Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
chenpangpang
transformers
Commits
1ffc4dee
Unverified
Commit
1ffc4dee
authored
Nov 06, 2023
by
Hz, Ji
Committed by
GitHub
Nov 06, 2023
Browse files
enable memory tracker metrics for npu (#27280)
parent
d7dcfa89
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
18 additions
and
3 deletions
+18
-3
src/transformers/trainer_utils.py
src/transformers/trainer_utils.py
+15
-0
tests/trainer/test_trainer.py
tests/trainer/test_trainer.py
+3
-3
No files found.
src/transformers/trainer_utils.py
View file @
1ffc4dee
...
...
@@ -459,6 +459,11 @@ class TrainerMemoryTracker:
elif
is_torch_xpu_available
():
import
torch
self
.
torch
=
torch
self
.
gpu
=
{}
elif
is_torch_npu_available
():
import
torch
self
.
torch
=
torch
self
.
gpu
=
{}
else
:
...
...
@@ -517,6 +522,9 @@ class TrainerMemoryTracker:
elif
is_torch_xpu_available
():
self
.
torch
.
xpu
.
reset_peak_memory_stats
()
self
.
torch
.
xpu
.
empty_cache
()
elif
is_torch_npu_available
():
self
.
torch
.
npu
.
reset_peak_memory_stats
()
self
.
torch
.
npu
.
empty_cache
()
# gpu
if
self
.
torch
is
not
None
:
...
...
@@ -524,6 +532,8 @@ class TrainerMemoryTracker:
self
.
gpu_mem_used_at_start
=
self
.
torch
.
cuda
.
memory_allocated
()
elif
is_torch_xpu_available
():
self
.
gpu_mem_used_at_start
=
self
.
torch
.
xpu
.
memory_allocated
()
elif
is_torch_npu_available
():
self
.
gpu_mem_used_at_start
=
self
.
torch
.
npu
.
memory_allocated
()
# cpu
self
.
cpu_mem_used_at_start
=
self
.
cpu_mem_used
()
...
...
@@ -551,6 +561,8 @@ class TrainerMemoryTracker:
self
.
torch
.
cuda
.
empty_cache
()
elif
is_torch_xpu_available
():
self
.
torch
.
xpu
.
empty_cache
()
elif
is_torch_npu_available
():
self
.
torch
.
npu
.
empty_cache
()
# concepts:
# - alloc_delta: the difference of allocated memory between the end and the start
...
...
@@ -565,6 +577,9 @@ class TrainerMemoryTracker:
elif
is_torch_xpu_available
():
self
.
gpu_mem_used_now
=
self
.
torch
.
xpu
.
memory_allocated
()
self
.
gpu_mem_used_peak
=
self
.
torch
.
xpu
.
max_memory_allocated
()
elif
is_torch_npu_available
():
self
.
gpu_mem_used_now
=
self
.
torch
.
npu
.
memory_allocated
()
self
.
gpu_mem_used_peak
=
self
.
torch
.
npu
.
max_memory_allocated
()
else
:
raise
ValueError
(
"No available GPU device found!"
)
...
...
tests/trainer/test_trainer.py
View file @
1ffc4dee
...
...
@@ -1944,18 +1944,18 @@ class TrainerIntegrationTest(TestCasePlus, TrainerIntegrationCommon):
metrics
=
trainer
.
train
().
metrics
check_func
(
"init_mem_cpu_alloc_delta"
,
metrics
)
check_func
(
"train_mem_cpu_alloc_delta"
,
metrics
)
if
torch
.
cuda
.
device_count
()
>
0
:
if
backend_
device_count
(
torch_device
)
>
0
:
check_func
(
"init_mem_gpu_alloc_delta"
,
metrics
)
check_func
(
"train_mem_gpu_alloc_delta"
,
metrics
)
metrics
=
trainer
.
evaluate
()
check_func
(
"eval_mem_cpu_alloc_delta"
,
metrics
)
if
torch
.
cuda
.
device_count
()
>
0
:
if
backend_
device_count
(
torch_device
)
>
0
:
check_func
(
"eval_mem_gpu_alloc_delta"
,
metrics
)
metrics
=
trainer
.
predict
(
RegressionDataset
()).
metrics
check_func
(
"test_mem_cpu_alloc_delta"
,
metrics
)
if
torch
.
cuda
.
device_count
()
>
0
:
if
backend_
device_count
(
torch_device
)
>
0
:
check_func
(
"test_mem_gpu_alloc_delta"
,
metrics
)
def
test_mem_metrics
(
self
):
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment