test_trainer.py 103 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2018 the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
import dataclasses
17
import gc
18
import json
19
import math
20
import os
21
import random
Sylvain Gugger's avatar
Sylvain Gugger committed
22
import re
23
import subprocess
24
import sys
25
import tempfile
26
import time
Julien Chaumond's avatar
Julien Chaumond committed
27
import unittest
28
from pathlib import Path
29
from unittest.mock import Mock, patch
Julien Chaumond's avatar
Julien Chaumond committed
30

Sylvain Gugger's avatar
Sylvain Gugger committed
31
import numpy as np
32
from huggingface_hub import HfFolder, Repository, delete_repo, set_access_token
33
from parameterized import parameterized
Sylvain Gugger's avatar
Sylvain Gugger committed
34
from requests.exceptions import HTTPError
35

36
37
38
39
40
41
42
43
from transformers import (
    AutoTokenizer,
    IntervalStrategy,
    PretrainedConfig,
    TrainingArguments,
    is_torch_available,
    logging,
)
44
from transformers.testing_utils import (
Sylvain Gugger's avatar
Sylvain Gugger committed
45
    ENDPOINT_STAGING,
46
    TOKEN,
Sylvain Gugger's avatar
Sylvain Gugger committed
47
    USER,
48
    CaptureLogger,
49
    TestCasePlus,
50
    get_gpu_count,
51
    get_tests_dir,
Sylvain Gugger's avatar
Sylvain Gugger committed
52
    is_staging_test,
Yih-Dar's avatar
Yih-Dar committed
53
    require_accelerate,
54
    require_intel_extension_for_pytorch,
55
    require_optuna,
56
    require_ray,
57
    require_sentencepiece,
58
    require_sigopt,
59
60
    require_tokenizers,
    require_torch,
61
62
    require_torch_bf16_cpu,
    require_torch_bf16_gpu,
63
    require_torch_gpu,
64
    require_torch_multi_gpu,
65
    require_torch_non_multi_gpu,
66
    require_torch_tensorrt_fx,
67
    require_torch_tf32,
68
    require_torch_up_to_2_gpus,
69
    require_torchdynamo,
70
    require_wandb,
71
72
    slow,
)
73
from transformers.trainer_utils import PREFIX_CHECKPOINT_DIR
74
from transformers.training_args import OptimizerNames
75
76
77
78
79
80
81
from transformers.utils import (
    WEIGHTS_INDEX_NAME,
    WEIGHTS_NAME,
    is_apex_available,
    is_bitsandbytes_available,
    is_torchdistx_available,
)
82
from transformers.utils.hp_naming import TrialShortNamer
Julien Chaumond's avatar
Julien Chaumond committed
83
84
85
86


if is_torch_available():
    import torch
87
    from torch import nn
88
89
    from torch.utils.data import IterableDataset

90
    import transformers.optimization
Julien Chaumond's avatar
Julien Chaumond committed
91
92
    from transformers import (
        AutoModelForSequenceClassification,
93
        EarlyStoppingCallback,
Julien Chaumond's avatar
Julien Chaumond committed
94
95
        GlueDataset,
        GlueDataTrainingArguments,
96
97
        GPT2Config,
        GPT2LMHeadModel,
98
        LineByLineTextDataset,
99
        PreTrainedModel,
100
        Trainer,
101
        TrainerState,
Julien Chaumond's avatar
Julien Chaumond committed
102
    )
103
    from transformers.modeling_utils import unwrap_model
Julien Chaumond's avatar
Julien Chaumond committed
104
105


106
PATH_SAMPLE_TEXT = f"{get_tests_dir()}/fixtures/sample_text.txt"
Julien Chaumond's avatar
Julien Chaumond committed
107
108


Sylvain Gugger's avatar
Sylvain Gugger committed
109
class RegressionDataset:
Sylvain Gugger's avatar
Sylvain Gugger committed
110
    def __init__(self, a=2, b=3, length=64, seed=42, label_names=None):
Sylvain Gugger's avatar
Sylvain Gugger committed
111
        np.random.seed(seed)
Sylvain Gugger's avatar
Sylvain Gugger committed
112
        self.label_names = ["labels"] if label_names is None else label_names
Sylvain Gugger's avatar
Sylvain Gugger committed
113
114
        self.length = length
        self.x = np.random.normal(size=(length,)).astype(np.float32)
Sylvain Gugger's avatar
Sylvain Gugger committed
115
116
        self.ys = [a * self.x + b + np.random.normal(scale=0.1, size=(length,)) for _ in self.label_names]
        self.ys = [y.astype(np.float32) for y in self.ys]
Julien Chaumond's avatar
Julien Chaumond committed
117

Sylvain Gugger's avatar
Sylvain Gugger committed
118
119
120
121
    def __len__(self):
        return self.length

    def __getitem__(self, i):
Sylvain Gugger's avatar
Sylvain Gugger committed
122
123
124
        result = {name: y[i] for name, y in zip(self.label_names, self.ys)}
        result["input_x"] = self.x[i]
        return result
Sylvain Gugger's avatar
Sylvain Gugger committed
125
126


127
128
129
130
131
@dataclasses.dataclass
class RegressionTrainingArguments(TrainingArguments):
    a: float = 0.0
    b: float = 0.0

132
133
134
135
136
    def __post_init__(self):
        super().__post_init__()
        # save resources not dealing with reporting (also avoids the warning when it's not set)
        self.report_to = []

137

138
139
140
141
142
143
144
145
146
147
148
149
class RepeatDataset:
    def __init__(self, x, length=64):
        self.x = x
        self.length = length

    def __len__(self):
        return self.length

    def __getitem__(self, i):
        return {"input_ids": self.x, "labels": self.x}


150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
class DynamicShapesDataset:
    def __init__(self, length=64, seed=42, batch_size=8):
        self.length = length
        np.random.seed(seed)
        sizes = np.random.randint(1, 20, (length // batch_size,))
        # For easy batching, we make every batch_size consecutive samples the same size.
        self.xs = [np.random.normal(size=(s,)) for s in sizes.repeat(batch_size)]
        self.ys = [np.random.normal(size=(s,)) for s in sizes.repeat(batch_size)]

    def __len__(self):
        return self.length

    def __getitem__(self, i):
        return {"input_x": self.xs[i], "labels": self.ys[i]}


Sylvain Gugger's avatar
Sylvain Gugger committed
166
167
168
169
170
171
172
173
class AlmostAccuracy:
    def __init__(self, thresh=0.25):
        self.thresh = thresh

    def __call__(self, eval_pred):
        predictions, labels = eval_pred
        true = np.abs(predictions - labels) <= self.thresh
        return {"accuracy": true.astype(np.float32).mean().item()}
174

Julien Chaumond's avatar
Julien Chaumond committed
175

176
class RegressionModelConfig(PretrainedConfig):
177
    def __init__(self, a=0, b=0, double_output=False, random_torch=True, **kwargs):
178
179
180
181
        super().__init__(**kwargs)
        self.a = a
        self.b = b
        self.double_output = double_output
182
        self.random_torch = random_torch
183
        self.hidden_size = 1
184
185


186
187
188
if is_torch_available():

    class SampleIterableDataset(IterableDataset):
189
190
        def __init__(self, a=2, b=3, length=64, seed=42, label_names=None):
            self.dataset = RegressionDataset(a=a, b=b, length=length, seed=seed, label_names=label_names)
191
192

        def __iter__(self):
193
194
            for i in range(len(self.dataset)):
                yield self.dataset[i]
195

196
197
198
199
200
201
202
203
204
205
    class FiniteIterableDataset(SampleIterableDataset):
        def __init__(self, a=2, b=3, length=64, seed=42, label_names=None):
            super().__init__(a, b, length, seed, label_names)
            self.current_sample = 0

        def __iter__(self):
            while self.current_sample < len(self.dataset):
                yield self.dataset[self.current_sample]
                self.current_sample += 1

206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
    class MultiLoader:
        def __init__(self, loaders):
            self.loaders = loaders

        def __len__(self):
            return sum(len(loader) for loader in self.loaders)

        def __iter__(self):
            for loader in self.loaders:
                yield from loader

    class CustomDataloaderTrainer(Trainer):
        def get_train_dataloader(self):
            dataloaders = [super().get_train_dataloader(), super().get_train_dataloader()]
            return MultiLoader(dataloaders)

        def get_eval_dataloader(self, eval_dataset):
            dataloaders = [super().get_eval_dataloader(eval_dataset), super().get_eval_dataloader(eval_dataset)]
            return MultiLoader(dataloaders)

226
    class RegressionModel(nn.Module):
227
        def __init__(self, a=0, b=0, double_output=False):
Sylvain Gugger's avatar
Sylvain Gugger committed
228
            super().__init__()
229
230
            self.a = nn.Parameter(torch.tensor(a).float())
            self.b = nn.Parameter(torch.tensor(b).float())
231
232
            self.double_output = double_output
            self.config = None
Sylvain Gugger's avatar
Sylvain Gugger committed
233

Stas Bekman's avatar
Stas Bekman committed
234
        def forward(self, input_x, labels=None, **kwargs):
Sylvain Gugger's avatar
Sylvain Gugger committed
235
236
            y = input_x * self.a + self.b
            if labels is None:
237
                return (y, y) if self.double_output else (y,)
238
            loss = nn.functional.mse_loss(y, labels)
239
            return (loss, y, y) if self.double_output else (loss, y)
Sylvain Gugger's avatar
Sylvain Gugger committed
240

241
    class RegressionDictModel(nn.Module):
242
243
        def __init__(self, a=0, b=0):
            super().__init__()
244
245
            self.a = nn.Parameter(torch.tensor(a).float())
            self.b = nn.Parameter(torch.tensor(b).float())
246
247
            self.config = None

Stas Bekman's avatar
Stas Bekman committed
248
        def forward(self, input_x, labels=None, **kwargs):
249
250
251
            y = input_x * self.a + self.b
            result = {"output": y}
            if labels is not None:
252
                result["loss"] = nn.functional.mse_loss(y, labels)
253
254
            return result

255
256
257
258
259
260
    class RegressionPreTrainedModel(PreTrainedModel):
        config_class = RegressionModelConfig
        base_model_prefix = "regression"

        def __init__(self, config):
            super().__init__(config)
261
262
            self.a = nn.Parameter(torch.tensor(config.a).float())
            self.b = nn.Parameter(torch.tensor(config.b).float())
263
264
            self.double_output = config.double_output

Stas Bekman's avatar
Stas Bekman committed
265
        def forward(self, input_x, labels=None, **kwargs):
266
267
268
            y = input_x * self.a + self.b
            if labels is None:
                return (y, y) if self.double_output else (y,)
269
            loss = nn.functional.mse_loss(y, labels)
270
271
            return (loss, y, y) if self.double_output else (loss, y)

272
273
274
275
276
277
    class RegressionRandomPreTrainedModel(PreTrainedModel):
        config_class = RegressionModelConfig
        base_model_prefix = "regression"

        def __init__(self, config):
            super().__init__(config)
278
279
            self.a = nn.Parameter(torch.tensor(config.a).float())
            self.b = nn.Parameter(torch.tensor(config.b).float())
280
            self.random_torch = config.random_torch
281
282
283

        def forward(self, input_x, labels=None, **kwargs):
            y = input_x * self.a + self.b
284
285
            if self.random_torch:
                torch_rand = torch.randn(1).squeeze()
286
287
288
            np_rand = np.random.rand()
            rand_rand = random.random()

289
290
291
            if self.random_torch:
                y += 0.05 * torch_rand
            y += 0.05 * torch.tensor(np_rand + rand_rand)
292
293
294

            if labels is None:
                return (y,)
295
            loss = nn.functional.mse_loss(y, labels)
296
297
            return (loss, y)

298
    class TstLayer(nn.Module):
299
300
        def __init__(self, hidden_size):
            super().__init__()
301
302
303
304
305
            self.linear1 = nn.Linear(hidden_size, hidden_size)
            self.ln1 = nn.LayerNorm(hidden_size)
            self.linear2 = nn.Linear(hidden_size, hidden_size)
            self.ln2 = nn.LayerNorm(hidden_size)
            self.bias = nn.Parameter(torch.zeros(hidden_size))
306
307

        def forward(self, x):
308
309
            h = self.ln1(nn.functional.relu(self.linear1(x)))
            h = nn.functional.relu(self.linear2(x))
310
311
            return self.ln2(x + h + self.bias)

312
    def get_regression_trainer(a=0, b=0, double_output=False, train_len=64, eval_len=64, pretrained=True, **kwargs):
Sylvain Gugger's avatar
Sylvain Gugger committed
313
314
315
        label_names = kwargs.get("label_names", None)
        train_dataset = RegressionDataset(length=train_len, label_names=label_names)
        eval_dataset = RegressionDataset(length=eval_len, label_names=label_names)
316
317
318
319

        model_init = kwargs.pop("model_init", None)
        if model_init is not None:
            model = None
320
        else:
321
322
323
324
325
326
            if pretrained:
                config = RegressionModelConfig(a=a, b=b, double_output=double_output)
                model = RegressionPreTrainedModel(config)
            else:
                model = RegressionModel(a=a, b=b, double_output=double_output)

Sylvain Gugger's avatar
Sylvain Gugger committed
327
328
329
        compute_metrics = kwargs.pop("compute_metrics", None)
        data_collator = kwargs.pop("data_collator", None)
        optimizers = kwargs.pop("optimizers", (None, None))
330
        output_dir = kwargs.pop("output_dir", "./regression")
331
        preprocess_logits_for_metrics = kwargs.pop("preprocess_logits_for_metrics", None)
332
333

        args = RegressionTrainingArguments(output_dir, a=a, b=b, **kwargs)
Sylvain Gugger's avatar
Sylvain Gugger committed
334
335
336
337
338
339
340
341
        return Trainer(
            model,
            args,
            data_collator=data_collator,
            train_dataset=train_dataset,
            eval_dataset=eval_dataset,
            compute_metrics=compute_metrics,
            optimizers=optimizers,
342
            model_init=model_init,
343
            preprocess_logits_for_metrics=preprocess_logits_for_metrics,
Sylvain Gugger's avatar
Sylvain Gugger committed
344
345
        )

