
            self.assertFalse(
                torch.allclose(previous_params[k], v, rtol=1e-4, atol=1e-4),
                f"Model weights for {k} have not been updated",
            )

651
    def test_training_loss(self):
652
        n_gpus = max(1, backend_device_count(torch_device))
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671

        # With even logs
        trainer = get_regression_trainer(logging_steps=64 / (8 * n_gpus))
        trainer.train()
        log_history = trainer.state.log_history

        losses = [log["loss"] for log in log_history if "loss" in log]
        train_loss = log_history[-1]["train_loss"]
        self.assertAlmostEqual(sum(losses) / len(losses), train_loss, places=4)

        # With uneven logs
        trainer = get_regression_trainer(logging_steps=5)
        trainer.train()
        log_history = trainer.state.log_history

        # Training loss should be the same as before
        new_train_loss = log_history[-1]["train_loss"]
        self.assertAlmostEqual(train_loss, new_train_loss, places=4)

672
673
674
675
676
677
678
679
680
681
682
683
684
685
    def test_custom_optimizer(self):
        train_dataset = RegressionDataset()
        args = TrainingArguments("./regression")
        model = RegressionModel()
        optimizer = torch.optim.SGD(model.parameters(), lr=1.0)
        lr_scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda x: 1.0)
        trainer = Trainer(model, args, train_dataset=train_dataset, optimizers=(optimizer, lr_scheduler))
        trainer.train()

        (a, b) = self.default_trained_model
        self.assertFalse(torch.allclose(trainer.model.a, a))
        self.assertFalse(torch.allclose(trainer.model.b, b))
        self.assertEqual(trainer.optimizer.state_dict()["param_groups"][0]["lr"], 1.0)

686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
    def test_lr_scheduler_kwargs(self):
        # test scheduler kwargs passed via TrainingArguments
        train_dataset = RegressionDataset()
        model = RegressionModel()
        num_steps, num_warmup_steps = 10, 2
        extra_kwargs = {"power": 5.0, "lr_end": 1e-5}  # Non-default arguments
        args = TrainingArguments(
            "./regression",
            lr_scheduler_type="polynomial",
            lr_scheduler_kwargs=extra_kwargs,
            learning_rate=0.2,
            warmup_steps=num_warmup_steps,
        )
        trainer = Trainer(model, args, train_dataset=train_dataset)
        trainer.create_optimizer_and_scheduler(num_training_steps=num_steps)

        # Checking that the scheduler was created
        self.assertIsNotNone(trainer.lr_scheduler)

        # Checking that the correct args were passed
        sched1 = trainer.lr_scheduler
        sched2 = get_polynomial_decay_schedule_with_warmup(
            trainer.optimizer, num_warmup_steps=num_warmup_steps, num_training_steps=num_steps, **extra_kwargs
        )
        self.assertEqual(sched1.lr_lambdas[0].args, sched2.lr_lambdas[0].args)
        self.assertEqual(sched1.lr_lambdas[0].keywords, sched2.lr_lambdas[0].keywords)

713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
    def test_cosine_with_min_lr_scheduler(self):
        train_dataset = RegressionDataset()
        model = RegressionModel()
        num_steps, num_warmup_steps = 10, 2
        extra_kwargs = {"min_lr": 1e-5}  # Non-default arguments
        args = TrainingArguments(
            "./regression",
            lr_scheduler_type="cosine_with_min_lr",
            lr_scheduler_kwargs=extra_kwargs,
            learning_rate=0.2,
            warmup_steps=num_warmup_steps,
        )
        trainer = Trainer(model, args, train_dataset=train_dataset)
        trainer.create_optimizer_and_scheduler(num_training_steps=num_steps)

        # Checking that the scheduler was created
        self.assertIsNotNone(trainer.lr_scheduler)

        # Check the last learning rate
        for _ in range(num_steps):
            trainer.lr_scheduler.step()
        self.assertEqual(trainer.lr_scheduler.get_last_lr()[0], 1e-5)

736
737
738
739
740
741
    def test_reduce_lr_on_plateau_args(self):
        # test passed arguments for a custom ReduceLROnPlateau scheduler
        train_dataset = RegressionDataset(length=64)
        eval_dataset = RegressionDataset(length=64)
        args = TrainingArguments(
            "./regression",
742
            eval_strategy="epoch",
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
            metric_for_best_model="eval_loss",
        )
        model = RegressionModel()
        optimizer = torch.optim.SGD(model.parameters(), lr=1.0)
        lr_scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, factor=0.2, patience=5, cooldown=2)
        trainer = Trainer(
            model, args, train_dataset=train_dataset, eval_dataset=eval_dataset, optimizers=(optimizer, lr_scheduler)
        )
        trainer.train()

        self.assertIsInstance(trainer.lr_scheduler, torch.optim.lr_scheduler.ReduceLROnPlateau)
        self.assertEqual(trainer.lr_scheduler.factor, 0.2)
        self.assertEqual(trainer.lr_scheduler.patience, 5)
        self.assertEqual(trainer.lr_scheduler.cooldown, 2)

    def test_reduce_lr_on_plateau(self):
        # test the ReduceLROnPlateau scheduler

        class TrainerWithLRLogs(Trainer):
            def log(self, logs):
                # the LR is computed after metrics and does not exist for the first epoch
                if hasattr(self.lr_scheduler, "_last_lr"):
765
                    logs["learning_rate"] = self.lr_scheduler._last_lr[0]
766
767
768
769
770
771
772
773
                super().log(logs)

        train_dataset = RegressionDataset(length=64)
        eval_dataset = RegressionDataset(length=64)

        args = TrainingArguments(
            "./regression",
            lr_scheduler_type="reduce_lr_on_plateau",
774
            eval_strategy="epoch",
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
            metric_for_best_model="eval_loss",
            num_train_epochs=10,
            learning_rate=0.2,
        )
        model = RegressionModel()
        trainer = TrainerWithLRLogs(model, args, train_dataset=train_dataset, eval_dataset=eval_dataset)
        trainer.train()

        self.assertIsInstance(trainer.lr_scheduler, torch.optim.lr_scheduler.ReduceLROnPlateau)
        patience = trainer.lr_scheduler.patience

        logs = trainer.state.log_history[1:]
        best_loss = logs[0]["eval_loss"]
        bad_epochs = 0
        for i, log in enumerate(logs[:-1]):  # Compare learning rate to next epoch's
            loss = log["eval_loss"]
            just_decreased = False
            if loss > best_loss:
                bad_epochs += 1
                if bad_epochs > patience:
795
                    self.assertLess(logs[i + 1]["learning_rate"], log["learning_rate"])
796
797
798
799
800
801
                    just_decreased = True
                    bad_epochs = 0
            else:
                best_loss = loss
                bad_epochs = 0
            if not just_decreased:
802
                self.assertEqual(logs[i + 1]["learning_rate"], log["learning_rate"])
803

804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
    def test_adafactor_lr_none(self):
        # test the special case where lr=None, since Trainer can't not have lr_scheduler

        from transformers.optimization import Adafactor, AdafactorSchedule

        train_dataset = RegressionDataset()
        args = TrainingArguments("./regression")
        model = RegressionModel()
        optimizer = Adafactor(model.parameters(), scale_parameter=True, relative_step=True, warmup_init=True, lr=None)
        lr_scheduler = AdafactorSchedule(optimizer)
        trainer = Trainer(model, args, train_dataset=train_dataset, optimizers=(optimizer, lr_scheduler))
        trainer.train()

        (a, b) = self.default_trained_model
        self.assertFalse(torch.allclose(trainer.model.a, a))
        self.assertFalse(torch.allclose(trainer.model.b, b))
        self.assertGreater(trainer.optimizer.state_dict()["param_groups"][0]["lr"], 0)

822
823
    @require_torch_accelerator
    @require_torch_bf16
824
825
826
827
828
829
830
831
832
833
834
835
    def test_mixed_bf16(self):
        # very basic test
        trainer = get_regression_trainer(learning_rate=0.1, bf16=True)
        trainer.train()
        self.check_trained_model(trainer.model)

        # --bf16 --half_precision_backend apex can't be used together
        with self.assertRaises(ValueError):
            trainer = get_regression_trainer(learning_rate=0.1, bf16=True, half_precision_backend="apex")

        # will add more specific tests once there are some bugs to fix

836
837
838
839
840
841
842
843
    @require_torch_gpu
    @require_torch_tf32
    def test_tf32(self):
        # very basic test
        trainer = get_regression_trainer(learning_rate=0.1, tf32=True)
        trainer.train()
        self.check_trained_model(trainer.model)

844
845
846
847
848
849
850

@require_torch
@require_sentencepiece
@require_tokenizers
class TrainerIntegrationTest(TestCasePlus, TrainerIntegrationCommon):
    def setUp(self):
        super().setUp()
851
        args = TrainingArguments("..")
852
853
854
        self.n_epochs = args.num_train_epochs
        self.batch_size = args.train_batch_size

855
856
857
858
859
860
861
862
863
864
865
866
867
    def test_trainer_works_with_dict(self):
        # Edge case because Apex with mode O2 will change our models to return dicts. This test checks it doesn't break
        # anything.
        train_dataset = RegressionDataset()
        eval_dataset = RegressionDataset()
        model = RegressionDictModel()
        args = TrainingArguments("./regression")
        trainer = Trainer(model, args, train_dataset=train_dataset, eval_dataset=eval_dataset)
        trainer.train()
        _ = trainer.evaluate()
        _ = trainer.predict(eval_dataset)

    def test_evaluation_with_keys_to_drop(self):
868
        config = GPT2Config(vocab_size=100, n_positions=128, n_embd=32, n_layer=3, n_head=4)
869
870
871
872
873
874
875
876
877
878
879
880
881
        tiny_gpt2 = GPT2LMHeadModel(config)
        x = torch.randint(0, 100, (128,))
        eval_dataset = RepeatDataset(x)
        args = TrainingArguments("./test")
        trainer = Trainer(tiny_gpt2, args, eval_dataset=eval_dataset)
        # By default the past_key_values are removed
        result = trainer.predict(eval_dataset)
        self.assertTrue(isinstance(result.predictions, np.ndarray))
        # We can still get them by setting ignore_keys to []
        result = trainer.predict(eval_dataset, ignore_keys=[])
        self.assertTrue(isinstance(result.predictions, tuple))
        self.assertEqual(len(result.predictions), 2)

882
883
884
    def test_training_arguments_are_left_untouched(self):
        trainer = get_regression_trainer()
        trainer.train()
885
        args = TrainingArguments("./regression", report_to=[])
886
887
        dict1, dict2 = args.to_dict(), trainer.args.to_dict()
        for key in dict1.keys():
888
            # Logging dir can be slightly different as they default to something with the time.
Sylvain Gugger's avatar
Sylvain Gugger committed
889
            if key != "logging_dir":
890
                self.assertEqual(dict1[key], dict2[key])
891

Sylvain Gugger's avatar
Sylvain Gugger committed
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
    def test_number_of_steps_in_training(self):
        # Regular training has n_epochs * len(train_dl) steps
        trainer = get_regression_trainer(learning_rate=0.1)
        train_output = trainer.train()
        self.assertEqual(train_output.global_step, self.n_epochs * 64 / self.batch_size)

        # Check passing num_train_epochs works (and a float version too):
        trainer = get_regression_trainer(learning_rate=0.1, num_train_epochs=1.5)
        train_output = trainer.train()
        self.assertEqual(train_output.global_step, int(1.5 * 64 / self.batch_size))

        # If we pass a max_steps, num_train_epochs is ignored
        trainer = get_regression_trainer(learning_rate=0.1, max_steps=10)
        train_output = trainer.train()
        self.assertEqual(train_output.global_step, 10)

908
    @require_torch_bf16
909
910
911
912
    @require_intel_extension_for_pytorch
    def test_number_of_steps_in_training_with_ipex(self):
        for mix_bf16 in [True, False]:
            # Regular training has n_epochs * len(train_dl) steps
913
            trainer = get_regression_trainer(learning_rate=0.1, use_ipex=True, bf16=mix_bf16, use_cpu=True)
914
            train_output = trainer.train()
915
            self.assertEqual(train_output.global_step, self.n_epochs * 64 / trainer.args.train_batch_size)
916
917
918

            # Check passing num_train_epochs works (and a float version too):
            trainer = get_regression_trainer(
919
                learning_rate=0.1, num_train_epochs=1.5, use_ipex=True, bf16=mix_bf16, use_cpu=True
920
921
            )
            train_output = trainer.train()
922
            self.assertEqual(train_output.global_step, int(1.5 * 64 / trainer.args.train_batch_size))
923
924
925

            # If we pass a max_steps, num_train_epochs is ignored
            trainer = get_regression_trainer(
926
                learning_rate=0.1, max_steps=10, use_ipex=True, bf16=mix_bf16, use_cpu=True
927
928
929
930
            )
            train_output = trainer.train()
            self.assertEqual(train_output.global_step, 10)

931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
    @require_peft
    @require_bitsandbytes
    def test_bnb_compile(self):
        from peft import LoraConfig, get_peft_model

        # Simply tests if initializing a Trainer with a PEFT + compiled model works out of the box
        # QLoRA + torch compile is not really supported yet, but we should at least support the model
        # loading and let torch throw the
        tiny_model = AutoModelForCausalLM.from_pretrained(
            "hf-internal-testing/tiny-random-LlamaForCausalLM", load_in_4bit=True
        )

        peft_config = LoraConfig(
            r=8,
            lora_alpha=32,
            target_modules=["q_proj", "k_proj", "v_proj"],
            lora_dropout=0.05,
            bias="none",
            task_type="CAUSAL_LM",
        )
        tiny_model = get_peft_model(tiny_model, peft_config)

        tiny_model = torch.compile(tiny_model)

        x = torch.randint(0, 100, (128,))
        train_dataset = RepeatDataset(x)

        with tempfile.TemporaryDirectory() as tmp_dir:
            args = TrainingArguments(
                tmp_dir,
                learning_rate=1e-9,
                logging_steps=5,
            )
            with self.assertRaises(ValueError):
                _ = Trainer(tiny_model, args, train_dataset=train_dataset)  # noqa

967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
    @require_peft
    def test_multiple_peft_adapters(self):
        from peft import LoraConfig, get_peft_model

        # Tests if resuming from checkpoint works if the model has multiple adapters

        MODEL_ID = "hf-internal-testing/tiny-random-LlamaForCausalLM"
        tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
        tiny_model = AutoModelForCausalLM.from_pretrained(MODEL_ID)

        peft_config = LoraConfig(
            r=4,
            lora_alpha=16,
            lora_dropout=0.05,
            bias="none",
            task_type="CAUSAL_LM",
        )
        tiny_model = get_peft_model(tiny_model, peft_config, "adapter1")
        tiny_model.add_adapter("adapter2", peft_config)

        train_dataset = LineByLineTextDataset(
            tokenizer=tokenizer,
            file_path=PATH_SAMPLE_TEXT,
            block_size=tokenizer.max_len_single_sentence,
        )
        for example in train_dataset.examples:
            example["labels"] = example["input_ids"]

        tokenizer.pad_token = tokenizer.eos_token

        with tempfile.TemporaryDirectory() as tmpdir:
            args = TrainingArguments(
                tmpdir,
                per_device_train_batch_size=1,
                learning_rate=1e-9,
                save_steps=5,
                logging_steps=5,
                max_steps=10,
                use_cpu=True,
            )
            trainer = Trainer(tiny_model, args, tokenizer=tokenizer, train_dataset=train_dataset)

            trainer.train()
            parameters = dict(tiny_model.named_parameters())
            state = dataclasses.asdict(trainer.state)

            # Reinitialize trainer
            trainer = Trainer(tiny_model, args, tokenizer=tokenizer, train_dataset=train_dataset)

            checkpoint = os.path.join(tmpdir, "checkpoint-5")

            trainer.train(resume_from_checkpoint=checkpoint)
            parameters1 = dict(tiny_model.named_parameters())
            state1 = dataclasses.asdict(trainer.state)
            self.assertEqual(parameters, parameters1)
            self.check_trainer_state_are_the_same(state, state1)

1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
    @require_bitsandbytes
    def test_rmsprop_bnb(self):
        config = GPT2Config(vocab_size=100, n_positions=128, n_embd=32, n_layer=3, n_head=4)
        tiny_gpt2 = GPT2LMHeadModel(config)
        x = torch.randint(0, 100, (128,))
        train_dataset = RepeatDataset(x)

        with tempfile.TemporaryDirectory() as tmpdir:
            # Trainer without inf/nan filter
            args = TrainingArguments(
                tmpdir, learning_rate=1e-9, logging_steps=5, logging_nan_inf_filter=False, optim="rmsprop_bnb"
            )
            trainer = Trainer(tiny_gpt2, args, train_dataset=train_dataset)

            # Check that it trains without errors
            trainer.train()

    @require_bitsandbytes
    def test_rmsprop_bnb_8bit(self):
        config = GPT2Config(vocab_size=100, n_positions=128, n_embd=32, n_layer=3, n_head=4)
        tiny_gpt2 = GPT2LMHeadModel(config)
        x = torch.randint(0, 100, (128,))
        train_dataset = RepeatDataset(x)

        with tempfile.TemporaryDirectory() as tmpdir:
            # Trainer without inf/nan filter
            args = TrainingArguments(
                tmpdir, learning_rate=1e-9, logging_steps=5, logging_nan_inf_filter=False, optim="rmsprop_bnb_8bit"
            )
            trainer = Trainer(tiny_gpt2, args, train_dataset=train_dataset)

            # Check that it trains without errors
            trainer.train()

    @require_bitsandbytes
    def test_rmsprop_bnb_32bit(self):
        config = GPT2Config(vocab_size=100, n_positions=128, n_embd=32, n_layer=3, n_head=4)
        tiny_gpt2 = GPT2LMHeadModel(config)
        x = torch.randint(0, 100, (128,))
        train_dataset = RepeatDataset(x)
        with tempfile.TemporaryDirectory() as tmpdir:
            # Trainer without inf/nan filter
            args = TrainingArguments(
                tmpdir, learning_rate=1e-9, logging_steps=5, logging_nan_inf_filter=False, optim="rmsprop_bnb_32bit"
            )
            trainer = Trainer(tiny_gpt2, args, train_dataset=train_dataset)

            # Check that it trains without errors
            trainer.train()

1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
    def test_neftune(self):
        config = GPT2Config(vocab_size=100, n_positions=128, n_embd=32, n_layer=3, n_head=4)
        tiny_gpt2 = GPT2LMHeadModel(config)
        x = torch.randint(0, 100, (128,))
        train_dataset = RepeatDataset(x)

        # Trainer without inf/nan filter
        args = TrainingArguments(
            "./test", learning_rate=1e-9, logging_steps=5, logging_nan_inf_filter=False, neftune_noise_alpha=0.4
        )
        trainer = Trainer(tiny_gpt2, args, train_dataset=train_dataset)

        trainer.model = trainer._activate_neftune(trainer.model)

        dummy_input = torch.LongTensor([[1, 0, 1]]).to(torch_device)

        emb1 = trainer.model.get_input_embeddings()(dummy_input)
        emb2 = trainer.model.get_input_embeddings()(dummy_input)

        self.assertFalse(torch.allclose(emb1, emb2), "Neftune noise is not applied!")

