test_trainer.py 101 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2018 the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
import dataclasses
17
import gc
18
import json
19
import math
20
import os
21
import random
Sylvain Gugger's avatar
Sylvain Gugger committed
22
import re
23
import subprocess
24
import sys
25
import tempfile
26
import time
Julien Chaumond's avatar
Julien Chaumond committed
27
import unittest
28
from pathlib import Path
29
from unittest.mock import Mock, patch
Julien Chaumond's avatar
Julien Chaumond committed
30

Sylvain Gugger's avatar
Sylvain Gugger committed
31
32
import numpy as np

33
from huggingface_hub import HfFolder, Repository, delete_repo, set_access_token
34
from parameterized import parameterized
Sylvain Gugger's avatar
Sylvain Gugger committed
35
from requests.exceptions import HTTPError
36
37
38
39
40
41
42
43
from transformers import (
    AutoTokenizer,
    IntervalStrategy,
    PretrainedConfig,
    TrainingArguments,
    is_torch_available,
    logging,
)
44
from transformers.testing_utils import (
Sylvain Gugger's avatar
Sylvain Gugger committed
45
    ENDPOINT_STAGING,
46
    TOKEN,
Sylvain Gugger's avatar
Sylvain Gugger committed
47
    USER,
48
    CaptureLogger,
49
    TestCasePlus,
50
    get_gpu_count,
51
    get_tests_dir,
Sylvain Gugger's avatar
Sylvain Gugger committed
52
    is_staging_test,
53
    require_intel_extension_for_pytorch,
54
    require_optuna,
55
    require_ray,
56
    require_sentencepiece,
57
    require_sigopt,
58
59
    require_tokenizers,
    require_torch,
60
61
    require_torch_bf16_cpu,
    require_torch_bf16_gpu,
62
    require_torch_gpu,
63
    require_torch_multi_gpu,
64
    require_torch_non_multi_gpu,
65
    require_torch_tensorrt_fx,
66
    require_torch_tf32,
67
    require_torch_up_to_2_gpus,
68
    require_torchdynamo,
69
    require_wandb,
70
71
    slow,
)
72
from transformers.trainer_utils import PREFIX_CHECKPOINT_DIR
73
from transformers.training_args import OptimizerNames
74
from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME, is_apex_available, is_bitsandbytes_available
75
from transformers.utils.hp_naming import TrialShortNamer
Julien Chaumond's avatar
Julien Chaumond committed
76
77
78
79


if is_torch_available():
    import torch
80
    from torch import nn
81
82
    from torch.utils.data import IterableDataset

83
    import transformers.optimization
Julien Chaumond's avatar
Julien Chaumond committed
84
85
    from transformers import (
        AutoModelForSequenceClassification,
86
        EarlyStoppingCallback,
Julien Chaumond's avatar
Julien Chaumond committed
87
88
        GlueDataset,
        GlueDataTrainingArguments,
89
90
        GPT2Config,
        GPT2LMHeadModel,
91
        LineByLineTextDataset,
92
        PreTrainedModel,
93
        Trainer,
94
        TrainerState,
Julien Chaumond's avatar
Julien Chaumond committed
95
    )
96
    from transformers.modeling_utils import unwrap_model
Julien Chaumond's avatar
Julien Chaumond committed
97
98


99
PATH_SAMPLE_TEXT = f"{get_tests_dir()}/fixtures/sample_text.txt"
Julien Chaumond's avatar
Julien Chaumond committed
100
101


Sylvain Gugger's avatar
Sylvain Gugger committed
102
class RegressionDataset:
Sylvain Gugger's avatar
Sylvain Gugger committed
103
    def __init__(self, a=2, b=3, length=64, seed=42, label_names=None):
Sylvain Gugger's avatar
Sylvain Gugger committed
104
        np.random.seed(seed)
Sylvain Gugger's avatar
Sylvain Gugger committed
105
        self.label_names = ["labels"] if label_names is None else label_names
Sylvain Gugger's avatar
Sylvain Gugger committed
106
107
        self.length = length
        self.x = np.random.normal(size=(length,)).astype(np.float32)
Sylvain Gugger's avatar
Sylvain Gugger committed
108
109
        self.ys = [a * self.x + b + np.random.normal(scale=0.1, size=(length,)) for _ in self.label_names]
        self.ys = [y.astype(np.float32) for y in self.ys]
Julien Chaumond's avatar
Julien Chaumond committed
110

Sylvain Gugger's avatar
Sylvain Gugger committed
111
112
113
114
    def __len__(self):
        return self.length

    def __getitem__(self, i):
Sylvain Gugger's avatar
Sylvain Gugger committed
115
116
117
        result = {name: y[i] for name, y in zip(self.label_names, self.ys)}
        result["input_x"] = self.x[i]
        return result
Sylvain Gugger's avatar
Sylvain Gugger committed
118
119


120
121
122
123
124
@dataclasses.dataclass
class RegressionTrainingArguments(TrainingArguments):
    a: float = 0.0
    b: float = 0.0

125
126
127
128
129
    def __post_init__(self):
        super().__post_init__()
        # save resources not dealing with reporting (also avoids the warning when it's not set)
        self.report_to = []

130

131
132
133
134
135
136
137
138
139
140
141
142
class RepeatDataset:
    def __init__(self, x, length=64):
        self.x = x
        self.length = length

    def __len__(self):
        return self.length

    def __getitem__(self, i):
        return {"input_ids": self.x, "labels": self.x}


143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
class DynamicShapesDataset:
    def __init__(self, length=64, seed=42, batch_size=8):
        self.length = length
        np.random.seed(seed)
        sizes = np.random.randint(1, 20, (length // batch_size,))
        # For easy batching, we make every batch_size consecutive samples the same size.
        self.xs = [np.random.normal(size=(s,)) for s in sizes.repeat(batch_size)]
        self.ys = [np.random.normal(size=(s,)) for s in sizes.repeat(batch_size)]

    def __len__(self):
        return self.length

    def __getitem__(self, i):
        return {"input_x": self.xs[i], "labels": self.ys[i]}


Sylvain Gugger's avatar
Sylvain Gugger committed
159
160
161
162
163
164
165
166
class AlmostAccuracy:
    def __init__(self, thresh=0.25):
        self.thresh = thresh

    def __call__(self, eval_pred):
        predictions, labels = eval_pred
        true = np.abs(predictions - labels) <= self.thresh
        return {"accuracy": true.astype(np.float32).mean().item()}
167

Julien Chaumond's avatar
Julien Chaumond committed
168

169
class RegressionModelConfig(PretrainedConfig):
170
    def __init__(self, a=0, b=0, double_output=False, random_torch=True, **kwargs):
171
172
173
174
        super().__init__(**kwargs)
        self.a = a
        self.b = b
        self.double_output = double_output
175
        self.random_torch = random_torch
176
        self.hidden_size = 1
177
178


179
180
181
if is_torch_available():

    class SampleIterableDataset(IterableDataset):
182
183
        def __init__(self, a=2, b=3, length=64, seed=42, label_names=None):
            self.dataset = RegressionDataset(a=a, b=b, length=length, seed=seed, label_names=label_names)
184
185

        def __iter__(self):
186
187
            for i in range(len(self.dataset)):
                yield self.dataset[i]
188

189
190
191
192
193
194
195
196
197
198
    class FiniteIterableDataset(SampleIterableDataset):
        def __init__(self, a=2, b=3, length=64, seed=42, label_names=None):
            super().__init__(a, b, length, seed, label_names)
            self.current_sample = 0

        def __iter__(self):
            while self.current_sample < len(self.dataset):
                yield self.dataset[self.current_sample]
                self.current_sample += 1

199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
    class MultiLoader:
        def __init__(self, loaders):
            self.loaders = loaders

        def __len__(self):
            return sum(len(loader) for loader in self.loaders)

        def __iter__(self):
            for loader in self.loaders:
                yield from loader

    class CustomDataloaderTrainer(Trainer):
        def get_train_dataloader(self):
            dataloaders = [super().get_train_dataloader(), super().get_train_dataloader()]
            return MultiLoader(dataloaders)

        def get_eval_dataloader(self, eval_dataset):
            dataloaders = [super().get_eval_dataloader(eval_dataset), super().get_eval_dataloader(eval_dataset)]
            return MultiLoader(dataloaders)

219
    class RegressionModel(nn.Module):
220
        def __init__(self, a=0, b=0, double_output=False):
Sylvain Gugger's avatar
Sylvain Gugger committed
221
            super().__init__()
222
223
            self.a = nn.Parameter(torch.tensor(a).float())
            self.b = nn.Parameter(torch.tensor(b).float())
224
225
            self.double_output = double_output
            self.config = None
Sylvain Gugger's avatar
Sylvain Gugger committed
226

Stas Bekman's avatar
Stas Bekman committed
227
        def forward(self, input_x, labels=None, **kwargs):
Sylvain Gugger's avatar
Sylvain Gugger committed
228
229
            y = input_x * self.a + self.b
            if labels is None:
230
                return (y, y) if self.double_output else (y,)
231
            loss = nn.functional.mse_loss(y, labels)
232
            return (loss, y, y) if self.double_output else (loss, y)
Sylvain Gugger's avatar
Sylvain Gugger committed
233

234
    class RegressionDictModel(nn.Module):
235
236
        def __init__(self, a=0, b=0):
            super().__init__()
237
238
            self.a = nn.Parameter(torch.tensor(a).float())
            self.b = nn.Parameter(torch.tensor(b).float())
239
240
            self.config = None

Stas Bekman's avatar
Stas Bekman committed
241
        def forward(self, input_x, labels=None, **kwargs):
242
243
244
            y = input_x * self.a + self.b
            result = {"output": y}
            if labels is not None:
245
                result["loss"] = nn.functional.mse_loss(y, labels)
246
247
            return result

248
249
250
251
252
253
    class RegressionPreTrainedModel(PreTrainedModel):
        config_class = RegressionModelConfig
        base_model_prefix = "regression"

        def __init__(self, config):
            super().__init__(config)
254
255
            self.a = nn.Parameter(torch.tensor(config.a).float())
            self.b = nn.Parameter(torch.tensor(config.b).float())
256
257
            self.double_output = config.double_output

Stas Bekman's avatar
Stas Bekman committed
258
        def forward(self, input_x, labels=None, **kwargs):
259
260
261
            y = input_x * self.a + self.b
            if labels is None:
                return (y, y) if self.double_output else (y,)
262
            loss = nn.functional.mse_loss(y, labels)
263
264
            return (loss, y, y) if self.double_output else (loss, y)

265
266
267
268
269
270
    class RegressionRandomPreTrainedModel(PreTrainedModel):
        config_class = RegressionModelConfig
        base_model_prefix = "regression"

        def __init__(self, config):
            super().__init__(config)
271
272
            self.a = nn.Parameter(torch.tensor(config.a).float())
            self.b = nn.Parameter(torch.tensor(config.b).float())
273
            self.random_torch = config.random_torch
274
275
276

        def forward(self, input_x, labels=None, **kwargs):
            y = input_x * self.a + self.b
277
278
            if self.random_torch:
                torch_rand = torch.randn(1).squeeze()
279
280
281
            np_rand = np.random.rand()
            rand_rand = random.random()

282
283
284
            if self.random_torch:
                y += 0.05 * torch_rand
            y += 0.05 * torch.tensor(np_rand + rand_rand)
285
286
287

            if labels is None:
                return (y,)
288
            loss = nn.functional.mse_loss(y, labels)
289
290
            return (loss, y)

291
    class TstLayer(nn.Module):
292
293
        def __init__(self, hidden_size):
            super().__init__()
294
295
296
297
298
            self.linear1 = nn.Linear(hidden_size, hidden_size)
            self.ln1 = nn.LayerNorm(hidden_size)
            self.linear2 = nn.Linear(hidden_size, hidden_size)
            self.ln2 = nn.LayerNorm(hidden_size)
            self.bias = nn.Parameter(torch.zeros(hidden_size))
299
300

        def forward(self, x):
301
302
            h = self.ln1(nn.functional.relu(self.linear1(x)))
            h = nn.functional.relu(self.linear2(x))
303
304
            return self.ln2(x + h + self.bias)

305
    def get_regression_trainer(a=0, b=0, double_output=False, train_len=64, eval_len=64, pretrained=True, **kwargs):
Sylvain Gugger's avatar
Sylvain Gugger committed
306
307
308
        label_names = kwargs.get("label_names", None)
        train_dataset = RegressionDataset(length=train_len, label_names=label_names)
        eval_dataset = RegressionDataset(length=eval_len, label_names=label_names)
309
310
311
312

        model_init = kwargs.pop("model_init", None)
        if model_init is not None:
            model = None
313
        else:
314
315
316
317
318
319
            if pretrained:
                config = RegressionModelConfig(a=a, b=b, double_output=double_output)
                model = RegressionPreTrainedModel(config)
            else:
                model = RegressionModel(a=a, b=b, double_output=double_output)

Sylvain Gugger's avatar
Sylvain Gugger committed
320
321
322
        compute_metrics = kwargs.pop("compute_metrics", None)
        data_collator = kwargs.pop("data_collator", None)
        optimizers = kwargs.pop("optimizers", (None, None))
323
        output_dir = kwargs.pop("output_dir", "./regression")
324
        preprocess_logits_for_metrics = kwargs.pop("preprocess_logits_for_metrics", None)
325
326

        args = RegressionTrainingArguments(output_dir, a=a, b=b, **kwargs)
Sylvain Gugger's avatar
Sylvain Gugger committed
327
328
329
330
331
332
333
334
        return Trainer(
            model,
            args,
            data_collator=data_collator,
            train_dataset=train_dataset,
            eval_dataset=eval_dataset,
            compute_metrics=compute_metrics,
            optimizers=optimizers,
335
            model_init=model_init,
336
            preprocess_logits_for_metrics=preprocess_logits_for_metrics,
Sylvain Gugger's avatar
Sylvain Gugger committed
337
338
        )