346

347
class TrainerIntegrationCommon:
348
    def check_saved_checkpoints(self, output_dir, freq, total, is_pretrained=True):
349
        file_list = [WEIGHTS_NAME, "training_args.bin", "optimizer.pt", "scheduler.pt", "trainer_state.json"]
350
351
352
353
354
355
356
357
358
359
360
361
        if is_pretrained:
            file_list.append("config.json")
        for step in range(freq, total, freq):
            checkpoint = os.path.join(output_dir, f"checkpoint-{step}")
            self.assertTrue(os.path.isdir(checkpoint))
            for filename in file_list:
                self.assertTrue(os.path.isfile(os.path.join(checkpoint, filename)))

    def check_best_model_has_been_loaded(
        self, output_dir, freq, total, trainer, metric, greater_is_better=False, is_pretrained=True
    ):
        checkpoint = os.path.join(output_dir, f"checkpoint-{(total // freq) * freq}")
362
        log_history = TrainerState.load_from_json(os.path.join(checkpoint, "trainer_state.json")).log_history
363
364
365
366
367
368
369
370
371
372
373
374

        values = [d[metric] for d in log_history]
        best_value = max(values) if greater_is_better else min(values)
        best_checkpoint = (values.index(best_value) + 1) * freq
        checkpoint = os.path.join(output_dir, f"checkpoint-{best_checkpoint}")
        if is_pretrained:
            best_model = RegressionPreTrainedModel.from_pretrained(checkpoint)
            best_model.to(trainer.args.device)
        else:
            best_model = RegressionModel()
            state_dict = torch.load(os.path.join(checkpoint, WEIGHTS_NAME))
            best_model.load_state_dict(state_dict)
375
            best_model.to(trainer.args.device)
376
377
378
379
380
381
        self.assertTrue(torch.allclose(best_model.a, trainer.model.a))
        self.assertTrue(torch.allclose(best_model.b, trainer.model.b))

        metrics = trainer.evaluate()
        self.assertEqual(metrics[metric], best_value)

382
383
384
385
386
387
388
389
    def check_trainer_state_are_the_same(self, trainer_state, trainer_state1):
        # We'll pop things so operate on copies.
        state = trainer_state.copy()
        state1 = trainer_state1.copy()
        # Log history main contain different logs for the time metrics (after resuming a training).
        log_history = state.pop("log_history", None)
        log_history1 = state1.pop("log_history", None)
        self.assertEqual(state, state1)
390
        skip_log_keys = ["train_runtime", "train_samples_per_second", "train_steps_per_second", "train_loss"]
391
        for log, log1 in zip(log_history, log_history1):
392
393
394
            for key in skip_log_keys:
                _ = log.pop(key, None)
                _ = log1.pop(key, None)
395
396
            self.assertEqual(log, log1)

397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
    def convert_to_sharded_checkpoint(self, folder):
        # Converts a checkpoint of a regression model to a sharded checkpoint.
        state_dict = torch.load(os.path.join(folder, WEIGHTS_NAME))
        os.remove(os.path.join(folder, WEIGHTS_NAME))
        keys = list(state_dict.keys())

        shard_files = [
            WEIGHTS_NAME.replace(".bin", f"-{idx+1:05d}-of-{len(keys):05d}.bin") for idx in range(len(keys))
        ]
        index = {"metadata": {}, "weight_map": {key: shard_files[i] for i, key in enumerate(keys)}}

        save_index_file = os.path.join(folder, WEIGHTS_INDEX_NAME)
        with open(save_index_file, "w", encoding="utf-8") as f:
            content = json.dumps(index, indent=2, sort_keys=True) + "\n"
            f.write(content)

        for param_name, shard_file in zip(keys, shard_files):
            torch.save({param_name: state_dict[param_name]}, os.path.join(folder, shard_file))

416
417
418
419

@require_torch
@require_sentencepiece
@require_tokenizers
420
421
422
423
424
425
426
427
class TrainerIntegrationPrerunTest(TestCasePlus, TrainerIntegrationCommon):
    """
    Only tests that want to tap into the auto-pre-run 2 trainings:
    - self.default_trained_model
    - self.alternate_trained_model
    directly, or via check_trained_model
    """

428
429
    def setUp(self):
        super().setUp()
430
        args = TrainingArguments("..")
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
        self.n_epochs = args.num_train_epochs
        self.batch_size = args.train_batch_size
        trainer = get_regression_trainer(learning_rate=0.1)
        trainer.train()
        self.default_trained_model = (trainer.model.a, trainer.model.b)

        trainer = get_regression_trainer(learning_rate=0.1, seed=314)
        trainer.train()
        self.alternate_trained_model = (trainer.model.a, trainer.model.b)

    def check_trained_model(self, model, alternate_seed=False):
        # Checks a training seeded with learning_rate = 0.1
        (a, b) = self.alternate_trained_model if alternate_seed else self.default_trained_model
        self.assertTrue(torch.allclose(model.a, a))
        self.assertTrue(torch.allclose(model.b, b))

447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
    def test_reproducible_training(self):
        # Checks that training worked, model trained and seed made a reproducible training.
        trainer = get_regression_trainer(learning_rate=0.1)
        trainer.train()
        self.check_trained_model(trainer.model)

        # Checks that a different seed gets different (reproducible) results.
        trainer = get_regression_trainer(learning_rate=0.1, seed=314)
        trainer.train()
        self.check_trained_model(trainer.model, alternate_seed=True)

    def test_trainer_with_datasets(self):
        import datasets

        np.random.seed(42)
        x = np.random.normal(size=(64,)).astype(np.float32)
        y = 2.0 * x + 3.0 + np.random.normal(scale=0.1, size=(64,))
        train_dataset = datasets.Dataset.from_dict({"input_x": x, "label": y})

        # Base training. Should have the same results as test_reproducible_training
        model = RegressionModel()
        args = TrainingArguments("./regression", learning_rate=0.1)
        trainer = Trainer(model, args, train_dataset=train_dataset)
        trainer.train()
        self.check_trained_model(trainer.model)

        # Can return tensors.
        train_dataset.set_format(type="torch", dtype=torch.float32)
        model = RegressionModel()
        trainer = Trainer(model, args, train_dataset=train_dataset)
        trainer.train()
        self.check_trained_model(trainer.model)

        # Adding one column not used by the model should have no impact
        z = np.random.normal(size=(64,)).astype(np.float32)
        train_dataset = datasets.Dataset.from_dict({"input_x": x, "label": y, "extra": z})
        model = RegressionModel()
        trainer = Trainer(model, args, train_dataset=train_dataset)
        trainer.train()
        self.check_trained_model(trainer.model)

    def test_model_init(self):
        train_dataset = RegressionDataset()
        args = TrainingArguments("./regression", learning_rate=0.1)
        trainer = Trainer(args=args, train_dataset=train_dataset, model_init=lambda: RegressionModel())
        trainer.train()
        self.check_trained_model(trainer.model)

        # Re-training should restart from scratch, thus lead the same results.
        trainer.train()
        self.check_trained_model(trainer.model)

        # Re-training should restart from scratch, thus lead the same results and new seed should be used.
        trainer.args.seed = 314
        trainer.train()
        self.check_trained_model(trainer.model, alternate_seed=True)

    def test_gradient_accumulation(self):
        # Training with half the batch size but accumulation steps as 2 should give the same results.
        trainer = get_regression_trainer(
            gradient_accumulation_steps=2, per_device_train_batch_size=4, learning_rate=0.1
        )
        trainer.train()
        self.check_trained_model(trainer.model)

512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
    def test_training_loss(self):
        n_gpus = max(1, get_gpu_count())

        # With even logs
        trainer = get_regression_trainer(logging_steps=64 / (8 * n_gpus))
        trainer.train()
        log_history = trainer.state.log_history

        losses = [log["loss"] for log in log_history if "loss" in log]
        train_loss = log_history[-1]["train_loss"]
        self.assertAlmostEqual(sum(losses) / len(losses), train_loss, places=4)

        # With uneven logs
        trainer = get_regression_trainer(logging_steps=5)
        trainer.train()
        log_history = trainer.state.log_history

        # Training loss should be the same as before
        new_train_loss = log_history[-1]["train_loss"]
        self.assertAlmostEqual(train_loss, new_train_loss, places=4)

533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
    def test_custom_optimizer(self):
        train_dataset = RegressionDataset()
        args = TrainingArguments("./regression")
        model = RegressionModel()
        optimizer = torch.optim.SGD(model.parameters(), lr=1.0)
        lr_scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda x: 1.0)
        trainer = Trainer(model, args, train_dataset=train_dataset, optimizers=(optimizer, lr_scheduler))
        trainer.train()

        (a, b) = self.default_trained_model
        self.assertFalse(torch.allclose(trainer.model.a, a))
        self.assertFalse(torch.allclose(trainer.model.b, b))
        self.assertEqual(trainer.optimizer.state_dict()["param_groups"][0]["lr"], 1.0)

    def test_adafactor_lr_none(self):
        # test the special case where lr=None, since Trainer can't not have lr_scheduler

        from transformers.optimization import Adafactor, AdafactorSchedule

        train_dataset = RegressionDataset()
        args = TrainingArguments("./regression")
        model = RegressionModel()
        optimizer = Adafactor(model.parameters(), scale_parameter=True, relative_step=True, warmup_init=True, lr=None)
        lr_scheduler = AdafactorSchedule(optimizer)
        trainer = Trainer(model, args, train_dataset=train_dataset, optimizers=(optimizer, lr_scheduler))
        trainer.train()

        (a, b) = self.default_trained_model
        self.assertFalse(torch.allclose(trainer.model.a, a))
        self.assertFalse(torch.allclose(trainer.model.b, b))
        self.assertGreater(trainer.optimizer.state_dict()["param_groups"][0]["lr"], 0)

565
    @require_torch_gpu
566
    @require_torch_bf16_gpu
567
568
569
570
571
572
573
574
575
576
577
578
    def test_mixed_bf16(self):
        # very basic test
        trainer = get_regression_trainer(learning_rate=0.1, bf16=True)
        trainer.train()
        self.check_trained_model(trainer.model)

        # --bf16 --half_precision_backend apex can't be used together
        with self.assertRaises(ValueError):
            trainer = get_regression_trainer(learning_rate=0.1, bf16=True, half_precision_backend="apex")

        # will add more specific tests once there are some bugs to fix

579
580
581
582
583
584
585
586
    @require_torch_gpu
    @require_torch_tf32
    def test_tf32(self):
        # very basic test
        trainer = get_regression_trainer(learning_rate=0.1, tf32=True)
        trainer.train()
        self.check_trained_model(trainer.model)

587
588
589
590
591
592
593

@require_torch
@require_sentencepiece
@require_tokenizers
class TrainerIntegrationTest(TestCasePlus, TrainerIntegrationCommon):
    def setUp(self):
        super().setUp()
594
        args = TrainingArguments("..")
595
596
597
        self.n_epochs = args.num_train_epochs
        self.batch_size = args.train_batch_size

598
599
600
601
602
603
604
605
606
607
608
609
610
    def test_trainer_works_with_dict(self):
        # Edge case because Apex with mode O2 will change our models to return dicts. This test checks it doesn't break
        # anything.
        train_dataset = RegressionDataset()
        eval_dataset = RegressionDataset()
        model = RegressionDictModel()
        args = TrainingArguments("./regression")
        trainer = Trainer(model, args, train_dataset=train_dataset, eval_dataset=eval_dataset)
        trainer.train()
        _ = trainer.evaluate()
        _ = trainer.predict(eval_dataset)

    def test_evaluation_with_keys_to_drop(self):
611
        config = GPT2Config(vocab_size=100, n_positions=128, n_embd=32, n_layer=3, n_head=4)
612
613
614
615
616
617
618
619
620
621
622
623
624
        tiny_gpt2 = GPT2LMHeadModel(config)
        x = torch.randint(0, 100, (128,))
        eval_dataset = RepeatDataset(x)
        args = TrainingArguments("./test")
        trainer = Trainer(tiny_gpt2, args, eval_dataset=eval_dataset)
        # By default the past_key_values are removed
        result = trainer.predict(eval_dataset)
        self.assertTrue(isinstance(result.predictions, np.ndarray))
        # We can still get them by setting ignore_keys to []
        result = trainer.predict(eval_dataset, ignore_keys=[])
        self.assertTrue(isinstance(result.predictions, tuple))
        self.assertEqual(len(result.predictions), 2)

625
626
627
    def test_training_arguments_are_left_untouched(self):
        trainer = get_regression_trainer()
        trainer.train()
628
        args = TrainingArguments("./regression", report_to=[])
629
630
        dict1, dict2 = args.to_dict(), trainer.args.to_dict()
        for key in dict1.keys():
631
            # Logging dir can be slightly different as they default to something with the time.
Sylvain Gugger's avatar
Sylvain Gugger committed
632
            if key != "logging_dir":
633
                self.assertEqual(dict1[key], dict2[key])
634

Sylvain Gugger's avatar
Sylvain Gugger committed
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
    def test_number_of_steps_in_training(self):
        # Regular training has n_epochs * len(train_dl) steps
        trainer = get_regression_trainer(learning_rate=0.1)
        train_output = trainer.train()
        self.assertEqual(train_output.global_step, self.n_epochs * 64 / self.batch_size)

        # Check passing num_train_epochs works (and a float version too):
        trainer = get_regression_trainer(learning_rate=0.1, num_train_epochs=1.5)
        train_output = trainer.train()
        self.assertEqual(train_output.global_step, int(1.5 * 64 / self.batch_size))

        # If we pass a max_steps, num_train_epochs is ignored
        trainer = get_regression_trainer(learning_rate=0.1, max_steps=10)
        train_output = trainer.train()
        self.assertEqual(train_output.global_step, 10)

651
    @require_torch_bf16_cpu
652
653
654
655
656
657
    @require_intel_extension_for_pytorch
    def test_number_of_steps_in_training_with_ipex(self):
        for mix_bf16 in [True, False]:
            # Regular training has n_epochs * len(train_dl) steps
            trainer = get_regression_trainer(learning_rate=0.1, use_ipex=True, bf16=mix_bf16, no_cuda=True)
            train_output = trainer.train()
658
            self.assertEqual(train_output.global_step, self.n_epochs * 64 / trainer.args.train_batch_size)
659
660
661
662
663
664

            # Check passing num_train_epochs works (and a float version too):
            trainer = get_regression_trainer(
                learning_rate=0.1, num_train_epochs=1.5, use_ipex=True, bf16=mix_bf16, no_cuda=True
            )
            train_output = trainer.train()
665
            self.assertEqual(train_output.global_step, int(1.5 * 64 / trainer.args.train_batch_size))
666
667
668
669
670
671
672
673