        # redefine the model
        tiny_gpt2 = GPT2LMHeadModel(config)
        # Trainer without inf/nan filter
        args = TrainingArguments(
            "./test", learning_rate=1e-9, logging_steps=5, logging_nan_inf_filter=False, neftune_noise_alpha=0.4
        )
        trainer = Trainer(tiny_gpt2, args, train_dataset=train_dataset)

        # Check that it trains without errors
        trainer.train()

        # Make sure forward pass works fine
        _ = trainer.model(dummy_input)
        self.assertTrue(len(trainer.model.get_input_embeddings()._forward_hooks) == 0)

        trainer.model.eval()

        # Check that we get identical embeddings just in case
        emb1 = trainer.model.get_input_embeddings()(dummy_input)
        emb2 = trainer.model.get_input_embeddings()(dummy_input)

        self.assertTrue(torch.allclose(emb1, emb2), "Neftune noise is still applied!")

1118
    def test_logging_inf_nan_filter(self):
1119
        config = GPT2Config(vocab_size=100, n_positions=128, n_embd=32, n_layer=3, n_head=4)
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
        tiny_gpt2 = GPT2LMHeadModel(config)
        x = torch.randint(0, 100, (128,))
        train_dataset = RepeatDataset(x)

        # Trainer without inf/nan filter
        args = TrainingArguments("./test", learning_rate=1e9, logging_steps=5, logging_nan_inf_filter=False)
        trainer = Trainer(tiny_gpt2, args, train_dataset=train_dataset)
        trainer.train()
        log_history_no_filter = trainer.state.log_history

        # Trainer with inf/nan filter
        args = TrainingArguments("./test", learning_rate=1e9, logging_steps=5, logging_nan_inf_filter=True)
        trainer = Trainer(tiny_gpt2, args, train_dataset=train_dataset)
        trainer.train()
        log_history_filter = trainer.state.log_history

        def is_any_loss_nan_or_inf(log_history):
            losses = [l["loss"] for l in log_history[:-1]]
            return any(math.isnan(x) for x in losses) or any(math.isinf(x) for x in losses)

        self.assertTrue(is_any_loss_nan_or_inf(log_history_no_filter))
        self.assertFalse(is_any_loss_nan_or_inf(log_history_filter))

Sylvain Gugger's avatar
Sylvain Gugger committed
1143
    def test_train_and_eval_dataloaders(self):
1144
1145
1146
1147
        if torch_device == "cuda":
            n_gpu = max(1, backend_device_count(torch_device))
        else:
            n_gpu = 1
Sylvain Gugger's avatar
Sylvain Gugger committed
1148
        trainer = get_regression_trainer(learning_rate=0.1, per_device_train_batch_size=16)
1149
        self.assertEqual(trainer.get_train_dataloader().total_batch_size, 16 * n_gpu)
Sylvain Gugger's avatar
Sylvain Gugger committed
1150
        trainer = get_regression_trainer(learning_rate=0.1, per_device_eval_batch_size=16)
1151
        self.assertEqual(trainer.get_eval_dataloader().total_batch_size, 16 * n_gpu)
Sylvain Gugger's avatar
Sylvain Gugger committed
1152
1153
1154
1155
1156

        # Check drop_last works
        trainer = get_regression_trainer(
            train_len=66, eval_len=74, learning_rate=0.1, per_device_train_batch_size=16, per_device_eval_batch_size=32
        )
1157
1158
        self.assertEqual(len(trainer.get_train_dataloader()), 66 // (16 * n_gpu) + 1)
        self.assertEqual(len(trainer.get_eval_dataloader()), 74 // (32 * n_gpu) + 1)
Sylvain Gugger's avatar
Sylvain Gugger committed
1159
1160
1161
1162
1163
1164
1165
1166
1167

        trainer = get_regression_trainer(
            train_len=66,
            eval_len=74,
            learning_rate=0.1,
            per_device_train_batch_size=16,
            per_device_eval_batch_size=32,
            dataloader_drop_last=True,
        )
1168
1169
        self.assertEqual(len(trainer.get_train_dataloader()), 66 // (16 * n_gpu))
        self.assertEqual(len(trainer.get_eval_dataloader()), 74 // (32 * n_gpu))
Sylvain Gugger's avatar
Sylvain Gugger committed
1170

1171
        # Check passing a new dataset for evaluation works
Sylvain Gugger's avatar
Sylvain Gugger committed
1172
        new_eval_dataset = RegressionDataset(length=128)
1173
        self.assertEqual(len(trainer.get_eval_dataloader(new_eval_dataset)), 128 // (32 * n_gpu))
Sylvain Gugger's avatar
Sylvain Gugger committed
1174

1175
1176
1177
1178
1179
1180
1181
1182
1183
    # tests that we do not require dataloader to have a .dataset attribute
    def test_dataloader_without_dataset(self):
        train_dataset = RegressionDataset(length=128)
        trainer = CustomDataloaderTrainer(
            model=RegressionModel(), train_dataset=train_dataset, eval_dataset=train_dataset
        )
        trainer.train()
        trainer.evaluate()

1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
    def test_galore_matched_modules(self):
        regex_patterns = [r".*.attn.*", r".*.mlp.*"]

        module_names = [
            "model.transformer.h.0.ln_1",
            "model.transformer.h.0.attn.q_proj",
            "model.lm_head",
            "model.transformer.h.0.mlp.up_proj",
        ]
        expected_values = [False, True, False, True]

        for expected_value, module_name in zip(expected_values, module_names):
            is_module_matched, is_regex = check_target_module_exists(regex_patterns, module_name, return_is_regex=True)
            self.assertTrue(is_module_matched == expected_value)
            if is_module_matched:
                self.assertTrue(is_regex)

        exact_patterns = ["q_proj", "up_proj"]

        module_names = [
            "model.transformer.h.0.ln_1",
            "model.transformer.h.0.attn.q_proj",
            "model.lm_head",
            "model.transformer.h.0.mlp.up_proj",
        ]
        expected_values = [False, True, False, True]

        for expected_value, module_name in zip(expected_values, module_names):
            is_module_matched, is_regex = check_target_module_exists(exact_patterns, module_name, return_is_regex=True)
            self.assertTrue(is_module_matched == expected_value)
            if is_module_matched:
                self.assertFalse(is_regex)

        simple_regex = r".*.attn.*"

        module_names = [
            "model.transformer.h.0.ln_1",
            "model.transformer.h.0.attn.q_proj",
            "model.lm_head",
            "model.transformer.h.0.mlp.up_proj",
        ]
        expected_values = [False, True, False, False]

        for expected_value, module_name in zip(expected_values, module_names):
            is_module_matched, is_regex = check_target_module_exists(simple_regex, module_name, return_is_regex=True)
            self.assertTrue(is_module_matched == expected_value)
            if is_module_matched:
                self.assertTrue(is_regex)

        simple_regex = "model.transformer.h.0.attn.q_proj"

        module_names = [
            "model.transformer.h.0.ln_1",
            "model.transformer.h.0.attn.q_proj",
            "model.lm_head",
            "model.transformer.h.0.mlp.up_proj",
        ]
        expected_values = [False, True, False, False]

        for expected_value, module_name in zip(expected_values, module_names):
            is_module_matched, is_regex = check_target_module_exists(simple_regex, module_name, return_is_regex=True)
            self.assertTrue(is_module_matched == expected_value)
            if is_module_matched:
                self.assertFalse(is_regex)

        target_modules = ["attn", "mlp"]

        module_names = [
            "model.transformer.h.0.ln_1",
            "model.transformer.h.0.attn.q_proj",
            "model.lm_head",
            "model.transformer.h.0.mlp.up_proj",
        ]
        expected_values = [False, True, False, True]

        for expected_value, module_name in zip(expected_values, module_names):
            is_module_matched, is_regex = check_target_module_exists(target_modules, module_name, return_is_regex=True)
            self.assertTrue(is_module_matched == expected_value)
            if is_module_matched:
                self.assertFalse(is_regex)

    @require_galore_torch
    @require_torch_gpu
    def test_galore(self):
        config = LlamaConfig(vocab_size=100, hidden_size=32, num_hidden_layers=3, num_attention_heads=4)
        tiny_llama = LlamaForCausalLM(config)
        x = torch.randint(0, 100, (128,))
        train_dataset = RepeatDataset(x)

        with tempfile.TemporaryDirectory() as tmpdir:
            # Trainer without inf/nan filter
            args = TrainingArguments(
                tmpdir,
                learning_rate=1e-9,
                logging_steps=5,
                optim="galore_adamw",
                optim_target_modules=[r".*attn.*", r".*mlp.*"],
            )
            trainer = Trainer(tiny_llama, args, train_dataset=train_dataset)

            # Check this works
            _ = trainer.train()

    @require_galore_torch
    @require_torch_gpu
    def test_galore_extra_args(self):
        config = LlamaConfig(vocab_size=100, hidden_size=32, num_hidden_layers=3, num_attention_heads=4)
        tiny_llama = LlamaForCausalLM(config)
        x = torch.randint(0, 100, (128,))
        train_dataset = RepeatDataset(x)

        with tempfile.TemporaryDirectory() as tmpdir:
            # Trainer without inf/nan filter
            args = TrainingArguments(
                tmpdir,
                learning_rate=1e-9,
                logging_steps=5,
                optim="galore_adamw",
                optim_args="rank=64, update_proj_gap=100, scale=0.10",
                optim_target_modules=[r".*attn.*", r".*mlp.*"],
            )
            trainer = Trainer(tiny_llama, args, train_dataset=train_dataset)

            # Check this works
            _ = trainer.train()

    @require_galore_torch
    @require_torch_gpu
    def test_galore_layerwise(self):
        config = LlamaConfig(vocab_size=100, hidden_size=32, num_hidden_layers=3, num_attention_heads=4)
        tiny_llama = LlamaForCausalLM(config)
        x = torch.randint(0, 100, (128,))
        train_dataset = RepeatDataset(x)

        with tempfile.TemporaryDirectory() as tmpdir:
            # Trainer without inf/nan filter
            args = TrainingArguments(
                tmpdir,
                learning_rate=1e-9,
                logging_steps=5,
                optim="galore_adamw_layerwise",
                optim_target_modules=[r".*attn.*", r".*mlp.*"],
            )
            trainer = Trainer(tiny_llama, args, train_dataset=train_dataset)

            # Check this works
            _ = trainer.train()

    @require_galore_torch
    @require_torch_gpu
    def test_galore_layerwise_with_scheduler(self):
        config = LlamaConfig(vocab_size=100, hidden_size=32, num_hidden_layers=3, num_attention_heads=4)
        tiny_llama = LlamaForCausalLM(config)
        x = torch.randint(0, 100, (128,))
        train_dataset = RepeatDataset(x)

        with tempfile.TemporaryDirectory() as tmpdir:
            # Trainer without inf/nan filter
            args = TrainingArguments(
                tmpdir,
                learning_rate=1e-9,
                logging_steps=5,
                optim="galore_adamw_layerwise",
                lr_scheduler_type="cosine",
                optim_target_modules=[r".*attn.*", r".*mlp.*"],
            )
            trainer = Trainer(tiny_llama, args, train_dataset=train_dataset)

            # Check this works
            _ = trainer.train()

    @require_galore_torch
    @require_torch_gpu
    def test_galore_adamw_8bit(self):
        config = LlamaConfig(vocab_size=100, hidden_size=32, num_hidden_layers=3, num_attention_heads=4)
        tiny_llama = LlamaForCausalLM(config)
        x = torch.randint(0, 100, (128,))
        train_dataset = RepeatDataset(x)

        with tempfile.TemporaryDirectory() as tmpdir:
            # Trainer without inf/nan filter
            args = TrainingArguments(
                tmpdir,
                learning_rate=1e-9,
                logging_steps=5,
                optim="galore_adamw_8bit",
                optim_target_modules=[r".*attn.*", r".*mlp.*"],
            )
            trainer = Trainer(tiny_llama, args, train_dataset=train_dataset)

            # Check this works
            _ = trainer.train()

    @require_galore_torch
    @require_torch_gpu
    def test_galore_adafactor(self):
        # These are the intervals of the peak memory usage of training such a tiny model
        # if the peak memory goes outside that range, then we know there might be a bug somewhere
        upper_bound_pm = 700
        lower_bound_pm = 650

        config = LlamaConfig(vocab_size=100, hidden_size=32, num_hidden_layers=3, num_attention_heads=4)
        tiny_llama = LlamaForCausalLM(config)
        x = torch.randint(0, 100, (128,))
        train_dataset = RepeatDataset(x)

        with tempfile.TemporaryDirectory() as tmpdir, TorchTracemalloc() as tracemalloc:
            # Trainer without inf/nan filter
            args = TrainingArguments(
                tmpdir,
                learning_rate=1e-9,
                logging_steps=5,
                optim="galore_adafactor",
                optim_target_modules=[r".*attn.*", r".*mlp.*"],
            )
            trainer = Trainer(tiny_llama, args, train_dataset=train_dataset)

            # Check this works
            _ = trainer.train()

        galore_peak_memory = tracemalloc.peaked + bytes2megabytes(tracemalloc.begin)

        self.assertTrue(galore_peak_memory < upper_bound_pm)
        self.assertTrue(lower_bound_pm < galore_peak_memory)

    @require_galore_torch
    @require_torch_gpu
    def test_galore_adafactor_attention_only(self):
        # These are the intervals of the peak memory usage of training such a tiny model
        # if the peak memory goes outside that range, then we know there might be a bug somewhere
        upper_bound_pm = 700
        lower_bound_pm = 650

        config = LlamaConfig(vocab_size=100, hidden_size=32, num_hidden_layers=3, num_attention_heads=4)
        tiny_llama = LlamaForCausalLM(config)
        x = torch.randint(0, 100, (128,))
        train_dataset = RepeatDataset(x)

        with tempfile.TemporaryDirectory() as tmpdir, TorchTracemalloc() as tracemalloc:
            # Trainer without inf/nan filter
            args = TrainingArguments(
                tmpdir,
                learning_rate=1e-9,
                logging_steps=5,
                optim="galore_adafactor",
                optim_target_modules=["q_proj", "k_proj", "v_proj"],
            )
            trainer = Trainer(tiny_llama, args, train_dataset=train_dataset)

            # Check this works
            _ = trainer.train()

        galore_peak_memory = tracemalloc.peaked + bytes2megabytes(tracemalloc.begin)
        self.assertTrue(galore_peak_memory < upper_bound_pm)
        self.assertTrue(lower_bound_pm < galore_peak_memory)

    @require_galore_torch
    @require_torch_gpu
    def test_galore_adafactor_all_linear(self):
        # These are the intervals of the peak memory usage of training such a tiny model
        # if the peak memory goes outside that range, then we know there might be a bug somewhere
        upper_bound_pm = 700
        lower_bound_pm = 650

        config = LlamaConfig(vocab_size=100, hidden_size=32, num_hidden_layers=3, num_attention_heads=4)
        tiny_llama = LlamaForCausalLM(config)
        x = torch.randint(0, 100, (128,))
        train_dataset = RepeatDataset(x)

        with tempfile.TemporaryDirectory() as tmpdir, TorchTracemalloc() as tracemalloc:
            # Trainer without inf/nan filter
            args = TrainingArguments(
                tmpdir,
                learning_rate=1e-9,
                logging_steps=5,
                optim="galore_adafactor",
                optim_target_modules="all-linear",
            )
            trainer = Trainer(tiny_llama, args, train_dataset=train_dataset)

            # Check this works
            _ = trainer.train()

        galore_peak_memory = tracemalloc.peaked + bytes2megabytes(tracemalloc.begin)
        self.assertTrue(galore_peak_memory < upper_bound_pm)
        self.assertTrue(lower_bound_pm < galore_peak_memory)

1471
    @require_torch_multi_accelerator
1472
1473
1474
1475
1476
    def test_data_is_not_parallelized_when_model_is_parallel(self):
        model = RegressionModel()
        # Make the Trainer believe it's a parallelized model
        model.is_parallelizable = True
        model.model_parallel = True
1477
1478
        args = TrainingArguments("./regression", per_device_train_batch_size=16, per_device_eval_batch_size=16)
        trainer = Trainer(model, args, train_dataset=RegressionDataset(), eval_dataset=RegressionDataset())
1479
1480
        # Check the Trainer was fooled
        self.assertTrue(trainer.is_model_parallel)
1481
        self.assertEqual(trainer.args.n_gpu, 1)
1482
1483

        # The batch size of the training and evaluation dataloaders should be 16, not 16 * n_gpu
1484
        self.assertEqual(trainer.get_train_dataloader().total_batch_size, 16)
1485
        self.assertEqual(len(trainer.get_train_dataloader()), 64 // 16)
1486
        self.assertEqual(trainer.get_eval_dataloader().total_batch_size, 16)
1487
1488
        self.assertEqual(len(trainer.get_eval_dataloader()), 64 // 16)

Sylvain Gugger's avatar
Sylvain Gugger committed
1489
1490
1491
1492
    def test_evaluate(self):
        trainer = get_regression_trainer(a=1.5, b=2.5, compute_metrics=AlmostAccuracy())
        results = trainer.evaluate()

Sylvain Gugger's avatar
Sylvain Gugger committed
1493
        x, y = trainer.eval_dataset.x, trainer.eval_dataset.ys[0]
Sylvain Gugger's avatar
Sylvain Gugger committed
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
        pred = 1.5 * x + 2.5
        expected_loss = ((pred - y) ** 2).mean()
        self.assertAlmostEqual(results["eval_loss"], expected_loss)
        expected_acc = AlmostAccuracy()((pred, y))["accuracy"]
        self.assertAlmostEqual(results["eval_accuracy"], expected_acc)

        # With a number of elements not a round multiple of the batch size
        trainer = get_regression_trainer(a=1.5, b=2.5, eval_len=66, compute_metrics=AlmostAccuracy())
        results = trainer.evaluate()