339

340
class TrainerIntegrationCommon:
341
    def check_saved_checkpoints(self, output_dir, freq, total, is_pretrained=True):
342
        file_list = [WEIGHTS_NAME, "training_args.bin", "optimizer.pt", "scheduler.pt", "trainer_state.json"]
343
344
345
346
347
348
349
350
351
352
353
354
        if is_pretrained:
            file_list.append("config.json")
        for step in range(freq, total, freq):
            checkpoint = os.path.join(output_dir, f"checkpoint-{step}")
            self.assertTrue(os.path.isdir(checkpoint))
            for filename in file_list:
                self.assertTrue(os.path.isfile(os.path.join(checkpoint, filename)))

    def check_best_model_has_been_loaded(
        self, output_dir, freq, total, trainer, metric, greater_is_better=False, is_pretrained=True
    ):
        checkpoint = os.path.join(output_dir, f"checkpoint-{(total // freq) * freq}")
355
        log_history = TrainerState.load_from_json(os.path.join(checkpoint, "trainer_state.json")).log_history
356
357
358
359
360
361
362
363
364
365
366
367

        values = [d[metric] for d in log_history]
        best_value = max(values) if greater_is_better else min(values)
        best_checkpoint = (values.index(best_value) + 1) * freq
        checkpoint = os.path.join(output_dir, f"checkpoint-{best_checkpoint}")
        if is_pretrained:
            best_model = RegressionPreTrainedModel.from_pretrained(checkpoint)
            best_model.to(trainer.args.device)
        else:
            best_model = RegressionModel()
            state_dict = torch.load(os.path.join(checkpoint, WEIGHTS_NAME))
            best_model.load_state_dict(state_dict)
368
            best_model.to(trainer.args.device)
369
370
371
372
373
374
        self.assertTrue(torch.allclose(best_model.a, trainer.model.a))
        self.assertTrue(torch.allclose(best_model.b, trainer.model.b))

        metrics = trainer.evaluate()
        self.assertEqual(metrics[metric], best_value)

375
376
377
378
379
380
381
382
    def check_trainer_state_are_the_same(self, trainer_state, trainer_state1):
        # We'll pop things so operate on copies.
        state = trainer_state.copy()
        state1 = trainer_state1.copy()
        # Log history main contain different logs for the time metrics (after resuming a training).
        log_history = state.pop("log_history", None)
        log_history1 = state1.pop("log_history", None)
        self.assertEqual(state, state1)
383
        skip_log_keys = ["train_runtime", "train_samples_per_second", "train_steps_per_second", "train_loss"]
384
        for log, log1 in zip(log_history, log_history1):
385
386
387
            for key in skip_log_keys:
                _ = log.pop(key, None)
                _ = log1.pop(key, None)
388
389
            self.assertEqual(log, log1)

390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
    def convert_to_sharded_checkpoint(self, folder):
        # Converts a checkpoint of a regression model to a sharded checkpoint.
        state_dict = torch.load(os.path.join(folder, WEIGHTS_NAME))
        os.remove(os.path.join(folder, WEIGHTS_NAME))
        keys = list(state_dict.keys())

        shard_files = [
            WEIGHTS_NAME.replace(".bin", f"-{idx+1:05d}-of-{len(keys):05d}.bin") for idx in range(len(keys))
        ]
        index = {"metadata": {}, "weight_map": {key: shard_files[i] for i, key in enumerate(keys)}}

        save_index_file = os.path.join(folder, WEIGHTS_INDEX_NAME)
        with open(save_index_file, "w", encoding="utf-8") as f:
            content = json.dumps(index, indent=2, sort_keys=True) + "\n"
            f.write(content)

        for param_name, shard_file in zip(keys, shard_files):
            torch.save({param_name: state_dict[param_name]}, os.path.join(folder, shard_file))

409
410
411
412

@require_torch
@require_sentencepiece
@require_tokenizers
413
414
415
416
417
418
419
420
class TrainerIntegrationPrerunTest(TestCasePlus, TrainerIntegrationCommon):
    """
    Only tests that want to tap into the auto-pre-run 2 trainings:
    - self.default_trained_model
    - self.alternate_trained_model
    directly, or via check_trained_model
    """

421
422
    def setUp(self):
        super().setUp()
423
        args = TrainingArguments("..")
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
        self.n_epochs = args.num_train_epochs
        self.batch_size = args.train_batch_size
        trainer = get_regression_trainer(learning_rate=0.1)
        trainer.train()
        self.default_trained_model = (trainer.model.a, trainer.model.b)

        trainer = get_regression_trainer(learning_rate=0.1, seed=314)
        trainer.train()
        self.alternate_trained_model = (trainer.model.a, trainer.model.b)

    def check_trained_model(self, model, alternate_seed=False):
        # Checks a training seeded with learning_rate = 0.1
        (a, b) = self.alternate_trained_model if alternate_seed else self.default_trained_model
        self.assertTrue(torch.allclose(model.a, a))
        self.assertTrue(torch.allclose(model.b, b))

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
    def test_reproducible_training(self):
        # Checks that training worked, model trained and seed made a reproducible training.
        trainer = get_regression_trainer(learning_rate=0.1)
        trainer.train()
        self.check_trained_model(trainer.model)

        # Checks that a different seed gets different (reproducible) results.
        trainer = get_regression_trainer(learning_rate=0.1, seed=314)
        trainer.train()
        self.check_trained_model(trainer.model, alternate_seed=True)

    def test_trainer_with_datasets(self):
        import datasets

        np.random.seed(42)
        x = np.random.normal(size=(64,)).astype(np.float32)
        y = 2.0 * x + 3.0 + np.random.normal(scale=0.1, size=(64,))
        train_dataset = datasets.Dataset.from_dict({"input_x": x, "label": y})

        # Base training. Should have the same results as test_reproducible_training
        model = RegressionModel()
        args = TrainingArguments("./regression", learning_rate=0.1)
        trainer = Trainer(model, args, train_dataset=train_dataset)
        trainer.train()
        self.check_trained_model(trainer.model)

        # Can return tensors.
        train_dataset.set_format(type="torch", dtype=torch.float32)
        model = RegressionModel()
        trainer = Trainer(model, args, train_dataset=train_dataset)
        trainer.train()
        self.check_trained_model(trainer.model)

        # Adding one column not used by the model should have no impact
        z = np.random.normal(size=(64,)).astype(np.float32)
        train_dataset = datasets.Dataset.from_dict({"input_x": x, "label": y, "extra": z})
        model = RegressionModel()
        trainer = Trainer(model, args, train_dataset=train_dataset)
        trainer.train()
        self.check_trained_model(trainer.model)

    def test_model_init(self):
        train_dataset = RegressionDataset()
        args = TrainingArguments("./regression", learning_rate=0.1)
        trainer = Trainer(args=args, train_dataset=train_dataset, model_init=lambda: RegressionModel())
        trainer.train()
        self.check_trained_model(trainer.model)

        # Re-training should restart from scratch, thus lead the same results.
        trainer.train()
        self.check_trained_model(trainer.model)

        # Re-training should restart from scratch, thus lead the same results and new seed should be used.
        trainer.args.seed = 314
        trainer.train()
        self.check_trained_model(trainer.model, alternate_seed=True)

    def test_gradient_accumulation(self):
        # Training with half the batch size but accumulation steps as 2 should give the same results.
        trainer = get_regression_trainer(
            gradient_accumulation_steps=2, per_device_train_batch_size=4, learning_rate=0.1
        )
        trainer.train()
        self.check_trained_model(trainer.model)

505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
    def test_training_loss(self):
        n_gpus = max(1, get_gpu_count())

        # With even logs
        trainer = get_regression_trainer(logging_steps=64 / (8 * n_gpus))
        trainer.train()
        log_history = trainer.state.log_history

        losses = [log["loss"] for log in log_history if "loss" in log]
        train_loss = log_history[-1]["train_loss"]
        self.assertAlmostEqual(sum(losses) / len(losses), train_loss, places=4)

        # With uneven logs
        trainer = get_regression_trainer(logging_steps=5)
        trainer.train()
        log_history = trainer.state.log_history

        # Training loss should be the same as before
        new_train_loss = log_history[-1]["train_loss"]
        self.assertAlmostEqual(train_loss, new_train_loss, places=4)

526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
    def test_custom_optimizer(self):
        train_dataset = RegressionDataset()
        args = TrainingArguments("./regression")
        model = RegressionModel()
        optimizer = torch.optim.SGD(model.parameters(), lr=1.0)
        lr_scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda x: 1.0)
        trainer = Trainer(model, args, train_dataset=train_dataset, optimizers=(optimizer, lr_scheduler))
        trainer.train()

        (a, b) = self.default_trained_model
        self.assertFalse(torch.allclose(trainer.model.a, a))
        self.assertFalse(torch.allclose(trainer.model.b, b))
        self.assertEqual(trainer.optimizer.state_dict()["param_groups"][0]["lr"], 1.0)

    def test_adafactor_lr_none(self):
        # test the special case where lr=None, since Trainer can't not have lr_scheduler

        from transformers.optimization import Adafactor, AdafactorSchedule

        train_dataset = RegressionDataset()
        args = TrainingArguments("./regression")
        model = RegressionModel()
        optimizer = Adafactor(model.parameters(), scale_parameter=True, relative_step=True, warmup_init=True, lr=None)
        lr_scheduler = AdafactorSchedule(optimizer)
        trainer = Trainer(model, args, train_dataset=train_dataset, optimizers=(optimizer, lr_scheduler))
        trainer.train()

        (a, b) = self.default_trained_model
        self.assertFalse(torch.allclose(trainer.model.a, a))
        self.assertFalse(torch.allclose(trainer.model.b, b))
        self.assertGreater(trainer.optimizer.state_dict()["param_groups"][0]["lr"], 0)

558
    @require_torch_gpu
559
    @require_torch_bf16_gpu
560
561
562
563
564
565
566
567
568
569
570
571
572
    def test_mixed_bf16(self):

        # very basic test
        trainer = get_regression_trainer(learning_rate=0.1, bf16=True)
        trainer.train()
        self.check_trained_model(trainer.model)

        # --bf16 --half_precision_backend apex can't be used together
        with self.assertRaises(ValueError):
            trainer = get_regression_trainer(learning_rate=0.1, bf16=True, half_precision_backend="apex")

        # will add more specific tests once there are some bugs to fix

573
574
575
576
577
578
579
580
581
    @require_torch_gpu
    @require_torch_tf32
    def test_tf32(self):

        # very basic test
        trainer = get_regression_trainer(learning_rate=0.1, tf32=True)
        trainer.train()
        self.check_trained_model(trainer.model)

582
583
584
585
586
587
588

@require_torch
@require_sentencepiece
@require_tokenizers
class TrainerIntegrationTest(TestCasePlus, TrainerIntegrationCommon):
    def setUp(self):
        super().setUp()
589
        args = TrainingArguments("..")
590
591
592
        self.n_epochs = args.num_train_epochs
        self.batch_size = args.train_batch_size

593
594
595
596
597
598
599
600
601
602
603
604
605
    def test_trainer_works_with_dict(self):
        # Edge case because Apex with mode O2 will change our models to return dicts. This test checks it doesn't break
        # anything.
        train_dataset = RegressionDataset()
        eval_dataset = RegressionDataset()
        model = RegressionDictModel()
        args = TrainingArguments("./regression")
        trainer = Trainer(model, args, train_dataset=train_dataset, eval_dataset=eval_dataset)
        trainer.train()
        _ = trainer.evaluate()
        _ = trainer.predict(eval_dataset)

    def test_evaluation_with_keys_to_drop(self):
606
        config = GPT2Config(vocab_size=100, n_positions=128, n_embd=32, n_layer=3, n_head=4)
607
608
609
610
611
612
613
614
615
616
617
618
619
        tiny_gpt2 = GPT2LMHeadModel(config)
        x = torch.randint(0, 100, (128,))
        eval_dataset = RepeatDataset(x)
        args = TrainingArguments("./test")
        trainer = Trainer(tiny_gpt2, args, eval_dataset=eval_dataset)
        # By default the past_key_values are removed
        result = trainer.predict(eval_dataset)
        self.assertTrue(isinstance(result.predictions, np.ndarray))
        # We can still get them by setting ignore_keys to []
        result = trainer.predict(eval_dataset, ignore_keys=[])
        self.assertTrue(isinstance(result.predictions, tuple))
        self.assertEqual(len(result.predictions), 2)

620
621
622
    def test_training_arguments_are_left_untouched(self):
        trainer = get_regression_trainer()
        trainer.train()
623
        args = TrainingArguments("./regression", report_to=[])
624
625
        dict1, dict2 = args.to_dict(), trainer.args.to_dict()
        for key in dict1.keys():
626
            # Logging dir can be slightly different as they default to something with the time.
Sylvain Gugger's avatar
Sylvain Gugger committed
627
            if key != "logging_dir":
628
                self.assertEqual(dict1[key], dict2[key])
629

Sylvain Gugger's avatar
Sylvain Gugger committed
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
    def test_number_of_steps_in_training(self):
        # Regular training has n_epochs * len(train_dl) steps
        trainer = get_regression_trainer(learning_rate=0.1)
        train_output = trainer.train()
        self.assertEqual(train_output.global_step, self.n_epochs * 64 / self.batch_size)

        # Check passing num_train_epochs works (and a float version too):
        trainer = get_regression_trainer(learning_rate=0.1, num_train_epochs=1.5)
        train_output = trainer.train()
        self.assertEqual(train_output.global_step, int(1.5 * 64 / self.batch_size))

        # If we pass a max_steps, num_train_epochs is ignored
        trainer = get_regression_trainer(learning_rate=0.1, max_steps=10)
        train_output = trainer.train()
        self.assertEqual(train_output.global_step, 10)