            # If we pass a max_steps, num_train_epochs is ignored
            trainer = get_regression_trainer(
                learning_rate=0.1, max_steps=10, use_ipex=True, bf16=mix_bf16, no_cuda=True
            )
            train_output = trainer.train()
            self.assertEqual(train_output.global_step, 10)

674
    def test_logging_inf_nan_filter(self):
675
        config = GPT2Config(vocab_size=100, n_positions=128, n_embd=32, n_layer=3, n_head=4)
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
        tiny_gpt2 = GPT2LMHeadModel(config)
        x = torch.randint(0, 100, (128,))
        train_dataset = RepeatDataset(x)

        # Trainer without inf/nan filter
        args = TrainingArguments("./test", learning_rate=1e9, logging_steps=5, logging_nan_inf_filter=False)
        trainer = Trainer(tiny_gpt2, args, train_dataset=train_dataset)
        trainer.train()
        log_history_no_filter = trainer.state.log_history

        # Trainer with inf/nan filter
        args = TrainingArguments("./test", learning_rate=1e9, logging_steps=5, logging_nan_inf_filter=True)
        trainer = Trainer(tiny_gpt2, args, train_dataset=train_dataset)
        trainer.train()
        log_history_filter = trainer.state.log_history

        def is_any_loss_nan_or_inf(log_history):
            losses = [l["loss"] for l in log_history[:-1]]
            return any(math.isnan(x) for x in losses) or any(math.isinf(x) for x in losses)

        self.assertTrue(is_any_loss_nan_or_inf(log_history_no_filter))
        self.assertFalse(is_any_loss_nan_or_inf(log_history_filter))

Sylvain Gugger's avatar
Sylvain Gugger committed
699
    def test_train_and_eval_dataloaders(self):
700
        n_gpu = max(1, torch.cuda.device_count())
Sylvain Gugger's avatar
Sylvain Gugger committed
701
        trainer = get_regression_trainer(learning_rate=0.1, per_device_train_batch_size=16)
702
        self.assertEqual(trainer.get_train_dataloader().batch_size, 16 * n_gpu)
Sylvain Gugger's avatar
Sylvain Gugger committed
703
        trainer = get_regression_trainer(learning_rate=0.1, per_device_eval_batch_size=16)
704
        self.assertEqual(trainer.get_eval_dataloader().batch_size, 16 * n_gpu)
Sylvain Gugger's avatar
Sylvain Gugger committed
705
706
707
708
709

        # Check drop_last works
        trainer = get_regression_trainer(
            train_len=66, eval_len=74, learning_rate=0.1, per_device_train_batch_size=16, per_device_eval_batch_size=32
        )
710
711
        self.assertEqual(len(trainer.get_train_dataloader()), 66 // (16 * n_gpu) + 1)
        self.assertEqual(len(trainer.get_eval_dataloader()), 74 // (32 * n_gpu) + 1)
Sylvain Gugger's avatar
Sylvain Gugger committed
712
713
714
715
716
717
718
719
720

        trainer = get_regression_trainer(
            train_len=66,
            eval_len=74,
            learning_rate=0.1,
            per_device_train_batch_size=16,
            per_device_eval_batch_size=32,
            dataloader_drop_last=True,
        )
721
722
        self.assertEqual(len(trainer.get_train_dataloader()), 66 // (16 * n_gpu))
        self.assertEqual(len(trainer.get_eval_dataloader()), 74 // (32 * n_gpu))
Sylvain Gugger's avatar
Sylvain Gugger committed
723

724
        # Check passing a new dataset for evaluation works
Sylvain Gugger's avatar
Sylvain Gugger committed
725
        new_eval_dataset = RegressionDataset(length=128)
726
        self.assertEqual(len(trainer.get_eval_dataloader(new_eval_dataset)), 128 // (32 * n_gpu))
Sylvain Gugger's avatar
Sylvain Gugger committed
727

728
729
730
731
732
733
734
735
736
    # tests that we do not require dataloader to have a .dataset attribute
    def test_dataloader_without_dataset(self):
        train_dataset = RegressionDataset(length=128)
        trainer = CustomDataloaderTrainer(
            model=RegressionModel(), train_dataset=train_dataset, eval_dataset=train_dataset
        )
        trainer.train()
        trainer.evaluate()

737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
    def test_sampler_seed(self):
        # nb: we don't want to inherit from IterableDataset to hit the right code path
        class DummyDataset(torch.utils.data.Dataset):
            def __init__(self, length: int = 101):
                self.length = length

            def __len__(self):
                return self.length

            def __getitem__(self, i):
                if (i < 0) or (i >= self.length):
                    raise IndexError
                return {"input_ids": [i]}

        class DummyModel(PreTrainedModel):
            def __init__(self, num_params: int):
                super().__init__(PretrainedConfig())
                # Add some (unused) params. the point here is that randomness in model_init shouldn't influence
                # data loader order.
                self.params = nn.Parameter(torch.randn(num_params))

            def forward(self, input_ids, labels=None):
                if labels is not None:
                    return torch.tensor(0.0, device=input_ids.device), input_ids
                else:
                    return input_ids

        def _get_first_data_sample(num_params, seed, data_seed, **kwargs):
            with tempfile.TemporaryDirectory() as tmpdir:
                trainer = Trainer(
                    model_init=lambda: DummyModel(num_params),
                    args=TrainingArguments(
                        output_dir=tmpdir,
                        **kwargs,
                        seed=seed,
                        data_seed=data_seed,
                        local_rank=-1,
                    ),
                    train_dataset=DummyDataset(),
                )

                return next(iter(trainer.get_train_dataloader()))

        # test that the seed is passed to the sampler
        # the codepath we want to hit is world_size <= 1, and both group_by_length
        for group_by_length in [True, False]:
            sample42_1 = _get_first_data_sample(num_params=10, seed=42, data_seed=42, group_by_length=group_by_length)
            sample42_2 = _get_first_data_sample(num_params=11, seed=42, data_seed=42, group_by_length=group_by_length)
            self.assertTrue(torch.equal(sample42_1["input_ids"], sample42_2["input_ids"]))

            # should get same samples with different seed, so long as data_seed is the same
            sample42_3 = _get_first_data_sample(num_params=11, seed=11, data_seed=42, group_by_length=group_by_length)
            self.assertTrue(torch.equal(sample42_1["input_ids"], sample42_3["input_ids"]))

            # make sure we have some randomness in the samples if data_seed is different
            others = [
                _get_first_data_sample(num_params=i, seed=42, data_seed=i, group_by_length=group_by_length)
                for i in range(10)
            ]
            self.assertTrue(any(not torch.equal(sample42_1["input_ids"], sample["input_ids"]) for sample in others))

798
799
800
801
802
803
    @require_torch_multi_gpu
    def test_data_is_not_parallelized_when_model_is_parallel(self):
        model = RegressionModel()
        # Make the Trainer believe it's a parallelized model
        model.is_parallelizable = True
        model.model_parallel = True
804
805
        args = TrainingArguments("./regression", per_device_train_batch_size=16, per_device_eval_batch_size=16)
        trainer = Trainer(model, args, train_dataset=RegressionDataset(), eval_dataset=RegressionDataset())
806
807
        # Check the Trainer was fooled
        self.assertTrue(trainer.is_model_parallel)
808
        self.assertEqual(trainer.args.n_gpu, 1)
809
810
811
812
813
814
815

        # The batch size of the training and evaluation dataloaders should be 16, not 16 * n_gpu
        self.assertEqual(trainer.get_train_dataloader().batch_size, 16)
        self.assertEqual(len(trainer.get_train_dataloader()), 64 // 16)
        self.assertEqual(trainer.get_eval_dataloader().batch_size, 16)
        self.assertEqual(len(trainer.get_eval_dataloader()), 64 // 16)

Sylvain Gugger's avatar
Sylvain Gugger committed
816
817
818
819
    def test_evaluate(self):
        trainer = get_regression_trainer(a=1.5, b=2.5, compute_metrics=AlmostAccuracy())
        results = trainer.evaluate()

Sylvain Gugger's avatar
Sylvain Gugger committed
820
        x, y = trainer.eval_dataset.x, trainer.eval_dataset.ys[0]
Sylvain Gugger's avatar
Sylvain Gugger committed
821
822
823
824
825
826
827
828
829
830
        pred = 1.5 * x + 2.5
        expected_loss = ((pred - y) ** 2).mean()
        self.assertAlmostEqual(results["eval_loss"], expected_loss)
        expected_acc = AlmostAccuracy()((pred, y))["accuracy"]
        self.assertAlmostEqual(results["eval_accuracy"], expected_acc)

        # With a number of elements not a round multiple of the batch size
        trainer = get_regression_trainer(a=1.5, b=2.5, eval_len=66, compute_metrics=AlmostAccuracy())
        results = trainer.evaluate()

Sylvain Gugger's avatar
Sylvain Gugger committed
831
        x, y = trainer.eval_dataset.x, trainer.eval_dataset.ys[0]
Sylvain Gugger's avatar
Sylvain Gugger committed
832
833
834
835
836
837
        pred = 1.5 * x + 2.5
        expected_loss = ((pred - y) ** 2).mean()
        self.assertAlmostEqual(results["eval_loss"], expected_loss)
        expected_acc = AlmostAccuracy()((pred, y))["accuracy"]
        self.assertAlmostEqual(results["eval_accuracy"], expected_acc)

838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
        # With logits preprocess
        trainer = get_regression_trainer(
            a=1.5,
            b=2.5,
            compute_metrics=AlmostAccuracy(),
            preprocess_logits_for_metrics=lambda logits, labels: logits + 1,
        )
        results = trainer.evaluate()

        x, y = trainer.eval_dataset.x, trainer.eval_dataset.ys[0]
        pred = 1.5 * x + 2.5
        expected_loss = ((pred - y) ** 2).mean()
        self.assertAlmostEqual(results["eval_loss"], expected_loss)
        expected_acc = AlmostAccuracy()((pred + 1, y))["accuracy"]
        self.assertAlmostEqual(results["eval_accuracy"], expected_acc)

854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
    def test_evaluate_with_jit(self):
        trainer = get_regression_trainer(a=1.5, b=2.5, compute_metrics=AlmostAccuracy(), jit_mode_eval=True)
        results = trainer.evaluate()

        x, y = trainer.eval_dataset.x, trainer.eval_dataset.ys[0]
        pred = 1.5 * x + 2.5
        expected_loss = ((pred - y) ** 2).mean()
        self.assertAlmostEqual(results["eval_loss"], expected_loss)
        expected_acc = AlmostAccuracy()((pred, y))["accuracy"]
        self.assertAlmostEqual(results["eval_accuracy"], expected_acc)

        # With a number of elements not a round multiple of the batch size
        trainer = get_regression_trainer(
            a=1.5, b=2.5, eval_len=66, compute_metrics=AlmostAccuracy(), jit_mode_eval=True
        )
        results = trainer.evaluate()

        x, y = trainer.eval_dataset.x, trainer.eval_dataset.ys[0]
        pred = 1.5 * x + 2.5
        expected_loss = ((pred - y) ** 2).mean()
        self.assertAlmostEqual(results["eval_loss"], expected_loss)
        expected_acc = AlmostAccuracy()((pred, y))["accuracy"]
        self.assertAlmostEqual(results["eval_accuracy"], expected_acc)

        # With logits preprocess
        trainer = get_regression_trainer(
            a=1.5,
            b=2.5,
            compute_metrics=AlmostAccuracy(),
            preprocess_logits_for_metrics=lambda logits, labels: logits + 1,
            jit_mode_eval=True,
        )
        results = trainer.evaluate()

        x, y = trainer.eval_dataset.x, trainer.eval_dataset.ys[0]
        pred = 1.5 * x + 2.5
        expected_loss = ((pred - y) ** 2).mean()
        self.assertAlmostEqual(results["eval_loss"], expected_loss)
        expected_acc = AlmostAccuracy()((pred + 1, y))["accuracy"]
        self.assertAlmostEqual(results["eval_accuracy"], expected_acc)

895
    @require_torch_bf16_cpu
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
    @require_intel_extension_for_pytorch
    def test_evaluate_with_ipex(self):
        for mix_bf16 in [True, False]:
            trainer = get_regression_trainer(
                a=1.5, b=2.5, use_ipex=True, compute_metrics=AlmostAccuracy(), bf16=mix_bf16, no_cuda=True
            )
            results = trainer.evaluate()

            x, y = trainer.eval_dataset.x, trainer.eval_dataset.ys[0]
            pred = 1.5 * x + 2.5
            expected_loss = ((pred - y) ** 2).mean()
            self.assertAlmostEqual(results["eval_loss"], expected_loss)
            expected_acc = AlmostAccuracy()((pred, y))["accuracy"]
            self.assertAlmostEqual(results["eval_accuracy"], expected_acc)

            # With a number of elements not a round multiple of the batch size
            trainer = get_regression_trainer(
                a=1.5,
                b=2.5,
                use_ipex=True,
                eval_len=66,
                compute_metrics=AlmostAccuracy(),
                bf16=mix_bf16,
                no_cuda=True,
            )
            results = trainer.evaluate()

            x, y = trainer.eval_dataset.x, trainer.eval_dataset.ys[0]
            pred = 1.5 * x + 2.5
            expected_loss = ((pred - y) ** 2).mean()
            self.assertAlmostEqual(results["eval_loss"], expected_loss)
            expected_acc = AlmostAccuracy()((pred, y))["accuracy"]
            self.assertAlmostEqual(results["eval_accuracy"], expected_acc)

            # With logits preprocess
            trainer = get_regression_trainer(
                a=1.5,
                b=2.5,
                use_ipex=True,
                compute_metrics=AlmostAccuracy(),
                preprocess_logits_for_metrics=lambda logits, labels: logits + 1,
                bf16=mix_bf16,
                no_cuda=True,
            )
            results = trainer.evaluate()

            x, y = trainer.eval_dataset.x, trainer.eval_dataset.ys[0]
            pred = 1.5 * x + 2.5
            expected_loss = ((pred - y) ** 2).mean()
            self.assertAlmostEqual(results["eval_loss"], expected_loss)
            expected_acc = AlmostAccuracy()((pred + 1, y))["accuracy"]
            self.assertAlmostEqual(results["eval_accuracy"], expected_acc)