Sylvain Gugger's avatar
Sylvain Gugger committed
1504
        x, y = trainer.eval_dataset.x, trainer.eval_dataset.ys[0]
Sylvain Gugger's avatar
Sylvain Gugger committed
1505
1506
1507
1508
1509
1510
        pred = 1.5 * x + 2.5
        expected_loss = ((pred - y) ** 2).mean()
        self.assertAlmostEqual(results["eval_loss"], expected_loss)
        expected_acc = AlmostAccuracy()((pred, y))["accuracy"]
        self.assertAlmostEqual(results["eval_accuracy"], expected_acc)

1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
        # With logits preprocess
        trainer = get_regression_trainer(
            a=1.5,
            b=2.5,
            compute_metrics=AlmostAccuracy(),
            preprocess_logits_for_metrics=lambda logits, labels: logits + 1,
        )
        results = trainer.evaluate()

        x, y = trainer.eval_dataset.x, trainer.eval_dataset.ys[0]
        pred = 1.5 * x + 2.5
        expected_loss = ((pred - y) ** 2).mean()
        self.assertAlmostEqual(results["eval_loss"], expected_loss)
        expected_acc = AlmostAccuracy()((pred + 1, y))["accuracy"]
        self.assertAlmostEqual(results["eval_accuracy"], expected_acc)

1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
    def test_evaluate_with_jit(self):
        trainer = get_regression_trainer(a=1.5, b=2.5, compute_metrics=AlmostAccuracy(), jit_mode_eval=True)
        results = trainer.evaluate()

        x, y = trainer.eval_dataset.x, trainer.eval_dataset.ys[0]
        pred = 1.5 * x + 2.5
        expected_loss = ((pred - y) ** 2).mean()
        self.assertAlmostEqual(results["eval_loss"], expected_loss)
        expected_acc = AlmostAccuracy()((pred, y))["accuracy"]
        self.assertAlmostEqual(results["eval_accuracy"], expected_acc)

        # With a number of elements not a round multiple of the batch size
        trainer = get_regression_trainer(
            a=1.5, b=2.5, eval_len=66, compute_metrics=AlmostAccuracy(), jit_mode_eval=True
        )
        results = trainer.evaluate()

        x, y = trainer.eval_dataset.x, trainer.eval_dataset.ys[0]
        pred = 1.5 * x + 2.5
        expected_loss = ((pred - y) ** 2).mean()
        self.assertAlmostEqual(results["eval_loss"], expected_loss)
        expected_acc = AlmostAccuracy()((pred, y))["accuracy"]
        self.assertAlmostEqual(results["eval_accuracy"], expected_acc)

        # With logits preprocess
        trainer = get_regression_trainer(
            a=1.5,
            b=2.5,
            compute_metrics=AlmostAccuracy(),
            preprocess_logits_for_metrics=lambda logits, labels: logits + 1,
            jit_mode_eval=True,
        )
        results = trainer.evaluate()

        x, y = trainer.eval_dataset.x, trainer.eval_dataset.ys[0]
        pred = 1.5 * x + 2.5
        expected_loss = ((pred - y) ** 2).mean()
        self.assertAlmostEqual(results["eval_loss"], expected_loss)
        expected_acc = AlmostAccuracy()((pred + 1, y))["accuracy"]
        self.assertAlmostEqual(results["eval_accuracy"], expected_acc)

1568
    @require_torch_bf16
1569
1570
1571
1572
    @require_intel_extension_for_pytorch
    def test_evaluate_with_ipex(self):
        for mix_bf16 in [True, False]:
            trainer = get_regression_trainer(
1573
                a=1.5, b=2.5, use_ipex=True, compute_metrics=AlmostAccuracy(), bf16=mix_bf16, use_cpu=True
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
            )
            results = trainer.evaluate()

            x, y = trainer.eval_dataset.x, trainer.eval_dataset.ys[0]
            pred = 1.5 * x + 2.5
            expected_loss = ((pred - y) ** 2).mean()
            self.assertAlmostEqual(results["eval_loss"], expected_loss)
            expected_acc = AlmostAccuracy()((pred, y))["accuracy"]
            self.assertAlmostEqual(results["eval_accuracy"], expected_acc)

            # With a number of elements not a round multiple of the batch size
            trainer = get_regression_trainer(
                a=1.5,
                b=2.5,
                use_ipex=True,
                eval_len=66,
                compute_metrics=AlmostAccuracy(),
                bf16=mix_bf16,
1592
                use_cpu=True,
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
            )
            results = trainer.evaluate()

            x, y = trainer.eval_dataset.x, trainer.eval_dataset.ys[0]
            pred = 1.5 * x + 2.5
            expected_loss = ((pred - y) ** 2).mean()
            self.assertAlmostEqual(results["eval_loss"], expected_loss)
            expected_acc = AlmostAccuracy()((pred, y))["accuracy"]
            self.assertAlmostEqual(results["eval_accuracy"], expected_acc)

            # With logits preprocess
            trainer = get_regression_trainer(
                a=1.5,
                b=2.5,
                use_ipex=True,
                compute_metrics=AlmostAccuracy(),
                preprocess_logits_for_metrics=lambda logits, labels: logits + 1,
                bf16=mix_bf16,
1611
                use_cpu=True,
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
            )
            results = trainer.evaluate()

            x, y = trainer.eval_dataset.x, trainer.eval_dataset.ys[0]
            pred = 1.5 * x + 2.5
            expected_loss = ((pred - y) ** 2).mean()
            self.assertAlmostEqual(results["eval_loss"], expected_loss)
            expected_acc = AlmostAccuracy()((pred + 1, y))["accuracy"]
            self.assertAlmostEqual(results["eval_accuracy"], expected_acc)

Sylvain Gugger's avatar
Sylvain Gugger committed
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
    def test_predict(self):
        trainer = get_regression_trainer(a=1.5, b=2.5)
        preds = trainer.predict(trainer.eval_dataset).predictions
        x = trainer.eval_dataset.x
        self.assertTrue(np.allclose(preds, 1.5 * x + 2.5))

        # With a number of elements not a round multiple of the batch size
        trainer = get_regression_trainer(a=1.5, b=2.5, eval_len=66)
        preds = trainer.predict(trainer.eval_dataset).predictions
        x = trainer.eval_dataset.x
        self.assertTrue(np.allclose(preds, 1.5 * x + 2.5))

1634
1635
1636
1637
        # With more than one output of the model
        trainer = get_regression_trainer(a=1.5, b=2.5, double_output=True)
        preds = trainer.predict(trainer.eval_dataset).predictions
        x = trainer.eval_dataset.x
1638
        self.assertEqual(len(preds), 2)
1639
1640
1641
        self.assertTrue(np.allclose(preds[0], 1.5 * x + 2.5))
        self.assertTrue(np.allclose(preds[1], 1.5 * x + 2.5))

Sylvain Gugger's avatar
Sylvain Gugger committed
1642
1643
1644
1645
1646
1647
        # With more than one output/label of the model
        trainer = get_regression_trainer(a=1.5, b=2.5, double_output=True, label_names=["labels", "labels_2"])
        outputs = trainer.predict(trainer.eval_dataset)
        preds = outputs.predictions
        labels = outputs.label_ids
        x = trainer.eval_dataset.x
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
        self.assertEqual(len(preds), 2)
        self.assertTrue(np.allclose(preds[0], 1.5 * x + 2.5))
        self.assertTrue(np.allclose(preds[1], 1.5 * x + 2.5))
        self.assertTrue(np.array_equal(labels[0], trainer.eval_dataset.ys[0]))
        self.assertTrue(np.array_equal(labels[1], trainer.eval_dataset.ys[1]))

    def test_predict_with_jit(self):
        trainer = get_regression_trainer(a=1.5, b=2.5, jit_mode_eval=True)
        preds = trainer.predict(trainer.eval_dataset).predictions
        x = trainer.eval_dataset.x
        self.assertTrue(np.allclose(preds, 1.5 * x + 2.5))

        # With a number of elements not a round multiple of the batch size
        trainer = get_regression_trainer(a=1.5, b=2.5, eval_len=66, jit_mode_eval=True)
        preds = trainer.predict(trainer.eval_dataset).predictions
        x = trainer.eval_dataset.x
        self.assertTrue(np.allclose(preds, 1.5 * x + 2.5))

        # With more than one output of the model
        trainer = get_regression_trainer(a=1.5, b=2.5, double_output=True, jit_mode_eval=True)
        preds = trainer.predict(trainer.eval_dataset).predictions
        x = trainer.eval_dataset.x
        self.assertEqual(len(preds), 2)
        self.assertTrue(np.allclose(preds[0], 1.5 * x + 2.5))
        self.assertTrue(np.allclose(preds[1], 1.5 * x + 2.5))

        # With more than one output/label of the model
        trainer = get_regression_trainer(
            a=1.5, b=2.5, double_output=True, label_names=["labels", "labels_2"], jit_mode_eval=True
        )
        outputs = trainer.predict(trainer.eval_dataset)
        preds = outputs.predictions
        labels = outputs.label_ids
        x = trainer.eval_dataset.x
1682
        self.assertEqual(len(preds), 2)
Sylvain Gugger's avatar
Sylvain Gugger committed
1683
1684
1685
1686
1687
        self.assertTrue(np.allclose(preds[0], 1.5 * x + 2.5))
        self.assertTrue(np.allclose(preds[1], 1.5 * x + 2.5))
        self.assertTrue(np.array_equal(labels[0], trainer.eval_dataset.ys[0]))
        self.assertTrue(np.array_equal(labels[1], trainer.eval_dataset.ys[1]))

1688
    @require_torch_bf16
1689
1690
1691
    @require_intel_extension_for_pytorch
    def test_predict_with_ipex(self):
        for mix_bf16 in [True, False]:
1692
            trainer = get_regression_trainer(a=1.5, b=2.5, use_ipex=True, bf16=mix_bf16, use_cpu=True)
1693
1694
1695
1696
1697
            preds = trainer.predict(trainer.eval_dataset).predictions
            x = trainer.eval_dataset.x
            self.assertTrue(np.allclose(preds, 1.5 * x + 2.5))

            # With a number of elements not a round multiple of the batch size
1698
            trainer = get_regression_trainer(a=1.5, b=2.5, eval_len=66, use_ipex=True, bf16=mix_bf16, use_cpu=True)
1699
1700
1701
1702
1703
1704
            preds = trainer.predict(trainer.eval_dataset).predictions
            x = trainer.eval_dataset.x
            self.assertTrue(np.allclose(preds, 1.5 * x + 2.5))

            # With more than one output of the model
            trainer = get_regression_trainer(
1705
                a=1.5, b=2.5, double_output=True, use_ipex=True, bf16=mix_bf16, use_cpu=True
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
            )
            preds = trainer.predict(trainer.eval_dataset).predictions
            x = trainer.eval_dataset.x
            self.assertEqual(len(preds), 2)
            self.assertTrue(np.allclose(preds[0], 1.5 * x + 2.5))
            self.assertTrue(np.allclose(preds[1], 1.5 * x + 2.5))

            # With more than one output/label of the model
            trainer = get_regression_trainer(
                a=1.5,
                b=2.5,
                double_output=True,
                label_names=["labels", "labels_2"],
                use_ipex=True,
                bf16=mix_bf16,
1721
                use_cpu=True,
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
            )
            outputs = trainer.predict(trainer.eval_dataset)
            preds = outputs.predictions
            labels = outputs.label_ids
            x = trainer.eval_dataset.x
            self.assertEqual(len(preds), 2)
            self.assertTrue(np.allclose(preds[0], 1.5 * x + 2.5))
            self.assertTrue(np.allclose(preds[1], 1.5 * x + 2.5))
            self.assertTrue(np.array_equal(labels[0], trainer.eval_dataset.ys[0]))
            self.assertTrue(np.array_equal(labels[1], trainer.eval_dataset.ys[1]))

1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
    def test_dynamic_shapes(self):
        eval_dataset = DynamicShapesDataset(batch_size=self.batch_size)
        model = RegressionModel(a=2, b=1)
        args = TrainingArguments("./regression")
        trainer = Trainer(model, args, eval_dataset=eval_dataset)

        # Check evaluation can run to completion
        _ = trainer.evaluate()

        # Check predictions
        preds = trainer.predict(eval_dataset)
        for expected, seen in zip(eval_dataset.ys, preds.label_ids):
            self.assertTrue(np.array_equal(expected, seen[: expected.shape[0]]))
            self.assertTrue(np.all(seen[expected.shape[0] :] == -100))

        for expected, seen in zip(eval_dataset.xs, preds.predictions):
            self.assertTrue(np.array_equal(2 * expected + 1, seen[: expected.shape[0]]))
            self.assertTrue(np.all(seen[expected.shape[0] :] == -100))

        # Same tests with eval accumulation
        args = TrainingArguments("./regression", eval_accumulation_steps=2)
        trainer = Trainer(model, args, eval_dataset=eval_dataset)

        # Check evaluation can run to completion
        _ = trainer.evaluate()

        # Check predictions
        preds = trainer.predict(eval_dataset)
        for expected, seen in zip(eval_dataset.ys, preds.label_ids):
            self.assertTrue(np.array_equal(expected, seen[: expected.shape[0]]))
            self.assertTrue(np.all(seen[expected.shape[0] :] == -100))

        for expected, seen in zip(eval_dataset.xs, preds.predictions):
            self.assertTrue(np.array_equal(2 * expected + 1, seen[: expected.shape[0]]))
            self.assertTrue(np.all(seen[expected.shape[0] :] == -100))

1769
    def test_log_level(self):
1770
        # testing only --log_level (--log_level_replica requires multiple gpus and DDP and is tested elsewhere)
1771
1772
1773
        logger = logging.get_logger()
        log_info_string = "Running training"

1774
1775
        # test with the default log_level - should be the same as before and thus we test depending on is_info
        is_info = logging.get_verbosity() <= 20
1776
1777
1778
        with CaptureLogger(logger) as cl:
            trainer = get_regression_trainer()
            trainer.train()
1779
1780
1781
1782
        if is_info:
            self.assertIn(log_info_string, cl.out)
        else:
            self.assertNotIn(log_info_string, cl.out)
1783

1784
1785
1786
1787
1788
1789
        with LoggingLevel(logging.INFO):
            # test with low log_level - lower than info
            with CaptureLogger(logger) as cl:
                trainer = get_regression_trainer(log_level="debug")
                trainer.train()
            self.assertIn(log_info_string, cl.out)
1790

1791
1792
1793
1794
1795
1796
        with LoggingLevel(logging.INFO):
            # test with high log_level - should be quiet
            with CaptureLogger(logger) as cl:
                trainer = get_regression_trainer(log_level="error")
                trainer.train()
            self.assertNotIn(log_info_string, cl.out)
1797

1798
1799
1800
1801
1802
1803
1804
1805
    def test_save_checkpoints(self):
        with tempfile.TemporaryDirectory() as tmpdir:
            trainer = get_regression_trainer(output_dir=tmpdir, save_steps=5)
            trainer.train()
            self.check_saved_checkpoints(tmpdir, 5, int(self.n_epochs * 64 / self.batch_size))

        # With a regular model that is not a PreTrainedModel
        with tempfile.TemporaryDirectory() as tmpdir:
1806
            trainer = get_regression_trainer(output_dir=tmpdir, save_steps=5, pretrained=False)
1807
1808
1809
            trainer.train()
            self.check_saved_checkpoints(tmpdir, 5, int(self.n_epochs * 64 / self.batch_size), False)

1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
    @require_safetensors
    def test_safe_checkpoints(self):
        for save_safetensors in [True, False]:
            with tempfile.TemporaryDirectory() as tmpdir:
                trainer = get_regression_trainer(output_dir=tmpdir, save_steps=5, save_safetensors=save_safetensors)
                trainer.train()
                self.check_saved_checkpoints(
                    tmpdir, 5, int(self.n_epochs * 64 / self.batch_size), safe_weights=save_safetensors
                )

            # With a regular model that is not a PreTrainedModel
            with tempfile.TemporaryDirectory() as tmpdir:
                trainer = get_regression_trainer(
                    output_dir=tmpdir, save_steps=5, pretrained=False, save_safetensors=save_safetensors
                )
                trainer.train()
                self.check_saved_checkpoints(
                    tmpdir, 5, int(self.n_epochs * 64 / self.batch_size), False, safe_weights=save_safetensors
                )

1830
    @require_torch_multi_accelerator
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
    def test_run_seq2seq_double_train_wrap_once(self):
        # test that we don't wrap the model more than once
        # since wrapping primarily happens on multi-gpu setup we want multiple gpus to test for
        # example DataParallel(DataParallel(model))

        trainer = get_regression_trainer()
        trainer.train()
        model_wrapped_before = trainer.model_wrapped
        trainer.train()
        model_wrapped_after = trainer.model_wrapped
        self.assertIs(model_wrapped_before, model_wrapped_after, "should be not wrapped twice")

1843
    @require_torch_up_to_2_accelerators
1844
    def test_can_resume_training(self):
1845
1846
1847
        # This test will fail for more than 2 GPUs since the batch size will get bigger and with the number of
        # save_steps, the checkpoint will resume training at epoch 2 or more (so the data seen by the model
        # won't be the same since the training dataloader is shuffled).
1848

1849
        with tempfile.TemporaryDirectory() as tmpdir:
1850
1851
1852
1853
1854
1855
1856
            kwargs = {
                "output_dir": tmpdir,
                "train_len": 128,
                "save_steps": 5,
                "learning_rate": 0.1,
                "logging_steps": 5,
            }
1857
            trainer = get_regression_trainer(**kwargs)
1858
1859
1860
1861
1862
1863
            trainer.train()
            (a, b) = trainer.model.a.item(), trainer.model.b.item()
            state = dataclasses.asdict(trainer.state)

            checkpoint = os.path.join(tmpdir, "checkpoint-5")

1864
            # Reinitialize trainer
1865
            trainer = get_regression_trainer(**kwargs)
1866

1867
            trainer.train(resume_from_checkpoint=checkpoint)
1868
1869
1870
1871
            (a1, b1) = trainer.model.a.item(), trainer.model.b.item()
            state1 = dataclasses.asdict(trainer.state)
            self.assertEqual(a, a1)
            self.assertEqual(b, b1)
1872
            self.check_trainer_state_are_the_same(state, state1)
1873

1874
1875
1876
1877
            # Now check with a later checkpoint that it also works when we span over one epoch
            checkpoint = os.path.join(tmpdir, "checkpoint-15")