646
    @require_torch_bf16_cpu
647
648
649
650
651
652
    @require_intel_extension_for_pytorch
    def test_number_of_steps_in_training_with_ipex(self):
        for mix_bf16 in [True, False]:
            # Regular training has n_epochs * len(train_dl) steps
            trainer = get_regression_trainer(learning_rate=0.1, use_ipex=True, bf16=mix_bf16, no_cuda=True)
            train_output = trainer.train()
653
            self.assertEqual(train_output.global_step, self.n_epochs * 64 / trainer.args.train_batch_size)
654
655
656
657
658
659

            # Check passing num_train_epochs works (and a float version too):
            trainer = get_regression_trainer(
                learning_rate=0.1, num_train_epochs=1.5, use_ipex=True, bf16=mix_bf16, no_cuda=True
            )
            train_output = trainer.train()
660
            self.assertEqual(train_output.global_step, int(1.5 * 64 / trainer.args.train_batch_size))
661
662
663
664
665
666
667
668

            # If we pass a max_steps, num_train_epochs is ignored
            trainer = get_regression_trainer(
                learning_rate=0.1, max_steps=10, use_ipex=True, bf16=mix_bf16, no_cuda=True
            )
            train_output = trainer.train()
            self.assertEqual(train_output.global_step, 10)

669
    def test_logging_inf_nan_filter(self):
670
        config = GPT2Config(vocab_size=100, n_positions=128, n_embd=32, n_layer=3, n_head=4)
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
        tiny_gpt2 = GPT2LMHeadModel(config)
        x = torch.randint(0, 100, (128,))
        train_dataset = RepeatDataset(x)

        # Trainer without inf/nan filter
        args = TrainingArguments("./test", learning_rate=1e9, logging_steps=5, logging_nan_inf_filter=False)
        trainer = Trainer(tiny_gpt2, args, train_dataset=train_dataset)
        trainer.train()
        log_history_no_filter = trainer.state.log_history

        # Trainer with inf/nan filter
        args = TrainingArguments("./test", learning_rate=1e9, logging_steps=5, logging_nan_inf_filter=True)
        trainer = Trainer(tiny_gpt2, args, train_dataset=train_dataset)
        trainer.train()
        log_history_filter = trainer.state.log_history

        def is_any_loss_nan_or_inf(log_history):
            losses = [l["loss"] for l in log_history[:-1]]
            return any(math.isnan(x) for x in losses) or any(math.isinf(x) for x in losses)

        self.assertTrue(is_any_loss_nan_or_inf(log_history_no_filter))
        self.assertFalse(is_any_loss_nan_or_inf(log_history_filter))

Sylvain Gugger's avatar
Sylvain Gugger committed
694
    def test_train_and_eval_dataloaders(self):
695
        n_gpu = max(1, torch.cuda.device_count())
Sylvain Gugger's avatar
Sylvain Gugger committed
696
        trainer = get_regression_trainer(learning_rate=0.1, per_device_train_batch_size=16)
697
        self.assertEqual(trainer.get_train_dataloader().batch_size, 16 * n_gpu)
Sylvain Gugger's avatar
Sylvain Gugger committed
698
        trainer = get_regression_trainer(learning_rate=0.1, per_device_eval_batch_size=16)
699
        self.assertEqual(trainer.get_eval_dataloader().batch_size, 16 * n_gpu)
Sylvain Gugger's avatar
Sylvain Gugger committed
700
701
702
703
704

        # Check drop_last works
        trainer = get_regression_trainer(
            train_len=66, eval_len=74, learning_rate=0.1, per_device_train_batch_size=16, per_device_eval_batch_size=32
        )
705
706
        self.assertEqual(len(trainer.get_train_dataloader()), 66 // (16 * n_gpu) + 1)
        self.assertEqual(len(trainer.get_eval_dataloader()), 74 // (32 * n_gpu) + 1)
Sylvain Gugger's avatar
Sylvain Gugger committed
707
708
709
710
711
712
713
714
715

        trainer = get_regression_trainer(
            train_len=66,
            eval_len=74,
            learning_rate=0.1,
            per_device_train_batch_size=16,
            per_device_eval_batch_size=32,
            dataloader_drop_last=True,
        )
716
717
        self.assertEqual(len(trainer.get_train_dataloader()), 66 // (16 * n_gpu))
        self.assertEqual(len(trainer.get_eval_dataloader()), 74 // (32 * n_gpu))
Sylvain Gugger's avatar
Sylvain Gugger committed
718

719
        # Check passing a new dataset for evaluation works
Sylvain Gugger's avatar
Sylvain Gugger committed
720
        new_eval_dataset = RegressionDataset(length=128)
721
        self.assertEqual(len(trainer.get_eval_dataloader(new_eval_dataset)), 128 // (32 * n_gpu))
Sylvain Gugger's avatar
Sylvain Gugger committed
722

723
724
725
726
727
728
729
730
731
    # tests that we do not require dataloader to have a .dataset attribute
    def test_dataloader_without_dataset(self):
        train_dataset = RegressionDataset(length=128)
        trainer = CustomDataloaderTrainer(
            model=RegressionModel(), train_dataset=train_dataset, eval_dataset=train_dataset
        )
        trainer.train()
        trainer.evaluate()

732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
    def test_sampler_seed(self):
        # nb: we don't want to inherit from IterableDataset to hit the right code path
        class DummyDataset(torch.utils.data.Dataset):
            def __init__(self, length: int = 101):
                self.length = length

            def __len__(self):
                return self.length

            def __getitem__(self, i):
                if (i < 0) or (i >= self.length):
                    raise IndexError
                return {"input_ids": [i]}

        class DummyModel(PreTrainedModel):
            def __init__(self, num_params: int):
                super().__init__(PretrainedConfig())
                # Add some (unused) params. the point here is that randomness in model_init shouldn't influence
                # data loader order.
                self.params = nn.Parameter(torch.randn(num_params))

            def forward(self, input_ids, labels=None):
                if labels is not None:
                    return torch.tensor(0.0, device=input_ids.device), input_ids
                else:
                    return input_ids

        def _get_first_data_sample(num_params, seed, data_seed, **kwargs):
            with tempfile.TemporaryDirectory() as tmpdir:
                trainer = Trainer(
                    model_init=lambda: DummyModel(num_params),
                    args=TrainingArguments(
                        output_dir=tmpdir,
                        **kwargs,
                        seed=seed,
                        data_seed=data_seed,
                        local_rank=-1,
                    ),
                    train_dataset=DummyDataset(),
                )

                return next(iter(trainer.get_train_dataloader()))

        # test that the seed is passed to the sampler
        # the codepath we want to hit is world_size <= 1, and both group_by_length
        for group_by_length in [True, False]:
            sample42_1 = _get_first_data_sample(num_params=10, seed=42, data_seed=42, group_by_length=group_by_length)
            sample42_2 = _get_first_data_sample(num_params=11, seed=42, data_seed=42, group_by_length=group_by_length)
            self.assertTrue(torch.equal(sample42_1["input_ids"], sample42_2["input_ids"]))

            # should get same samples with different seed, so long as data_seed is the same
            sample42_3 = _get_first_data_sample(num_params=11, seed=11, data_seed=42, group_by_length=group_by_length)
            self.assertTrue(torch.equal(sample42_1["input_ids"], sample42_3["input_ids"]))

            # make sure we have some randomness in the samples if data_seed is different
            others = [
                _get_first_data_sample(num_params=i, seed=42, data_seed=i, group_by_length=group_by_length)
                for i in range(10)
            ]
            self.assertTrue(any(not torch.equal(sample42_1["input_ids"], sample["input_ids"]) for sample in others))

793
794
795
796
797
798
    @require_torch_multi_gpu
    def test_data_is_not_parallelized_when_model_is_parallel(self):
        model = RegressionModel()
        # Make the Trainer believe it's a parallelized model
        model.is_parallelizable = True
        model.model_parallel = True
799
800
        args = TrainingArguments("./regression", per_device_train_batch_size=16, per_device_eval_batch_size=16)
        trainer = Trainer(model, args, train_dataset=RegressionDataset(), eval_dataset=RegressionDataset())
801
802
        # Check the Trainer was fooled
        self.assertTrue(trainer.is_model_parallel)
803
        self.assertEqual(trainer.args.n_gpu, 1)
804
805
806
807
808
809
810

        # The batch size of the training and evaluation dataloaders should be 16, not 16 * n_gpu
        self.assertEqual(trainer.get_train_dataloader().batch_size, 16)
        self.assertEqual(len(trainer.get_train_dataloader()), 64 // 16)
        self.assertEqual(trainer.get_eval_dataloader().batch_size, 16)
        self.assertEqual(len(trainer.get_eval_dataloader()), 64 // 16)

Sylvain Gugger's avatar
Sylvain Gugger committed
811
812
813
814
    def test_evaluate(self):
        trainer = get_regression_trainer(a=1.5, b=2.5, compute_metrics=AlmostAccuracy())
        results = trainer.evaluate()

Sylvain Gugger's avatar
Sylvain Gugger committed
815
        x, y = trainer.eval_dataset.x, trainer.eval_dataset.ys[0]
Sylvain Gugger's avatar
Sylvain Gugger committed
816
817
818
819
820
821
822
823
824
825
        pred = 1.5 * x + 2.5
        expected_loss = ((pred - y) ** 2).mean()
        self.assertAlmostEqual(results["eval_loss"], expected_loss)
        expected_acc = AlmostAccuracy()((pred, y))["accuracy"]
        self.assertAlmostEqual(results["eval_accuracy"], expected_acc)

        # With a number of elements not a round multiple of the batch size
        trainer = get_regression_trainer(a=1.5, b=2.5, eval_len=66, compute_metrics=AlmostAccuracy())
        results = trainer.evaluate()

Sylvain Gugger's avatar
Sylvain Gugger committed
826
        x, y = trainer.eval_dataset.x, trainer.eval_dataset.ys[0]
Sylvain Gugger's avatar
Sylvain Gugger committed
827
828
829
830
831
832
        pred = 1.5 * x + 2.5
        expected_loss = ((pred - y) ** 2).mean()
        self.assertAlmostEqual(results["eval_loss"], expected_loss)
        expected_acc = AlmostAccuracy()((pred, y))["accuracy"]
        self.assertAlmostEqual(results["eval_accuracy"], expected_acc)

833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
        # With logits preprocess
        trainer = get_regression_trainer(
            a=1.5,
            b=2.5,
            compute_metrics=AlmostAccuracy(),
            preprocess_logits_for_metrics=lambda logits, labels: logits + 1,
        )
        results = trainer.evaluate()

        x, y = trainer.eval_dataset.x, trainer.eval_dataset.ys[0]
        pred = 1.5 * x + 2.5
        expected_loss = ((pred - y) ** 2).mean()
        self.assertAlmostEqual(results["eval_loss"], expected_loss)
        expected_acc = AlmostAccuracy()((pred + 1, y))["accuracy"]
        self.assertAlmostEqual(results["eval_accuracy"], expected_acc)

849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
    def test_evaluate_with_jit(self):
        trainer = get_regression_trainer(a=1.5, b=2.5, compute_metrics=AlmostAccuracy(), jit_mode_eval=True)
        results = trainer.evaluate()

        x, y = trainer.eval_dataset.x, trainer.eval_dataset.ys[0]
        pred = 1.5 * x + 2.5
        expected_loss = ((pred - y) ** 2).mean()
        self.assertAlmostEqual(results["eval_loss"], expected_loss)
        expected_acc = AlmostAccuracy()((pred, y))["accuracy"]
        self.assertAlmostEqual(results["eval_accuracy"], expected_acc)

        # With a number of elements not a round multiple of the batch size
        trainer = get_regression_trainer(
            a=1.5, b=2.5, eval_len=66, compute_metrics=AlmostAccuracy(), jit_mode_eval=True
        )
        results = trainer.evaluate()

        x, y = trainer.eval_dataset.x, trainer.eval_dataset.ys[0]
        pred = 1.5 * x + 2.5
        expected_loss = ((pred - y) ** 2).mean()
        self.assertAlmostEqual(results["eval_loss"], expected_loss)
        expected_acc = AlmostAccuracy()((pred, y))["accuracy"]
        self.assertAlmostEqual(results["eval_accuracy"], expected_acc)

        # With logits preprocess
        trainer = get_regression_trainer(
            a=1.5,
            b=2.5,
            compute_metrics=AlmostAccuracy(),
            preprocess_logits_for_metrics=lambda logits, labels: logits + 1,
            jit_mode_eval=True,
        )
        results = trainer.evaluate()

        x, y = trainer.eval_dataset.x, trainer.eval_dataset.ys[0]
        pred = 1.5 * x + 2.5
        expected_loss = ((pred - y) ** 2).mean()
        self.assertAlmostEqual(results["eval_loss"], expected_loss)
        expected_acc = AlmostAccuracy()((pred + 1, y))["accuracy"]
        self.assertAlmostEqual(results["eval_accuracy"], expected_acc)

890
    @require_torch_bf16_cpu
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
    @require_intel_extension_for_pytorch
    def test_evaluate_with_ipex(self):
        for mix_bf16 in [True, False]:
            trainer = get_regression_trainer(
                a=1.5, b=2.5, use_ipex=True, compute_metrics=AlmostAccuracy(), bf16=mix_bf16, no_cuda=True
            )
            results = trainer.evaluate()

            x, y = trainer.eval_dataset.x, trainer.eval_dataset.ys[0]
            pred = 1.5 * x + 2.5
            expected_loss = ((pred - y) ** 2).mean()
            self.assertAlmostEqual(results["eval_loss"], expected_loss)
            expected_acc = AlmostAccuracy()((pred, y))["accuracy"]
            self.assertAlmostEqual(results["eval_accuracy"], expected_acc)