Sylvain Gugger's avatar
Sylvain Gugger committed
949
950
951
952
953
954
955
956
957
958
959
960
    def test_predict(self):
        trainer = get_regression_trainer(a=1.5, b=2.5)
        preds = trainer.predict(trainer.eval_dataset).predictions
        x = trainer.eval_dataset.x
        self.assertTrue(np.allclose(preds, 1.5 * x + 2.5))

        # With a number of elements not a round multiple of the batch size
        trainer = get_regression_trainer(a=1.5, b=2.5, eval_len=66)
        preds = trainer.predict(trainer.eval_dataset).predictions
        x = trainer.eval_dataset.x
        self.assertTrue(np.allclose(preds, 1.5 * x + 2.5))

961
962
963
964
        # With more than one output of the model
        trainer = get_regression_trainer(a=1.5, b=2.5, double_output=True)
        preds = trainer.predict(trainer.eval_dataset).predictions
        x = trainer.eval_dataset.x
965
        self.assertEqual(len(preds), 2)
966
967
968
        self.assertTrue(np.allclose(preds[0], 1.5 * x + 2.5))
        self.assertTrue(np.allclose(preds[1], 1.5 * x + 2.5))

Sylvain Gugger's avatar
Sylvain Gugger committed
969
970
971
972
973
974
        # With more than one output/label of the model
        trainer = get_regression_trainer(a=1.5, b=2.5, double_output=True, label_names=["labels", "labels_2"])
        outputs = trainer.predict(trainer.eval_dataset)
        preds = outputs.predictions
        labels = outputs.label_ids
        x = trainer.eval_dataset.x
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
        self.assertEqual(len(preds), 2)
        self.assertTrue(np.allclose(preds[0], 1.5 * x + 2.5))
        self.assertTrue(np.allclose(preds[1], 1.5 * x + 2.5))
        self.assertTrue(np.array_equal(labels[0], trainer.eval_dataset.ys[0]))
        self.assertTrue(np.array_equal(labels[1], trainer.eval_dataset.ys[1]))

    def test_predict_with_jit(self):
        trainer = get_regression_trainer(a=1.5, b=2.5, jit_mode_eval=True)
        preds = trainer.predict(trainer.eval_dataset).predictions
        x = trainer.eval_dataset.x
        self.assertTrue(np.allclose(preds, 1.5 * x + 2.5))

        # With a number of elements not a round multiple of the batch size
        trainer = get_regression_trainer(a=1.5, b=2.5, eval_len=66, jit_mode_eval=True)
        preds = trainer.predict(trainer.eval_dataset).predictions
        x = trainer.eval_dataset.x
        self.assertTrue(np.allclose(preds, 1.5 * x + 2.5))

        # With more than one output of the model
        trainer = get_regression_trainer(a=1.5, b=2.5, double_output=True, jit_mode_eval=True)
        preds = trainer.predict(trainer.eval_dataset).predictions
        x = trainer.eval_dataset.x
        self.assertEqual(len(preds), 2)
        self.assertTrue(np.allclose(preds[0], 1.5 * x + 2.5))
        self.assertTrue(np.allclose(preds[1], 1.5 * x + 2.5))

        # With more than one output/label of the model
        trainer = get_regression_trainer(
            a=1.5, b=2.5, double_output=True, label_names=["labels", "labels_2"], jit_mode_eval=True
        )
        outputs = trainer.predict(trainer.eval_dataset)
        preds = outputs.predictions
        labels = outputs.label_ids
        x = trainer.eval_dataset.x
1009
        self.assertEqual(len(preds), 2)
Sylvain Gugger's avatar
Sylvain Gugger committed
1010
1011
1012
1013
1014
        self.assertTrue(np.allclose(preds[0], 1.5 * x + 2.5))
        self.assertTrue(np.allclose(preds[1], 1.5 * x + 2.5))
        self.assertTrue(np.array_equal(labels[0], trainer.eval_dataset.ys[0]))
        self.assertTrue(np.array_equal(labels[1], trainer.eval_dataset.ys[1]))

1015
    @require_torch_bf16_cpu
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
    @require_intel_extension_for_pytorch
    def test_predict_with_ipex(self):
        for mix_bf16 in [True, False]:
            trainer = get_regression_trainer(a=1.5, b=2.5, use_ipex=True, bf16=mix_bf16, no_cuda=True)
            preds = trainer.predict(trainer.eval_dataset).predictions
            x = trainer.eval_dataset.x
            self.assertTrue(np.allclose(preds, 1.5 * x + 2.5))

            # With a number of elements not a round multiple of the batch size
            trainer = get_regression_trainer(a=1.5, b=2.5, eval_len=66, use_ipex=True, bf16=mix_bf16, no_cuda=True)
            preds = trainer.predict(trainer.eval_dataset).predictions
            x = trainer.eval_dataset.x
            self.assertTrue(np.allclose(preds, 1.5 * x + 2.5))

            # With more than one output of the model
            trainer = get_regression_trainer(
                a=1.5, b=2.5, double_output=True, use_ipex=True, bf16=mix_bf16, no_cuda=True
            )
            preds = trainer.predict(trainer.eval_dataset).predictions
            x = trainer.eval_dataset.x
            self.assertEqual(len(preds), 2)
            self.assertTrue(np.allclose(preds[0], 1.5 * x + 2.5))
            self.assertTrue(np.allclose(preds[1], 1.5 * x + 2.5))

            # With more than one output/label of the model
            trainer = get_regression_trainer(
                a=1.5,
                b=2.5,
                double_output=True,
                label_names=["labels", "labels_2"],
                use_ipex=True,
                bf16=mix_bf16,
                no_cuda=True,
            )
            outputs = trainer.predict(trainer.eval_dataset)
            preds = outputs.predictions
            labels = outputs.label_ids
            x = trainer.eval_dataset.x
            self.assertEqual(len(preds), 2)
            self.assertTrue(np.allclose(preds[0], 1.5 * x + 2.5))
            self.assertTrue(np.allclose(preds[1], 1.5 * x + 2.5))
            self.assertTrue(np.array_equal(labels[0], trainer.eval_dataset.ys[0]))
            self.assertTrue(np.array_equal(labels[1], trainer.eval_dataset.ys[1]))

1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
    def test_dynamic_shapes(self):
        eval_dataset = DynamicShapesDataset(batch_size=self.batch_size)
        model = RegressionModel(a=2, b=1)
        args = TrainingArguments("./regression")
        trainer = Trainer(model, args, eval_dataset=eval_dataset)

        # Check evaluation can run to completion
        _ = trainer.evaluate()

        # Check predictions
        preds = trainer.predict(eval_dataset)
        for expected, seen in zip(eval_dataset.ys, preds.label_ids):
            self.assertTrue(np.array_equal(expected, seen[: expected.shape[0]]))
            self.assertTrue(np.all(seen[expected.shape[0] :] == -100))

        for expected, seen in zip(eval_dataset.xs, preds.predictions):
            self.assertTrue(np.array_equal(2 * expected + 1, seen[: expected.shape[0]]))
            self.assertTrue(np.all(seen[expected.shape[0] :] == -100))

        # Same tests with eval accumulation
        args = TrainingArguments("./regression", eval_accumulation_steps=2)
        trainer = Trainer(model, args, eval_dataset=eval_dataset)

        # Check evaluation can run to completion
        _ = trainer.evaluate()

        # Check predictions
        preds = trainer.predict(eval_dataset)
        for expected, seen in zip(eval_dataset.ys, preds.label_ids):
            self.assertTrue(np.array_equal(expected, seen[: expected.shape[0]]))
            self.assertTrue(np.all(seen[expected.shape[0] :] == -100))

        for expected, seen in zip(eval_dataset.xs, preds.predictions):
            self.assertTrue(np.array_equal(2 * expected + 1, seen[: expected.shape[0]]))
            self.assertTrue(np.all(seen[expected.shape[0] :] == -100))

ydshieh's avatar
ydshieh committed
1096
1097
    # FIXME: sgugger
    @unittest.skip(reason="might be flaky after PR #21700. Skip for now.")
1098
    def test_log_level(self):
1099
        # testing only --log_level (--log_level_replica requires multiple gpus and DDP and is tested elsewhere)
1100
1101
1102
        logger = logging.get_logger()
        log_info_string = "Running training"

1103
        # test with the default log_level - should be warning and thus not log on the main process
1104
1105
1106
        with CaptureLogger(logger) as cl:
            trainer = get_regression_trainer()
            trainer.train()
1107
        self.assertNotIn(log_info_string, cl.out)
1108

1109
        # test with low log_level - lower than info
1110
1111
1112
1113
1114
        with CaptureLogger(logger) as cl:
            trainer = get_regression_trainer(log_level="debug")
            trainer.train()
        self.assertIn(log_info_string, cl.out)

1115
        # test with high log_level - should be quiet
1116
1117
1118
1119
1120
        with CaptureLogger(logger) as cl:
            trainer = get_regression_trainer(log_level="error")
            trainer.train()
        self.assertNotIn(log_info_string, cl.out)

1121
1122
1123
1124
1125
1126
1127
1128
    def test_save_checkpoints(self):
        with tempfile.TemporaryDirectory() as tmpdir:
            trainer = get_regression_trainer(output_dir=tmpdir, save_steps=5)
            trainer.train()
            self.check_saved_checkpoints(tmpdir, 5, int(self.n_epochs * 64 / self.batch_size))

        # With a regular model that is not a PreTrainedModel
        with tempfile.TemporaryDirectory() as tmpdir:
1129
            trainer = get_regression_trainer(output_dir=tmpdir, save_steps=5, pretrained=False)
1130
1131
1132
            trainer.train()
            self.check_saved_checkpoints(tmpdir, 5, int(self.n_epochs * 64 / self.batch_size), False)

1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
    @require_torch_multi_gpu
    def test_run_seq2seq_double_train_wrap_once(self):
        # test that we don't wrap the model more than once
        # since wrapping primarily happens on multi-gpu setup we want multiple gpus to test for
        # example DataParallel(DataParallel(model))

        trainer = get_regression_trainer()
        trainer.train()
        model_wrapped_before = trainer.model_wrapped
        trainer.train()
        model_wrapped_after = trainer.model_wrapped
        self.assertIs(model_wrapped_before, model_wrapped_after, "should be not wrapped twice")

1146
    @require_torch_up_to_2_gpus
1147
    def test_can_resume_training(self):
1148
1149
1150
        # This test will fail for more than 2 GPUs since the batch size will get bigger and with the number of
        # save_steps, the checkpoint will resume training at epoch 2 or more (so the data seen by the model
        # won't be the same since the training dataloader is shuffled).
1151

1152
        with tempfile.TemporaryDirectory() as tmpdir:
1153
1154
1155
1156
1157
1158
1159
            kwargs = {
                "output_dir": tmpdir,
                "train_len": 128,
                "save_steps": 5,
                "learning_rate": 0.1,
                "logging_steps": 5,
            }
1160
            trainer = get_regression_trainer(**kwargs)
1161
1162
1163
1164
1165
1166
            trainer.train()
            (a, b) = trainer.model.a.item(), trainer.model.b.item()
            state = dataclasses.asdict(trainer.state)

            checkpoint = os.path.join(tmpdir, "checkpoint-5")

1167
            # Reinitialize trainer
1168
            trainer = get_regression_trainer(**kwargs)
1169

1170
            trainer.train(resume_from_checkpoint=checkpoint)
1171
1172
1173
1174
            (a1, b1) = trainer.model.a.item(), trainer.model.b.item()
            state1 = dataclasses.asdict(trainer.state)
            self.assertEqual(a, a1)
            self.assertEqual(b, b1)
1175
            self.check_trainer_state_are_the_same(state, state1)
1176

1177
1178
1179
1180
            # Now check with a later checkpoint that it also works when we span over one epoch
            checkpoint = os.path.join(tmpdir, "checkpoint-15")

            # Reinitialize trainer and load model
1181
            trainer = get_regression_trainer(**kwargs)
1182

1183
            trainer.train(resume_from_checkpoint=checkpoint)
1184
1185
1186
1187
            (a1, b1) = trainer.model.a.item(), trainer.model.b.item()
            state1 = dataclasses.asdict(trainer.state)
            self.assertEqual(a, a1)
            self.assertEqual(b, b1)
1188
            self.check_trainer_state_are_the_same(state, state1)
1189

1190
1191
        # With a regular model that is not a PreTrainedModel
        with tempfile.TemporaryDirectory() as tmpdir:
1192
1193
1194
1195
1196
1197
1198
            kwargs = {
                "output_dir": tmpdir,
                "train_len": 128,
                "save_steps": 5,
                "learning_rate": 0.1,
                "pretrained": False,
            }
1199
1200

            trainer = get_regression_trainer(**kwargs)
1201
1202
1203
1204
1205
1206
1207
            trainer.train()
            (a, b) = trainer.model.a.item(), trainer.model.b.item()
            state = dataclasses.asdict(trainer.state)

            checkpoint = os.path.join(tmpdir, "checkpoint-5")

            # Reinitialize trainer and load model
1208
            trainer = get_regression_trainer(**kwargs)
1209

1210
            trainer.train(resume_from_checkpoint=checkpoint)
1211
1212
1213
1214
            (a1, b1) = trainer.model.a.item(), trainer.model.b.item()
            state1 = dataclasses.asdict(trainer.state)
            self.assertEqual(a, a1)
            self.assertEqual(b, b1)
1215
            self.check_trainer_state_are_the_same(state, state1)
1216

1217
1218
1219
1220
            # Now check with a later checkpoint that it also works when we span over one epoch
            checkpoint = os.path.join(tmpdir, "checkpoint-15")

            # Reinitialize trainer and load model
1221
            trainer = get_regression_trainer(**kwargs)
1222

1223
            trainer.train(resume_from_checkpoint=checkpoint)
1224
1225
1226
1227
            (a1, b1) = trainer.model.a.item(), trainer.model.b.item()
            state1 = dataclasses.asdict(trainer.state)
            self.assertEqual(a, a1)
            self.assertEqual(b, b1)
1228
            self.check_trainer_state_are_the_same(state, state1)
1229

1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
        # Now check failures

        # 1. fail to find a bogus checkpoint
        trainer = get_regression_trainer()
        with self.assertRaises(Exception) as context:
            trainer.train(resume_from_checkpoint=f"{checkpoint}-bogus")
        self.assertTrue("Can't find a valid checkpoint at" in str(context.exception))