            # Reinitialize trainer and load model
1878
            trainer = get_regression_trainer(**kwargs)
1879

1880
            trainer.train(resume_from_checkpoint=checkpoint)
1881
1882
1883
1884
            (a1, b1) = trainer.model.a.item(), trainer.model.b.item()
            state1 = dataclasses.asdict(trainer.state)
            self.assertEqual(a, a1)
            self.assertEqual(b, b1)
1885
            self.check_trainer_state_are_the_same(state, state1)
1886

1887
1888
        # With a regular model that is not a PreTrainedModel
        with tempfile.TemporaryDirectory() as tmpdir:
1889
1890
1891
1892
1893
1894
1895
            kwargs = {
                "output_dir": tmpdir,
                "train_len": 128,
                "save_steps": 5,
                "learning_rate": 0.1,
                "pretrained": False,
            }
1896
1897

            trainer = get_regression_trainer(**kwargs)
1898
1899
1900
1901
1902
1903
1904
            trainer.train()
            (a, b) = trainer.model.a.item(), trainer.model.b.item()
            state = dataclasses.asdict(trainer.state)

            checkpoint = os.path.join(tmpdir, "checkpoint-5")

            # Reinitialize trainer and load model
1905
            trainer = get_regression_trainer(**kwargs)
1906

1907
            trainer.train(resume_from_checkpoint=checkpoint)
1908
1909
1910
1911
            (a1, b1) = trainer.model.a.item(), trainer.model.b.item()
            state1 = dataclasses.asdict(trainer.state)
            self.assertEqual(a, a1)
            self.assertEqual(b, b1)
1912
            self.check_trainer_state_are_the_same(state, state1)
1913

1914
1915
1916
1917
            # Now check with a later checkpoint that it also works when we span over one epoch
            checkpoint = os.path.join(tmpdir, "checkpoint-15")

            # Reinitialize trainer and load model
1918
            trainer = get_regression_trainer(**kwargs)
1919

1920
            trainer.train(resume_from_checkpoint=checkpoint)
1921
1922
1923
1924
            (a1, b1) = trainer.model.a.item(), trainer.model.b.item()
            state1 = dataclasses.asdict(trainer.state)
            self.assertEqual(a, a1)
            self.assertEqual(b, b1)
1925
            self.check_trainer_state_are_the_same(state, state1)
1926

1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
        # Now check failures

        # 1. fail to find a bogus checkpoint
        trainer = get_regression_trainer()
        with self.assertRaises(Exception) as context:
            trainer.train(resume_from_checkpoint=f"{checkpoint}-bogus")
        self.assertTrue("Can't find a valid checkpoint at" in str(context.exception))

        # 2. fail to find any checkpoint - due a fresh output_dir
        output_dir2 = self.get_auto_remove_tmp_dir()
        trainer = get_regression_trainer(output_dir=output_dir2)
        with self.assertRaises(Exception) as context:
            trainer.train(resume_from_checkpoint=True)
        self.assertTrue("No valid checkpoint found in output directory" in str(context.exception))

1942
1943
1944
    @unittest.skip(
        reason="@muellerzr: Fix once Trainer can take an accelerate configuration. Need to set `seedable_sampler=True`."
    )
1945
    def test_resume_training_with_randomness(self):
1946
1947
1948
1949
        # For more than 1 GPUs, since the randomness is introduced in the model and with DataParallel (which is used
        # in this test for more than 2 GPUs), the calls to the torch RNG will happen in a random order (sometimes
        # GPU 0 will call first and sometimes GPU 1).
        random_torch = not torch.cuda.is_available() or torch.cuda.device_count() <= 1
1950
1951
1952
1953
1954
1955

        if torch.cuda.is_available():
            torch.backends.cudnn.deterministic = True
        train_dataset = RegressionDataset(length=128)
        eval_dataset = RegressionDataset()

1956
1957
1958
        with self.subTest("Test every step"):
            config = RegressionModelConfig(a=0, b=2, random_torch=random_torch)
            model = RegressionRandomPreTrainedModel(config)
1959

1960
1961
1962
            tmp_dir = self.get_auto_remove_tmp_dir()
            args = RegressionTrainingArguments(tmp_dir, save_steps=5, learning_rate=0.1)
            trainer = Trainer(model, args, train_dataset=train_dataset, eval_dataset=eval_dataset)
1963

1964
1965
            trainer.train()
            (a, b) = trainer.model.a.item(), trainer.model.b.item()
1966

1967
1968
1969
1970
1971
            model = RegressionRandomPreTrainedModel(config)
            trainer = Trainer(model, args, train_dataset=train_dataset, eval_dataset=eval_dataset)
            trainer.train(resume_from_checkpoint=os.path.join(tmp_dir, "checkpoint-15"))
            (a1, b1) = trainer.model.a.item(), trainer.model.b.item()

1972
1973
            self.assertAlmostEqual(a, a1, delta=1e-5)
            self.assertAlmostEqual(b, b1, delta=1e-5)
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995

        with self.subTest("Test every epoch"):
            config = RegressionModelConfig(a=0, b=2, random_torch=random_torch)
            model = RegressionRandomPreTrainedModel(config)

            tmp_dir = self.get_auto_remove_tmp_dir()
            args = RegressionTrainingArguments(tmp_dir, save_strategy="epoch", learning_rate=0.1)
            trainer = Trainer(model, args, train_dataset=train_dataset, eval_dataset=eval_dataset)

            trainer.train()
            (a, b) = trainer.model.a.item(), trainer.model.b.item()

            model = RegressionRandomPreTrainedModel(config)
            trainer = Trainer(model, args, train_dataset=train_dataset, eval_dataset=eval_dataset)

            checkpoints = [d for d in os.listdir(tmp_dir) if d.startswith("checkpoint-")]
            # There should be one checkpoint per epoch.
            self.assertEqual(len(checkpoints), 3)
            checkpoint_dir = sorted(checkpoints, key=lambda x: int(x.replace("checkpoint-", "")))[0]

            trainer.train(resume_from_checkpoint=os.path.join(tmp_dir, checkpoint_dir))
            (a1, b1) = trainer.model.a.item(), trainer.model.b.item()
1996

1997
1998
            self.assertAlmostEqual(a, a1, delta=1e-5)
            self.assertAlmostEqual(b, b1, delta=1e-5)
1999

2000
    @slow
Yih-Dar's avatar
Yih-Dar committed
2001
    @require_accelerate
2002
    @require_torch_non_multi_accelerator
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
    def test_auto_batch_size_finder(self):
        if torch.cuda.is_available():
            torch.backends.cudnn.deterministic = True

        SRC_DIR = os.path.abspath(
            os.path.join(os.path.dirname(__file__), "..", "..", "examples", "pytorch", "text-classification")
        )
        sys.path.append(SRC_DIR)
        import run_glue

        with tempfile.TemporaryDirectory() as tmpdir:
            testargs = f"""
                run_glue.py
2016
                --model_name_or_path distilbert/distilbert-base-uncased
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
                --task_name mrpc
                --do_train
                --do_eval
                --max_seq_len 128
                --per_device_train_batch_size 4096
                --learning_rate 2e-5
                --num_train_epochs 1
                --output_dir {tmpdir}
                --auto_find_batch_size 0
                """.split()
            with self.assertRaises(RuntimeError):
                with patch.object(sys, "argv", testargs):
                    run_glue.main()

        testargs[-1] = "1"
        with patch.object(sys, "argv", testargs):
            run_glue.main()

2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
    @require_deepspeed
    def test_auto_batch_size_with_resume_from_checkpoint_with_deepspeed(self):
        train_dataset = RegressionDataset(length=128)

        config = RegressionModelConfig(a=0, b=2)
        model = RegressionRandomPreTrainedModel(config)

        tmp_dir = self.get_auto_remove_tmp_dir()

        class MockCudaOOMCallback(TrainerCallback):
            def on_step_end(self, args, state, control, **kwargs):
                # simulate OOM on the first step
                if state.train_batch_size >= 16:
                    raise RuntimeError("CUDA out of memory.")

        deepspeed = {
            "zero_optimization": {
                "stage": 1,
            },
            "train_batch_size": "auto",
            "train_micro_batch_size_per_gpu": "auto",
        }

        args = RegressionTrainingArguments(
            tmp_dir,
            do_train=True,
            max_steps=2,
            save_steps=1,
            per_device_train_batch_size=16,
            auto_find_batch_size=True,
            deepspeed=deepspeed,
        )
2067
2068
2069
2070
        # Note: This can have issues, for now we don't support this functionality
        # ref: https://github.com/huggingface/transformers/pull/29057
        with self.assertRaises(NotImplementedError):
            _ = Trainer(model, args, train_dataset=train_dataset, callbacks=[MockCudaOOMCallback()])
2071

2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
    def test_auto_batch_size_with_resume_from_checkpoint(self):
        train_dataset = RegressionDataset(length=128)

        config = RegressionModelConfig(a=0, b=2)
        model = RegressionRandomPreTrainedModel(config)

        tmp_dir = self.get_auto_remove_tmp_dir()

        class MockCudaOOMCallback(TrainerCallback):
            def on_step_end(self, args, state, control, **kwargs):
                # simulate OOM on the first step
2083
                if state.train_batch_size >= 16:
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
                    raise RuntimeError("CUDA out of memory.")

        args = RegressionTrainingArguments(
            tmp_dir,
            do_train=True,
            max_steps=2,
            save_steps=1,
            per_device_train_batch_size=16,
            auto_find_batch_size=True,
        )
        trainer = Trainer(model, args, train_dataset=train_dataset, callbacks=[MockCudaOOMCallback()])
        trainer.train()
        # After `auto_find_batch_size` is ran we should now be at 8
        self.assertEqual(trainer._train_batch_size, 8)

        # We can then make a new Trainer
        trainer = Trainer(model, args, train_dataset=train_dataset)
        # Check we are at 16 to start
2102
        self.assertEqual(trainer._train_batch_size, 16 * max(trainer.args.n_gpu, 1))
2103
2104
2105
2106
        trainer.train(resume_from_checkpoint=True)
        # We should be back to 8 again, picking up based upon the last ran Trainer
        self.assertEqual(trainer._train_batch_size, 8)

2107
    # regression for this issue: https://github.com/huggingface/transformers/issues/12970
2108
    def test_training_with_resume_from_checkpoint_false(self):
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
        train_dataset = RegressionDataset(length=128)
        eval_dataset = RegressionDataset()

        config = RegressionModelConfig(a=0, b=2)
        model = RegressionRandomPreTrainedModel(config)

        tmp_dir = self.get_auto_remove_tmp_dir()
        args = RegressionTrainingArguments(tmp_dir, save_steps=5, learning_rate=0.1)
        trainer = Trainer(model, args, train_dataset=train_dataset, eval_dataset=eval_dataset)

        trainer.train(resume_from_checkpoint=False)

2121
    @require_torch_up_to_2_accelerators
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
    def test_resume_training_with_shard_checkpoint(self):
        # This test will fail for more than 2 GPUs since the batch size will get bigger and with the number of
        # save_steps, the checkpoint will resume training at epoch 2 or more (so the data seen by the model
        # won't be the same since the training dataloader is shuffled).

        with tempfile.TemporaryDirectory() as tmpdir:
            trainer = get_regression_trainer(output_dir=tmpdir, train_len=128, save_steps=5, learning_rate=0.1)
            trainer.train()
            (a, b) = trainer.model.a.item(), trainer.model.b.item()
            state = dataclasses.asdict(trainer.state)

            checkpoint = os.path.join(tmpdir, "checkpoint-5")
            self.convert_to_sharded_checkpoint(checkpoint)

            # Reinitialize trainer
            trainer = get_regression_trainer(output_dir=tmpdir, train_len=128, save_steps=5, learning_rate=0.1)

            trainer.train(resume_from_checkpoint=checkpoint)
            (a1, b1) = trainer.model.a.item(), trainer.model.b.item()
            state1 = dataclasses.asdict(trainer.state)
            self.assertEqual(a, a1)
            self.assertEqual(b, b1)
            self.check_trainer_state_are_the_same(state, state1)

2146
    @require_safetensors
2147
    @require_torch_up_to_2_accelerators
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
    def test_resume_training_with_safe_checkpoint(self):
        # This test will fail for more than 2 GPUs since the batch size will get bigger and with the number of
        # save_steps, the checkpoint will resume training at epoch 2 or more (so the data seen by the model
        # won't be the same since the training dataloader is shuffled).

        for initial_safe in [False, True]:
            for loaded_safe in [False, True]:
                with tempfile.TemporaryDirectory() as tmpdir:
                    trainer = get_regression_trainer(
                        output_dir=tmpdir,
                        train_len=128,
                        save_steps=5,
                        learning_rate=0.1,
                        save_safetensors=initial_safe,
                    )
                    trainer.train()
                    (a, b) = trainer.model.a.item(), trainer.model.b.item()
                    state = dataclasses.asdict(trainer.state)

                    checkpoint = os.path.join(tmpdir, "checkpoint-5")
                    self.convert_to_sharded_checkpoint(checkpoint, load_safe=initial_safe, save_safe=loaded_safe)

                    # Reinitialize trainer
                    trainer = get_regression_trainer(
                        output_dir=tmpdir, train_len=128, save_steps=5, learning_rate=0.1, save_safetensors=loaded_safe
                    )

                    trainer.train(resume_from_checkpoint=checkpoint)
                    (a1, b1) = trainer.model.a.item(), trainer.model.b.item()
                    state1 = dataclasses.asdict(trainer.state)
                    self.assertEqual(a, a1)
                    self.assertEqual(b, b1)
                    self.check_trainer_state_are_the_same(state, state1)

2182
    @require_torch_up_to_2_accelerators
2183
    def test_resume_training_with_gradient_accumulation(self):
2184
2185
2186
2187
        # This test will fail for more than 2 GPUs since the batch size will get bigger and with the number of
        # save_steps, the checkpoint will resume training at epoch 2 or more (so the data seen by the model
        # won't be the same since the training dataloader is shuffled).

2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
        with tempfile.TemporaryDirectory() as tmpdir:
            trainer = get_regression_trainer(
                output_dir=tmpdir,
                train_len=128,
                gradient_accumulation_steps=2,
                per_device_train_batch_size=4,
                save_steps=5,
                learning_rate=0.1,
            )
            trainer.train()
            (a, b) = trainer.model.a.item(), trainer.model.b.item()
            state = dataclasses.asdict(trainer.state)

            checkpoint = os.path.join(tmpdir, "checkpoint-5")

2203
2204
2205
2206
2207
2208
2209
2210
2211
            # Reinitialize trainer
            trainer = get_regression_trainer(
                output_dir=tmpdir,
                train_len=128,
                gradient_accumulation_steps=2,
                per_device_train_batch_size=4,
                save_steps=5,
                learning_rate=0.1,
            )
2212

2213
            trainer.train(resume_from_checkpoint=checkpoint)
2214
            (a1, b1) = trainer.model.a.item(), trainer.model.b.item()
2215
2216
2217
2218
2219
            state1 = dataclasses.asdict(trainer.state)
            self.assertEqual(a, a1)
            self.assertEqual(b, b1)
            self.check_trainer_state_are_the_same(state, state1)

2220
    @require_torch_up_to_2_accelerators
2221
    def test_resume_training_with_frozen_params(self):
2222
2223
2224
2225
        # This test will fail for more than 2 GPUs since the batch size will get bigger and with the number of
        # save_steps, the checkpoint will resume training at epoch 2 or more (so the data seen by the model
        # won't be the same since the training dataloader is shuffled).

2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
        with tempfile.TemporaryDirectory() as tmpdir:
            trainer = get_regression_trainer(
                output_dir=tmpdir,
                train_len=128,
                per_device_train_batch_size=4,
                save_steps=5,
                learning_rate=0.1,
            )
            trainer.model.a.requires_grad_(False)
            trainer.train()
            (a, b) = trainer.model.a.item(), trainer.model.b.item()
            state = dataclasses.asdict(trainer.state)

            checkpoint = os.path.join(tmpdir, "checkpoint-5")

            # Reinitialize trainer
            trainer = get_regression_trainer(
                output_dir=tmpdir,
                train_len=128,
                per_device_train_batch_size=4,
                save_steps=5,
                learning_rate=0.1,
            )
            trainer.model.a.requires_grad_(False)

            trainer.train(resume_from_checkpoint=checkpoint)

            self.assertFalse(trainer.model.a.requires_grad)
            (a1, b1) = trainer.model.a.item(), trainer.model.b.item()
2255
2256
2257
            state1 = dataclasses.asdict(trainer.state)
            self.assertEqual(a, a1)
            self.assertEqual(b, b1)
2258
            self.check_trainer_state_are_the_same(state, state1)
2259

2260
2261
2262
2263
2264
2265
2266
2267
2268
    def test_load_best_model_at_end(self):
        total = int(self.n_epochs * 64 / self.batch_size)
        with tempfile.TemporaryDirectory() as tmpdir:
            trainer = get_regression_trainer(
                a=1.5,
                b=2.5,
                output_dir=tmpdir,
                learning_rate=0.1,
                eval_steps=5,
2269
                eval_strategy="steps",
2270
                save_steps=5,
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
                load_best_model_at_end=True,
            )
            self.assertFalse(trainer.args.greater_is_better)
            trainer.train()
            self.check_saved_checkpoints(tmpdir, 5, total)
            self.check_best_model_has_been_loaded(tmpdir, 5, total, trainer, "eval_loss")

        with tempfile.TemporaryDirectory() as tmpdir:
            trainer = get_regression_trainer(
                a=1.5,
                b=2.5,
                output_dir=tmpdir,
                learning_rate=0.1,
                eval_steps=5,
2285
                eval_strategy="steps",
2286
                save_steps=5,
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
                load_best_model_at_end=True,
                metric_for_best_model="accuracy",
                compute_metrics=AlmostAccuracy(),
            )
            self.assertTrue(trainer.args.greater_is_better)
            trainer.train()
            self.check_saved_checkpoints(tmpdir, 5, total)
            self.check_best_model_has_been_loaded(tmpdir, 5, total, trainer, "eval_accuracy", greater_is_better=True)

        with tempfile.TemporaryDirectory() as tmpdir:
            trainer = get_regression_trainer(
                a=1.5,
                b=2.5,
                output_dir=tmpdir,
                learning_rate=0.1,
2302
                eval_strategy="epoch",
2303
                save_strategy="epoch",
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
                load_best_model_at_end=True,
                metric_for_best_model="accuracy",
                compute_metrics=AlmostAccuracy(),
            )
            self.assertTrue(trainer.args.greater_is_better)
            trainer.train()
            self.check_saved_checkpoints(tmpdir, 64 // self.batch_size, total)
            self.check_best_model_has_been_loaded(
                tmpdir, 64 // self.batch_size, total, trainer, "eval_accuracy", greater_is_better=True
            )

