run_classifier.py 23.3 KB
Newer Older
1
# coding=utf-8
thomwolf's avatar
thomwolf committed
2
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
3
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
4
5
6
7
8
9
10
11
12
13
14
15
16
17
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""BERT finetuning runner."""

thomwolf's avatar
thomwolf committed
18
from __future__ import absolute_import, division, print_function
19

thomwolf's avatar
thomwolf committed
20
import argparse
21
import logging
thomwolf's avatar
thomwolf committed
22
import os
thomwolf's avatar
thomwolf committed
23
import sys
VictorSanh's avatar
VictorSanh committed
24
import random
25
from tqdm import tqdm, trange
thomwolf's avatar
thomwolf committed
26
27

import numpy as np
28

VictorSanh's avatar
VictorSanh committed
29
import torch
thomwolf's avatar
thomwolf committed
30
31
from torch.utils.data import (DataLoader, RandomSampler, SequentialSampler,
                              TensorDataset)
32
from torch.utils.data.distributed import DistributedSampler
33
34
from torch.nn import CrossEntropyLoss, MSELoss

35
36
37
38
from tensorboardX import SummaryWriter

from pytorch_pretrained_bert.file_utils import WEIGHTS_NAME, CONFIG_NAME
from pytorch_pretrained_bert.modeling import BertForSequenceClassification
thomwolf's avatar
thomwolf committed
39
from pytorch_pretrained_bert.tokenization import BertTokenizer
40
from pytorch_pretrained_bert.optimization import BertAdam, WarmupLinearSchedule
41

42
from run_classifier_dataset_utils import processors, output_modes, convert_examples_to_features, compute_metrics
43

thomwolf's avatar
thomwolf committed
44
45
46
47
48
49
if sys.version_info[0] == 2:
    import cPickle as pickle
else:
    import pickle


50
logger = logging.getLogger(__name__)
51

VictorSanh's avatar
WIP  
VictorSanh committed
52

53
def main():
54
55
56
57
58
59
60
61
    parser = argparse.ArgumentParser()

    ## Required parameters
    parser.add_argument("--data_dir",
                        default=None,
                        type=str,
                        required=True,
                        help="The input data dir. Should contain the .tsv files (or other data files) for the task.")
thomwolf's avatar
thomwolf committed
62
63
    parser.add_argument("--bert_model", default=None, type=str, required=True,
                        help="Bert pre-trained model selected in the list: bert-base-uncased, "
64
65
                        "bert-large-uncased, bert-base-cased, bert-large-cased, bert-base-multilingual-uncased, "
                        "bert-base-multilingual-cased, bert-base-chinese.")
66
67
68
69
70
71
72
73
74
    parser.add_argument("--task_name",
                        default=None,
                        type=str,
                        required=True,
                        help="The name of the task to train.")
    parser.add_argument("--output_dir",
                        default=None,
                        type=str,
                        required=True,
75
                        help="The output directory where the model predictions and checkpoints will be written.")
76
77