        # 2. fail to find any checkpoint - due a fresh output_dir
        output_dir2 = self.get_auto_remove_tmp_dir()
        trainer = get_regression_trainer(output_dir=output_dir2)
        with self.assertRaises(Exception) as context:
            trainer.train(resume_from_checkpoint=True)
        self.assertTrue("No valid checkpoint found in output directory" in str(context.exception))

1245
    def test_resume_training_with_randomness(self):
1246
1247
1248
1249
        # For more than 1 GPUs, since the randomness is introduced in the model and with DataParallel (which is used
        # in this test for more than 2 GPUs), the calls to the torch RNG will happen in a random order (sometimes
        # GPU 0 will call first and sometimes GPU 1).
        random_torch = not torch.cuda.is_available() or torch.cuda.device_count() <= 1
1250
1251
1252
1253
1254
1255

        if torch.cuda.is_available():
            torch.backends.cudnn.deterministic = True
        train_dataset = RegressionDataset(length=128)
        eval_dataset = RegressionDataset()

1256
1257
1258
        with self.subTest("Test every step"):
            config = RegressionModelConfig(a=0, b=2, random_torch=random_torch)
            model = RegressionRandomPreTrainedModel(config)
1259

1260
1261
1262
            tmp_dir = self.get_auto_remove_tmp_dir()
            args = RegressionTrainingArguments(tmp_dir, save_steps=5, learning_rate=0.1)
            trainer = Trainer(model, args, train_dataset=train_dataset, eval_dataset=eval_dataset)
1263

1264
1265
            trainer.train()
            (a, b) = trainer.model.a.item(), trainer.model.b.item()
1266

1267
1268
1269
1270
1271
            model = RegressionRandomPreTrainedModel(config)
            trainer = Trainer(model, args, train_dataset=train_dataset, eval_dataset=eval_dataset)
            trainer.train(resume_from_checkpoint=os.path.join(tmp_dir, "checkpoint-15"))
            (a1, b1) = trainer.model.a.item(), trainer.model.b.item()

1272
1273
            self.assertAlmostEqual(a, a1, delta=1e-5)
            self.assertAlmostEqual(b, b1, delta=1e-5)
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

        with self.subTest("Test every epoch"):
            config = RegressionModelConfig(a=0, b=2, random_torch=random_torch)
            model = RegressionRandomPreTrainedModel(config)

            tmp_dir = self.get_auto_remove_tmp_dir()
            args = RegressionTrainingArguments(tmp_dir, save_strategy="epoch", learning_rate=0.1)
            trainer = Trainer(model, args, train_dataset=train_dataset, eval_dataset=eval_dataset)

            trainer.train()
            (a, b) = trainer.model.a.item(), trainer.model.b.item()

            model = RegressionRandomPreTrainedModel(config)
            trainer = Trainer(model, args, train_dataset=train_dataset, eval_dataset=eval_dataset)

            checkpoints = [d for d in os.listdir(tmp_dir) if d.startswith("checkpoint-")]
            # There should be one checkpoint per epoch.
            self.assertEqual(len(checkpoints), 3)
            checkpoint_dir = sorted(checkpoints, key=lambda x: int(x.replace("checkpoint-", "")))[0]

            trainer.train(resume_from_checkpoint=os.path.join(tmp_dir, checkpoint_dir))
            (a1, b1) = trainer.model.a.item(), trainer.model.b.item()
1296

1297
1298
            self.assertAlmostEqual(a, a1, delta=1e-5)
            self.assertAlmostEqual(b, b1, delta=1e-5)
1299

1300
    @slow
Yih-Dar's avatar
Yih-Dar committed
1301
    @require_accelerate
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
    @require_torch_non_multi_gpu
    def test_auto_batch_size_finder(self):
        if torch.cuda.is_available():
            torch.backends.cudnn.deterministic = True

        SRC_DIR = os.path.abspath(
            os.path.join(os.path.dirname(__file__), "..", "..", "examples", "pytorch", "text-classification")
        )
        sys.path.append(SRC_DIR)
        import run_glue

        with tempfile.TemporaryDirectory() as tmpdir:
            testargs = f"""
                run_glue.py
                --model_name_or_path distilbert-base-uncased
                --task_name mrpc
                --do_train
                --do_eval
                --max_seq_len 128
                --per_device_train_batch_size 4096
                --learning_rate 2e-5
                --num_train_epochs 1
                --output_dir {tmpdir}
                --auto_find_batch_size 0
                """.split()
            with self.assertRaises(RuntimeError):
                with patch.object(sys, "argv", testargs):
                    run_glue.main()

        testargs[-1] = "1"
        with patch.object(sys, "argv", testargs):
            run_glue.main()

1335
    # regression for this issue: https://github.com/huggingface/transformers/issues/12970
1336
    def test_training_with_resume_from_checkpoint_false(self):
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
        train_dataset = RegressionDataset(length=128)
        eval_dataset = RegressionDataset()

        config = RegressionModelConfig(a=0, b=2)
        model = RegressionRandomPreTrainedModel(config)

        tmp_dir = self.get_auto_remove_tmp_dir()
        args = RegressionTrainingArguments(tmp_dir, save_steps=5, learning_rate=0.1)
        trainer = Trainer(model, args, train_dataset=train_dataset, eval_dataset=eval_dataset)

        trainer.train(resume_from_checkpoint=False)

1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
    @require_torch_up_to_2_gpus
    def test_resume_training_with_shard_checkpoint(self):
        # This test will fail for more than 2 GPUs since the batch size will get bigger and with the number of
        # save_steps, the checkpoint will resume training at epoch 2 or more (so the data seen by the model
        # won't be the same since the training dataloader is shuffled).

        with tempfile.TemporaryDirectory() as tmpdir:
            trainer = get_regression_trainer(output_dir=tmpdir, train_len=128, save_steps=5, learning_rate=0.1)
            trainer.train()
            (a, b) = trainer.model.a.item(), trainer.model.b.item()
            state = dataclasses.asdict(trainer.state)

            checkpoint = os.path.join(tmpdir, "checkpoint-5")
            self.convert_to_sharded_checkpoint(checkpoint)

            # Reinitialize trainer
            trainer = get_regression_trainer(output_dir=tmpdir, train_len=128, save_steps=5, learning_rate=0.1)

            trainer.train(resume_from_checkpoint=checkpoint)
            (a1, b1) = trainer.model.a.item(), trainer.model.b.item()
            state1 = dataclasses.asdict(trainer.state)
            self.assertEqual(a, a1)
            self.assertEqual(b, b1)
            self.check_trainer_state_are_the_same(state, state1)

1374
    @require_torch_up_to_2_gpus
1375
    def test_resume_training_with_gradient_accumulation(self):
1376
1377
1378
1379
        # This test will fail for more than 2 GPUs since the batch size will get bigger and with the number of
        # save_steps, the checkpoint will resume training at epoch 2 or more (so the data seen by the model
        # won't be the same since the training dataloader is shuffled).

1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
        with tempfile.TemporaryDirectory() as tmpdir:
            trainer = get_regression_trainer(
                output_dir=tmpdir,
                train_len=128,
                gradient_accumulation_steps=2,
                per_device_train_batch_size=4,
                save_steps=5,
                learning_rate=0.1,
            )
            trainer.train()
            (a, b) = trainer.model.a.item(), trainer.model.b.item()
            state = dataclasses.asdict(trainer.state)

            checkpoint = os.path.join(tmpdir, "checkpoint-5")

1395
1396
1397
1398
1399
1400
1401
1402
1403
            # Reinitialize trainer
            trainer = get_regression_trainer(
                output_dir=tmpdir,
                train_len=128,
                gradient_accumulation_steps=2,
                per_device_train_batch_size=4,
                save_steps=5,
                learning_rate=0.1,
            )
1404

1405
            trainer.train(resume_from_checkpoint=checkpoint)
1406
            (a1, b1) = trainer.model.a.item(), trainer.model.b.item()
1407
1408
1409
1410
1411
            state1 = dataclasses.asdict(trainer.state)
            self.assertEqual(a, a1)
            self.assertEqual(b, b1)
            self.check_trainer_state_are_the_same(state, state1)

1412
    @require_torch_up_to_2_gpus
1413
    def test_resume_training_with_frozen_params(self):
1414
1415
1416
1417
        # This test will fail for more than 2 GPUs since the batch size will get bigger and with the number of
        # save_steps, the checkpoint will resume training at epoch 2 or more (so the data seen by the model
        # won't be the same since the training dataloader is shuffled).

1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
        with tempfile.TemporaryDirectory() as tmpdir:
            trainer = get_regression_trainer(
                output_dir=tmpdir,
                train_len=128,
                per_device_train_batch_size=4,
                save_steps=5,
                learning_rate=0.1,
            )
            trainer.model.a.requires_grad_(False)
            trainer.train()
            (a, b) = trainer.model.a.item(), trainer.model.b.item()
            state = dataclasses.asdict(trainer.state)

            checkpoint = os.path.join(tmpdir, "checkpoint-5")

            # Reinitialize trainer
            trainer = get_regression_trainer(
                output_dir=tmpdir,
                train_len=128,
                per_device_train_batch_size=4,
                save_steps=5,
                learning_rate=0.1,
            )
            trainer.model.a.requires_grad_(False)

            trainer.train(resume_from_checkpoint=checkpoint)

            self.assertFalse(trainer.model.a.requires_grad)
            (a1, b1) = trainer.model.a.item(), trainer.model.b.item()
1447
1448
1449
            state1 = dataclasses.asdict(trainer.state)
            self.assertEqual(a, a1)
            self.assertEqual(b, b1)
1450
            self.check_trainer_state_are_the_same(state, state1)
1451

1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
    def test_load_best_model_at_end(self):
        total = int(self.n_epochs * 64 / self.batch_size)
        with tempfile.TemporaryDirectory() as tmpdir:
            trainer = get_regression_trainer(
                a=1.5,
                b=2.5,
                output_dir=tmpdir,
                learning_rate=0.1,
                eval_steps=5,
                evaluation_strategy="steps",
1462
                save_steps=5,
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
                load_best_model_at_end=True,
            )
            self.assertFalse(trainer.args.greater_is_better)
            trainer.train()
            self.check_saved_checkpoints(tmpdir, 5, total)
            self.check_best_model_has_been_loaded(tmpdir, 5, total, trainer, "eval_loss")

        with tempfile.TemporaryDirectory() as tmpdir:
            trainer = get_regression_trainer(
                a=1.5,
                b=2.5,
                output_dir=tmpdir,
                learning_rate=0.1,
                eval_steps=5,
                evaluation_strategy="steps",
1478
                save_steps=5,
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
                load_best_model_at_end=True,
                metric_for_best_model="accuracy",
                compute_metrics=AlmostAccuracy(),
            )
            self.assertTrue(trainer.args.greater_is_better)
            trainer.train()
            self.check_saved_checkpoints(tmpdir, 5, total)
            self.check_best_model_has_been_loaded(tmpdir, 5, total, trainer, "eval_accuracy", greater_is_better=True)

        with tempfile.TemporaryDirectory() as tmpdir:
            trainer = get_regression_trainer(
                a=1.5,
                b=2.5,
                output_dir=tmpdir,
                learning_rate=0.1,
                evaluation_strategy="epoch",
1495
                save_strategy="epoch",
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
                load_best_model_at_end=True,
                metric_for_best_model="accuracy",
                compute_metrics=AlmostAccuracy(),
            )
            self.assertTrue(trainer.args.greater_is_better)
            trainer.train()
            self.check_saved_checkpoints(tmpdir, 64 // self.batch_size, total)
            self.check_best_model_has_been_loaded(
                tmpdir, 64 // self.batch_size, total, trainer, "eval_accuracy", greater_is_better=True
            )

        # Test this works with a non PreTrainedModel
        with tempfile.TemporaryDirectory() as tmpdir:
            trainer = get_regression_trainer(
                output_dir=tmpdir,
                learning_rate=0.1,
                eval_steps=5,
                evaluation_strategy="steps",
1514
                save_steps=5,
1515
                load_best_model_at_end=True,
1516
                pretrained=False,
1517
1518
1519
1520
1521
1522
            )
            self.assertFalse(trainer.args.greater_is_better)
            trainer.train()
            self.check_saved_checkpoints(tmpdir, 5, total, is_pretrained=False)
            self.check_best_model_has_been_loaded(tmpdir, 5, total, trainer, "eval_loss", is_pretrained=False)

1523
    @slow
Julien Chaumond's avatar
Julien Chaumond committed
1524
1525
1526
1527
1528
    def test_trainer_eval_mrpc(self):
        MODEL_ID = "bert-base-cased-finetuned-mrpc"
        tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
        model = AutoModelForSequenceClassification.from_pretrained(MODEL_ID)
        data_args = GlueDataTrainingArguments(
1529
            task_name="mrpc", data_dir=f"{get_tests_dir()}/fixtures/tests_samples/MRPC", overwrite_cache=True
Julien Chaumond's avatar
Julien Chaumond committed
1530
        )
1531
        eval_dataset = GlueDataset(data_args, tokenizer=tokenizer, mode="dev")
Julien Chaumond's avatar
Julien Chaumond committed
1532
1533
1534
1535

        training_args = TrainingArguments(output_dir="./examples", no_cuda=True)
        trainer = Trainer(model=model, args=training_args, eval_dataset=eval_dataset)
        result = trainer.evaluate()
1536
        self.assertLess(result["eval_loss"], 0.2)
Julien Chaumond's avatar
Julien Chaumond committed
1537

1538
    @slow
Julien Chaumond's avatar
Julien Chaumond committed
1539
1540
1541
1542
    def test_trainer_eval_lm(self):
        MODEL_ID = "distilroberta-base"
        tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
        dataset = LineByLineTextDataset(
Lysandre's avatar
Lysandre committed
1543
1544
1545
            tokenizer=tokenizer,
            file_path=PATH_SAMPLE_TEXT,
            block_size=tokenizer.max_len_single_sentence,
Julien Chaumond's avatar
Julien Chaumond committed
1546
1547
        )
        self.assertEqual(len(dataset), 31)
1548

1549
    def test_training_iterable_dataset(self):
1550
1551
        config = RegressionModelConfig()
        model = RegressionPreTrainedModel(config)
1552
1553
        # Adding one column not used by the model should have no impact
        train_dataset = SampleIterableDataset(label_names=["labels", "extra"])
1554

1555
        args = RegressionTrainingArguments(output_dir="./examples", max_steps=4)
1556
        trainer = Trainer(model=model, args=args, train_dataset=train_dataset)
1557
        trainer.train()
1558
        self.assertEqual(trainer.state.global_step, 4)
1559

1560
1561
        loader = trainer.get_train_dataloader()
        self.assertIsInstance(loader, torch.utils.data.DataLoader)
1562
1563
        self.assertIsInstance(loader.sampler, torch.utils.data.dataloader._InfiniteConstantSampler)

1564
1565
1566
1567
1568
1569
1570
    def test_training_finite_iterable_dataset(self):
        config = RegressionModelConfig()
        model = RegressionPreTrainedModel(config)

        batch_size = 1
        num_samples = 10

1571
        available_steps = num_samples // batch_size
1572
1573
1574

        data = FiniteIterableDataset(length=num_samples)
        train_args = TrainingArguments(
1575
            "..",
1576
1577
1578
1579
1580
1581
1582
1583
            max_steps=available_steps + 1,  # set a higher number than actually available
            per_device_train_batch_size=batch_size,
        )
        trainer = Trainer(model, train_dataset=data, args=train_args)
        with self.assertLogs("transformers.trainer", level="WARNING") as logs:
            trainer.train()
        self.assertIn(f"stopping training at step {available_steps}!", logs.output[0])

1584
1585
1586
    def test_evaluation_iterable_dataset(self):
        config = RegressionModelConfig(a=1.5, b=2.5)
        model = RegressionPreTrainedModel(config)
1587
1588
        # Adding one column not used by the model should have no impact
        eval_dataset = SampleIterableDataset(label_names=["labels", "extra"])
1589
1590
1591
1592

        args = RegressionTrainingArguments(output_dir="./examples")
        trainer = Trainer(model=model, args=args, eval_dataset=eval_dataset, compute_metrics=AlmostAccuracy())
        results = trainer.evaluate()
1593

1594
1595
1596
1597
1598
1599
        x, y = trainer.eval_dataset.dataset.x, trainer.eval_dataset.dataset.ys[0]
        pred = 1.5 * x + 2.5
        expected_loss = ((pred - y) ** 2).mean()
        self.assertAlmostEqual(results["eval_loss"], expected_loss)
        expected_acc = AlmostAccuracy()((pred, y))["accuracy"]
        self.assertAlmostEqual(results["eval_accuracy"], expected_acc)
1600

1601
1602
1603
        # With a number of elements not a round multiple of the batch size
        eval_dataset = SampleIterableDataset(length=66)
        results = trainer.evaluate(eval_dataset)
1604

1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
        x, y = eval_dataset.dataset.x, eval_dataset.dataset.ys[0]
        pred = 1.5 * x + 2.5
        expected_loss = ((pred - y) ** 2).mean()
        self.assertAlmostEqual(results["eval_loss"], expected_loss)
        expected_acc = AlmostAccuracy()((pred, y))["accuracy"]
        self.assertAlmostEqual(results["eval_accuracy"], expected_acc)

    def test_predict_iterable_dataset(self):
        config = RegressionModelConfig(a=1.5, b=2.5)
        model = RegressionPreTrainedModel(config)
        eval_dataset = SampleIterableDataset()

        args = RegressionTrainingArguments(output_dir="./examples")
        trainer = Trainer(model=model, args=args, eval_dataset=eval_dataset, compute_metrics=AlmostAccuracy())

        preds = trainer.predict(trainer.eval_dataset).predictions
        x = eval_dataset.dataset.x
        self.assertTrue(np.allclose(preds, 1.5 * x + 2.5))

        # With a number of elements not a round multiple of the batch size
1625
1626
        # Adding one column not used by the model should have no impact
        test_dataset = SampleIterableDataset(length=66, label_names=["labels", "extra"])
1627
1628
1629
        preds = trainer.predict(test_dataset).predictions
        x = test_dataset.dataset.x
        self.assertTrue(np.allclose(preds, 1.5 * x + 2.5))
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644

    def test_num_train_epochs_in_training(self):
        # len(train_dl) < gradient_accumulation_steps shouldn't give ``ZeroDivisionError`` when ``max_steps`` is given.
        # It should give 1 update step for each epoch.
        trainer = get_regression_trainer(
            max_steps=3, train_len=64, per_device_train_batch_size=16, gradient_accumulation_steps=5
        )
        train_output = trainer.train()
        self.assertEqual(train_output.global_step, 3)

        # Even ``max_steps`` is not specified, we still expect 1 update step for each epoch if
        # len(train_dl) < gradient_accumulation_steps.
        trainer = get_regression_trainer(train_len=64, per_device_train_batch_size=16, gradient_accumulation_steps=5)
        train_output = trainer.train()
        self.assertEqual(train_output.global_step, int(self.n_epochs))
Marcin Zab艂ocki's avatar
Marcin Zab艂ocki committed
1645

1646
1647
    def test_early_stopping_callback(self):
        # early stopping stops training before num_training_epochs
1648
1649
1650
1651
1652
1653
1654
        with tempfile.TemporaryDirectory() as tmp_dir:
            trainer = get_regression_trainer(
                output_dir=tmp_dir,
                num_train_epochs=20,
                gradient_accumulation_steps=1,
                per_device_train_batch_size=16,
                load_best_model_at_end=True,
1655
                evaluation_strategy=IntervalStrategy.EPOCH,
1656
                save_strategy=IntervalStrategy.EPOCH,
1657
1658
1659
1660
1661
1662
                compute_metrics=AlmostAccuracy(),
                metric_for_best_model="accuracy",
            )
            trainer.add_callback(EarlyStoppingCallback(1, 0.0001))
            train_output = trainer.train()
            self.assertLess(train_output.global_step, 20 * 64 / 16)
1663
1664

        # Invalid inputs to trainer with early stopping callback result in assertion error
1665
1666
1667
1668
1669
1670
        with tempfile.TemporaryDirectory() as tmp_dir:
            trainer = get_regression_trainer(
                output_dir=tmp_dir,
                num_train_epochs=20,
                gradient_accumulation_steps=1,
                per_device_train_batch_size=16,
1671
                evaluation_strategy=IntervalStrategy.EPOCH,
1672
1673
1674
1675
                compute_metrics=AlmostAccuracy(),
                metric_for_best_model="accuracy",
            )
            trainer.add_callback(EarlyStoppingCallback(1))
1676
            self.assertEqual(trainer.state.global_step, 0)
1677
1678
1679
1680
            try:
                trainer.train()
            except AssertionError:
                self.assertEqual(trainer.state.global_step, 0)
1681

Marcin Zab艂ocki's avatar
Marcin Zab艂ocki committed
1682
1683
1684
1685
    def test_flos_extraction(self):
        trainer = get_regression_trainer(learning_rate=0.1)

        def assert_flos_extraction(trainer, wrapped_model_to_check):
1686
1687
            self.assertEqual(trainer.model, unwrap_model(wrapped_model_to_check))
            self.assertGreaterEqual(getattr(unwrap_model(wrapped_model_to_check).config, "total_flos", 0), 0)
Marcin Zab艂ocki's avatar
Marcin Zab艂ocki committed
1688
1689
1690
1691
1692

        # with plain model
        assert_flos_extraction(trainer, trainer.model)

        # with enforced DataParallel
1693
        assert_flos_extraction(trainer, nn.DataParallel(trainer.model))
1694

1695
1696
1697
        trainer.train()
        self.assertTrue(isinstance(trainer.state.total_flos, float))

1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
    def check_checkpoint_deletion(self, trainer, output_dir, expected):
        # Make fake checkpoints
        for n in [5, 10, 15, 20, 25]:
            os.makedirs(os.path.join(output_dir, f"{PREFIX_CHECKPOINT_DIR}-{n}"), exist_ok=True)
        trainer._rotate_checkpoints(output_dir=output_dir)
        glob_checkpoints = [str(x) for x in Path(output_dir).glob(f"{PREFIX_CHECKPOINT_DIR}-*")]
        values = [int(re.match(f".*{PREFIX_CHECKPOINT_DIR}-([0-9]+)", d).groups()[0]) for d in glob_checkpoints]
        self.assertSetEqual(set(values), set(expected))

    def test_checkpoint_rotation(self):
        with tempfile.TemporaryDirectory() as tmp_dir:
            # Without best model at end
            trainer = get_regression_trainer(output_dir=tmp_dir, save_total_limit=2)
            self.check_checkpoint_deletion(trainer, tmp_dir, [20, 25])

            # With best model at end
1714
1715
1716
            trainer = get_regression_trainer(
                output_dir=tmp_dir, evaluation_strategy="steps", load_best_model_at_end=True, save_total_limit=2
            )
1717
1718
1719
1720
1721
            trainer.state.best_model_checkpoint = os.path.join(tmp_dir, "checkpoint-5")
            self.check_checkpoint_deletion(trainer, tmp_dir, [5, 25])

            # Edge case: we don't always honor save_total_limit=1 if load_best_model_at_end=True to be able to resume
            # from checkpoint
1722
1723
1724
            trainer = get_regression_trainer(
                output_dir=tmp_dir, evaluation_strategy="steps", load_best_model_at_end=True, save_total_limit=1
            )
1725
1726
1727
1728
1729
1730
            trainer.state.best_model_checkpoint = os.path.join(tmp_dir, "checkpoint-25")
            self.check_checkpoint_deletion(trainer, tmp_dir, [25])

            trainer.state.best_model_checkpoint = os.path.join(tmp_dir, "checkpoint-5")
            self.check_checkpoint_deletion(trainer, tmp_dir, [5, 25])

1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
    def check_mem_metrics(self, trainer, check_func):
        metrics = trainer.train().metrics
        check_func("init_mem_cpu_alloc_delta", metrics)
        check_func("train_mem_cpu_alloc_delta", metrics)
        if torch.cuda.device_count() > 0:
            check_func("init_mem_gpu_alloc_delta", metrics)
            check_func("train_mem_gpu_alloc_delta", metrics)

        metrics = trainer.evaluate()
        check_func("eval_mem_cpu_alloc_delta", metrics)
        if torch.cuda.device_count() > 0:
            check_func("eval_mem_gpu_alloc_delta", metrics)

        metrics = trainer.predict(RegressionDataset()).metrics
        check_func("test_mem_cpu_alloc_delta", metrics)
        if torch.cuda.device_count() > 0:
            check_func("test_mem_gpu_alloc_delta", metrics)

    def test_mem_metrics(self):
        # with mem metrics enabled
1751
        trainer = get_regression_trainer(skip_memory_metrics=False)
1752
1753
1754
1755
1756
1757
        self.check_mem_metrics(trainer, self.assertIn)

        # with mem metrics disabled
        trainer = get_regression_trainer(skip_memory_metrics=True)
        self.check_mem_metrics(trainer, self.assertNotIn)

1758
1759
1760
1761
1762
    @require_torch_gpu
    def test_fp16_full_eval(self):
        # this is a sensitive test so let's keep debugging printouts in place for quick diagnosis.
        # it's using pretty large safety margins, but small enough to detect broken functionality.
        debug = 0
1763
        n_gpus = get_gpu_count()
1764
1765

        bs = 8
1766
        eval_len = 16 * n_gpus
1767
1768
1769
1770
1771
        # make the params somewhat big so that there will be enough RAM consumed to be able to
        # measure things. We should get about 64KB for a+b in fp32
        a = torch.ones(1000, bs) + 0.001
        b = torch.ones(1000, bs) - 0.001

1772
        # 1. with fp16_full_eval disabled
1773
        trainer = get_regression_trainer(a=a, b=b, eval_len=eval_len, skip_memory_metrics=False)
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
        metrics = trainer.evaluate()
        del trainer
        gc.collect()

        fp32_init = metrics["init_mem_gpu_alloc_delta"]
        fp32_eval = metrics["eval_mem_gpu_alloc_delta"]

        if debug:
            print(f"fp32_init {fp32_init}")
            print(f"fp32_eval {fp32_eval}")

        # here we expect the model to be preloaded in trainer.__init__ and consume around 64K gpu ram.
        # perfect world: fp32_init == 64<<10
        self.assertGreater(fp32_init, 59_000)
        # after eval should be no extra memory allocated - with a small margin (other than the peak
        # memory consumption for the forward calculation that gets recovered)
        # perfect world: fp32_eval == close to zero
        self.assertLess(fp32_eval, 5_000)

1793
        # 2. with fp16_full_eval enabled
1794
        trainer = get_regression_trainer(a=a, b=b, eval_len=eval_len, fp16_full_eval=True, skip_memory_metrics=False)
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
        metrics = trainer.evaluate()
        fp16_init = metrics["init_mem_gpu_alloc_delta"]
        fp16_eval = metrics["eval_mem_gpu_alloc_delta"]

        if debug:
            print(f"fp16_init {fp16_init}")
            print(f"fp16_eval {fp16_eval}")

        # here we expect the model to not be preloaded in trainer.__init__, so with a small margin it should be close to 0
        # perfect world: fp16_init == close to zero
        self.assertLess(fp16_init, 5_000)
        # here we put the model on device in eval and only `half()` of it, i.e. about 32K,(again we ignore the peak margin which gets returned back)
        # perfect world: fp32_init == 32<<10
        self.assertGreater(fp16_eval, 27_000)

        # 3. relative comparison fp32 vs full fp16
        # should be about half of fp16_init
        # perfect world: fp32_init/2 == fp16_eval
        self.assertAlmostEqual(fp16_eval, fp32_init / 2, delta=5_000)

1815
1816
    @require_torch_non_multi_gpu
    @require_torchdynamo
1817
    @require_torch_tensorrt_fx
1818
    def test_torchdynamo_full_eval(self):
Yih-Dar's avatar
Yih-Dar committed
1819
1820
        import torchdynamo

1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
        # torchdynamo at the moment doesn't support DP/DDP, therefore require a single gpu
        n_gpus = get_gpu_count()

        bs = 8
        eval_len = 16 * n_gpus
        # make the params are somewhat big so that there will be enough RAM consumed to be able to
        # measure things. We should get about 64KB for a+b in fp32
        a = torch.ones(1000, bs) + 0.001
        b = torch.ones(1000, bs) - 0.001