        # Test this works with a non PreTrainedModel
        with tempfile.TemporaryDirectory() as tmpdir:
            trainer = get_regression_trainer(
                output_dir=tmpdir,
                learning_rate=0.1,
                eval_steps=5,
2321
                eval_strategy="steps",
2322
                save_steps=5,
2323
                load_best_model_at_end=True,
2324
                pretrained=False,
2325
2326
2327
2328
2329
2330
            )
            self.assertFalse(trainer.args.greater_is_better)
            trainer.train()
            self.check_saved_checkpoints(tmpdir, 5, total, is_pretrained=False)
            self.check_best_model_has_been_loaded(tmpdir, 5, total, trainer, "eval_loss", is_pretrained=False)

2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
    @require_safetensors
    def test_load_best_model_from_safetensors(self):
        total = int(self.n_epochs * 64 / self.batch_size)
        for save_safetensors, pretrained in product([False, True], [False, True]):
            with tempfile.TemporaryDirectory() as tmpdir:
                trainer = get_regression_trainer(
                    a=1.5,
                    b=2.5,
                    output_dir=tmpdir,
                    learning_rate=0.1,
                    eval_steps=5,
2342
                    eval_strategy="steps",
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
                    save_steps=5,
                    load_best_model_at_end=True,
                    save_safetensors=save_safetensors,
                    pretrained=pretrained,
                )
                self.assertFalse(trainer.args.greater_is_better)
                trainer.train()
                self.check_saved_checkpoints(tmpdir, 5, total, is_pretrained=pretrained, safe_weights=save_safetensors)
                self.check_best_model_has_been_loaded(
                    tmpdir, 5, total, trainer, "eval_loss", is_pretrained=pretrained, safe_weights=save_safetensors
                )

2355
    @slow
Julien Chaumond's avatar
Julien Chaumond committed
2356
    def test_trainer_eval_mrpc(self):
2357
        MODEL_ID = "google-bert/bert-base-cased-finetuned-mrpc"
Julien Chaumond's avatar
Julien Chaumond committed
2358
2359
2360
        tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
        model = AutoModelForSequenceClassification.from_pretrained(MODEL_ID)
        data_args = GlueDataTrainingArguments(
2361
            task_name="mrpc", data_dir=f"{get_tests_dir()}/fixtures/tests_samples/MRPC", overwrite_cache=True
Julien Chaumond's avatar
Julien Chaumond committed
2362
        )
2363
        eval_dataset = GlueDataset(data_args, tokenizer=tokenizer, mode="dev")
Julien Chaumond's avatar
Julien Chaumond committed
2364

2365
        training_args = TrainingArguments(output_dir="./examples", use_cpu=True)
Julien Chaumond's avatar
Julien Chaumond committed
2366
2367
        trainer = Trainer(model=model, args=training_args, eval_dataset=eval_dataset)
        result = trainer.evaluate()
2368
        self.assertLess(result["eval_loss"], 0.2)
Julien Chaumond's avatar
Julien Chaumond committed
2369

2370
2371
    @slow
    def test_trainer_eval_multiple(self):
2372
        MODEL_ID = "openai-community/gpt2"
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
        tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
        model = AutoModelForCausalLM.from_pretrained(MODEL_ID)
        dataset = LineByLineTextDataset(
            tokenizer=tokenizer,
            file_path=PATH_SAMPLE_TEXT,
            block_size=tokenizer.max_len_single_sentence,
        )
        for example in dataset.examples:
            example["labels"] = example["input_ids"]
        training_args = TrainingArguments(
            output_dir="./examples",
            use_cpu=True,
            per_device_eval_batch_size=1,
        )
        trainer = Trainer(
            model=model,
            args=training_args,
            eval_dataset={
                "data1": dataset,
                "data2": dataset,
            },
        )
        result = trainer.evaluate()
        self.assertIn("eval_data1_loss", result)
        self.assertIn("eval_data2_loss", result)

2399
    @slow
Julien Chaumond's avatar
Julien Chaumond committed
2400
    def test_trainer_eval_lm(self):
2401
        MODEL_ID = "distilbert/distilroberta-base"
Julien Chaumond's avatar
Julien Chaumond committed
2402
2403
        tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
        dataset = LineByLineTextDataset(
Lysandre's avatar
Lysandre committed
2404
2405
2406
            tokenizer=tokenizer,
            file_path=PATH_SAMPLE_TEXT,
            block_size=tokenizer.max_len_single_sentence,
Julien Chaumond's avatar
Julien Chaumond committed
2407
2408
        )
        self.assertEqual(len(dataset), 31)
2409

2410
    def test_training_iterable_dataset(self):
2411
2412
        config = RegressionModelConfig()
        model = RegressionPreTrainedModel(config)
2413
2414
        # Adding one column not used by the model should have no impact
        train_dataset = SampleIterableDataset(label_names=["labels", "extra"])
2415

2416
        args = RegressionTrainingArguments(output_dir="./examples", max_steps=4)
2417
        trainer = Trainer(model=model, args=args, train_dataset=train_dataset)
2418
        trainer.train()
2419
        self.assertEqual(trainer.state.global_step, 4)
2420

2421
2422
        loader = trainer.get_train_dataloader()
        self.assertIsInstance(loader, torch.utils.data.DataLoader)
2423
2424
        self.assertIsInstance(loader.sampler, torch.utils.data.dataloader._InfiniteConstantSampler)

2425
2426
2427
    def test_evaluation_iterable_dataset(self):
        config = RegressionModelConfig(a=1.5, b=2.5)
        model = RegressionPreTrainedModel(config)
2428
2429
        # Adding one column not used by the model should have no impact
        eval_dataset = SampleIterableDataset(label_names=["labels", "extra"])
2430
2431
2432
2433

        args = RegressionTrainingArguments(output_dir="./examples")
        trainer = Trainer(model=model, args=args, eval_dataset=eval_dataset, compute_metrics=AlmostAccuracy())
        results = trainer.evaluate()
2434

2435
2436
2437
2438
2439
2440
        x, y = trainer.eval_dataset.dataset.x, trainer.eval_dataset.dataset.ys[0]
        pred = 1.5 * x + 2.5
        expected_loss = ((pred - y) ** 2).mean()
        self.assertAlmostEqual(results["eval_loss"], expected_loss)
        expected_acc = AlmostAccuracy()((pred, y))["accuracy"]
        self.assertAlmostEqual(results["eval_accuracy"], expected_acc)
2441

2442
2443
2444
        # With a number of elements not a round multiple of the batch size
        eval_dataset = SampleIterableDataset(length=66)
        results = trainer.evaluate(eval_dataset)
2445

2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
        x, y = eval_dataset.dataset.x, eval_dataset.dataset.ys[0]
        pred = 1.5 * x + 2.5
        expected_loss = ((pred - y) ** 2).mean()
        self.assertAlmostEqual(results["eval_loss"], expected_loss)
        expected_acc = AlmostAccuracy()((pred, y))["accuracy"]
        self.assertAlmostEqual(results["eval_accuracy"], expected_acc)

    def test_predict_iterable_dataset(self):
        config = RegressionModelConfig(a=1.5, b=2.5)
        model = RegressionPreTrainedModel(config)
        eval_dataset = SampleIterableDataset()

        args = RegressionTrainingArguments(output_dir="./examples")
        trainer = Trainer(model=model, args=args, eval_dataset=eval_dataset, compute_metrics=AlmostAccuracy())

        preds = trainer.predict(trainer.eval_dataset).predictions
        x = eval_dataset.dataset.x
        self.assertTrue(np.allclose(preds, 1.5 * x + 2.5))

        # With a number of elements not a round multiple of the batch size
2466
2467
        # Adding one column not used by the model should have no impact
        test_dataset = SampleIterableDataset(length=66, label_names=["labels", "extra"])
2468
2469
2470
        preds = trainer.predict(test_dataset).predictions
        x = test_dataset.dataset.x
        self.assertTrue(np.allclose(preds, 1.5 * x + 2.5))
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485

    def test_num_train_epochs_in_training(self):
        # len(train_dl) < gradient_accumulation_steps shouldn't give ``ZeroDivisionError`` when ``max_steps`` is given.
        # It should give 1 update step for each epoch.
        trainer = get_regression_trainer(
            max_steps=3, train_len=64, per_device_train_batch_size=16, gradient_accumulation_steps=5
        )
        train_output = trainer.train()
        self.assertEqual(train_output.global_step, 3)

        # Even ``max_steps`` is not specified, we still expect 1 update step for each epoch if
        # len(train_dl) < gradient_accumulation_steps.
        trainer = get_regression_trainer(train_len=64, per_device_train_batch_size=16, gradient_accumulation_steps=5)
        train_output = trainer.train()
        self.assertEqual(train_output.global_step, int(self.n_epochs))
Marcin Zab艂ocki's avatar
Marcin Zab艂ocki committed
2486

2487
2488
    def test_early_stopping_callback(self):
        # early stopping stops training before num_training_epochs
2489
2490
2491
2492
2493
2494
2495
        with tempfile.TemporaryDirectory() as tmp_dir:
            trainer = get_regression_trainer(
                output_dir=tmp_dir,
                num_train_epochs=20,
                gradient_accumulation_steps=1,
                per_device_train_batch_size=16,
                load_best_model_at_end=True,
2496
                eval_strategy=IntervalStrategy.EPOCH,
2497
                save_strategy=IntervalStrategy.EPOCH,
2498
2499
2500
2501
2502
2503
                compute_metrics=AlmostAccuracy(),
                metric_for_best_model="accuracy",
            )
            trainer.add_callback(EarlyStoppingCallback(1, 0.0001))
            train_output = trainer.train()
            self.assertLess(train_output.global_step, 20 * 64 / 16)
2504
2505

        # Invalid inputs to trainer with early stopping callback result in assertion error
2506
2507
2508
2509
2510
2511
        with tempfile.TemporaryDirectory() as tmp_dir:
            trainer = get_regression_trainer(
                output_dir=tmp_dir,
                num_train_epochs=20,
                gradient_accumulation_steps=1,
                per_device_train_batch_size=16,
2512
                eval_strategy=IntervalStrategy.EPOCH,
2513
2514
2515
2516
                compute_metrics=AlmostAccuracy(),
                metric_for_best_model="accuracy",
            )
            trainer.add_callback(EarlyStoppingCallback(1))
2517
            self.assertEqual(trainer.state.global_step, 0)
2518
2519
2520
2521
            try:
                trainer.train()
            except AssertionError:
                self.assertEqual(trainer.state.global_step, 0)
2522

Marcin Zab艂ocki's avatar
Marcin Zab艂ocki committed
2523
2524
2525
2526
    def test_flos_extraction(self):
        trainer = get_regression_trainer(learning_rate=0.1)

        def assert_flos_extraction(trainer, wrapped_model_to_check):
2527
2528
2529
2530
            self.assertEqual(trainer.model, trainer.accelerator.unwrap_model(wrapped_model_to_check))
            self.assertGreaterEqual(
                getattr(trainer.accelerator.unwrap_model(wrapped_model_to_check).config, "total_flos", 0), 0
            )
Marcin Zab艂ocki's avatar
Marcin Zab艂ocki committed
2531
2532
2533
2534
2535

        # with plain model
        assert_flos_extraction(trainer, trainer.model)

        # with enforced DataParallel
2536
        assert_flos_extraction(trainer, nn.DataParallel(trainer.model))
2537

2538
2539
2540
        trainer.train()
        self.assertTrue(isinstance(trainer.state.total_flos, float))

2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
    def check_checkpoint_deletion(self, trainer, output_dir, expected):
        # Make fake checkpoints
        for n in [5, 10, 15, 20, 25]:
            os.makedirs(os.path.join(output_dir, f"{PREFIX_CHECKPOINT_DIR}-{n}"), exist_ok=True)
        trainer._rotate_checkpoints(output_dir=output_dir)
        glob_checkpoints = [str(x) for x in Path(output_dir).glob(f"{PREFIX_CHECKPOINT_DIR}-*")]
        values = [int(re.match(f".*{PREFIX_CHECKPOINT_DIR}-([0-9]+)", d).groups()[0]) for d in glob_checkpoints]
        self.assertSetEqual(set(values), set(expected))

    def test_checkpoint_rotation(self):
        with tempfile.TemporaryDirectory() as tmp_dir:
            # Without best model at end
            trainer = get_regression_trainer(output_dir=tmp_dir, save_total_limit=2)
            self.check_checkpoint_deletion(trainer, tmp_dir, [20, 25])

            # With best model at end
2557
            trainer = get_regression_trainer(
2558
                output_dir=tmp_dir, eval_strategy="steps", load_best_model_at_end=True, save_total_limit=2
2559
            )
2560
2561
2562
2563
2564
            trainer.state.best_model_checkpoint = os.path.join(tmp_dir, "checkpoint-5")
            self.check_checkpoint_deletion(trainer, tmp_dir, [5, 25])

            # Edge case: we don't always honor save_total_limit=1 if load_best_model_at_end=True to be able to resume
            # from checkpoint
2565
            trainer = get_regression_trainer(
2566
                output_dir=tmp_dir, eval_strategy="steps", load_best_model_at_end=True, save_total_limit=1
2567
            )
2568
2569
2570
2571
2572
2573
            trainer.state.best_model_checkpoint = os.path.join(tmp_dir, "checkpoint-25")
            self.check_checkpoint_deletion(trainer, tmp_dir, [25])

            trainer.state.best_model_checkpoint = os.path.join(tmp_dir, "checkpoint-5")
            self.check_checkpoint_deletion(trainer, tmp_dir, [5, 25])

2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
    def test_compare_trainer_and_checkpoint_args_logging(self):
        logger = logging.get_logger()

        with tempfile.TemporaryDirectory() as tmpdir, CaptureLogger(logger) as cl:
            trainer = get_regression_trainer(
                output_dir=tmpdir,
                train_len=128,
                eval_steps=5,
                gradient_accumulation_steps=2,
                per_device_train_batch_size=4,
                save_steps=5,
                learning_rate=0.1,
            )
            trainer.train()

            checkpoint = os.path.join(tmpdir, "checkpoint-5")
            checkpoint_trainer = get_regression_trainer(
                output_dir=tmpdir,
                train_len=256,
                eval_steps=10,
                gradient_accumulation_steps=4,
                per_device_train_batch_size=8,
                save_steps=10,
                learning_rate=0.1,
            )
            checkpoint_trainer.train(resume_from_checkpoint=checkpoint)

2601
2602
        self.assertIn("save_steps: 10 (from args) != 5 (from trainer_state.json)", cl.out)

2603
        self.assertIn(
2604
            "per_device_train_batch_size: 8 (from args) != 4 (from trainer_state.json)",
2605
2606
2607
            cl.out,
        )
        self.assertIn(
2608
            "eval_steps: 10 (from args) != 5 (from trainer_state.json)",
2609
2610
2611
            cl.out,
        )

2612
2613
2614
2615
    def check_mem_metrics(self, trainer, check_func):
        metrics = trainer.train().metrics
        check_func("init_mem_cpu_alloc_delta", metrics)
        check_func("train_mem_cpu_alloc_delta", metrics)
2616
        if backend_device_count(torch_device) > 0:
2617
2618
2619
2620
2621
            check_func("init_mem_gpu_alloc_delta", metrics)
            check_func("train_mem_gpu_alloc_delta", metrics)

        metrics = trainer.evaluate()
        check_func("eval_mem_cpu_alloc_delta", metrics)
2622
        if backend_device_count(torch_device) > 0:
2623
2624
2625
2626
            check_func("eval_mem_gpu_alloc_delta", metrics)

        metrics = trainer.predict(RegressionDataset()).metrics
        check_func("test_mem_cpu_alloc_delta", metrics)
2627
        if backend_device_count(torch_device) > 0:
2628
2629
2630
2631
            check_func("test_mem_gpu_alloc_delta", metrics)

    def test_mem_metrics(self):
        # with mem metrics enabled
2632
        trainer = get_regression_trainer(skip_memory_metrics=False)
2633
2634
2635
2636
2637
2638
        self.check_mem_metrics(trainer, self.assertIn)

        # with mem metrics disabled
        trainer = get_regression_trainer(skip_memory_metrics=True)
        self.check_mem_metrics(trainer, self.assertNotIn)

2639
    @require_torch_accelerator
2640
2641
2642
2643
    def test_fp16_full_eval(self):
        # this is a sensitive test so let's keep debugging printouts in place for quick diagnosis.
        # it's using pretty large safety margins, but small enough to detect broken functionality.
        debug = 0
2644
        n_gpus = backend_device_count(torch_device)
2645
2646

        bs = 8
2647
        eval_len = 16 * n_gpus
2648
2649
2650
2651
2652
        # make the params somewhat big so that there will be enough RAM consumed to be able to
        # measure things. We should get about 64KB for a+b in fp32
        a = torch.ones(1000, bs) + 0.001
        b = torch.ones(1000, bs) - 0.001

2653
        # 1. with fp16_full_eval disabled
2654
        trainer = get_regression_trainer(a=a, b=b, eval_len=eval_len, skip_memory_metrics=False)
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
        metrics = trainer.evaluate()
        del trainer
        gc.collect()

        fp32_init = metrics["init_mem_gpu_alloc_delta"]
        fp32_eval = metrics["eval_mem_gpu_alloc_delta"]

        if debug:
            print(f"fp32_init {fp32_init}")
            print(f"fp32_eval {fp32_eval}")

        # here we expect the model to be preloaded in trainer.__init__ and consume around 64K gpu ram.
        # perfect world: fp32_init == 64<<10
        self.assertGreater(fp32_init, 59_000)
        # after eval should be no extra memory allocated - with a small margin (other than the peak
        # memory consumption for the forward calculation that gets recovered)
        # perfect world: fp32_eval == close to zero
        self.assertLess(fp32_eval, 5_000)

2674
        # 2. with fp16_full_eval enabled
2675
        trainer = get_regression_trainer(a=a, b=b, eval_len=eval_len, fp16_full_eval=True, skip_memory_metrics=False)
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
        metrics = trainer.evaluate()
        fp16_init = metrics["init_mem_gpu_alloc_delta"]
        fp16_eval = metrics["eval_mem_gpu_alloc_delta"]

        if debug:
            print(f"fp16_init {fp16_init}")
            print(f"fp16_eval {fp16_eval}")