            # With a number of elements not a round multiple of the batch size
            trainer = get_regression_trainer(
                a=1.5,
                b=2.5,
                use_ipex=True,
                eval_len=66,
                compute_metrics=AlmostAccuracy(),
                bf16=mix_bf16,
                no_cuda=True,
            )
            results = trainer.evaluate()

            x, y = trainer.eval_dataset.x, trainer.eval_dataset.ys[0]
            pred = 1.5 * x + 2.5
            expected_loss = ((pred - y) ** 2).mean()
            self.assertAlmostEqual(results["eval_loss"], expected_loss)
            expected_acc = AlmostAccuracy()((pred, y))["accuracy"]
            self.assertAlmostEqual(results["eval_accuracy"], expected_acc)

            # With logits preprocess
            trainer = get_regression_trainer(
                a=1.5,
                b=2.5,
                use_ipex=True,
                compute_metrics=AlmostAccuracy(),
                preprocess_logits_for_metrics=lambda logits, labels: logits + 1,
                bf16=mix_bf16,
                no_cuda=True,
            )
            results = trainer.evaluate()

            x, y = trainer.eval_dataset.x, trainer.eval_dataset.ys[0]
            pred = 1.5 * x + 2.5
            expected_loss = ((pred - y) ** 2).mean()
            self.assertAlmostEqual(results["eval_loss"], expected_loss)
            expected_acc = AlmostAccuracy()((pred + 1, y))["accuracy"]
            self.assertAlmostEqual(results["eval_accuracy"], expected_acc)

Sylvain Gugger's avatar
Sylvain Gugger committed
944
945
946
947
948
949
950
951
952
953
954
955
    def test_predict(self):
        trainer = get_regression_trainer(a=1.5, b=2.5)
        preds = trainer.predict(trainer.eval_dataset).predictions
        x = trainer.eval_dataset.x
        self.assertTrue(np.allclose(preds, 1.5 * x + 2.5))

        # With a number of elements not a round multiple of the batch size
        trainer = get_regression_trainer(a=1.5, b=2.5, eval_len=66)
        preds = trainer.predict(trainer.eval_dataset).predictions
        x = trainer.eval_dataset.x
        self.assertTrue(np.allclose(preds, 1.5 * x + 2.5))

956
957
958
959
        # With more than one output of the model
        trainer = get_regression_trainer(a=1.5, b=2.5, double_output=True)
        preds = trainer.predict(trainer.eval_dataset).predictions
        x = trainer.eval_dataset.x
960
        self.assertEqual(len(preds), 2)
961
962
963
        self.assertTrue(np.allclose(preds[0], 1.5 * x + 2.5))
        self.assertTrue(np.allclose(preds[1], 1.5 * x + 2.5))

Sylvain Gugger's avatar
Sylvain Gugger committed
964
965
966
967
968
969
        # With more than one output/label of the model
        trainer = get_regression_trainer(a=1.5, b=2.5, double_output=True, label_names=["labels", "labels_2"])
        outputs = trainer.predict(trainer.eval_dataset)
        preds = outputs.predictions
        labels = outputs.label_ids
        x = trainer.eval_dataset.x
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
        self.assertEqual(len(preds), 2)
        self.assertTrue(np.allclose(preds[0], 1.5 * x + 2.5))
        self.assertTrue(np.allclose(preds[1], 1.5 * x + 2.5))
        self.assertTrue(np.array_equal(labels[0], trainer.eval_dataset.ys[0]))
        self.assertTrue(np.array_equal(labels[1], trainer.eval_dataset.ys[1]))

    def test_predict_with_jit(self):
        trainer = get_regression_trainer(a=1.5, b=2.5, jit_mode_eval=True)
        preds = trainer.predict(trainer.eval_dataset).predictions
        x = trainer.eval_dataset.x
        self.assertTrue(np.allclose(preds, 1.5 * x + 2.5))

        # With a number of elements not a round multiple of the batch size
        trainer = get_regression_trainer(a=1.5, b=2.5, eval_len=66, jit_mode_eval=True)
        preds = trainer.predict(trainer.eval_dataset).predictions
        x = trainer.eval_dataset.x
        self.assertTrue(np.allclose(preds, 1.5 * x + 2.5))

        # With more than one output of the model
        trainer = get_regression_trainer(a=1.5, b=2.5, double_output=True, jit_mode_eval=True)
        preds = trainer.predict(trainer.eval_dataset).predictions
        x = trainer.eval_dataset.x
        self.assertEqual(len(preds), 2)
        self.assertTrue(np.allclose(preds[0], 1.5 * x + 2.5))
        self.assertTrue(np.allclose(preds[1], 1.5 * x + 2.5))

        # With more than one output/label of the model
        trainer = get_regression_trainer(
            a=1.5, b=2.5, double_output=True, label_names=["labels", "labels_2"], jit_mode_eval=True
        )
        outputs = trainer.predict(trainer.eval_dataset)
        preds = outputs.predictions
        labels = outputs.label_ids
        x = trainer.eval_dataset.x
1004
        self.assertEqual(len(preds), 2)
Sylvain Gugger's avatar
Sylvain Gugger committed
1005
1006
1007
1008
1009
        self.assertTrue(np.allclose(preds[0], 1.5 * x + 2.5))
        self.assertTrue(np.allclose(preds[1], 1.5 * x + 2.5))
        self.assertTrue(np.array_equal(labels[0], trainer.eval_dataset.ys[0]))
        self.assertTrue(np.array_equal(labels[1], trainer.eval_dataset.ys[1]))

1010
    @require_torch_bf16_cpu
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
    @require_intel_extension_for_pytorch
    def test_predict_with_ipex(self):
        for mix_bf16 in [True, False]:
            trainer = get_regression_trainer(a=1.5, b=2.5, use_ipex=True, bf16=mix_bf16, no_cuda=True)
            preds = trainer.predict(trainer.eval_dataset).predictions
            x = trainer.eval_dataset.x
            self.assertTrue(np.allclose(preds, 1.5 * x + 2.5))

            # With a number of elements not a round multiple of the batch size
            trainer = get_regression_trainer(a=1.5, b=2.5, eval_len=66, use_ipex=True, bf16=mix_bf16, no_cuda=True)
            preds = trainer.predict(trainer.eval_dataset).predictions
            x = trainer.eval_dataset.x
            self.assertTrue(np.allclose(preds, 1.5 * x + 2.5))

            # With more than one output of the model
            trainer = get_regression_trainer(
                a=1.5, b=2.5, double_output=True, use_ipex=True, bf16=mix_bf16, no_cuda=True
            )
            preds = trainer.predict(trainer.eval_dataset).predictions
            x = trainer.eval_dataset.x
            self.assertEqual(len(preds), 2)
            self.assertTrue(np.allclose(preds[0], 1.5 * x + 2.5))
            self.assertTrue(np.allclose(preds[1], 1.5 * x + 2.5))

            # With more than one output/label of the model
            trainer = get_regression_trainer(
                a=1.5,
                b=2.5,
                double_output=True,
                label_names=["labels", "labels_2"],
                use_ipex=True,
                bf16=mix_bf16,
                no_cuda=True,
            )
            outputs = trainer.predict(trainer.eval_dataset)
            preds = outputs.predictions
            labels = outputs.label_ids
            x = trainer.eval_dataset.x
            self.assertEqual(len(preds), 2)
            self.assertTrue(np.allclose(preds[0], 1.5 * x + 2.5))
            self.assertTrue(np.allclose(preds[1], 1.5 * x + 2.5))
            self.assertTrue(np.array_equal(labels[0], trainer.eval_dataset.ys[0]))
            self.assertTrue(np.array_equal(labels[1], trainer.eval_dataset.ys[1]))

1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
    def test_dynamic_shapes(self):
        eval_dataset = DynamicShapesDataset(batch_size=self.batch_size)
        model = RegressionModel(a=2, b=1)
        args = TrainingArguments("./regression")
        trainer = Trainer(model, args, eval_dataset=eval_dataset)

        # Check evaluation can run to completion
        _ = trainer.evaluate()

        # Check predictions
        preds = trainer.predict(eval_dataset)
        for expected, seen in zip(eval_dataset.ys, preds.label_ids):
            self.assertTrue(np.array_equal(expected, seen[: expected.shape[0]]))
            self.assertTrue(np.all(seen[expected.shape[0] :] == -100))

        for expected, seen in zip(eval_dataset.xs, preds.predictions):
            self.assertTrue(np.array_equal(2 * expected + 1, seen[: expected.shape[0]]))
            self.assertTrue(np.all(seen[expected.shape[0] :] == -100))

        # Same tests with eval accumulation
        args = TrainingArguments("./regression", eval_accumulation_steps=2)
        trainer = Trainer(model, args, eval_dataset=eval_dataset)

        # Check evaluation can run to completion
        _ = trainer.evaluate()

        # Check predictions
        preds = trainer.predict(eval_dataset)
        for expected, seen in zip(eval_dataset.ys, preds.label_ids):
            self.assertTrue(np.array_equal(expected, seen[: expected.shape[0]]))
            self.assertTrue(np.all(seen[expected.shape[0] :] == -100))

        for expected, seen in zip(eval_dataset.xs, preds.predictions):
            self.assertTrue(np.array_equal(2 * expected + 1, seen[: expected.shape[0]]))
            self.assertTrue(np.all(seen[expected.shape[0] :] == -100))

1091
    def test_log_level(self):
1092
        # testing only --log_level (--log_level_replica requires multiple gpus and DDP and is tested elsewhere)
1093
1094
1095
        logger = logging.get_logger()
        log_info_string = "Running training"

1096
        # test with the default log_level - should be info and thus log on the main process
1097
1098
1099
1100
1101
        with CaptureLogger(logger) as cl:
            trainer = get_regression_trainer()
            trainer.train()
        self.assertIn(log_info_string, cl.out)

1102
        # test with low log_level - lower than info
1103
1104
1105
1106
1107
        with CaptureLogger(logger) as cl:
            trainer = get_regression_trainer(log_level="debug")
            trainer.train()
        self.assertIn(log_info_string, cl.out)

1108
        # test with high log_level - should be quiet
1109
1110
1111
1112
1113
        with CaptureLogger(logger) as cl:
            trainer = get_regression_trainer(log_level="error")
            trainer.train()
        self.assertNotIn(log_info_string, cl.out)

1114
1115
1116
1117
1118
1119
1120
1121
    def test_save_checkpoints(self):
        with tempfile.TemporaryDirectory() as tmpdir:
            trainer = get_regression_trainer(output_dir=tmpdir, save_steps=5)
            trainer.train()
            self.check_saved_checkpoints(tmpdir, 5, int(self.n_epochs * 64 / self.batch_size))

        # With a regular model that is not a PreTrainedModel
        with tempfile.TemporaryDirectory() as tmpdir:
1122
            trainer = get_regression_trainer(output_dir=tmpdir, save_steps=5, pretrained=False)
1123
1124
1125
            trainer.train()
            self.check_saved_checkpoints(tmpdir, 5, int(self.n_epochs * 64 / self.batch_size), False)

1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
    @require_torch_multi_gpu
    def test_run_seq2seq_double_train_wrap_once(self):
        # test that we don't wrap the model more than once
        # since wrapping primarily happens on multi-gpu setup we want multiple gpus to test for
        # example DataParallel(DataParallel(model))

        trainer = get_regression_trainer()
        trainer.train()
        model_wrapped_before = trainer.model_wrapped
        trainer.train()
        model_wrapped_after = trainer.model_wrapped
        self.assertIs(model_wrapped_before, model_wrapped_after, "should be not wrapped twice")

1139
    @require_torch_up_to_2_gpus
1140
    def test_can_resume_training(self):
1141
1142
1143
        # This test will fail for more than 2 GPUs since the batch size will get bigger and with the number of
        # save_steps, the checkpoint will resume training at epoch 2 or more (so the data seen by the model
        # won't be the same since the training dataloader is shuffled).
1144

1145
        with tempfile.TemporaryDirectory() as tmpdir:
1146
1147
            kwargs = dict(output_dir=tmpdir, train_len=128, save_steps=5, learning_rate=0.1)
            trainer = get_regression_trainer(**kwargs)
1148
1149
1150
1151
1152
1153
            trainer.train()
            (a, b) = trainer.model.a.item(), trainer.model.b.item()
            state = dataclasses.asdict(trainer.state)

            checkpoint = os.path.join(tmpdir, "checkpoint-5")

1154
            # Reinitialize trainer
1155
            trainer = get_regression_trainer(**kwargs)
1156

1157
            trainer.train(resume_from_checkpoint=checkpoint)
1158
1159
1160
1161
            (a1, b1) = trainer.model.a.item(), trainer.model.b.item()
            state1 = dataclasses.asdict(trainer.state)
            self.assertEqual(a, a1)
            self.assertEqual(b, b1)
1162
            self.check_trainer_state_are_the_same(state, state1)
1163

1164
1165
1166
1167
            # Now check with a later checkpoint that it also works when we span over one epoch
            checkpoint = os.path.join(tmpdir, "checkpoint-15")

            # Reinitialize trainer and load model
1168
            trainer = get_regression_trainer(**kwargs)
1169

1170
            trainer.train(resume_from_checkpoint=checkpoint)
1171
1172
1173
1174
            (a1, b1) = trainer.model.a.item(), trainer.model.b.item()
            state1 = dataclasses.asdict(trainer.state)
            self.assertEqual(a, a1)
            self.assertEqual(b, b1)
1175
            self.check_trainer_state_are_the_same(state, state1)
1176

1177
1178
        # With a regular model that is not a PreTrainedModel
        with tempfile.TemporaryDirectory() as tmpdir:
1179
1180
1181
            kwargs = dict(output_dir=tmpdir, train_len=128, save_steps=5, learning_rate=0.1, pretrained=False)

            trainer = get_regression_trainer(**kwargs)
1182
1183
1184
1185
1186
1187
1188
            trainer.train()
            (a, b) = trainer.model.a.item(), trainer.model.b.item()
            state = dataclasses.asdict(trainer.state)

            checkpoint = os.path.join(tmpdir, "checkpoint-5")

            # Reinitialize trainer and load model
1189
            trainer = get_regression_trainer(**kwargs)
1190

1191
            trainer.train(resume_from_checkpoint=checkpoint)
1192
1193
1194
1195
            (a1, b1) = trainer.model.a.item(), trainer.model.b.item()
            state1 = dataclasses.asdict(trainer.state)
            self.assertEqual(a, a1)
            self.assertEqual(b, b1)
1196
            self.check_trainer_state_are_the_same(state, state1)
1197

1198
1199
1200
1201
            # Now check with a later checkpoint that it also works when we span over one epoch
            checkpoint = os.path.join(tmpdir, "checkpoint-15")

            # Reinitialize trainer and load model
1202
            trainer = get_regression_trainer(**kwargs)
1203

1204
            trainer.train(resume_from_checkpoint=checkpoint)
1205
1206
1207
1208
            (a1, b1) = trainer.model.a.item(), trainer.model.b.item()
            state1 = dataclasses.asdict(trainer.state)
            self.assertEqual(a, a1)
            self.assertEqual(b, b1)
1209
            self.check_trainer_state_are_the_same(state, state1)
1210

1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
        # Now check failures

        # 1. fail to find a bogus checkpoint
        trainer = get_regression_trainer()
        with self.assertRaises(Exception) as context:
            trainer.train(resume_from_checkpoint=f"{checkpoint}-bogus")
        self.assertTrue("Can't find a valid checkpoint at" in str(context.exception))

        # 2. fail to find any checkpoint - due a fresh output_dir
        output_dir2 = self.get_auto_remove_tmp_dir()
        trainer = get_regression_trainer(output_dir=output_dir2)
        with self.assertRaises(Exception) as context:
            trainer.train(resume_from_checkpoint=True)
        self.assertTrue("No valid checkpoint found in output directory" in str(context.exception))

1226
    def test_resume_training_with_randomness(self):
1227
1228
1229
1230
        # For more than 1 GPUs, since the randomness is introduced in the model and with DataParallel (which is used
        # in this test for more than 2 GPUs), the calls to the torch RNG will happen in a random order (sometimes
        # GPU 0 will call first and sometimes GPU 1).
        random_torch = not torch.cuda.is_available() or torch.cuda.device_count() <= 1
1231
1232
1233
1234
1235
1236

        if torch.cuda.is_available():
            torch.backends.cudnn.deterministic = True
        train_dataset = RegressionDataset(length=128)
        eval_dataset = RegressionDataset()

1237
1238
1239
        with self.subTest("Test every step"):
            config = RegressionModelConfig(a=0, b=2, random_torch=random_torch)
            model = RegressionRandomPreTrainedModel(config)
1240

1241
1242
1243
            tmp_dir = self.get_auto_remove_tmp_dir()
            args = RegressionTrainingArguments(tmp_dir, save_steps=5, learning_rate=0.1)
            trainer = Trainer(model, args, train_dataset=train_dataset, eval_dataset=eval_dataset)
1244

1245
1246
            trainer.train()
            (a, b) = trainer.model.a.item(), trainer.model.b.item()
1247

1248
1249
1250
1251
1252
            model = RegressionRandomPreTrainedModel(config)
            trainer = Trainer(model, args, train_dataset=train_dataset, eval_dataset=eval_dataset)
            trainer.train(resume_from_checkpoint=os.path.join(tmp_dir, "checkpoint-15"))
            (a1, b1) = trainer.model.a.item(), trainer.model.b.item()

1253
1254
            self.assertAlmostEqual(a, a1, delta=1e-5)
            self.assertAlmostEqual(b, b1, delta=1e-5)
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276

        with self.subTest("Test every epoch"):
            config = RegressionModelConfig(a=0, b=2, random_torch=random_torch)
            model = RegressionRandomPreTrainedModel(config)

            tmp_dir = self.get_auto_remove_tmp_dir()
            args = RegressionTrainingArguments(tmp_dir, save_strategy="epoch", learning_rate=0.1)
            trainer = Trainer(model, args, train_dataset=train_dataset, eval_dataset=eval_dataset)

            trainer.train()
            (a, b) = trainer.model.a.item(), trainer.model.b.item()

            model = RegressionRandomPreTrainedModel(config)
            trainer = Trainer(model, args, train_dataset=train_dataset, eval_dataset=eval_dataset)

            checkpoints = [d for d in os.listdir(tmp_dir) if d.startswith("checkpoint-")]
            # There should be one checkpoint per epoch.
            self.assertEqual(len(checkpoints), 3)
            checkpoint_dir = sorted(checkpoints, key=lambda x: int(x.replace("checkpoint-", "")))[0]

            trainer.train(resume_from_checkpoint=os.path.join(tmp_dir, checkpoint_dir))
            (a1, b1) = trainer.model.a.item(), trainer.model.b.item()
1277

1278
1279
            self.assertAlmostEqual(a, a1, delta=1e-5)
            self.assertAlmostEqual(b, b1, delta=1e-5)
1280

1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
    @slow
    @require_torch_non_multi_gpu
    def test_auto_batch_size_finder(self):

        if torch.cuda.is_available():
            torch.backends.cudnn.deterministic = True

        SRC_DIR = os.path.abspath(
            os.path.join(os.path.dirname(__file__), "..", "..", "examples", "pytorch", "text-classification")
        )
        sys.path.append(SRC_DIR)
        import run_glue

        with tempfile.TemporaryDirectory() as tmpdir:
            testargs = f"""
                run_glue.py
                --model_name_or_path distilbert-base-uncased
                --task_name mrpc
                --do_train
                --do_eval
                --max_seq_len 128
                --per_device_train_batch_size 4096
                --learning_rate 2e-5
                --num_train_epochs 1
                --output_dir {tmpdir}
                --auto_find_batch_size 0
                """.split()
            with self.assertRaises(RuntimeError):
                with patch.object(sys, "argv", testargs):
                    run_glue.main()

        testargs[-1] = "1"
        with patch.object(sys, "argv", testargs):
            run_glue.main()

1316
    # regression for this issue: https://github.com/huggingface/transformers/issues/12970
1317
    def test_training_with_resume_from_checkpoint_false(self):
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
        train_dataset = RegressionDataset(length=128)
        eval_dataset = RegressionDataset()

        config = RegressionModelConfig(a=0, b=2)
        model = RegressionRandomPreTrainedModel(config)

        tmp_dir = self.get_auto_remove_tmp_dir()
        args = RegressionTrainingArguments(tmp_dir, save_steps=5, learning_rate=0.1)
        trainer = Trainer(model, args, train_dataset=train_dataset, eval_dataset=eval_dataset)

        trainer.train(resume_from_checkpoint=False)

1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
    @require_torch_up_to_2_gpus
    def test_resume_training_with_shard_checkpoint(self):
        # This test will fail for more than 2 GPUs since the batch size will get bigger and with the number of
        # save_steps, the checkpoint will resume training at epoch 2 or more (so the data seen by the model
        # won't be the same since the training dataloader is shuffled).

        with tempfile.TemporaryDirectory() as tmpdir:
            trainer = get_regression_trainer(output_dir=tmpdir, train_len=128, save_steps=5, learning_rate=0.1)
            trainer.train()
            (a, b) = trainer.model.a.item(), trainer.model.b.item()
            state = dataclasses.asdict(trainer.state)

            checkpoint = os.path.join(tmpdir, "checkpoint-5")
            self.convert_to_sharded_checkpoint(checkpoint)

            # Reinitialize trainer
            trainer = get_regression_trainer(output_dir=tmpdir, train_len=128, save_steps=5, learning_rate=0.1)

            trainer.train(resume_from_checkpoint=checkpoint)
            (a1, b1) = trainer.model.a.item(), trainer.model.b.item()
            state1 = dataclasses.asdict(trainer.state)
            self.assertEqual(a, a1)
            self.assertEqual(b, b1)
            self.check_trainer_state_are_the_same(state, state1)

1355
    @require_torch_up_to_2_gpus
1356
    def test_resume_training_with_gradient_accumulation(self):
1357
1358
1359
1360
        # This test will fail for more than 2 GPUs since the batch size will get bigger and with the number of
        # save_steps, the checkpoint will resume training at epoch 2 or more (so the data seen by the model
        # won't be the same since the training dataloader is shuffled).

1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
        with tempfile.TemporaryDirectory() as tmpdir:
            trainer = get_regression_trainer(
                output_dir=tmpdir,
                train_len=128,
                gradient_accumulation_steps=2,
                per_device_train_batch_size=4,
                save_steps=5,
                learning_rate=0.1,
            )
            trainer.train()
            (a, b) = trainer.model.a.item(), trainer.model.b.item()
            state = dataclasses.asdict(trainer.state)

            checkpoint = os.path.join(tmpdir, "checkpoint-5")

1376
1377
1378
1379
1380
1381
1382
1383
1384
            # Reinitialize trainer
            trainer = get_regression_trainer(
                output_dir=tmpdir,
                train_len=128,
                gradient_accumulation_steps=2,
                per_device_train_batch_size=4,
                save_steps=5,
                learning_rate=0.1,
            )
1385

1386
            trainer.train(resume_from_checkpoint=checkpoint)
1387
            (a1, b1) = trainer.model.a.item(), trainer.model.b.item()
1388
1389
1390
1391
1392
            state1 = dataclasses.asdict(trainer.state)
            self.assertEqual(a, a1)
            self.assertEqual(b, b1)
            self.check_trainer_state_are_the_same(state, state1)

1393
    @require_torch_up_to_2_gpus
1394
    def test_resume_training_with_frozen_params(self):
1395
1396
1397
1398
        # This test will fail for more than 2 GPUs since the batch size will get bigger and with the number of
        # save_steps, the checkpoint will resume training at epoch 2 or more (so the data seen by the model
        # won't be the same since the training dataloader is shuffled).

1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
        with tempfile.TemporaryDirectory() as tmpdir:
            trainer = get_regression_trainer(
                output_dir=tmpdir,
                train_len=128,
                per_device_train_batch_size=4,
                save_steps=5,
                learning_rate=0.1,
            )
            trainer.model.a.requires_grad_(False)
            trainer.train()
            (a, b) = trainer.model.a.item(), trainer.model.b.item()
            state = dataclasses.asdict(trainer.state)

            checkpoint = os.path.join(tmpdir, "checkpoint-5")

            # Reinitialize trainer
            trainer = get_regression_trainer(
                output_dir=tmpdir,
                train_len=128,
                per_device_train_batch_size=4,
                save_steps=5,
                learning_rate=0.1,
            )
            trainer.model.a.requires_grad_(False)

            trainer.train(resume_from_checkpoint=checkpoint)

            self.assertFalse(trainer.model.a.requires_grad)
            (a1, b1) = trainer.model.a.item(), trainer.model.b.item()
1428
1429
1430
            state1 = dataclasses.asdict(trainer.state)
            self.assertEqual(a, a1)
            self.assertEqual(b, b1)
1431
            self.check_trainer_state_are_the_same(state, state1)
1432

1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
    def test_load_best_model_at_end(self):
        total = int(self.n_epochs * 64 / self.batch_size)
        with tempfile.TemporaryDirectory() as tmpdir:
            trainer = get_regression_trainer(
                a=1.5,
                b=2.5,
                output_dir=tmpdir,
                learning_rate=0.1,
                eval_steps=5,
                evaluation_strategy="steps",
1443
                save_steps=5,
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
                load_best_model_at_end=True,
            )
            self.assertFalse(trainer.args.greater_is_better)
            trainer.train()
            self.check_saved_checkpoints(tmpdir, 5, total)
            self.check_best_model_has_been_loaded(tmpdir, 5, total, trainer, "eval_loss")

        with tempfile.TemporaryDirectory() as tmpdir:
            trainer = get_regression_trainer(
                a=1.5,
                b=2.5,
                output_dir=tmpdir,
                learning_rate=0.1,
                eval_steps=5,
                evaluation_strategy="steps",
1459
                save_steps=5,
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
                load_best_model_at_end=True,
                metric_for_best_model="accuracy",
                compute_metrics=AlmostAccuracy(),
            )
            self.assertTrue(trainer.args.greater_is_better)
            trainer.train()
            self.check_saved_checkpoints(tmpdir, 5, total)
            self.check_best_model_has_been_loaded(tmpdir, 5, total, trainer, "eval_accuracy", greater_is_better=True)

        with tempfile.TemporaryDirectory() as tmpdir:
            trainer = get_regression_trainer(
                a=1.5,
                b=2.5,
                output_dir=tmpdir,
                learning_rate=0.1,
                evaluation_strategy="epoch",
1476
                save_strategy="epoch",
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
                load_best_model_at_end=True,
                metric_for_best_model="accuracy",
                compute_metrics=AlmostAccuracy(),
            )
            self.assertTrue(trainer.args.greater_is_better)
            trainer.train()
            self.check_saved_checkpoints(tmpdir, 64 // self.batch_size, total)
            self.check_best_model_has_been_loaded(
                tmpdir, 64 // self.batch_size, total, trainer, "eval_accuracy", greater_is_better=True
            )

        # Test this works with a non PreTrainedModel
        with tempfile.TemporaryDirectory() as tmpdir:
            trainer = get_regression_trainer(
                output_dir=tmpdir,
                learning_rate=0.1,
                eval_steps=5,
                evaluation_strategy="steps",
1495
                save_steps=5,
1496
                load_best_model_at_end=True,
1497
                pretrained=False,
1498
1499
1500
1501
1502
1503
            )
            self.assertFalse(trainer.args.greater_is_better)
            trainer.train()
            self.check_saved_checkpoints(tmpdir, 5, total, is_pretrained=False)
            self.check_best_model_has_been_loaded(tmpdir, 5, total, trainer, "eval_loss", is_pretrained=False)