        # 1. Default - without TorchDynamo
        trainer = get_regression_trainer(a=a, b=b, eval_len=eval_len)
        metrics = trainer.evaluate()
        original_eval_loss = metrics["eval_loss"]
        del trainer

        # 2. TorchDynamo eager
        trainer = get_regression_trainer(a=a, b=b, eval_len=eval_len, torchdynamo="eager")
        metrics = trainer.evaluate()
        self.assertAlmostEqual(metrics["eval_loss"], original_eval_loss)
        del trainer
Yih-Dar's avatar
Yih-Dar committed
1842
        torchdynamo.reset()
1843
1844
1845
1846
1847

        # 3. TorchDynamo nvfuser
        trainer = get_regression_trainer(a=a, b=b, eval_len=eval_len, torchdynamo="nvfuser")
        metrics = trainer.evaluate()
        self.assertAlmostEqual(metrics["eval_loss"], original_eval_loss)
Yih-Dar's avatar
Yih-Dar committed
1848
        torchdynamo.reset()
1849

1850
1851
1852
1853
        # 4. TorchDynamo fx2trt
        trainer = get_regression_trainer(a=a, b=b, eval_len=eval_len, torchdynamo="fx2trt")
        metrics = trainer.evaluate()
        self.assertAlmostEqual(metrics["eval_loss"], original_eval_loss)
Yih-Dar's avatar
Yih-Dar committed
1854
        torchdynamo.reset()
1855

1856
1857
1858
1859
    @require_torch_non_multi_gpu
    @require_torchdynamo
    def test_torchdynamo_memory(self):
        # torchdynamo at the moment doesn't support DP/DDP, therefore require a single gpu
Yih-Dar's avatar
Yih-Dar committed
1860
1861
        import torchdynamo

1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
        class CustomTrainer(Trainer):
            def compute_loss(self, model, inputs, return_outputs=False):
                x = inputs["x"]
                output = model(x)
                if self.args.n_gpu == 1:
                    return output.mean()
                return output

        class MyModule(torch.nn.Module):
            """Simple module that does aggressive fusion"""

            def __init__(self):
                super().__init__()

            def forward(self, x):
                for _ in range(20):
Yih-Dar's avatar
Yih-Dar committed
1878
                    x = torch.cos(x)
1879
1880
1881
1882
                return x

        mod = MyModule()

1883
        # 1. without TorchDynamo (eager baseline)
1884
1885
1886
1887
1888
1889
1890
        a = torch.ones(1024, 1024, device="cuda", requires_grad=True)
        a.grad = None
        trainer = CustomTrainer(model=mod)
        # warmup
        for _ in range(10):
            orig_loss = trainer.training_step(mod, {"x": a})

1891
1892
1893
        # resets
        gc.collect()
        torch.cuda.empty_cache()
1894
        torch.cuda.reset_peak_memory_stats()
1895

1896
1897
        orig_loss = trainer.training_step(mod, {"x": a})
        orig_peak_mem = torch.cuda.max_memory_allocated()
Yih-Dar's avatar
Yih-Dar committed
1898
        torchdynamo.reset()
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
        del trainer

        # 2. TorchDynamo nvfuser
        a = torch.ones(1024, 1024, device="cuda", requires_grad=True)
        a.grad = None
        args = TrainingArguments(output_dir="None", torchdynamo="nvfuser")
        trainer = CustomTrainer(model=mod, args=args)
        # warmup
        for _ in range(10):
            loss = trainer.training_step(mod, {"x": a})

1910
1911
1912
        # resets
        gc.collect()
        torch.cuda.empty_cache()
1913
        torch.cuda.reset_peak_memory_stats()
1914

1915
1916
        loss = trainer.training_step(mod, {"x": a})
        peak_mem = torch.cuda.max_memory_allocated()
Yih-Dar's avatar
Yih-Dar committed
1917
        torchdynamo.reset()
1918
1919
1920
1921
1922
1923
1924
1925
1926
        del trainer

        # Functional check
        self.assertAlmostEqual(loss, orig_loss)

        # AOT Autograd recomputaion and nvfuser recomputation optimization
        # aggressively fuses the operations and reduce the memory footprint.
        self.assertGreater(orig_peak_mem, peak_mem * 2)

1927
    @require_torch_gpu
1928
    @require_torch_bf16_gpu
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
    def test_bf16_full_eval(self):
        # note: most of the logic is the same as test_fp16_full_eval

        # this is a sensitive test so let's keep debugging printouts in place for quick diagnosis.
        # it's using pretty large safety margins, but small enough to detect broken functionality.
        debug = 0
        n_gpus = get_gpu_count()

        bs = 8
        eval_len = 16 * n_gpus
        # make the params somewhat big so that there will be enough RAM consumed to be able to
        # measure things. We should get about 64KB for a+b in fp32
        a = torch.ones(1000, bs) + 0.001
        b = torch.ones(1000, bs) - 0.001

1944
        # 1. with bf16_full_eval disabled
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
        trainer = get_regression_trainer(a=a, b=b, eval_len=eval_len, skip_memory_metrics=False)
        metrics = trainer.evaluate()
        del trainer
        gc.collect()

        fp32_init = metrics["init_mem_gpu_alloc_delta"]
        fp32_eval = metrics["eval_mem_gpu_alloc_delta"]

        if debug:
            print(f"fp32_init {fp32_init}")
            print(f"fp32_eval {fp32_eval}")

        # here we expect the model to be preloaded in trainer.__init__ and consume around 64K gpu ram.
        # perfect world: fp32_init == 64<<10
        self.assertGreater(fp32_init, 59_000)
        # after eval should be no extra memory allocated - with a small margin (other than the peak
        # memory consumption for the forward calculation that gets recovered)
        # perfect world: fp32_eval == close to zero
        self.assertLess(fp32_eval, 5_000)

1965
        # 2. with bf16_full_eval enabled
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
        trainer = get_regression_trainer(a=a, b=b, eval_len=eval_len, bf16_full_eval=True, skip_memory_metrics=False)
        metrics = trainer.evaluate()
        bf16_init = metrics["init_mem_gpu_alloc_delta"]
        bf16_eval = metrics["eval_mem_gpu_alloc_delta"]

        if debug:
            print(f"bf16_init {bf16_init}")
            print(f"bf16_eval {bf16_eval}")

        # here we expect the model to not be preloaded in trainer.__init__, so with a small margin it should be close to 0
        # perfect world: bf16_init == close to zero
        self.assertLess(bf16_init, 5_000)
        # here we put the model on device in eval and only `half()` of it, i.e. about 32K,(again we ignore the peak margin which gets returned back)
        # perfect world: fp32_init == 32<<10
        self.assertGreater(bf16_eval, 27_000)

        # 3. relative comparison fp32 vs full bf16
        # should be about half of bf16_init
        # perfect world: fp32_init/2 == bf16_eval
        self.assertAlmostEqual(bf16_eval, fp32_init / 2, delta=5_000)

1987
    def test_no_wd_param_group(self):
1988
        model = nn.Sequential(TstLayer(128), nn.ModuleList([TstLayer(128), TstLayer(128)]))
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
        trainer = Trainer(model=model)
        trainer.create_optimizer_and_scheduler(10)
        # fmt: off
        wd_names = ['0.linear1.weight', '0.linear2.weight', '1.0.linear1.weight', '1.0.linear2.weight', '1.1.linear1.weight', '1.1.linear2.weight']
        # fmt: on
        wd_params = [p for n, p in model.named_parameters() if n in wd_names]
        no_wd_params = [p for n, p in model.named_parameters() if n not in wd_names]
        self.assertListEqual(trainer.optimizer.param_groups[0]["params"], wd_params)
        self.assertListEqual(trainer.optimizer.param_groups[1]["params"], no_wd_params)

1999

Sylvain Gugger's avatar
Sylvain Gugger committed
2000
2001
2002
2003
2004
@require_torch
@is_staging_test
class TrainerIntegrationWithHubTester(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
2005
2006
2007
        cls._token = TOKEN
        set_access_token(TOKEN)
        HfFolder.save_token(TOKEN)
Sylvain Gugger's avatar
Sylvain Gugger committed
2008
2009
2010

    @classmethod
    def tearDownClass(cls):
2011
2012
        for model in ["test-trainer", "test-trainer-epoch", "test-trainer-step"]:
            try:
2013
                delete_repo(token=cls._token, repo_id=model)
2014
2015
            except HTTPError:
                pass
Sylvain Gugger's avatar
Sylvain Gugger committed
2016
2017

        try:
2018
            delete_repo(token=cls._token, repo_id="valid_org/test-trainer-org")
Sylvain Gugger's avatar
Sylvain Gugger committed
2019
2020
2021
2022
2023
        except HTTPError:
            pass

    def test_push_to_hub(self):
        with tempfile.TemporaryDirectory() as tmp_dir:
2024
2025
2026
            trainer = get_regression_trainer(
                output_dir=os.path.join(tmp_dir, "test-trainer"),
                push_to_hub=True,
2027
                hub_token=self._token,
2028
2029
            )
            url = trainer.push_to_hub()
Sylvain Gugger's avatar
Sylvain Gugger committed
2030
2031
2032
2033
2034
2035

            # Extract repo_name from the url
            re_search = re.search(ENDPOINT_STAGING + r"/([^/]+/[^/]+)/", url)
            self.assertTrue(re_search is not None)
            repo_name = re_search.groups()[0]

2036
            self.assertEqual(repo_name, f"{USER}/test-trainer")
Sylvain Gugger's avatar
Sylvain Gugger committed
2037
2038
2039
2040
2041
2042
2043
2044
2045

            model = RegressionPreTrainedModel.from_pretrained(repo_name)
            self.assertEqual(model.a.item(), trainer.model.a.item())
            self.assertEqual(model.b.item(), trainer.model.b.item())

    def test_push_to_hub_in_organization(self):
        with tempfile.TemporaryDirectory() as tmp_dir:
            trainer = get_regression_trainer(output_dir=tmp_dir)
            trainer.save_model()
2046
2047
2048
            trainer = get_regression_trainer(
                output_dir=os.path.join(tmp_dir, "test-trainer-org"),
                push_to_hub=True,
2049
2050
                hub_model_id="valid_org/test-trainer-org",
                hub_token=self._token,
2051
            )
2052
            url = trainer.push_to_hub()
Sylvain Gugger's avatar
Sylvain Gugger committed
2053
2054
2055
2056
2057

            # Extract repo_name from the url
            re_search = re.search(ENDPOINT_STAGING + r"/([^/]+/[^/]+)/", url)
            self.assertTrue(re_search is not None)
            repo_name = re_search.groups()[0]
2058
            self.assertEqual(repo_name, "valid_org/test-trainer-org")
Sylvain Gugger's avatar
Sylvain Gugger committed
2059

2060
            model = RegressionPreTrainedModel.from_pretrained("valid_org/test-trainer-org")
Sylvain Gugger's avatar
Sylvain Gugger committed
2061
2062
2063
            self.assertEqual(model.a.item(), trainer.model.a.item())
            self.assertEqual(model.b.item(), trainer.model.b.item())

2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
    def get_commit_history(self, repo):
        commit_logs = subprocess.run(
            "git log".split(),
            stderr=subprocess.PIPE,
            stdout=subprocess.PIPE,
            check=True,
            encoding="utf-8",
            cwd=repo,
        ).stdout
        commits = commit_logs.split("\n\n")[1::2]
        return [commit.strip() for commit in commits]

    def test_push_to_hub_with_saves_each_epoch(self):
        with tempfile.TemporaryDirectory() as tmp_dir:
            trainer = get_regression_trainer(
                output_dir=os.path.join(tmp_dir, "test-trainer-epoch"),
                push_to_hub=True,
                hub_token=self._token,
                save_strategy="epoch",
            )
            trainer.train()

2086
2087
2088
2089
            # Wait for the async pushes to be finished
            while trainer.push_in_progress is not None and not trainer.push_in_progress.is_done:
                time.sleep(0.5)

2090
        with tempfile.TemporaryDirectory() as tmp_dir:
2091
            _ = Repository(tmp_dir, clone_from=f"{USER}/test-trainer-epoch", token=self._token)
2092
            commits = self.get_commit_history(tmp_dir)
2093
2094
2095
2096
            self.assertIn("initial commit", commits)
            # We can't test that epoch 2 and 3 are in the commits without being flaky as those might be skipped if
            # the push for epoch 1 wasn't finished at the time.
            self.assertIn("Training in progress, epoch 1", commits)
2097
2098

    def test_push_to_hub_with_saves_each_n_steps(self):
2099
2100
2101
2102
        num_gpus = max(1, get_gpu_count())
        if num_gpus > 2:
            return

2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
        with tempfile.TemporaryDirectory() as tmp_dir:
            trainer = get_regression_trainer(
                output_dir=os.path.join(tmp_dir, "test-trainer-step"),
                push_to_hub=True,
                hub_token=self._token,
                save_strategy="steps",
                save_steps=5,
            )
            trainer.train()

2113
2114
2115
2116
            # Wait for the async pushes to be finished
            while trainer.push_in_progress is not None and not trainer.push_in_progress.is_done:
                time.sleep(0.5)

2117
        with tempfile.TemporaryDirectory() as tmp_dir:
2118
            _ = Repository(tmp_dir, clone_from=f"{USER}/test-trainer-step", token=self._token)
2119
            commits = self.get_commit_history(tmp_dir)
2120
2121
2122
2123
            self.assertIn("initial commit", commits)
            # We can't test that epoch 2 and 3 are in the commits without being flaky as those might be skipped if
            # the push for epoch 1 wasn't finished at the time.
            self.assertIn("Training in progress, step 5", commits)
2124

Sylvain Gugger's avatar
Sylvain Gugger committed
2125

2126
2127
@require_torch
@require_optuna
2128
class TrainerHyperParameterOptunaIntegrationTest(unittest.TestCase):
2129
    def setUp(self):
2130
        args = TrainingArguments("..")
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
        self.n_epochs = args.num_train_epochs
        self.batch_size = args.train_batch_size

    def test_hyperparameter_search(self):
        class MyTrialShortNamer(TrialShortNamer):
            DEFAULTS = {"a": 0, "b": 0}

        def hp_space(trial):
            return {}

        def model_init(trial):
            if trial is not None:
                a = trial.suggest_int("a", -4, 4)
                b = trial.suggest_int("b", -4, 4)
            else:
                a = 0
                b = 0
            config = RegressionModelConfig(a=a, b=b, double_output=False)

            return RegressionPreTrainedModel(config)

        def hp_name(trial):
            return MyTrialShortNamer.shortname(trial.params)