    ## Other parameters
78
79
80
81
    parser.add_argument("--cache_dir",
                        default="",
                        type=str,
                        help="Where do you want to store the pre-trained models downloaded from s3")
82
83
84
85
86
87
88
89
90
91
92
93
    parser.add_argument("--max_seq_length",
                        default=128,
                        type=int,
                        help="The maximum total input sequence length after WordPiece tokenization. \n"
                             "Sequences longer than this will be truncated, and sequences shorter \n"
                             "than this will be padded.")
    parser.add_argument("--do_train",
                        action='store_true',
                        help="Whether to run training.")
    parser.add_argument("--do_eval",
                        action='store_true',
                        help="Whether to run eval on the dev set.")
thomwolf's avatar
thomwolf committed
94
95
96
    parser.add_argument("--do_lower_case",
                        action='store_true',
                        help="Set this flag if you are using an uncased model.")
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
    parser.add_argument("--train_batch_size",
                        default=32,
                        type=int,
                        help="Total batch size for training.")
    parser.add_argument("--eval_batch_size",
                        default=8,
                        type=int,
                        help="Total batch size for eval.")
    parser.add_argument("--learning_rate",
                        default=5e-5,
                        type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument("--num_train_epochs",
                        default=3.0,
                        type=float,
                        help="Total number of training epochs to perform.")
    parser.add_argument("--warmup_proportion",
                        default=0.1,
                        type=float,
                        help="Proportion of training to perform linear learning rate warmup for. "
                             "E.g., 0.1 = 10%% of training.")
    parser.add_argument("--no_cuda",
                        action='store_true',
                        help="Whether not to use CUDA when available")
    parser.add_argument("--local_rank",
                        type=int,
                        default=-1,
                        help="local_rank for distributed training on gpus")
125
126
    parser.add_argument('--seed',
                        type=int,
VictorSanh's avatar
VictorSanh committed
127
128
                        default=42,
                        help="random seed for initialization")
129
130
131
    parser.add_argument('--gradient_accumulation_steps',
                        type=int,
                        default=1,
132
                        help="Number of updates steps to accumulate before performing a backward/update pass.")
thomwolf's avatar
thomwolf committed
133
134
135
136
    parser.add_argument('--fp16',
                        action='store_true',
                        help="Whether to use 16-bit float precision instead of 32-bit")
    parser.add_argument('--loss_scale',
137
138
139
140
                        type=float, default=0,
                        help="Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
                             "0 (default value): dynamic loss scaling.\n"
                             "Positive power of 2: static loss scaling value.\n")
141
142
    parser.add_argument('--server_ip', type=str, default='', help="Can be used for distant debugging.")
    parser.add_argument('--server_port', type=str, default='', help="Can be used for distant debugging.")
143
144
    args = parser.parse_args()

145
146
147
148
149
150
151
    if args.server_ip and args.server_port:
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd
        print("Waiting for debugger attach")
        ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
        ptvsd.wait_for_attach()

thomwolf's avatar
thomwolf committed
152
153
154
155
    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
        n_gpu = torch.cuda.device_count()
    else:
156
        torch.cuda.set_device(args.local_rank)
thomwolf's avatar
thomwolf committed
157
158
        device = torch.device("cuda", args.local_rank)
        n_gpu = 1
thomwolf's avatar
thomwolf committed
159
160
        # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.distributed.init_process_group(backend='nccl')
161
162
163
164
165

    logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s -   %(message)s',
                        datefmt = '%m/%d/%Y %H:%M:%S',
                        level = logging.INFO if args.local_rank in [-1, 0] else logging.WARN)

166
167
    logger.info("device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".format(
        device, n_gpu, bool(args.local_rank != -1), args.fp16))
thomwolf's avatar
thomwolf committed
168

169
170
171
    if args.gradient_accumulation_steps < 1:
        raise ValueError("Invalid gradient_accumulation_steps parameter: {}, should be >= 1".format(
                            args.gradient_accumulation_steps))
thomwolf's avatar
thomwolf committed
172

173
    args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps
thomwolf's avatar
thomwolf committed
174

VictorSanh's avatar
VictorSanh committed
175
176
177
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
thomwolf's avatar
thomwolf committed
178
179
    if n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)
thomwolf's avatar
thomwolf committed
180

VictorSanh's avatar
WIP  
VictorSanh committed
181
182
    if not args.do_train and not args.do_eval:
        raise ValueError("At least one of `do_train` or `do_eval` must be True.")
thomwolf's avatar
thomwolf committed
183

184
    if os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train:
thomwolf's avatar
thomwolf committed
185
        raise ValueError("Output directory ({}) already exists and is not empty.".format(args.output_dir))
thomwolf's avatar
thomwolf committed
186
187
    if not os.path.exists(args.output_dir):
        os.makedirs(args.output_dir)
VictorSanh's avatar
WIP  
VictorSanh committed
188
189

    task_name = args.task_name.lower()
thomwolf's avatar
thomwolf committed
190

VictorSanh's avatar
WIP  
VictorSanh committed
191
192
193
194
    if task_name not in processors:
        raise ValueError("Task not found: %s" % (task_name))

    processor = processors[task_name]()
195
196
    output_mode = output_modes[task_name]