        # here we expect the model to not be preloaded in trainer.__init__, so with a small margin it should be close to 0
        # perfect world: fp16_init == close to zero
        self.assertLess(fp16_init, 5_000)
        # here we put the model on device in eval and only `half()` of it, i.e. about 32K,(again we ignore the peak margin which gets returned back)
        # perfect world: fp32_init == 32<<10
        self.assertGreater(fp16_eval, 27_000)

        # 3. relative comparison fp32 vs full fp16
        # should be about half of fp16_init
        # perfect world: fp32_init/2 == fp16_eval
        self.assertAlmostEqual(fp16_eval, fp32_init / 2, delta=5_000)

2696
2697
    @require_torch_non_multi_gpu
    @require_torchdynamo
2698
    @require_torch_tensorrt_fx
2699
    def test_torchdynamo_full_eval(self):
Yih-Dar's avatar
Yih-Dar committed
2700
2701
        import torchdynamo

2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
        # torchdynamo at the moment doesn't support DP/DDP, therefore require a single gpu
        n_gpus = get_gpu_count()

        bs = 8
        eval_len = 16 * n_gpus
        # make the params are somewhat big so that there will be enough RAM consumed to be able to
        # measure things. We should get about 64KB for a+b in fp32
        a = torch.ones(1000, bs) + 0.001
        b = torch.ones(1000, bs) - 0.001

        # 1. Default - without TorchDynamo
        trainer = get_regression_trainer(a=a, b=b, eval_len=eval_len)
        metrics = trainer.evaluate()
        original_eval_loss = metrics["eval_loss"]
        del trainer

        # 2. TorchDynamo eager
        trainer = get_regression_trainer(a=a, b=b, eval_len=eval_len, torchdynamo="eager")
        metrics = trainer.evaluate()
        self.assertAlmostEqual(metrics["eval_loss"], original_eval_loss)
        del trainer
Yih-Dar's avatar
Yih-Dar committed
2723
        torchdynamo.reset()
2724
2725
2726
2727
2728

        # 3. TorchDynamo nvfuser
        trainer = get_regression_trainer(a=a, b=b, eval_len=eval_len, torchdynamo="nvfuser")
        metrics = trainer.evaluate()
        self.assertAlmostEqual(metrics["eval_loss"], original_eval_loss)
Yih-Dar's avatar
Yih-Dar committed
2729
        torchdynamo.reset()
2730

2731
2732
2733
2734
        # 4. TorchDynamo fx2trt
        trainer = get_regression_trainer(a=a, b=b, eval_len=eval_len, torchdynamo="fx2trt")
        metrics = trainer.evaluate()
        self.assertAlmostEqual(metrics["eval_loss"], original_eval_loss)
Yih-Dar's avatar
Yih-Dar committed
2735
        torchdynamo.reset()
2736

2737
    @unittest.skip("torch 2.0.0 gives `ModuleNotFoundError: No module named 'torchdynamo'`.")
2738
2739
2740
2741
    @require_torch_non_multi_gpu
    @require_torchdynamo
    def test_torchdynamo_memory(self):
        # torchdynamo at the moment doesn't support DP/DDP, therefore require a single gpu
Yih-Dar's avatar
Yih-Dar committed
2742
2743
        import torchdynamo

2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
        class CustomTrainer(Trainer):
            def compute_loss(self, model, inputs, return_outputs=False):
                x = inputs["x"]
                output = model(x)
                if self.args.n_gpu == 1:
                    return output.mean()
                return output

        class MyModule(torch.nn.Module):
            """Simple module that does aggressive fusion"""

            def __init__(self):
                super().__init__()

            def forward(self, x):
                for _ in range(20):
Yih-Dar's avatar
Yih-Dar committed
2760
                    x = torch.cos(x)
2761
2762
2763
2764
                return x

        mod = MyModule()

2765
        # 1. without TorchDynamo (eager baseline)
2766
2767
2768
2769
2770
2771
2772
        a = torch.ones(1024, 1024, device="cuda", requires_grad=True)
        a.grad = None
        trainer = CustomTrainer(model=mod)
        # warmup
        for _ in range(10):
            orig_loss = trainer.training_step(mod, {"x": a})

2773
2774
2775
        # resets
        gc.collect()
        torch.cuda.empty_cache()
2776
        torch.cuda.reset_peak_memory_stats()
2777

2778
2779
        orig_loss = trainer.training_step(mod, {"x": a})
        orig_peak_mem = torch.cuda.max_memory_allocated()
Yih-Dar's avatar
Yih-Dar committed
2780
        torchdynamo.reset()
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
        del trainer

        # 2. TorchDynamo nvfuser
        a = torch.ones(1024, 1024, device="cuda", requires_grad=True)
        a.grad = None
        args = TrainingArguments(output_dir="None", torchdynamo="nvfuser")
        trainer = CustomTrainer(model=mod, args=args)
        # warmup
        for _ in range(10):
            loss = trainer.training_step(mod, {"x": a})

2792
2793
2794
        # resets
        gc.collect()
        torch.cuda.empty_cache()
2795
        torch.cuda.reset_peak_memory_stats()
2796

2797
2798
        loss = trainer.training_step(mod, {"x": a})
        peak_mem = torch.cuda.max_memory_allocated()
Yih-Dar's avatar
Yih-Dar committed
2799
        torchdynamo.reset()
2800
2801
2802
2803
2804
2805
2806
2807
2808
        del trainer

        # Functional check
        self.assertAlmostEqual(loss, orig_loss)

        # AOT Autograd recomputaion and nvfuser recomputation optimization
        # aggressively fuses the operations and reduce the memory footprint.
        self.assertGreater(orig_peak_mem, peak_mem * 2)

2809
2810
    @require_torch_accelerator
    @require_torch_bf16
2811
2812
2813
2814
2815
2816
    def test_bf16_full_eval(self):
        # note: most of the logic is the same as test_fp16_full_eval

        # this is a sensitive test so let's keep debugging printouts in place for quick diagnosis.
        # it's using pretty large safety margins, but small enough to detect broken functionality.
        debug = 0
2817
        n_gpus = backend_device_count(torch_device)
2818
2819
2820
2821
2822
2823
2824
2825

        bs = 8
        eval_len = 16 * n_gpus
        # make the params somewhat big so that there will be enough RAM consumed to be able to
        # measure things. We should get about 64KB for a+b in fp32
        a = torch.ones(1000, bs) + 0.001
        b = torch.ones(1000, bs) - 0.001

2826
        # 1. with bf16_full_eval disabled
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
        trainer = get_regression_trainer(a=a, b=b, eval_len=eval_len, skip_memory_metrics=False)
        metrics = trainer.evaluate()
        del trainer
        gc.collect()

        fp32_init = metrics["init_mem_gpu_alloc_delta"]
        fp32_eval = metrics["eval_mem_gpu_alloc_delta"]

        if debug:
            print(f"fp32_init {fp32_init}")
            print(f"fp32_eval {fp32_eval}")

        # here we expect the model to be preloaded in trainer.__init__ and consume around 64K gpu ram.
        # perfect world: fp32_init == 64<<10
        self.assertGreater(fp32_init, 59_000)
        # after eval should be no extra memory allocated - with a small margin (other than the peak
        # memory consumption for the forward calculation that gets recovered)
        # perfect world: fp32_eval == close to zero
        self.assertLess(fp32_eval, 5_000)

2847
        # 2. with bf16_full_eval enabled
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
        trainer = get_regression_trainer(a=a, b=b, eval_len=eval_len, bf16_full_eval=True, skip_memory_metrics=False)
        metrics = trainer.evaluate()
        bf16_init = metrics["init_mem_gpu_alloc_delta"]
        bf16_eval = metrics["eval_mem_gpu_alloc_delta"]

        if debug:
            print(f"bf16_init {bf16_init}")
            print(f"bf16_eval {bf16_eval}")

        # here we expect the model to not be preloaded in trainer.__init__, so with a small margin it should be close to 0
        # perfect world: bf16_init == close to zero
        self.assertLess(bf16_init, 5_000)
        # here we put the model on device in eval and only `half()` of it, i.e. about 32K,(again we ignore the peak margin which gets returned back)
        # perfect world: fp32_init == 32<<10
        self.assertGreater(bf16_eval, 27_000)

        # 3. relative comparison fp32 vs full bf16
        # should be about half of bf16_init
        # perfect world: fp32_init/2 == bf16_eval
        self.assertAlmostEqual(bf16_eval, fp32_init / 2, delta=5_000)

2869
    def test_no_wd_param_group(self):
2870
        model = nn.Sequential(TstLayer(128), nn.ModuleList([TstLayer(128), TstLayer(128)]))
2871
2872
        trainer = Trainer(model=model)
        trainer.create_optimizer_and_scheduler(10)
2873
        wd_names = ['0.linear1.weight', '0.linear2.weight', '1.0.linear1.weight', '1.0.linear2.weight', '1.1.linear1.weight', '1.1.linear2.weight']  # fmt: skip
2874
2875
2876
2877
2878
        wd_params = [p for n, p in model.named_parameters() if n in wd_names]
        no_wd_params = [p for n, p in model.named_parameters() if n not in wd_names]
        self.assertListEqual(trainer.optimizer.param_groups[0]["params"], wd_params)
        self.assertListEqual(trainer.optimizer.param_groups[1]["params"], no_wd_params)

2879
    @slow
2880
    @require_torch_multi_accelerator
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
    def test_end_to_end_example(self):
        # Tests that `translation.py` will run without issues
        script_path = os.path.abspath(
            os.path.join(
                os.path.dirname(__file__), "..", "..", "examples", "pytorch", "translation", "run_translation.py"
            )
        )

        with tempfile.TemporaryDirectory() as tmpdir:
            command = [
                "accelerate",
                "launch",
                script_path,
                "--model_name_or_path",
2895
                "google-t5/t5-small",
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
                "--per_device_train_batch_size",
                "1",
                "--output_dir",
                tmpdir,
                "--overwrite_output_dir",
                "--do_train",
                "--max_train_samples",
                "64",
                "--num_train_epochs",
                "1",
                "--dataset_name",
                "wmt16",
                "--dataset_config",
                "ro-en",
                "--source_lang",
                "en",
                "--target_lang",
                "ro",
                "--do_predict",
                "--max_predict_samples",
                "64",
                "--predict_with_generate",
                "--ddp_timeout",
                "60",
            ]
            execute_subprocess_async(command)
            # successful return here == success - any errors would have caused an error or a timeout in the sub-call

2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
    def test_accelerator_config_empty(self):
        # Checks that a config can be made with the defaults if not passed
        with tempfile.TemporaryDirectory() as tmp_dir:
            config = RegressionModelConfig(a=1.5, b=2.5)
            model = RegressionPreTrainedModel(config)
            eval_dataset = SampleIterableDataset()

            # Leaves one option as something *not* basic
            args = RegressionTrainingArguments(
                output_dir=tmp_dir,
            )
            trainer = Trainer(model=model, args=args, eval_dataset=eval_dataset)
            self.assertEqual(trainer.accelerator.split_batches, False)
            self.assertEqual(trainer.accelerator.dispatch_batches, None)
            self.assertEqual(trainer.accelerator.even_batches, True)
            self.assertEqual(trainer.accelerator.use_seedable_sampler, True)

2941
2942
2943
2944
            if GRAD_ACCUM_KWARGS_VERSION_AVAILABLE:
                # gradient accumulation kwargs configures gradient_state
                self.assertNotIn("sync_each_batch", trainer.accelerator.gradient_state.plugin_kwargs)

2945
2946
2947
2948
2949
2950
2951
2952
    def test_accelerator_config_from_dict(self):
        # Checks that accelerator kwargs can be passed through
        # and the accelerator is initialized respectively
        with tempfile.TemporaryDirectory() as tmp_dir:
            config = RegressionModelConfig(a=1.5, b=2.5)
            model = RegressionPreTrainedModel(config)
            eval_dataset = SampleIterableDataset()

2953
2954
2955
2956
2957
2958
2959
2960
2961
            accelerator_config = {
                "split_batches": True,
                "dispatch_batches": True,
                "even_batches": False,
                "use_seedable_sampler": True,
            }
            if GRAD_ACCUM_KWARGS_VERSION_AVAILABLE:
                accelerator_config["gradient_accumulation_kwargs"] = {"sync_each_batch": True}

2962
2963
2964
            # Leaves all options as something *not* basic
            args = RegressionTrainingArguments(
                output_dir=tmp_dir,
2965
                accelerator_config=accelerator_config,
2966
2967
2968
2969
2970
2971
2972
            )
            trainer = Trainer(model=model, args=args, eval_dataset=eval_dataset)
            self.assertEqual(trainer.accelerator.split_batches, True)
            self.assertEqual(trainer.accelerator.dispatch_batches, True)
            self.assertEqual(trainer.accelerator.even_batches, False)
            self.assertEqual(trainer.accelerator.use_seedable_sampler, True)

2973
2974
2975
            if GRAD_ACCUM_KWARGS_VERSION_AVAILABLE:
                self.assertEqual(trainer.accelerator.gradient_state.plugin_kwargs["sync_each_batch"], True)

2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
    def test_accelerator_config_from_yaml(self):
        # Checks that accelerator kwargs can be passed through
        # and the accelerator is initialized respectively
        with tempfile.TemporaryDirectory() as tmp_dir:
            path_file = Path(tmp_dir) / "accelerator_config.json"
            with open(path_file, "w") as f:
                accelerator_config = {
                    "split_batches": True,
                    "dispatch_batches": True,
                    "even_batches": False,
                    "use_seedable_sampler": False,
                }
2988
2989
                if GRAD_ACCUM_KWARGS_VERSION_AVAILABLE:
                    accelerator_config["gradient_accumulation_kwargs"] = {"sync_each_batch": True}
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
                json.dump(accelerator_config, f)
            config = RegressionModelConfig(a=1.5, b=2.5)
            model = RegressionPreTrainedModel(config)
            eval_dataset = SampleIterableDataset()

            # Leaves all options as something *not* basic
            args = RegressionTrainingArguments(output_dir=tmp_dir, accelerator_config=path_file)
            trainer = Trainer(model=model, args=args, eval_dataset=eval_dataset)
            self.assertEqual(trainer.accelerator.split_batches, True)
            self.assertEqual(trainer.accelerator.dispatch_batches, True)
            self.assertEqual(trainer.accelerator.even_batches, False)
            self.assertEqual(trainer.accelerator.use_seedable_sampler, False)

3003
3004
3005
            if GRAD_ACCUM_KWARGS_VERSION_AVAILABLE:
                self.assertEqual(trainer.accelerator.gradient_state.plugin_kwargs["sync_each_batch"], True)

3006
3007
3008
    def test_accelerator_config_from_dataclass(self):
        # Checks that accelerator kwargs can be passed through
        # and the accelerator is initialized respectively
3009

3010
        accelerator_config = AcceleratorConfig(
3011
3012
3013
3014
            split_batches=True,
            dispatch_batches=True,
            even_batches=False,
            use_seedable_sampler=False,
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
        )
        config = RegressionModelConfig(a=1.5, b=2.5)
        model = RegressionPreTrainedModel(config)
        eval_dataset = SampleIterableDataset()
        with tempfile.TemporaryDirectory() as tmp_dir:
            args = RegressionTrainingArguments(output_dir=tmp_dir, accelerator_config=accelerator_config)
            trainer = Trainer(model=model, args=args, eval_dataset=eval_dataset)
            self.assertEqual(trainer.accelerator.split_batches, True)
            self.assertEqual(trainer.accelerator.dispatch_batches, True)
            self.assertEqual(trainer.accelerator.even_batches, False)
            self.assertEqual(trainer.accelerator.use_seedable_sampler, False)

3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
    @require_accelerate_version_min_0_28
    def test_accelerate_config_from_dataclass_grad_accum(self):
        # Checks that accelerator kwargs can be passed through
        # and the accelerator is initialized respectively

        grad_acc_kwargs = {
            "num_steps": 10,
            "adjust_scheduler": False,
            "sync_with_dataloader": False,
            "sync_each_batch": True,
        }
        accelerator_config = AcceleratorConfig(
            split_batches=True,
            dispatch_batches=True,
            even_batches=False,
            use_seedable_sampler=False,
            gradient_accumulation_kwargs=grad_acc_kwargs,
        )
        config = RegressionModelConfig(a=1.5, b=2.5)
        model = RegressionPreTrainedModel(config)
        eval_dataset = SampleIterableDataset()
        with tempfile.TemporaryDirectory() as tmp_dir:
            args = RegressionTrainingArguments(output_dir=tmp_dir, accelerator_config=accelerator_config)
            trainer = Trainer(model=model, args=args, eval_dataset=eval_dataset)
            self.assertEqual(trainer.accelerator.gradient_state.plugin_kwargs["num_steps"], 10)
            self.assertEqual(trainer.accelerator.gradient_state.plugin_kwargs["adjust_scheduler"], False)
            self.assertEqual(trainer.accelerator.gradient_state.plugin_kwargs["sync_with_dataloader"], False)
            self.assertEqual(trainer.accelerator.gradient_state.plugin_kwargs["sync_each_batch"], True)

3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
    def test_accelerator_config_from_partial(self):
        # Checks that accelerator kwargs can be passed through
        # and the accelerator is initialized respectively
        with tempfile.TemporaryDirectory() as tmp_dir:
            config = RegressionModelConfig(a=1.5, b=2.5)
            model = RegressionPreTrainedModel(config)
            eval_dataset = SampleIterableDataset()

            # Leaves one option as something *not* basic
            args = RegressionTrainingArguments(
                output_dir=tmp_dir,
                accelerator_config={
                    "split_batches": True,
                },
            )
            trainer = Trainer(model=model, args=args, eval_dataset=eval_dataset)
            self.assertEqual(trainer.accelerator.split_batches, True)
            self.assertEqual(trainer.accelerator.dispatch_batches, None)
            self.assertEqual(trainer.accelerator.even_batches, True)
            self.assertEqual(trainer.accelerator.use_seedable_sampler, True)

    def test_accelerator_config_from_dict_with_deprecated_args(self):
        # Checks that accelerator kwargs can be passed through
        # and the accelerator is initialized respectively
        # and maintains the deprecated args if passed in
        with tempfile.TemporaryDirectory() as tmp_dir:
            config = RegressionModelConfig(a=1.5, b=2.5)
            model = RegressionPreTrainedModel(config)
            eval_dataset = SampleIterableDataset()