2155
2156
2157
2158
2159
        with tempfile.TemporaryDirectory() as tmp_dir:
            trainer = get_regression_trainer(
                output_dir=tmp_dir,
                learning_rate=0.1,
                logging_steps=1,
2160
                evaluation_strategy=IntervalStrategy.EPOCH,
2161
                save_strategy=IntervalStrategy.EPOCH,
2162
2163
2164
2165
2166
2167
2168
2169
                num_train_epochs=4,
                disable_tqdm=True,
                load_best_model_at_end=True,
                logging_dir="runs",
                run_name="test",
                model_init=model_init,
            )
            trainer.hyperparameter_search(direction="minimize", hp_space=hp_space, hp_name=hp_name, n_trials=4)
2170
2171
2172
2173
2174
2175


@require_torch
@require_ray
class TrainerHyperParameterRayIntegrationTest(unittest.TestCase):
    def setUp(self):
2176
        args = TrainingArguments("..")
2177
2178
2179
        self.n_epochs = args.num_train_epochs
        self.batch_size = args.train_batch_size

2180
    def ray_hyperparameter_search(self):
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
        class MyTrialShortNamer(TrialShortNamer):
            DEFAULTS = {"a": 0, "b": 0}

        def hp_space(trial):
            from ray import tune

            return {
                "a": tune.randint(-4, 4),
                "b": tune.randint(-4, 4),
            }

        def model_init(config):
2193
2194
2195
2196
2197
2198
2199
            if config is None:
                a = 0
                b = 0
            else:
                a = config["a"]
                b = config["b"]
            model_config = RegressionModelConfig(a=a, b=b, double_output=False)
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210

            return RegressionPreTrainedModel(model_config)

        def hp_name(params):
            return MyTrialShortNamer.shortname(params)

        with tempfile.TemporaryDirectory() as tmp_dir:
            trainer = get_regression_trainer(
                output_dir=tmp_dir,
                learning_rate=0.1,
                logging_steps=1,
2211
                evaluation_strategy=IntervalStrategy.EPOCH,
2212
                save_strategy=IntervalStrategy.EPOCH,
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
                num_train_epochs=4,
                disable_tqdm=True,
                load_best_model_at_end=True,
                logging_dir="runs",
                run_name="test",
                model_init=model_init,
            )
            trainer.hyperparameter_search(
                direction="minimize", hp_space=hp_space, hp_name=hp_name, backend="ray", n_trials=4
            )
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233

    def test_hyperparameter_search(self):
        self.ray_hyperparameter_search()

    def test_hyperparameter_search_ray_client(self):
        import ray
        from ray.util.client.ray_client_helpers import ray_start_client_server

        with ray_start_client_server():
            assert ray.util.client.ray.is_connected()
            self.ray_hyperparameter_search()
2234
2235


2236
@slow
2237
2238
2239
2240
@require_torch
@require_sigopt
class TrainerHyperParameterSigOptIntegrationTest(unittest.TestCase):
    def setUp(self):
2241
        args = TrainingArguments("..")
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
        self.n_epochs = args.num_train_epochs
        self.batch_size = args.train_batch_size

    def test_hyperparameter_search(self):
        class MyTrialShortNamer(TrialShortNamer):
            DEFAULTS = {"a": 0, "b": 0}

        def hp_space(trial):
            return [
                {"bounds": {"min": -4, "max": 4}, "name": "a", "type": "int"},
                {"bounds": {"min": -4, "max": 4}, "name": "b", "type": "int"},
            ]

        def model_init(trial):
            if trial is not None:
                a = trial.assignments["a"]
                b = trial.assignments["b"]
            else:
                a = 0
                b = 0
            config = RegressionModelConfig(a=a, b=b, double_output=False)

            return RegressionPreTrainedModel(config)

        def hp_name(trial):
            return MyTrialShortNamer.shortname(trial.assignments)

        with tempfile.TemporaryDirectory() as tmp_dir:
            trainer = get_regression_trainer(
                output_dir=tmp_dir,
                learning_rate=0.1,
                logging_steps=1,
                evaluation_strategy=IntervalStrategy.EPOCH,
                save_strategy=IntervalStrategy.EPOCH,
                num_train_epochs=4,
                disable_tqdm=True,
                load_best_model_at_end=True,
                logging_dir="runs",
                run_name="test",
                model_init=model_init,
            )
            trainer.hyperparameter_search(
                direction="minimize", hp_space=hp_space, hp_name=hp_name, backend="sigopt", n_trials=4
            )
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295


optim_test_params = []
if is_torch_available():
    default_adam_kwargs = {
        "betas": (TrainingArguments.adam_beta1, TrainingArguments.adam_beta2),
        "eps": TrainingArguments.adam_epsilon,
        "lr": TrainingArguments.learning_rate,
    }

2296
2297
2298
2299
2300
2301
2302
    default_anyprecision_kwargs = {
        "use_kahan_summation": False,
        "momentum_dtype": torch.float32,
        "variance_dtype": torch.float32,
        "compensation_buffer_dtype": torch.bfloat16,
    }

2303
2304
    optim_test_params = [
        (
2305
            TrainingArguments(optim=OptimizerNames.ADAMW_HF, output_dir="None"),
2306
2307
2308
2309
            transformers.optimization.AdamW,
            default_adam_kwargs,
        ),
        (
2310
            TrainingArguments(optim=OptimizerNames.ADAMW_HF.value, output_dir="None"),
2311
2312
2313
2314
            transformers.optimization.AdamW,
            default_adam_kwargs,
        ),
        (
2315
            TrainingArguments(optim=OptimizerNames.ADAMW_TORCH, output_dir="None"),
2316
2317
2318
2319
            torch.optim.AdamW,
            default_adam_kwargs,
        ),
        (
2320
            TrainingArguments(optim=OptimizerNames.ADAFACTOR, output_dir="None"),
2321
2322
2323
2324
2325
2326
2327
2328
            transformers.optimization.Adafactor,
            {
                "scale_parameter": False,
                "relative_step": False,
                "lr": TrainingArguments.learning_rate,
            },
        ),
    ]
2329

2330
2331
2332
2333
2334
    if is_apex_available():
        import apex

        optim_test_params.append(
            (
2335
                TrainingArguments(optim=OptimizerNames.ADAMW_APEX_FUSED, output_dir="None"),
2336
2337
2338
2339
2340
                apex.optimizers.FusedAdam,
                default_adam_kwargs,
            )
        )

2341
2342
2343
2344
2345
    if is_bitsandbytes_available():
        import bitsandbytes as bnb

        optim_test_params.append(
            (
2346
                TrainingArguments(optim=OptimizerNames.ADAMW_BNB, output_dir="None"),
2347
2348
2349
2350
2351
                bnb.optim.Adam8bit,
                default_adam_kwargs,
            )
        )

2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
    if is_torchdistx_available():
        import torchdistx

        optim_test_params.append(
            (
                TrainingArguments(optim=OptimizerNames.ADAMW_ANYPRECISION, output_dir="None"),
                torchdistx.optimizers.AnyPrecisionAdamW,
                dict(default_adam_kwargs, **default_anyprecision_kwargs),
            )
        )

2363
2364
2365

@require_torch
class TrainerOptimizerChoiceTest(unittest.TestCase):
2366
2367
    def check_optim_and_kwargs(self, training_args: TrainingArguments, expected_cls, expected_kwargs):
        actual_cls, optim_kwargs = Trainer.get_optimizer_cls_and_kwargs(training_args)
2368
2369
2370
        self.assertEqual(expected_cls, actual_cls)
        self.assertIsNotNone(optim_kwargs)

2371
        for p, v in expected_kwargs.items():
2372
2373
2374
2375
2376
            self.assertTrue(p in optim_kwargs)
            actual_v = optim_kwargs[p]
            self.assertTrue(actual_v == v, f"Failed check for {p}. Expected {v}, but got {actual_v}.")

    @parameterized.expand(optim_test_params, skip_on_empty=True)
2377
    def test_optim_supported(self, training_args: TrainingArguments, expected_cls, expected_kwargs):
2378
        # exercises all the valid --optim options
2379
        self.check_optim_and_kwargs(training_args, expected_cls, expected_kwargs)
2380

2381
        trainer = get_regression_trainer(**training_args.to_dict())
2382
2383
2384
2385
        trainer.train()

    def test_fused_adam(self):
        # Pretend that apex is installed and mock apex.optimizers.FusedAdam exists.
2386
2387
        # Trainer.get_optimizer_cls_and_kwargs does not use FusedAdam. It only has to return the
        # class given, so mocking apex.optimizers.FusedAdam should be fine for testing and allow
2388
2389
2390
2391
2392
2393
2394
2395
2396
        # the test to run without requiring an apex installation.
        mock = Mock()
        modules = {
            "apex": mock,
            "apex.optimizers": mock.optimizers,
            "apex.optimizers.FusedAdam": mock.optimizers.FusedAdam,
        }
        with patch.dict("sys.modules", modules):
            self.check_optim_and_kwargs(
2397
                TrainingArguments(optim=OptimizerNames.ADAMW_APEX_FUSED, output_dir="None"),
2398
                mock.optimizers.FusedAdam,
2399
                default_adam_kwargs,
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
            )

    def test_fused_adam_no_apex(self):
        args = TrainingArguments(optim=OptimizerNames.ADAMW_APEX_FUSED, output_dir="None")

        # Pretend that apex does not exist, even if installed. By setting apex to None, importing
        # apex will fail even if apex is installed.
        with patch.dict("sys.modules", {"apex.optimizers": None}):
            with self.assertRaises(ValueError):
                Trainer.get_optimizer_cls_and_kwargs(args)
2410

2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
    def test_bnb_adam8bit(self):
        # Pretend that Bits and Bytes is installed and mock bnb.optim.Adam8bit exists.
        # Trainer.get_optimizer_cls_and_kwargs does not use Adam8bit. It only has to return the
        # class given, so mocking bnb.optim.Adam8bit should be fine for testing and allow
        # the test to run without requiring a bnb installation.
        mock = Mock()
        modules = {
            "bitsandbytes": mock,
            "bitsandbytes.optim": mock.optim,
            "bitsandbytes.optim.Adam8bit": mock.optim.Adam8bit,
        }
        with patch.dict("sys.modules", modules):
            self.check_optim_and_kwargs(
2424
                TrainingArguments(optim=OptimizerNames.ADAMW_BNB, output_dir="None"),
2425
                mock.optim.Adam8bit,
2426
                default_adam_kwargs,
2427
2428
2429
2430
2431
2432
2433
            )

    def test_bnb_adam8bit_no_bnb(self):
        args = TrainingArguments(optim=OptimizerNames.ADAMW_BNB, output_dir="None")

        # Pretend that bnb does not exist, even if installed. By setting bnb to None, importing
        # bnb will fail even if bnb is installed.
Younes Belkada's avatar
Younes Belkada committed
2434
        with patch.dict("sys.modules", {"bitsandbytes.optim": None}):
2435
2436
2437
            with self.assertRaises(ValueError):
                Trainer.get_optimizer_cls_and_kwargs(args)

2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
    def test_anyprecision_adamw(self):
        # Pretend that torchdistx is installed and mock torchdistx.optimizers.AnyPrecisionAdamW exists.
        # Trainer.get_optimizer_cls_and_kwargs does not use AnyPrecisioinAdamW. It only has to return the
        # class given, so mocking torchdistx.optimizers.AnyPrecisionAdamW should be fine for testing and allow
        # the test to run without requiring a bnb installation.
        mock = Mock()
        modules = {
            "torchdistx": mock,
            "torchdistx.optimizers": mock.optimizers,
            "torchdistx.optimizers.AnyPrecisionAdamW.": mock.optimizers.AnyPrecisionAdamW,
        }
        with patch.dict("sys.modules", modules):
            self.check_optim_and_kwargs(
                TrainingArguments(optim=OptimizerNames.ADAMW_ANYPRECISION, output_dir="None"),
                mock.optimizers.AnyPrecisionAdamW,
                dict(default_adam_kwargs, **default_anyprecision_kwargs),
            )

    def test_no_torchdistx_anyprecision_adamw(self):
        args = TrainingArguments(optim=OptimizerNames.ADAMW_ANYPRECISION, output_dir="None")

        # Pretend that torchdistx does not exist, even if installed. By setting torchdistx to None, importing
        # torchdistx.optimizers will fail even if torchdistx is installed.
        with patch.dict("sys.modules", {"torchdistx.optimizers": None}):
            with self.assertRaises(ValueError):
                Trainer.get_optimizer_cls_and_kwargs(args)

2465
2466
2467
2468
2469

@require_torch
@require_wandb
class TrainerHyperParameterWandbIntegrationTest(unittest.TestCase):
    def setUp(self):
2470
        args = TrainingArguments("..")
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
        self.n_epochs = args.num_train_epochs
        self.batch_size = args.train_batch_size

    def test_hyperparameter_search(self):
        class MyTrialShortNamer(TrialShortNamer):
            DEFAULTS = {"a": 0, "b": 0}

        def hp_space(trial):
            return {
                "method": "random",
                "metric": {},
                "parameters": {
                    "a": {"distribution": "uniform", "min": 1e-6, "max": 1e-4},
                    "b": {"distribution": "int_uniform", "min": 1, "max": 6},
                },
            }

        def model_init(config):
            if config is None:
                a = 0
                b = 0
            else:
                a = config["a"]
                b = config["b"]
            model_config = RegressionModelConfig(a=a, b=b, double_output=False)

            return RegressionPreTrainedModel(model_config)

        def hp_name(params):
            return MyTrialShortNamer.shortname(params)

        with tempfile.TemporaryDirectory() as tmp_dir:
            trainer = get_regression_trainer(
                output_dir=tmp_dir,
                learning_rate=0.1,
                logging_steps=1,
                evaluation_strategy=IntervalStrategy.EPOCH,
                save_strategy=IntervalStrategy.EPOCH,
                num_train_epochs=4,
                disable_tqdm=True,
                load_best_model_at_end=True,
                logging_dir="runs",
                run_name="test",
                model_init=model_init,
            )
            trainer.hyperparameter_search(
                direction="minimize", hp_space=hp_space, hp_name=hp_name, backend="wandb", n_trials=4, anonymous="must"
            )