1504
    @slow
Julien Chaumond's avatar
Julien Chaumond committed
1505
1506
1507
1508
1509
    def test_trainer_eval_mrpc(self):
        MODEL_ID = "bert-base-cased-finetuned-mrpc"
        tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
        model = AutoModelForSequenceClassification.from_pretrained(MODEL_ID)
        data_args = GlueDataTrainingArguments(
1510
            task_name="mrpc", data_dir=f"{get_tests_dir()}/fixtures/tests_samples/MRPC", overwrite_cache=True
Julien Chaumond's avatar
Julien Chaumond committed
1511
        )
1512
        eval_dataset = GlueDataset(data_args, tokenizer=tokenizer, mode="dev")
Julien Chaumond's avatar
Julien Chaumond committed
1513
1514
1515
1516

        training_args = TrainingArguments(output_dir="./examples", no_cuda=True)
        trainer = Trainer(model=model, args=training_args, eval_dataset=eval_dataset)
        result = trainer.evaluate()
1517
        self.assertLess(result["eval_loss"], 0.2)
Julien Chaumond's avatar
Julien Chaumond committed
1518

1519
    @slow
Julien Chaumond's avatar
Julien Chaumond committed
1520
1521
1522
1523
    def test_trainer_eval_lm(self):
        MODEL_ID = "distilroberta-base"
        tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
        dataset = LineByLineTextDataset(
Lysandre's avatar
Lysandre committed
1524
1525
1526
            tokenizer=tokenizer,
            file_path=PATH_SAMPLE_TEXT,
            block_size=tokenizer.max_len_single_sentence,
Julien Chaumond's avatar
Julien Chaumond committed
1527
1528
        )
        self.assertEqual(len(dataset), 31)
1529

1530
    def test_training_iterable_dataset(self):
1531
1532
        config = RegressionModelConfig()
        model = RegressionPreTrainedModel(config)
1533
1534
        # Adding one column not used by the model should have no impact
        train_dataset = SampleIterableDataset(label_names=["labels", "extra"])
1535

1536
        args = RegressionTrainingArguments(output_dir="./examples", max_steps=4)
1537
        trainer = Trainer(model=model, args=args, train_dataset=train_dataset)
1538
        trainer.train()
1539
        self.assertEqual(trainer.state.global_step, 4)
1540

1541
1542
        loader = trainer.get_train_dataloader()
        self.assertIsInstance(loader, torch.utils.data.DataLoader)
1543
1544
        self.assertIsInstance(loader.sampler, torch.utils.data.dataloader._InfiniteConstantSampler)

1545
1546
1547
1548
1549
1550
1551
    def test_training_finite_iterable_dataset(self):
        config = RegressionModelConfig()
        model = RegressionPreTrainedModel(config)

        batch_size = 1
        num_samples = 10

1552
        available_steps = num_samples // batch_size
1553
1554
1555

        data = FiniteIterableDataset(length=num_samples)
        train_args = TrainingArguments(
1556
            "..",
1557
1558
1559
1560
1561
1562
1563
1564
            max_steps=available_steps + 1,  # set a higher number than actually available
            per_device_train_batch_size=batch_size,
        )
        trainer = Trainer(model, train_dataset=data, args=train_args)
        with self.assertLogs("transformers.trainer", level="WARNING") as logs:
            trainer.train()
        self.assertIn(f"stopping training at step {available_steps}!", logs.output[0])

1565
1566
1567
    def test_evaluation_iterable_dataset(self):
        config = RegressionModelConfig(a=1.5, b=2.5)
        model = RegressionPreTrainedModel(config)
1568
1569
        # Adding one column not used by the model should have no impact
        eval_dataset = SampleIterableDataset(label_names=["labels", "extra"])
1570
1571
1572
1573

        args = RegressionTrainingArguments(output_dir="./examples")
        trainer = Trainer(model=model, args=args, eval_dataset=eval_dataset, compute_metrics=AlmostAccuracy())
        results = trainer.evaluate()
1574

1575
1576
1577
1578
1579
1580
        x, y = trainer.eval_dataset.dataset.x, trainer.eval_dataset.dataset.ys[0]
        pred = 1.5 * x + 2.5
        expected_loss = ((pred - y) ** 2).mean()
        self.assertAlmostEqual(results["eval_loss"], expected_loss)
        expected_acc = AlmostAccuracy()((pred, y))["accuracy"]
        self.assertAlmostEqual(results["eval_accuracy"], expected_acc)
1581

1582
1583
1584
        # With a number of elements not a round multiple of the batch size
        eval_dataset = SampleIterableDataset(length=66)
        results = trainer.evaluate(eval_dataset)
1585

1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
        x, y = eval_dataset.dataset.x, eval_dataset.dataset.ys[0]
        pred = 1.5 * x + 2.5
        expected_loss = ((pred - y) ** 2).mean()
        self.assertAlmostEqual(results["eval_loss"], expected_loss)
        expected_acc = AlmostAccuracy()((pred, y))["accuracy"]
        self.assertAlmostEqual(results["eval_accuracy"], expected_acc)

    def test_predict_iterable_dataset(self):
        config = RegressionModelConfig(a=1.5, b=2.5)
        model = RegressionPreTrainedModel(config)
        eval_dataset = SampleIterableDataset()

        args = RegressionTrainingArguments(output_dir="./examples")
        trainer = Trainer(model=model, args=args, eval_dataset=eval_dataset, compute_metrics=AlmostAccuracy())

        preds = trainer.predict(trainer.eval_dataset).predictions
        x = eval_dataset.dataset.x
        self.assertTrue(np.allclose(preds, 1.5 * x + 2.5))

        # With a number of elements not a round multiple of the batch size
1606
1607
        # Adding one column not used by the model should have no impact
        test_dataset = SampleIterableDataset(length=66, label_names=["labels", "extra"])
1608
1609
1610
        preds = trainer.predict(test_dataset).predictions
        x = test_dataset.dataset.x
        self.assertTrue(np.allclose(preds, 1.5 * x + 2.5))
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625

    def test_num_train_epochs_in_training(self):
        # len(train_dl) < gradient_accumulation_steps shouldn't give ``ZeroDivisionError`` when ``max_steps`` is given.
        # It should give 1 update step for each epoch.
        trainer = get_regression_trainer(
            max_steps=3, train_len=64, per_device_train_batch_size=16, gradient_accumulation_steps=5
        )
        train_output = trainer.train()
        self.assertEqual(train_output.global_step, 3)

        # Even ``max_steps`` is not specified, we still expect 1 update step for each epoch if
        # len(train_dl) < gradient_accumulation_steps.
        trainer = get_regression_trainer(train_len=64, per_device_train_batch_size=16, gradient_accumulation_steps=5)
        train_output = trainer.train()
        self.assertEqual(train_output.global_step, int(self.n_epochs))
Marcin Zab艂ocki's avatar
Marcin Zab艂ocki committed
1626

1627
1628
    def test_early_stopping_callback(self):
        # early stopping stops training before num_training_epochs
1629
1630
1631
1632
1633
1634
1635
        with tempfile.TemporaryDirectory() as tmp_dir:
            trainer = get_regression_trainer(
                output_dir=tmp_dir,
                num_train_epochs=20,
                gradient_accumulation_steps=1,
                per_device_train_batch_size=16,
                load_best_model_at_end=True,
1636
                evaluation_strategy=IntervalStrategy.EPOCH,
1637
                save_strategy=IntervalStrategy.EPOCH,
1638
1639
1640
1641
1642
1643
                compute_metrics=AlmostAccuracy(),
                metric_for_best_model="accuracy",
            )
            trainer.add_callback(EarlyStoppingCallback(1, 0.0001))
            train_output = trainer.train()
            self.assertLess(train_output.global_step, 20 * 64 / 16)
1644
1645

        # Invalid inputs to trainer with early stopping callback result in assertion error
1646
1647
1648
1649
1650
1651
        with tempfile.TemporaryDirectory() as tmp_dir:
            trainer = get_regression_trainer(
                output_dir=tmp_dir,
                num_train_epochs=20,
                gradient_accumulation_steps=1,
                per_device_train_batch_size=16,
1652
                evaluation_strategy=IntervalStrategy.EPOCH,
1653
1654
1655
1656
                compute_metrics=AlmostAccuracy(),
                metric_for_best_model="accuracy",
            )
            trainer.add_callback(EarlyStoppingCallback(1))
1657
            self.assertEqual(trainer.state.global_step, 0)
1658
1659
1660
1661
            try:
                trainer.train()
            except AssertionError:
                self.assertEqual(trainer.state.global_step, 0)
1662

Marcin Zab艂ocki's avatar
Marcin Zab艂ocki committed
1663
1664
1665
1666
    def test_flos_extraction(self):
        trainer = get_regression_trainer(learning_rate=0.1)

        def assert_flos_extraction(trainer, wrapped_model_to_check):
1667
1668
            self.assertEqual(trainer.model, unwrap_model(wrapped_model_to_check))
            self.assertGreaterEqual(getattr(unwrap_model(wrapped_model_to_check).config, "total_flos", 0), 0)
Marcin Zab艂ocki's avatar
Marcin Zab艂ocki committed
1669
1670
1671
1672
1673

        # with plain model
        assert_flos_extraction(trainer, trainer.model)

        # with enforced DataParallel
1674
        assert_flos_extraction(trainer, nn.DataParallel(trainer.model))
1675

1676
1677
1678
        trainer.train()
        self.assertTrue(isinstance(trainer.state.total_flos, float))

1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
    def check_checkpoint_deletion(self, trainer, output_dir, expected):
        # Make fake checkpoints
        for n in [5, 10, 15, 20, 25]:
            os.makedirs(os.path.join(output_dir, f"{PREFIX_CHECKPOINT_DIR}-{n}"), exist_ok=True)
        trainer._rotate_checkpoints(output_dir=output_dir)
        glob_checkpoints = [str(x) for x in Path(output_dir).glob(f"{PREFIX_CHECKPOINT_DIR}-*")]
        values = [int(re.match(f".*{PREFIX_CHECKPOINT_DIR}-([0-9]+)", d).groups()[0]) for d in glob_checkpoints]
        self.assertSetEqual(set(values), set(expected))

    def test_checkpoint_rotation(self):
        with tempfile.TemporaryDirectory() as tmp_dir:
            # Without best model at end
            trainer = get_regression_trainer(output_dir=tmp_dir, save_total_limit=2)
            self.check_checkpoint_deletion(trainer, tmp_dir, [20, 25])

            # With best model at end
1695
1696
1697
            trainer = get_regression_trainer(
                output_dir=tmp_dir, evaluation_strategy="steps", load_best_model_at_end=True, save_total_limit=2
            )
1698
1699
1700
1701
1702
            trainer.state.best_model_checkpoint = os.path.join(tmp_dir, "checkpoint-5")
            self.check_checkpoint_deletion(trainer, tmp_dir, [5, 25])

            # Edge case: we don't always honor save_total_limit=1 if load_best_model_at_end=True to be able to resume
            # from checkpoint
1703
1704
1705
            trainer = get_regression_trainer(
                output_dir=tmp_dir, evaluation_strategy="steps", load_best_model_at_end=True, save_total_limit=1
            )
1706
1707
1708
1709
1710
1711
            trainer.state.best_model_checkpoint = os.path.join(tmp_dir, "checkpoint-25")
            self.check_checkpoint_deletion(trainer, tmp_dir, [25])

            trainer.state.best_model_checkpoint = os.path.join(tmp_dir, "checkpoint-5")
            self.check_checkpoint_deletion(trainer, tmp_dir, [5, 25])

1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
    def check_mem_metrics(self, trainer, check_func):
        metrics = trainer.train().metrics
        check_func("init_mem_cpu_alloc_delta", metrics)
        check_func("train_mem_cpu_alloc_delta", metrics)
        if torch.cuda.device_count() > 0:
            check_func("init_mem_gpu_alloc_delta", metrics)
            check_func("train_mem_gpu_alloc_delta", metrics)

        metrics = trainer.evaluate()
        check_func("eval_mem_cpu_alloc_delta", metrics)
        if torch.cuda.device_count() > 0:
            check_func("eval_mem_gpu_alloc_delta", metrics)

        metrics = trainer.predict(RegressionDataset()).metrics
        check_func("test_mem_cpu_alloc_delta", metrics)
        if torch.cuda.device_count() > 0:
            check_func("test_mem_gpu_alloc_delta", metrics)

    def test_mem_metrics(self):

        # with mem metrics enabled
1733
        trainer = get_regression_trainer(skip_memory_metrics=False)
1734
1735
1736
1737
1738
1739
        self.check_mem_metrics(trainer, self.assertIn)

        # with mem metrics disabled
        trainer = get_regression_trainer(skip_memory_metrics=True)
        self.check_mem_metrics(trainer, self.assertNotIn)

1740
1741
1742
1743
1744
1745
    @require_torch_gpu
    def test_fp16_full_eval(self):

        # this is a sensitive test so let's keep debugging printouts in place for quick diagnosis.
        # it's using pretty large safety margins, but small enough to detect broken functionality.
        debug = 0
1746
        n_gpus = get_gpu_count()
1747
1748

        bs = 8
1749
        eval_len = 16 * n_gpus
1750
1751
1752
1753
1754
        # make the params somewhat big so that there will be enough RAM consumed to be able to
        # measure things. We should get about 64KB for a+b in fp32
        a = torch.ones(1000, bs) + 0.001
        b = torch.ones(1000, bs) - 0.001

1755
        # 1. with fp16_full_eval disabled
1756
        trainer = get_regression_trainer(a=a, b=b, eval_len=eval_len, skip_memory_metrics=False)
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
        metrics = trainer.evaluate()
        del trainer
        gc.collect()

        fp32_init = metrics["init_mem_gpu_alloc_delta"]
        fp32_eval = metrics["eval_mem_gpu_alloc_delta"]

        if debug:
            print(f"fp32_init {fp32_init}")
            print(f"fp32_eval {fp32_eval}")