            # Leaves all options as something *not* basic
            with self.assertWarns(FutureWarning) as cm:
                args = RegressionTrainingArguments(
                    output_dir=tmp_dir,
                    accelerator_config={
                        "split_batches": True,
                    },
                    dispatch_batches=False,
                )
                self.assertIn("dispatch_batches", str(cm.warnings[0].message))
            trainer = Trainer(model=model, args=args, eval_dataset=eval_dataset)
            self.assertEqual(trainer.accelerator.dispatch_batches, False)
            self.assertEqual(trainer.accelerator.split_batches, True)
            with self.assertWarns(FutureWarning) as cm:
                args = RegressionTrainingArguments(
                    output_dir=tmp_dir,
                    accelerator_config={
                        "even_batches": False,
                    },
                    split_batches=True,
                )
                self.assertIn("split_batches", str(cm.warnings[0].message))
            trainer = Trainer(model=model, args=args, eval_dataset=eval_dataset)
            self.assertEqual(trainer.accelerator.split_batches, True)
            self.assertEqual(trainer.accelerator.even_batches, False)
            self.assertEqual(trainer.accelerator.dispatch_batches, None)

3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
    def test_accelerator_config_only_deprecated_args(self):
        with tempfile.TemporaryDirectory() as tmp_dir:
            with self.assertWarns(FutureWarning) as cm:
                args = RegressionTrainingArguments(
                    output_dir=tmp_dir,
                    split_batches=True,
                )
                self.assertIn("split_batches", str(cm.warnings[0].message))
                config = RegressionModelConfig(a=1.5, b=2.5)
                model = RegressionPreTrainedModel(config)
                eval_dataset = SampleIterableDataset()
                trainer = Trainer(model=model, args=args, eval_dataset=eval_dataset)
                self.assertEqual(trainer.accelerator.split_batches, True)

3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
    @require_accelerate_version_min_0_28
    def test_accelerator_config_from_dict_grad_accum_num_steps(self):
        with tempfile.TemporaryDirectory() as tmp_dir:
            config = RegressionModelConfig(a=1.5, b=2.5)
            model = RegressionPreTrainedModel(config)
            eval_dataset = SampleIterableDataset()

            # case - TrainingArguments.gradient_accumulation_steps == 1
            #      - gradient_accumulation_kwargs['num_steps] == 1
            # results in grad accum set to 1
            args = RegressionTrainingArguments(
                output_dir=tmp_dir,
                gradient_accumulation_steps=1,
                accelerator_config={
                    "gradient_accumulation_kwargs": {
                        "num_steps": 1,
                    }
                },
            )
            trainer = Trainer(model=model, args=args, eval_dataset=eval_dataset)
            self.assertEqual(trainer.accelerator.gradient_state.plugin_kwargs["num_steps"], 1)

            # case - TrainingArguments.gradient_accumulation_steps > 1
            #      - gradient_accumulation_kwargs['num_steps] specified
            # results in exception raised
            args = RegressionTrainingArguments(
                output_dir=tmp_dir,
                gradient_accumulation_steps=2,
                accelerator_config={
                    "gradient_accumulation_kwargs": {
                        "num_steps": 10,
                    }
                },
            )
            with self.assertRaises(Exception) as context:
                trainer = Trainer(model=model, args=args, eval_dataset=eval_dataset)
            self.assertTrue("The `AcceleratorConfig`'s `num_steps` is set but" in str(context.exception))

3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
    def test_accelerator_config_not_instantiated(self):
        # Checks that accelerator kwargs can be passed through
        # and the accelerator is initialized respectively
        with tempfile.TemporaryDirectory() as tmp_dir:
            with self.assertRaises(NotImplementedError) as context:
                _ = RegressionTrainingArguments(
                    output_dir=tmp_dir,
                    accelerator_config=AcceleratorConfig,
                )
            self.assertTrue("Tried passing in a callable to `accelerator_config`" in str(context.exception))

        # Now test with a custom subclass
        @dataclasses.dataclass
        class CustomAcceleratorConfig(AcceleratorConfig):
            pass

        @dataclasses.dataclass
        class CustomTrainingArguments(TrainingArguments):
            accelerator_config: dict = dataclasses.field(
                default=CustomAcceleratorConfig,
            )

        with tempfile.TemporaryDirectory() as tmp_dir:
            with self.assertRaises(NotImplementedError) as context:
                _ = CustomTrainingArguments(
                    output_dir=tmp_dir,
                )
            self.assertTrue("Tried passing in a callable to `accelerator_config`" in str(context.exception))

3194

Sylvain Gugger's avatar
Sylvain Gugger committed
3195
3196
3197
3198
3199
@require_torch
@is_staging_test
class TrainerIntegrationWithHubTester(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
3200
3201
        cls._token = TOKEN
        HfFolder.save_token(TOKEN)
Sylvain Gugger's avatar
Sylvain Gugger committed
3202
3203
3204

    @classmethod
    def tearDownClass(cls):
3205
3206
3207
3208
3209
3210
3211
        for model in [
            "test-trainer",
            "test-trainer-epoch",
            "test-trainer-step",
            "test-trainer-tensorboard",
            "test-trainer-tags",
        ]:
3212
            try:
3213
                delete_repo(token=cls._token, repo_id=model)
3214
3215
            except HTTPError:
                pass
Sylvain Gugger's avatar
Sylvain Gugger committed
3216
3217

        try:
3218
            delete_repo(token=cls._token, repo_id="valid_org/test-trainer-org")
Sylvain Gugger's avatar
Sylvain Gugger committed
3219
3220
3221
3222
3223
        except HTTPError:
            pass

    def test_push_to_hub(self):
        with tempfile.TemporaryDirectory() as tmp_dir:
3224
3225
3226
            trainer = get_regression_trainer(
                output_dir=os.path.join(tmp_dir, "test-trainer"),
                push_to_hub=True,
3227
                hub_token=self._token,
3228
3229
            )
            url = trainer.push_to_hub()
Sylvain Gugger's avatar
Sylvain Gugger committed
3230
3231
3232
3233
3234
3235

            # Extract repo_name from the url
            re_search = re.search(ENDPOINT_STAGING + r"/([^/]+/[^/]+)/", url)
            self.assertTrue(re_search is not None)
            repo_name = re_search.groups()[0]

3236
            self.assertEqual(repo_name, f"{USER}/test-trainer")
Sylvain Gugger's avatar
Sylvain Gugger committed
3237
3238
3239
3240
3241
3242
3243
3244
3245

            model = RegressionPreTrainedModel.from_pretrained(repo_name)
            self.assertEqual(model.a.item(), trainer.model.a.item())
            self.assertEqual(model.b.item(), trainer.model.b.item())

    def test_push_to_hub_in_organization(self):
        with tempfile.TemporaryDirectory() as tmp_dir:
            trainer = get_regression_trainer(output_dir=tmp_dir)
            trainer.save_model()
3246
3247
3248
            trainer = get_regression_trainer(
                output_dir=os.path.join(tmp_dir, "test-trainer-org"),
                push_to_hub=True,
3249
3250
                hub_model_id="valid_org/test-trainer-org",
                hub_token=self._token,
3251
            )
3252
            url = trainer.push_to_hub()
Sylvain Gugger's avatar
Sylvain Gugger committed
3253
3254
3255
3256
3257

            # Extract repo_name from the url
            re_search = re.search(ENDPOINT_STAGING + r"/([^/]+/[^/]+)/", url)
            self.assertTrue(re_search is not None)
            repo_name = re_search.groups()[0]
3258
            self.assertEqual(repo_name, "valid_org/test-trainer-org")
Sylvain Gugger's avatar
Sylvain Gugger committed
3259

3260
            model = RegressionPreTrainedModel.from_pretrained("valid_org/test-trainer-org")
Sylvain Gugger's avatar
Sylvain Gugger committed
3261
3262
3263
            self.assertEqual(model.a.item(), trainer.model.a.item())
            self.assertEqual(model.b.item(), trainer.model.b.item())

3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
    def get_commit_history(self, repo):
        commit_logs = subprocess.run(
            "git log".split(),
            stderr=subprocess.PIPE,
            stdout=subprocess.PIPE,
            check=True,
            encoding="utf-8",
            cwd=repo,
        ).stdout
        commits = commit_logs.split("\n\n")[1::2]
        return [commit.strip() for commit in commits]

    def test_push_to_hub_with_saves_each_epoch(self):
        with tempfile.TemporaryDirectory() as tmp_dir:
            trainer = get_regression_trainer(
                output_dir=os.path.join(tmp_dir, "test-trainer-epoch"),
                push_to_hub=True,
                hub_token=self._token,
3282
3283
                # To avoid any flakiness if the training goes faster than the uploads.
                hub_always_push=True,
3284
3285
3286
3287
                save_strategy="epoch",
            )
            trainer.train()

3288
3289
3290
3291
3292
        commits = list_repo_commits(f"{USER}/test-trainer-epoch", token=self._token)
        commits = [c.title for c in commits]
        self.assertIn("initial commit", commits)
        for i in range(1, 4):
            self.assertIn(f"Training in progress, epoch {i}", commits)
3293
3294

    def test_push_to_hub_with_saves_each_n_steps(self):
3295
        num_gpus = max(1, backend_device_count(torch_device))
3296
3297
3298
        if num_gpus > 2:
            return

3299
3300
3301
3302
3303
        with tempfile.TemporaryDirectory() as tmp_dir:
            trainer = get_regression_trainer(
                output_dir=os.path.join(tmp_dir, "test-trainer-step"),
                push_to_hub=True,
                hub_token=self._token,
3304
3305
                # To avoid any flakiness if the training goes faster than the uploads.
                hub_always_push=True,
3306
3307
3308
3309
3310
                save_strategy="steps",
                save_steps=5,
            )
            trainer.train()

3311
3312
3313
        commits = list_repo_commits(f"{USER}/test-trainer-step", token=self._token)
        commits = [c.title for c in commits]
        self.assertIn("initial commit", commits)
3314

3315
3316
3317
3318
        # max_steps depend on the number of available GPUs
        max_steps = math.ceil(trainer.args.num_train_epochs * len(trainer.get_train_dataloader()))
        for i in range(5, max_steps, 5):
            self.assertIn(f"Training in progress, step {i}", commits)
3319

3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
    @require_tensorboard
    def test_push_to_hub_with_tensorboard_logs(self):
        with tempfile.TemporaryDirectory() as tmp_dir:
            trainer = get_regression_trainer(
                output_dir=os.path.join(tmp_dir, "test-trainer-tensorboard"),
                hub_token=self._token,
                save_strategy="epoch",
                report_to=["tensorboard"],
                keep_report_to=True,
            )
            trainer.train()
            # Push the runs via `push_to_hub()`
            trainer.push_to_hub()

        files = list_repo_files(f"{USER}/test-trainer-tensorboard", token=self._token)
        found_log = False
        for f in files:
            if len(f.split("runs")) > 1 and "events.out.tfevents" in f:
                found_log = True

        assert found_log is True, "No tensorboard log found in repo"

3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
    def test_push_to_hub_tags(self):
        # Checks if `trainer.push_to_hub()` works correctly by adding the desired
        # tag without having to pass `tags` in `push_to_hub`
        # see:
        with tempfile.TemporaryDirectory() as tmp_dir:
            trainer = get_regression_trainer(
                output_dir=os.path.join(tmp_dir, "test-trainer-tags"),
                push_to_hub=True,
                hub_token=self._token,
            )

            trainer.model.add_model_tags(["test-trainer-tags"])

            url = trainer.push_to_hub()

            # Extract repo_name from the url
            re_search = re.search(ENDPOINT_STAGING + r"/([^/]+/[^/]+)/", url)
            self.assertTrue(re_search is not None)
            repo_name = re_search.groups()[0]

            self.assertEqual(repo_name, f"{USER}/test-trainer-tags")

            model_card = ModelCard.load(repo_name)
            self.assertTrue("test-trainer-tags" in model_card.data.tags)

Sylvain Gugger's avatar
Sylvain Gugger committed
3367

3368
3369
@require_torch
@require_optuna
3370
class TrainerHyperParameterOptunaIntegrationTest(unittest.TestCase):
3371
    def setUp(self):
3372
        args = TrainingArguments("..")
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
        self.n_epochs = args.num_train_epochs
        self.batch_size = args.train_batch_size

    def test_hyperparameter_search(self):
        class MyTrialShortNamer(TrialShortNamer):
            DEFAULTS = {"a": 0, "b": 0}

        def hp_space(trial):
            return {}

        def model_init(trial):
            if trial is not None:
                a = trial.suggest_int("a", -4, 4)
                b = trial.suggest_int("b", -4, 4)
            else:
                a = 0
                b = 0
            config = RegressionModelConfig(a=a, b=b, double_output=False)

            return RegressionPreTrainedModel(config)

        def hp_name(trial):
            return MyTrialShortNamer.shortname(trial.params)

3397
3398
3399
3400
3401
        with tempfile.TemporaryDirectory() as tmp_dir:
            trainer = get_regression_trainer(
                output_dir=tmp_dir,
                learning_rate=0.1,
                logging_steps=1,
3402
                eval_strategy=IntervalStrategy.EPOCH,
3403
                save_strategy=IntervalStrategy.EPOCH,
3404
3405
3406
3407
3408
3409
3410
3411
                num_train_epochs=4,
                disable_tqdm=True,
                load_best_model_at_end=True,
                logging_dir="runs",
                run_name="test",
                model_init=model_init,
            )
            trainer.hyperparameter_search(direction="minimize", hp_space=hp_space, hp_name=hp_name, n_trials=4)
3412
3413


3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
@require_torch
@require_optuna
class TrainerHyperParameterMultiObjectOptunaIntegrationTest(unittest.TestCase):
    def setUp(self):
        args = TrainingArguments("..")
        self.n_epochs = args.num_train_epochs
        self.batch_size = args.train_batch_size

    def test_hyperparameter_search(self):
        class MyTrialShortNamer(TrialShortNamer):
            DEFAULTS = {"a": 0, "b": 0}

        def hp_space(trial):
            return {}

        def model_init(trial):
            if trial is not None:
                a = trial.suggest_int("a", -4, 4)
                b = trial.suggest_int("b", -4, 4)
            else:
                a = 0
                b = 0
            config = RegressionModelConfig(a=a, b=b, double_output=False)

            return RegressionPreTrainedModel(config)

        def hp_name(trial):
            return MyTrialShortNamer.shortname(trial.params)

        def compute_objective(metrics: Dict[str, float]) -> List[float]:
            return metrics["eval_loss"], metrics["eval_accuracy"]

        with tempfile.TemporaryDirectory() as tmp_dir:
            trainer = get_regression_trainer(
                output_dir=tmp_dir,
                learning_rate=0.1,
                logging_steps=1,
3451
                eval_strategy=IntervalStrategy.EPOCH,
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
                save_strategy=IntervalStrategy.EPOCH,
                num_train_epochs=10,
                disable_tqdm=True,
                load_best_model_at_end=True,
                logging_dir="runs",
                run_name="test",
                model_init=model_init,
                compute_metrics=AlmostAccuracy(),
            )
            trainer.hyperparameter_search(
                direction=["minimize", "maximize"],
                hp_space=hp_space,
                hp_name=hp_name,
                n_trials=4,
                compute_objective=compute_objective,
            )


3470
3471
3472
3473
@require_torch
@require_ray
class TrainerHyperParameterRayIntegrationTest(unittest.TestCase):
    def setUp(self):
3474
        args = TrainingArguments("..")
3475
3476
3477
        self.n_epochs = args.num_train_epochs
        self.batch_size = args.train_batch_size

3478
    def ray_hyperparameter_search(self):
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
        class MyTrialShortNamer(TrialShortNamer):
            DEFAULTS = {"a": 0, "b": 0}

        def hp_space(trial):
            from ray import tune

            return {
                "a": tune.randint(-4, 4),
                "b": tune.randint(-4, 4),
            }

        def model_init(config):
3491
3492
3493
3494
3495
3496
3497
            if config is None:
                a = 0
                b = 0
            else:
                a = config["a"]
                b = config["b"]
            model_config = RegressionModelConfig(a=a, b=b, double_output=False)
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508

            return RegressionPreTrainedModel(model_config)

        def hp_name(params):
            return MyTrialShortNamer.shortname(params)

        with tempfile.TemporaryDirectory() as tmp_dir:
            trainer = get_regression_trainer(
                output_dir=tmp_dir,
                learning_rate=0.1,
                logging_steps=1,
3509
                eval_strategy=IntervalStrategy.EPOCH,
3510
                save_strategy=IntervalStrategy.EPOCH,
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
                num_train_epochs=4,
                disable_tqdm=True,
                load_best_model_at_end=True,
                logging_dir="runs",
                run_name="test",
                model_init=model_init,
            )
            trainer.hyperparameter_search(
                direction="minimize", hp_space=hp_space, hp_name=hp_name, backend="ray", n_trials=4
            )
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531

    def test_hyperparameter_search(self):
        self.ray_hyperparameter_search()

    def test_hyperparameter_search_ray_client(self):
        import ray
        from ray.util.client.ray_client_helpers import ray_start_client_server

        with ray_start_client_server():
            assert ray.util.client.ray.is_connected()
            self.ray_hyperparameter_search()
3532
3533


3534
@slow
3535
3536
3537
3538
@require_torch
@require_sigopt
class TrainerHyperParameterSigOptIntegrationTest(unittest.TestCase):
    def setUp(self):
3539
        args = TrainingArguments("..")
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
        self.n_epochs = args.num_train_epochs
        self.batch_size = args.train_batch_size

    def test_hyperparameter_search(self):
        class MyTrialShortNamer(TrialShortNamer):
            DEFAULTS = {"a": 0, "b": 0}

        def hp_space(trial):
            return [
                {"bounds": {"min": -4, "max": 4}, "name": "a", "type": "int"},
                {"bounds": {"min": -4, "max": 4}, "name": "b", "type": "int"},
            ]

        def model_init(trial):
            if trial is not None:
                a = trial.assignments["a"]
                b = trial.assignments["b"]
            else:
                a = 0
                b = 0
            config = RegressionModelConfig(a=a, b=b, double_output=False)

            return RegressionPreTrainedModel(config)

        def hp_name(trial):
            return MyTrialShortNamer.shortname(trial.assignments)

        with tempfile.TemporaryDirectory() as tmp_dir:
            trainer = get_regression_trainer(
                output_dir=tmp_dir,
                learning_rate=0.1,
                logging_steps=1,
3572
                eval_strategy=IntervalStrategy.EPOCH,
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
                save_strategy=IntervalStrategy.EPOCH,
                num_train_epochs=4,
                disable_tqdm=True,
                load_best_model_at_end=True,
                logging_dir="runs",
                run_name="test",
                model_init=model_init,
            )
            trainer.hyperparameter_search(
                direction="minimize", hp_space=hp_space, hp_name=hp_name, backend="sigopt", n_trials=4
            )
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593


optim_test_params = []
if is_torch_available():
    default_adam_kwargs = {
        "betas": (TrainingArguments.adam_beta1, TrainingArguments.adam_beta2),
        "eps": TrainingArguments.adam_epsilon,
        "lr": TrainingArguments.learning_rate,
    }

3594
3595
3596
3597
3598
    default_lion_kwargs = {
        "betas": (TrainingArguments.adam_beta1, TrainingArguments.adam_beta2),
        "lr": TrainingArguments.learning_rate,
    }

3599
3600
3601
3602
3603
3604
3605
    default_anyprecision_kwargs = {
        "use_kahan_summation": False,
        "momentum_dtype": torch.float32,
        "variance_dtype": torch.float32,
        "compensation_buffer_dtype": torch.bfloat16,
    }

3606
3607
    optim_test_params = [
        (
3608
            TrainingArguments(optim=OptimizerNames.ADAMW_HF, output_dir="None"),
3609
3610
3611
3612
            transformers.optimization.AdamW,
            default_adam_kwargs,
        ),
        (
3613
            TrainingArguments(optim=OptimizerNames.ADAMW_HF.value, output_dir="None"),
3614
3615
3616
3617
            transformers.optimization.AdamW,
            default_adam_kwargs,
        ),
        (
3618
            TrainingArguments(optim=OptimizerNames.ADAMW_TORCH, output_dir="None"),
3619
3620
3621
3622
            torch.optim.AdamW,
            default_adam_kwargs,
        ),
        (
3623
            TrainingArguments(optim=OptimizerNames.ADAFACTOR, output_dir="None"),
3624
3625
3626
3627
3628
3629
3630
3631
            transformers.optimization.Adafactor,
            {
                "scale_parameter": False,
                "relative_step": False,
                "lr": TrainingArguments.learning_rate,
            },
        ),
    ]
3632

3633
3634
3635
3636
3637
    if is_apex_available():
        import apex

        optim_test_params.append(
            (
3638
                TrainingArguments(optim=OptimizerNames.ADAMW_APEX_FUSED, output_dir="None"),
3639
3640
3641
3642
3643
                apex.optimizers.FusedAdam,
                default_adam_kwargs,
            )
        )

3644
3645
3646
3647
3648
    if is_bitsandbytes_available():
        import bitsandbytes as bnb

        optim_test_params.append(
            (
3649
                TrainingArguments(optim=OptimizerNames.ADAMW_BNB, output_dir="None"),
3650
                bnb.optim.AdamW,
3651
3652
3653
3654
                default_adam_kwargs,
            )
        )

3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
        optim_test_params.append(
            (
                TrainingArguments(optim=OptimizerNames.ADAMW_8BIT, output_dir="None"),
                bnb.optim.AdamW,
                default_adam_kwargs,
            )
        )

        optim_test_params.append(
            (
                TrainingArguments(optim=OptimizerNames.PAGED_ADAMW, output_dir="None"),
                bnb.optim.AdamW,
                default_adam_kwargs,
            )
        )

        optim_test_params.append(
            (
                TrainingArguments(optim=OptimizerNames.PAGED_ADAMW_8BIT, output_dir="None"),
                bnb.optim.AdamW,
                default_adam_kwargs,
            )
        )

        optim_test_params.append(
            (
                TrainingArguments(optim=OptimizerNames.LION, output_dir="None"),
                bnb.optim.Lion,
                default_lion_kwargs,
            )
        )

        optim_test_params.append(
            (
                TrainingArguments(optim=OptimizerNames.LION_8BIT, output_dir="None"),
                bnb.optim.Lion,
                default_lion_kwargs,
            )
        )

        optim_test_params.append(
            (
                TrainingArguments(optim=OptimizerNames.PAGED_LION_8BIT, output_dir="None"),
                bnb.optim.Lion,
                default_lion_kwargs,
            )
        )

3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
    if is_torchdistx_available():
        import torchdistx

        optim_test_params.append(
            (
                TrainingArguments(optim=OptimizerNames.ADAMW_ANYPRECISION, output_dir="None"),
                torchdistx.optimizers.AnyPrecisionAdamW,
                dict(default_adam_kwargs, **default_anyprecision_kwargs),
            )
        )

3714
3715
3716

@require_torch
class TrainerOptimizerChoiceTest(unittest.TestCase):
3717
3718
    def check_optim_and_kwargs(self, training_args: TrainingArguments, expected_cls, expected_kwargs):
        actual_cls, optim_kwargs = Trainer.get_optimizer_cls_and_kwargs(training_args)
3719
3720
3721
        self.assertEqual(expected_cls, actual_cls)
        self.assertIsNotNone(optim_kwargs)

3722
        for p, v in expected_kwargs.items():
3723
3724
3725
3726
3727
            self.assertTrue(p in optim_kwargs)
            actual_v = optim_kwargs[p]
            self.assertTrue(actual_v == v, f"Failed check for {p}. Expected {v}, but got {actual_v}.")

    @parameterized.expand(optim_test_params, skip_on_empty=True)
3728
    def test_optim_supported(self, training_args: TrainingArguments, expected_cls, expected_kwargs):
3729
        # exercises all the valid --optim options
3730
        self.check_optim_and_kwargs(training_args, expected_cls, expected_kwargs)
3731

3732
        trainer = get_regression_trainer(**training_args.to_dict())
3733
3734
3735
3736
        trainer.train()

    def test_fused_adam(self):
        # Pretend that apex is installed and mock apex.optimizers.FusedAdam exists.
3737
3738
        # Trainer.get_optimizer_cls_and_kwargs does not use FusedAdam. It only has to return the
        # class given, so mocking apex.optimizers.FusedAdam should be fine for testing and allow
3739
3740
3741
3742
3743
3744
3745
3746
3747
        # the test to run without requiring an apex installation.
        mock = Mock()
        modules = {
            "apex": mock,
            "apex.optimizers": mock.optimizers,
            "apex.optimizers.FusedAdam": mock.optimizers.FusedAdam,
        }
        with patch.dict("sys.modules", modules):
            self.check_optim_and_kwargs(
3748
                TrainingArguments(optim=OptimizerNames.ADAMW_APEX_FUSED, output_dir="None"),
3749
                mock.optimizers.FusedAdam,
3750
                default_adam_kwargs,
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
            )

    def test_fused_adam_no_apex(self):
        args = TrainingArguments(optim=OptimizerNames.ADAMW_APEX_FUSED, output_dir="None")

        # Pretend that apex does not exist, even if installed. By setting apex to None, importing
        # apex will fail even if apex is installed.
        with patch.dict("sys.modules", {"apex.optimizers": None}):
            with self.assertRaises(ValueError):
                Trainer.get_optimizer_cls_and_kwargs(args)
3761

3762
3763
3764
3765
3766
3767
3768
3769
3770
    def test_bnb_adam8bit(self):
        # Pretend that Bits and Bytes is installed and mock bnb.optim.Adam8bit exists.
        # Trainer.get_optimizer_cls_and_kwargs does not use Adam8bit. It only has to return the
        # class given, so mocking bnb.optim.Adam8bit should be fine for testing and allow
        # the test to run without requiring a bnb installation.
        mock = Mock()
        modules = {
            "bitsandbytes": mock,
            "bitsandbytes.optim": mock.optim,
3771
            "bitsandbytes.optim.AdamW": mock.optim.AdamW,
3772
3773
3774
        }
        with patch.dict("sys.modules", modules):
            self.check_optim_and_kwargs(
3775
                TrainingArguments(optim=OptimizerNames.ADAMW_BNB, output_dir="None"),
3776
                mock.optim.AdamW,
3777
                default_adam_kwargs,
3778
3779
            )

3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
    def test_bnb_paged_adam8bit_alias(self):
        mock = Mock()
        modules = {
            "bitsandbytes": mock,
            "bitsandbytes.optim": mock.optim,
            "bitsandbytes.optim.AdamW": mock.optim.AdamW,
        }
        with patch.dict("sys.modules", modules):
            self.check_optim_and_kwargs(
                TrainingArguments(optim=OptimizerNames.ADAMW_8BIT, output_dir="None"),
                mock.optim.AdamW,
                default_adam_kwargs,
            )

    def test_bnb_paged_adam(self):
        mock = Mock()
        modules = {
            "bitsandbytes": mock,
            "bitsandbytes.optim": mock.optim,
            "bitsandbytes.optim.AdamW": mock.optim.AdamW,
        }
        with patch.dict("sys.modules", modules):
            self.check_optim_and_kwargs(
                TrainingArguments(optim=OptimizerNames.PAGED_ADAMW, output_dir="None"),
                mock.optim.AdamW,
                default_adam_kwargs,
            )

    def test_bnb_paged_adam8bit(self):
        mock = Mock()
        modules = {
            "bitsandbytes": mock,
            "bitsandbytes.optim": mock.optim,
            "bitsandbytes.optim.AdamW": mock.optim.AdamW,
        }
        with patch.dict("sys.modules", modules):
            self.check_optim_and_kwargs(
                TrainingArguments(optim=OptimizerNames.PAGED_ADAMW_8BIT, output_dir="None"),
                mock.optim.AdamW,
                default_adam_kwargs,
            )

    def test_bnb_lion(self):
        mock = Mock()
        modules = {
            "bitsandbytes": mock,
            "bitsandbytes.optim": mock.optim,
            "bitsandbytes.optim.Lion": mock.optim.Lion,
        }
        with patch.dict("sys.modules", modules):
            self.check_optim_and_kwargs(
                TrainingArguments(optim=OptimizerNames.LION, output_dir="None"),
                mock.optim.Lion,
                default_lion_kwargs,
            )

    def test_bnb_lion8bit(self):
        mock = Mock()
        modules = {
            "bitsandbytes": mock,
            "bitsandbytes.optim": mock.optim,
            "bitsandbytes.optim.Lion": mock.optim.Lion,
        }
        with patch.dict("sys.modules", modules):
            self.check_optim_and_kwargs(
                TrainingArguments(optim=OptimizerNames.LION_8BIT, output_dir="None"),
                mock.optim.Lion,
                default_lion_kwargs,
            )

    def test_bnb_paged_lion8bit(self):
        mock = Mock()
        modules = {
            "bitsandbytes": mock,
            "bitsandbytes.optim": mock.optim,
            "bitsandbytes.optim.Lion": mock.optim.Lion,
        }
        with patch.dict("sys.modules", modules):
            self.check_optim_and_kwargs(
                TrainingArguments(optim=OptimizerNames.PAGED_LION_8BIT, output_dir="None"),
                mock.optim.Lion,
                default_lion_kwargs,
            )

    def test_bnb_paged_lion(self):
        mock = Mock()
        modules = {
            "bitsandbytes": mock,
            "bitsandbytes.optim": mock.optim,
            "bitsandbytes.optim.Lion": mock.optim.Lion,
        }
        with patch.dict("sys.modules", modules):
            self.check_optim_and_kwargs(
                TrainingArguments(optim=OptimizerNames.PAGED_LION, output_dir="None"),
                mock.optim.Lion,
                default_lion_kwargs,
            )

3878
3879
3880
3881
3882
    def test_bnb_adam8bit_no_bnb(self):
        args = TrainingArguments(optim=OptimizerNames.ADAMW_BNB, output_dir="None")

        # Pretend that bnb does not exist, even if installed. By setting bnb to None, importing
        # bnb will fail even if bnb is installed.
Younes Belkada's avatar
Younes Belkada committed
3883
        with patch.dict("sys.modules", {"bitsandbytes.optim": None}):
3884
3885
3886
            with self.assertRaises(ValueError):
                Trainer.get_optimizer_cls_and_kwargs(args)

3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
    def test_bnb_paged_adam_no_bnb(self):
        args = TrainingArguments(optim=OptimizerNames.PAGED_ADAMW, output_dir="None")

        # Pretend that bnb does not exist, even if installed. By setting bnb to None, importing
        # bnb will fail even if bnb is installed.
        with patch.dict("sys.modules", {"bitsandbytes.optim": None}):
            with self.assertRaises(ValueError):
                Trainer.get_optimizer_cls_and_kwargs(args)

    def test_bnb_paged_adam8bit_no_bnb(self):
        args = TrainingArguments(optim=OptimizerNames.PAGED_ADAMW_8BIT, output_dir="None")

        # Pretend that bnb does not exist, even if installed. By setting bnb to None, importing
        # bnb will fail even if bnb is installed.
        with patch.dict("sys.modules", {"bitsandbytes.optim": None}):
            with self.assertRaises(ValueError):
                Trainer.get_optimizer_cls_and_kwargs(args)

    def test_bnb_paged_lion_no_bnb(self):
        args = TrainingArguments(optim=OptimizerNames.PAGED_LION, output_dir="None")

        # Pretend that bnb does not exist, even if installed. By setting bnb to None, importing
        # bnb will fail even if bnb is installed.
        with patch.dict("sys.modules", {"bitsandbytes.optim": None}):
            with self.assertRaises(ValueError):
                Trainer.get_optimizer_cls_and_kwargs(args)

    def test_bnb_paged_lion8bit_no_bnb(self):
        args = TrainingArguments(optim=OptimizerNames.PAGED_LION_8BIT, output_dir="None")

        # Pretend that bnb does not exist, even if installed. By setting bnb to None, importing
        # bnb will fail even if bnb is installed.
        with patch.dict("sys.modules", {"bitsandbytes.optim": None}):
            with self.assertRaises(ValueError):
                Trainer.get_optimizer_cls_and_kwargs(args)

3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
    def test_anyprecision_adamw(self):
        # Pretend that torchdistx is installed and mock torchdistx.optimizers.AnyPrecisionAdamW exists.
        # Trainer.get_optimizer_cls_and_kwargs does not use AnyPrecisioinAdamW. It only has to return the
        # class given, so mocking torchdistx.optimizers.AnyPrecisionAdamW should be fine for testing and allow
        # the test to run without requiring a bnb installation.
        mock = Mock()
        modules = {
            "torchdistx": mock,
            "torchdistx.optimizers": mock.optimizers,
            "torchdistx.optimizers.AnyPrecisionAdamW.": mock.optimizers.AnyPrecisionAdamW,
        }
        with patch.dict("sys.modules", modules):
            self.check_optim_and_kwargs(
                TrainingArguments(optim=OptimizerNames.ADAMW_ANYPRECISION, output_dir="None"),
                mock.optimizers.AnyPrecisionAdamW,
                dict(default_adam_kwargs, **default_anyprecision_kwargs),
            )

    def test_no_torchdistx_anyprecision_adamw(self):
        args = TrainingArguments(optim=OptimizerNames.ADAMW_ANYPRECISION, output_dir="None")

        # Pretend that torchdistx does not exist, even if installed. By setting torchdistx to None, importing
        # torchdistx.optimizers will fail even if torchdistx is installed.
        with patch.dict("sys.modules", {"torchdistx.optimizers": None}):
            with self.assertRaises(ValueError):
                Trainer.get_optimizer_cls_and_kwargs(args)

3950
3951
3952
3953
3954

@require_torch
@require_wandb
class TrainerHyperParameterWandbIntegrationTest(unittest.TestCase):
    def setUp(self):
3955
        args = TrainingArguments("..")
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
        self.n_epochs = args.num_train_epochs
        self.batch_size = args.train_batch_size

    def test_hyperparameter_search(self):
        class MyTrialShortNamer(TrialShortNamer):
            DEFAULTS = {"a": 0, "b": 0}

        def hp_space(trial):
            return {
                "method": "random",
                "metric": {},
                "parameters": {
                    "a": {"distribution": "uniform", "min": 1e-6, "max": 1e-4},
                    "b": {"distribution": "int_uniform", "min": 1, "max": 6},
                },
            }

        def model_init(config):
            if config is None:
                a = 0
                b = 0
            else:
                a = config["a"]
                b = config["b"]
            model_config = RegressionModelConfig(a=a, b=b, double_output=False)

            return RegressionPreTrainedModel(model_config)

        def hp_name(params):
            return MyTrialShortNamer.shortname(params)

        with tempfile.TemporaryDirectory() as tmp_dir:
            trainer = get_regression_trainer(
                output_dir=tmp_dir,
                learning_rate=0.1,
                logging_steps=1,
3992
                eval_strategy=IntervalStrategy.EPOCH,
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
                save_strategy=IntervalStrategy.EPOCH,
                num_train_epochs=4,
                disable_tqdm=True,
                load_best_model_at_end=True,
                logging_dir="runs",
                run_name="test",
                model_init=model_init,
            )
            trainer.hyperparameter_search(
                direction="minimize", hp_space=hp_space, hp_name=hp_name, backend="wandb", n_trials=4, anonymous="must"
            )
4004
4005
4006
4007
4008
4009
4010
4011


class HyperParameterSearchBackendsTest(unittest.TestCase):
    def test_hyperparameter_search_backends(self):
        self.assertEqual(
            list(ALL_HYPERPARAMETER_SEARCH_BACKENDS.keys()),
            list(HPSearchBackend),
        )
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049


@require_torch
class OptimizerAndModelInspectionTest(unittest.TestCase):
    def test_get_num_trainable_parameters(self):
        model = nn.Sequential(nn.Linear(128, 64), nn.Linear(64, 32))
        # in_features * out_features + bias
        layer_1 = 128 * 64 + 64
        layer_2 = 64 * 32 + 32
        trainer = Trainer(model=model)
        self.assertEqual(trainer.get_num_trainable_parameters(), layer_1 + layer_2)
        # Freeze the last layer
        for param in model[-1].parameters():
            param.requires_grad = False
        self.assertEqual(trainer.get_num_trainable_parameters(), layer_1)

    def test_get_learning_rates(self):
        model = nn.Sequential(nn.Linear(128, 64))
        trainer = Trainer(model=model)
        with self.assertRaises(ValueError):
            trainer.get_learning_rates()
        trainer.create_optimizer()
        self.assertEqual(trainer.get_learning_rates(), [5e-05, 5e-05])

    def test_get_optimizer_group(self):
        model = nn.Sequential(nn.Linear(128, 64))
        trainer = Trainer(model=model)
        # ValueError is raised if optimizer is None
        with self.assertRaises(ValueError):
            trainer.get_optimizer_group()
        trainer.create_optimizer()
        # Get groups
        num_groups = len(trainer.get_optimizer_group())
        self.assertEqual(num_groups, 2)
        # Get group of parameter
        param = next(model.parameters())
        group = trainer.get_optimizer_group(param)
        self.assertIn(param, group["params"])