        # here we expect the model to be preloaded in trainer.__init__ and consume around 64K gpu ram.
        # perfect world: fp32_init == 64<<10
        self.assertGreater(fp32_init, 59_000)
        # after eval should be no extra memory allocated - with a small margin (other than the peak
        # memory consumption for the forward calculation that gets recovered)
        # perfect world: fp32_eval == close to zero
        self.assertLess(fp32_eval, 5_000)

1776
        # 2. with fp16_full_eval enabled
1777
        trainer = get_regression_trainer(a=a, b=b, eval_len=eval_len, fp16_full_eval=True, skip_memory_metrics=False)
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
        metrics = trainer.evaluate()
        fp16_init = metrics["init_mem_gpu_alloc_delta"]
        fp16_eval = metrics["eval_mem_gpu_alloc_delta"]

        if debug:
            print(f"fp16_init {fp16_init}")
            print(f"fp16_eval {fp16_eval}")

        # here we expect the model to not be preloaded in trainer.__init__, so with a small margin it should be close to 0
        # perfect world: fp16_init == close to zero
        self.assertLess(fp16_init, 5_000)
        # here we put the model on device in eval and only `half()` of it, i.e. about 32K,(again we ignore the peak margin which gets returned back)
        # perfect world: fp32_init == 32<<10
        self.assertGreater(fp16_eval, 27_000)

        # 3. relative comparison fp32 vs full fp16
        # should be about half of fp16_init
        # perfect world: fp32_init/2 == fp16_eval
        self.assertAlmostEqual(fp16_eval, fp32_init / 2, delta=5_000)

1798
1799
    @require_torch_non_multi_gpu
    @require_torchdynamo
1800
    @require_torch_tensorrt_fx
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
    def test_torchdynamo_full_eval(self):
        # torchdynamo at the moment doesn't support DP/DDP, therefore require a single gpu
        n_gpus = get_gpu_count()

        bs = 8
        eval_len = 16 * n_gpus
        # make the params are somewhat big so that there will be enough RAM consumed to be able to
        # measure things. We should get about 64KB for a+b in fp32
        a = torch.ones(1000, bs) + 0.001
        b = torch.ones(1000, bs) - 0.001

        # 1. Default - without TorchDynamo
        trainer = get_regression_trainer(a=a, b=b, eval_len=eval_len)
        metrics = trainer.evaluate()
        original_eval_loss = metrics["eval_loss"]
        del trainer

        # 2. TorchDynamo eager
        trainer = get_regression_trainer(a=a, b=b, eval_len=eval_len, torchdynamo="eager")
        metrics = trainer.evaluate()
        self.assertAlmostEqual(metrics["eval_loss"], original_eval_loss)
        del trainer

        # 3. TorchDynamo nvfuser
        trainer = get_regression_trainer(a=a, b=b, eval_len=eval_len, torchdynamo="nvfuser")
        metrics = trainer.evaluate()
        self.assertAlmostEqual(metrics["eval_loss"], original_eval_loss)

1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
        # 4. TorchDynamo fx2trt
        trainer = get_regression_trainer(a=a, b=b, eval_len=eval_len, torchdynamo="fx2trt")
        metrics = trainer.evaluate()
        t1 = metrics["eval_loss"]
        t2 = original_eval_loss
        self.assertAlmostEqual(metrics["eval_loss"], original_eval_loss)

        # 5. TorchDynamo fx2trt-fp16
        trainer = get_regression_trainer(a=a, b=b, eval_len=eval_len, torchdynamo="fx2trt-fp16")
        metrics = trainer.evaluate()
        t1 = metrics["eval_loss"]
        t2 = original_eval_loss
        # fp16 has accuracy accuracy degradation
        self.assertLess(np.max(np.abs(t1 - t2)), 1e-3)

1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
    @require_torch_non_multi_gpu
    @require_torchdynamo
    def test_torchdynamo_memory(self):
        # torchdynamo at the moment doesn't support DP/DDP, therefore require a single gpu
        class CustomTrainer(Trainer):
            def compute_loss(self, model, inputs, return_outputs=False):
                x = inputs["x"]
                output = model(x)
                if self.args.n_gpu == 1:
                    return output.mean()
                return output

        class MyModule(torch.nn.Module):
            """Simple module that does aggressive fusion"""

            def __init__(self):
                super().__init__()

            def forward(self, x):
                for _ in range(20):
                    x = torch.nn.functional.relu(x)
                return x

        mod = MyModule()

1869
        # 1. without TorchDynamo (eager baseline)
1870
1871
1872
1873
1874
1875
1876
        a = torch.ones(1024, 1024, device="cuda", requires_grad=True)
        a.grad = None
        trainer = CustomTrainer(model=mod)
        # warmup
        for _ in range(10):
            orig_loss = trainer.training_step(mod, {"x": a})

1877
1878
1879
        # resets
        gc.collect()
        torch.cuda.empty_cache()
1880
        torch.cuda.reset_peak_memory_stats()
1881

1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
        orig_loss = trainer.training_step(mod, {"x": a})
        orig_peak_mem = torch.cuda.max_memory_allocated()
        del trainer

        # 2. TorchDynamo nvfuser
        a = torch.ones(1024, 1024, device="cuda", requires_grad=True)
        a.grad = None
        args = TrainingArguments(output_dir="None", torchdynamo="nvfuser")
        trainer = CustomTrainer(model=mod, args=args)
        # warmup
        for _ in range(10):
            loss = trainer.training_step(mod, {"x": a})

1895
1896
1897
        # resets
        gc.collect()
        torch.cuda.empty_cache()
1898
        torch.cuda.reset_peak_memory_stats()
1899

1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
        loss = trainer.training_step(mod, {"x": a})
        peak_mem = torch.cuda.max_memory_allocated()
        del trainer

        # Functional check
        self.assertAlmostEqual(loss, orig_loss)

        # AOT Autograd recomputaion and nvfuser recomputation optimization
        # aggressively fuses the operations and reduce the memory footprint.
        self.assertGreater(orig_peak_mem, peak_mem * 2)

1911
    @require_torch_gpu
1912
    @require_torch_bf16_gpu
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
    def test_bf16_full_eval(self):
        # note: most of the logic is the same as test_fp16_full_eval

        # this is a sensitive test so let's keep debugging printouts in place for quick diagnosis.
        # it's using pretty large safety margins, but small enough to detect broken functionality.
        debug = 0
        n_gpus = get_gpu_count()

        bs = 8
        eval_len = 16 * n_gpus
        # make the params somewhat big so that there will be enough RAM consumed to be able to
        # measure things. We should get about 64KB for a+b in fp32
        a = torch.ones(1000, bs) + 0.001
        b = torch.ones(1000, bs) - 0.001

1928
        # 1. with bf16_full_eval disabled
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
        trainer = get_regression_trainer(a=a, b=b, eval_len=eval_len, skip_memory_metrics=False)
        metrics = trainer.evaluate()
        del trainer
        gc.collect()

        fp32_init = metrics["init_mem_gpu_alloc_delta"]
        fp32_eval = metrics["eval_mem_gpu_alloc_delta"]

        if debug:
            print(f"fp32_init {fp32_init}")
            print(f"fp32_eval {fp32_eval}")

        # here we expect the model to be preloaded in trainer.__init__ and consume around 64K gpu ram.
        # perfect world: fp32_init == 64<<10
        self.assertGreater(fp32_init, 59_000)
        # after eval should be no extra memory allocated - with a small margin (other than the peak
        # memory consumption for the forward calculation that gets recovered)
        # perfect world: fp32_eval == close to zero
        self.assertLess(fp32_eval, 5_000)

1949
        # 2. with bf16_full_eval enabled
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
        trainer = get_regression_trainer(a=a, b=b, eval_len=eval_len, bf16_full_eval=True, skip_memory_metrics=False)
        metrics = trainer.evaluate()
        bf16_init = metrics["init_mem_gpu_alloc_delta"]
        bf16_eval = metrics["eval_mem_gpu_alloc_delta"]

        if debug:
            print(f"bf16_init {bf16_init}")
            print(f"bf16_eval {bf16_eval}")

        # here we expect the model to not be preloaded in trainer.__init__, so with a small margin it should be close to 0
        # perfect world: bf16_init == close to zero
        self.assertLess(bf16_init, 5_000)
        # here we put the model on device in eval and only `half()` of it, i.e. about 32K,(again we ignore the peak margin which gets returned back)
        # perfect world: fp32_init == 32<<10
        self.assertGreater(bf16_eval, 27_000)

        # 3. relative comparison fp32 vs full bf16
        # should be about half of bf16_init
        # perfect world: fp32_init/2 == bf16_eval
        self.assertAlmostEqual(bf16_eval, fp32_init / 2, delta=5_000)

1971
    def test_no_wd_param_group(self):
1972
        model = nn.Sequential(TstLayer(128), nn.ModuleList([TstLayer(128), TstLayer(128)]))
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
        trainer = Trainer(model=model)
        trainer.create_optimizer_and_scheduler(10)
        # fmt: off
        wd_names = ['0.linear1.weight', '0.linear2.weight', '1.0.linear1.weight', '1.0.linear2.weight', '1.1.linear1.weight', '1.1.linear2.weight']
        # fmt: on
        wd_params = [p for n, p in model.named_parameters() if n in wd_names]
        no_wd_params = [p for n, p in model.named_parameters() if n not in wd_names]
        self.assertListEqual(trainer.optimizer.param_groups[0]["params"], wd_params)
        self.assertListEqual(trainer.optimizer.param_groups[1]["params"], no_wd_params)

1983

Sylvain Gugger's avatar
Sylvain Gugger committed
1984
1985
1986
1987
1988
@require_torch
@is_staging_test
class TrainerIntegrationWithHubTester(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
1989
1990
1991
        cls._token = TOKEN
        set_access_token(TOKEN)
        HfFolder.save_token(TOKEN)
Sylvain Gugger's avatar
Sylvain Gugger committed
1992
1993
1994

    @classmethod
    def tearDownClass(cls):
1995
1996
        for model in ["test-trainer", "test-trainer-epoch", "test-trainer-step"]:
            try:
1997
                delete_repo(token=cls._token, repo_id=model)
1998
1999
            except HTTPError:
                pass
Sylvain Gugger's avatar
Sylvain Gugger committed
2000
2001

        try:
2002
            delete_repo(token=cls._token, repo_id="valid_org/test-trainer-org")
Sylvain Gugger's avatar
Sylvain Gugger committed
2003
2004
2005
2006
2007
        except HTTPError:
            pass

    def test_push_to_hub(self):
        with tempfile.TemporaryDirectory() as tmp_dir:
2008
2009
2010
            trainer = get_regression_trainer(
                output_dir=os.path.join(tmp_dir, "test-trainer"),
                push_to_hub=True,
2011
                hub_token=self._token,
2012
2013
            )
            url = trainer.push_to_hub()
Sylvain Gugger's avatar
Sylvain Gugger committed
2014
2015
2016
2017
2018
2019

            # Extract repo_name from the url
            re_search = re.search(ENDPOINT_STAGING + r"/([^/]+/[^/]+)/", url)
            self.assertTrue(re_search is not None)
            repo_name = re_search.groups()[0]

2020
            self.assertEqual(repo_name, f"{USER}/test-trainer")
Sylvain Gugger's avatar
Sylvain Gugger committed
2021
2022
2023
2024
2025
2026
2027
2028
2029

            model = RegressionPreTrainedModel.from_pretrained(repo_name)
            self.assertEqual(model.a.item(), trainer.model.a.item())
            self.assertEqual(model.b.item(), trainer.model.b.item())

    def test_push_to_hub_in_organization(self):
        with tempfile.TemporaryDirectory() as tmp_dir:
            trainer = get_regression_trainer(output_dir=tmp_dir)
            trainer.save_model()
2030
2031
2032
            trainer = get_regression_trainer(
                output_dir=os.path.join(tmp_dir, "test-trainer-org"),
                push_to_hub=True,
2033
2034
                hub_model_id="valid_org/test-trainer-org",
                hub_token=self._token,
2035
            )
2036
            url = trainer.push_to_hub()
Sylvain Gugger's avatar
Sylvain Gugger committed
2037
2038
2039
2040
2041

            # Extract repo_name from the url
            re_search = re.search(ENDPOINT_STAGING + r"/([^/]+/[^/]+)/", url)
            self.assertTrue(re_search is not None)
            repo_name = re_search.groups()[0]
2042
            self.assertEqual(repo_name, "valid_org/test-trainer-org")
Sylvain Gugger's avatar
Sylvain Gugger committed
2043

2044
            model = RegressionPreTrainedModel.from_pretrained("valid_org/test-trainer-org")
Sylvain Gugger's avatar
Sylvain Gugger committed
2045
2046
2047
            self.assertEqual(model.a.item(), trainer.model.a.item())
            self.assertEqual(model.b.item(), trainer.model.b.item())

2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
    def get_commit_history(self, repo):
        commit_logs = subprocess.run(
            "git log".split(),
            stderr=subprocess.PIPE,
            stdout=subprocess.PIPE,
            check=True,
            encoding="utf-8",
            cwd=repo,
        ).stdout
        commits = commit_logs.split("\n\n")[1::2]
        return [commit.strip() for commit in commits]

    def test_push_to_hub_with_saves_each_epoch(self):
        with tempfile.TemporaryDirectory() as tmp_dir:
            trainer = get_regression_trainer(
                output_dir=os.path.join(tmp_dir, "test-trainer-epoch"),
                push_to_hub=True,
                hub_token=self._token,
                save_strategy="epoch",
            )
            trainer.train()

2070
2071
2072
2073
            # Wait for the async pushes to be finished
            while trainer.push_in_progress is not None and not trainer.push_in_progress.is_done:
                time.sleep(0.5)

2074
2075
2076
        with tempfile.TemporaryDirectory() as tmp_dir:
            _ = Repository(tmp_dir, clone_from=f"{USER}/test-trainer-epoch", use_auth_token=self._token)
            commits = self.get_commit_history(tmp_dir)
2077
2078
2079
2080
            self.assertIn("initial commit", commits)
            # We can't test that epoch 2 and 3 are in the commits without being flaky as those might be skipped if
            # the push for epoch 1 wasn't finished at the time.
            self.assertIn("Training in progress, epoch 1", commits)
2081
2082

    def test_push_to_hub_with_saves_each_n_steps(self):
2083
2084
2085
2086
        num_gpus = max(1, get_gpu_count())
        if num_gpus > 2:
            return

2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
        with tempfile.TemporaryDirectory() as tmp_dir:
            trainer = get_regression_trainer(
                output_dir=os.path.join(tmp_dir, "test-trainer-step"),
                push_to_hub=True,
                hub_token=self._token,
                save_strategy="steps",
                save_steps=5,
            )
            trainer.train()

2097
2098
2099
2100
            # Wait for the async pushes to be finished
            while trainer.push_in_progress is not None and not trainer.push_in_progress.is_done:
                time.sleep(0.5)

2101
2102
2103
        with tempfile.TemporaryDirectory() as tmp_dir:
            _ = Repository(tmp_dir, clone_from=f"{USER}/test-trainer-step", use_auth_token=self._token)
            commits = self.get_commit_history(tmp_dir)
2104
2105
2106
2107
            self.assertIn("initial commit", commits)
            # We can't test that epoch 2 and 3 are in the commits without being flaky as those might be skipped if
            # the push for epoch 1 wasn't finished at the time.
            self.assertIn("Training in progress, step 5", commits)
2108

Sylvain Gugger's avatar
Sylvain Gugger committed
2109

2110
2111
@require_torch
@require_optuna
2112
class TrainerHyperParameterOptunaIntegrationTest(unittest.TestCase):
2113
    def setUp(self):
2114
        args = TrainingArguments("..")
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
        self.n_epochs = args.num_train_epochs
        self.batch_size = args.train_batch_size

    def test_hyperparameter_search(self):
        class MyTrialShortNamer(TrialShortNamer):
            DEFAULTS = {"a": 0, "b": 0}

        def hp_space(trial):
            return {}

        def model_init(trial):
            if trial is not None:
                a = trial.suggest_int("a", -4, 4)
                b = trial.suggest_int("b", -4, 4)
            else:
                a = 0
                b = 0
            config = RegressionModelConfig(a=a, b=b, double_output=False)

            return RegressionPreTrainedModel(config)

        def hp_name(trial):
            return MyTrialShortNamer.shortname(trial.params)

2139
2140
2141
2142
2143
        with tempfile.TemporaryDirectory() as tmp_dir:
            trainer = get_regression_trainer(
                output_dir=tmp_dir,
                learning_rate=0.1,
                logging_steps=1,
2144
                evaluation_strategy=IntervalStrategy.EPOCH,
2145
                save_strategy=IntervalStrategy.EPOCH,
2146
2147
2148
2149
2150
2151
2152
2153
                num_train_epochs=4,
                disable_tqdm=True,
                load_best_model_at_end=True,
                logging_dir="runs",
                run_name="test",
                model_init=model_init,
            )
            trainer.hyperparameter_search(direction="minimize", hp_space=hp_space, hp_name=hp_name, n_trials=4)
2154
2155
2156
2157
2158
2159


@require_torch
@require_ray
class TrainerHyperParameterRayIntegrationTest(unittest.TestCase):
    def setUp(self):
2160
        args = TrainingArguments("..")
2161
2162
2163
        self.n_epochs = args.num_train_epochs
        self.batch_size = args.train_batch_size

2164
    def ray_hyperparameter_search(self):
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
        class MyTrialShortNamer(TrialShortNamer):
            DEFAULTS = {"a": 0, "b": 0}

        def hp_space(trial):
            from ray import tune

            return {
                "a": tune.randint(-4, 4),
                "b": tune.randint(-4, 4),
            }

        def model_init(config):
2177
2178
2179
2180
2181
2182
2183
            if config is None:
                a = 0
                b = 0
            else:
                a = config["a"]
                b = config["b"]
            model_config = RegressionModelConfig(a=a, b=b, double_output=False)
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194

            return RegressionPreTrainedModel(model_config)

        def hp_name(params):
            return MyTrialShortNamer.shortname(params)

        with tempfile.TemporaryDirectory() as tmp_dir:
            trainer = get_regression_trainer(
                output_dir=tmp_dir,
                learning_rate=0.1,
                logging_steps=1,
2195
                evaluation_strategy=IntervalStrategy.EPOCH,
2196
                save_strategy=IntervalStrategy.EPOCH,
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
                num_train_epochs=4,
                disable_tqdm=True,
                load_best_model_at_end=True,
                logging_dir="runs",
                run_name="test",
                model_init=model_init,
            )
            trainer.hyperparameter_search(
                direction="minimize", hp_space=hp_space, hp_name=hp_name, backend="ray", n_trials=4
            )
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217

    def test_hyperparameter_search(self):
        self.ray_hyperparameter_search()

    def test_hyperparameter_search_ray_client(self):
        import ray
        from ray.util.client.ray_client_helpers import ray_start_client_server

        with ray_start_client_server():
            assert ray.util.client.ray.is_connected()
            self.ray_hyperparameter_search()
2218
2219


2220
@slow
2221
2222
2223
2224
@require_torch
@require_sigopt
class TrainerHyperParameterSigOptIntegrationTest(unittest.TestCase):
    def setUp(self):
2225
        args = TrainingArguments("..")
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
        self.n_epochs = args.num_train_epochs
        self.batch_size = args.train_batch_size

    def test_hyperparameter_search(self):
        class MyTrialShortNamer(TrialShortNamer):
            DEFAULTS = {"a": 0, "b": 0}

        def hp_space(trial):
            return [
                {"bounds": {"min": -4, "max": 4}, "name": "a", "type": "int"},
                {"bounds": {"min": -4, "max": 4}, "name": "b", "type": "int"},
            ]

        def model_init(trial):
            if trial is not None:
                a = trial.assignments["a"]
                b = trial.assignments["b"]
            else:
                a = 0
                b = 0
            config = RegressionModelConfig(a=a, b=b, double_output=False)

            return RegressionPreTrainedModel(config)

        def hp_name(trial):
            return MyTrialShortNamer.shortname(trial.assignments)

        with tempfile.TemporaryDirectory() as tmp_dir:
            trainer = get_regression_trainer(
                output_dir=tmp_dir,
                learning_rate=0.1,
                logging_steps=1,
                evaluation_strategy=IntervalStrategy.EPOCH,
                save_strategy=IntervalStrategy.EPOCH,
                num_train_epochs=4,
                disable_tqdm=True,
                load_best_model_at_end=True,
                logging_dir="runs",
                run_name="test",
                model_init=model_init,
            )
            trainer.hyperparameter_search(
                direction="minimize", hp_space=hp_space, hp_name=hp_name, backend="sigopt", n_trials=4
            )
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305


optim_test_params = []
if is_torch_available():
    default_adam_kwargs = {
        "betas": (TrainingArguments.adam_beta1, TrainingArguments.adam_beta2),
        "eps": TrainingArguments.adam_epsilon,
        "lr": TrainingArguments.learning_rate,
    }

    optim_test_params = [
        (
            OptimizerNames.ADAMW_HF,
            transformers.optimization.AdamW,
            default_adam_kwargs,
        ),
        (
            OptimizerNames.ADAMW_HF.value,
            transformers.optimization.AdamW,
            default_adam_kwargs,
        ),
        (
            OptimizerNames.ADAMW_TORCH,
            torch.optim.AdamW,
            default_adam_kwargs,
        ),
        (
            OptimizerNames.ADAFACTOR,
            transformers.optimization.Adafactor,
            {
                "scale_parameter": False,
                "relative_step": False,
                "lr": TrainingArguments.learning_rate,
            },
        ),
    ]
2306

2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
    if is_apex_available():
        import apex

        optim_test_params.append(
            (
                OptimizerNames.ADAMW_APEX_FUSED,
                apex.optimizers.FusedAdam,
                default_adam_kwargs,
            )
        )

2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
    if is_bitsandbytes_available():
        import bitsandbytes as bnb

        optim_test_params.append(
            (
                OptimizerNames.ADAMW_BNB,
                bnb.optim.Adam8bit,
                default_adam_kwargs,
            )
        )

2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352

@require_torch
class TrainerOptimizerChoiceTest(unittest.TestCase):
    def check_optim_and_kwargs(self, optim: OptimizerNames, mandatory_kwargs, expected_cls):
        args = TrainingArguments(optim=optim, output_dir="None")
        actual_cls, optim_kwargs = Trainer.get_optimizer_cls_and_kwargs(args)
        self.assertEqual(expected_cls, actual_cls)
        self.assertIsNotNone(optim_kwargs)

        for p, v in mandatory_kwargs.items():
            self.assertTrue(p in optim_kwargs)
            actual_v = optim_kwargs[p]
            self.assertTrue(actual_v == v, f"Failed check for {p}. Expected {v}, but got {actual_v}.")

    @parameterized.expand(optim_test_params, skip_on_empty=True)
    def test_optim_supported(self, name: str, expected_cls, mandatory_kwargs):
        # exercises all the valid --optim options
        self.check_optim_and_kwargs(name, mandatory_kwargs, expected_cls)

        trainer = get_regression_trainer(optim=name)
        trainer.train()

    def test_fused_adam(self):
        # Pretend that apex is installed and mock apex.optimizers.FusedAdam exists.
2353
2354
        # Trainer.get_optimizer_cls_and_kwargs does not use FusedAdam. It only has to return the
        # class given, so mocking apex.optimizers.FusedAdam should be fine for testing and allow
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
        # the test to run without requiring an apex installation.
        mock = Mock()
        modules = {
            "apex": mock,
            "apex.optimizers": mock.optimizers,
            "apex.optimizers.FusedAdam": mock.optimizers.FusedAdam,
        }
        with patch.dict("sys.modules", modules):
            self.check_optim_and_kwargs(
                OptimizerNames.ADAMW_APEX_FUSED,
                default_adam_kwargs,
                mock.optimizers.FusedAdam,
            )

    def test_fused_adam_no_apex(self):
        args = TrainingArguments(optim=OptimizerNames.ADAMW_APEX_FUSED, output_dir="None")

        # Pretend that apex does not exist, even if installed. By setting apex to None, importing
        # apex will fail even if apex is installed.
        with patch.dict("sys.modules", {"apex.optimizers": None}):
            with self.assertRaises(ValueError):
                Trainer.get_optimizer_cls_and_kwargs(args)
2377

2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
    def test_bnb_adam8bit(self):
        # Pretend that Bits and Bytes is installed and mock bnb.optim.Adam8bit exists.
        # Trainer.get_optimizer_cls_and_kwargs does not use Adam8bit. It only has to return the
        # class given, so mocking bnb.optim.Adam8bit should be fine for testing and allow
        # the test to run without requiring a bnb installation.
        mock = Mock()
        modules = {
            "bitsandbytes": mock,
            "bitsandbytes.optim": mock.optim,
            "bitsandbytes.optim.Adam8bit": mock.optim.Adam8bit,
        }
        with patch.dict("sys.modules", modules):
            self.check_optim_and_kwargs(
                OptimizerNames.ADAMW_BNB,
                default_adam_kwargs,
                mock.optim.Adam8bit,
            )

    def test_bnb_adam8bit_no_bnb(self):
        args = TrainingArguments(optim=OptimizerNames.ADAMW_BNB, output_dir="None")

        # Pretend that bnb does not exist, even if installed. By setting bnb to None, importing
        # bnb will fail even if bnb is installed.
        with patch.dict("sys.modules", {"bnb.optim": None}):
            with self.assertRaises(ValueError):
                Trainer.get_optimizer_cls_and_kwargs(args)

2405
2406
2407
2408
2409

@require_torch
@require_wandb
class TrainerHyperParameterWandbIntegrationTest(unittest.TestCase):
    def setUp(self):
2410
        args = TrainingArguments("..")
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
        self.n_epochs = args.num_train_epochs
        self.batch_size = args.train_batch_size

    def test_hyperparameter_search(self):
        class MyTrialShortNamer(TrialShortNamer):
            DEFAULTS = {"a": 0, "b": 0}

        def hp_space(trial):

            return {
                "method": "random",
                "metric": {},
                "parameters": {
                    "a": {"distribution": "uniform", "min": 1e-6, "max": 1e-4},
                    "b": {"distribution": "int_uniform", "min": 1, "max": 6},
                },
            }

        def model_init(config):
            if config is None:
                a = 0
                b = 0
            else:
                a = config["a"]
                b = config["b"]
            model_config = RegressionModelConfig(a=a, b=b, double_output=False)

            return RegressionPreTrainedModel(model_config)

        def hp_name(params):
            return MyTrialShortNamer.shortname(params)

        with tempfile.TemporaryDirectory() as tmp_dir:
            trainer = get_regression_trainer(
                output_dir=tmp_dir,
                learning_rate=0.1,
                logging_steps=1,
                evaluation_strategy=IntervalStrategy.EPOCH,
                save_strategy=IntervalStrategy.EPOCH,
                num_train_epochs=4,
                disable_tqdm=True,
                load_best_model_at_end=True,
                logging_dir="runs",
                run_name="test",
                model_init=model_init,
            )
            trainer.hyperparameter_search(
                direction="minimize", hp_space=hp_space, hp_name=hp_name, backend="wandb", n_trials=4, anonymous="must"
            )