VictorSanh's avatar
WIP  
VictorSanh committed
197
    label_list = processor.get_labels()
198
    num_labels = len(label_list)
VictorSanh's avatar
WIP  
VictorSanh committed
199

thomwolf's avatar
thomwolf committed
200
    tokenizer = BertTokenizer.from_pretrained(args.bert_model, do_lower_case=args.do_lower_case)
thomwolf's avatar
thomwolf committed
201

samuel.broscheit's avatar
samuel.broscheit committed
202
    # Prepare model
203
    model = BertForSequenceClassification.from_pretrained(args.bert_model, num_labels=num_labels)
samuel.broscheit's avatar
samuel.broscheit committed
204
205
206
207
    if args.fp16:
        model.half()
    model.to(device)
    if args.local_rank != -1:
208
209
210
211
        model = torch.nn.parallel.DistributedDataParallel(model,
                                                          device_ids=[args.local_rank],
                                                          output_device=args.local_rank,
                                                          find_unused_parameters=True)
samuel.broscheit's avatar
samuel.broscheit committed
212
213
214
    elif n_gpu > 1:
        model = torch.nn.DataParallel(model)

VictorSanh's avatar
WIP  
VictorSanh committed
215
    if args.do_train:
216
217
        if args.local_rank in [-1, 0]:
            tb_writer = SummaryWriter()
samuel.broscheit's avatar
samuel.broscheit committed
218
219

        # Prepare data loader
VictorSanh's avatar
WIP  
VictorSanh committed
220
        train_examples = processor.get_train_examples(args.data_dir)
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
        cached_train_features_file = args.data_dir + '_{0}_{1}_{2}'.format(
            list(filter(None, args.bert_model.split('/'))).pop(),
                        str(args.max_seq_length),
                        str(task_name))
        try:
            with open(cached_train_features_file, "rb") as reader:
                train_features = pickle.load(reader)
        except:
            train_features = convert_examples_to_features(
                train_examples, label_list, args.max_seq_length, tokenizer, output_mode)
            if args.local_rank == -1 or torch.distributed.get_rank() == 0:
                logger.info("  Saving train features into cached file %s", cached_train_features_file)
                with open(cached_train_features_file, "wb") as writer:
                    pickle.dump(train_features, writer)

236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
        all_input_ids = torch.tensor([f.input_ids for f in train_features], dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in train_features], dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in train_features], dtype=torch.long)

        if output_mode == "classification":
            all_label_ids = torch.tensor([f.label_id for f in train_features], dtype=torch.long)
        elif output_mode == "regression":
            all_label_ids = torch.tensor([f.label_id for f in train_features], dtype=torch.float)

        train_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids)
        if args.local_rank == -1:
            train_sampler = RandomSampler(train_data)
        else:
            train_sampler = DistributedSampler(train_data)
        train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=args.train_batch_size)

252
        num_train_optimization_steps = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs
thomwolf's avatar
thomwolf committed
253

samuel.broscheit's avatar
samuel.broscheit committed
254
        # Prepare optimizer
thomwolf's avatar
thomwolf committed
255

256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
        param_optimizer = list(model.named_parameters())
        no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
        optimizer_grouped_parameters = [
            {'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01},
            {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
            ]
        if args.fp16:
            try:
                from apex.optimizers import FP16_Optimizer
                from apex.optimizers import FusedAdam
            except ImportError:
                raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.")

            optimizer = FusedAdam(optimizer_grouped_parameters,
                                  lr=args.learning_rate,
                                  bias_correction=False,
                                  max_grad_norm=1.0)
            if args.loss_scale == 0:
                optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
            else:
                optimizer = FP16_Optimizer(optimizer, static_loss_scale=args.loss_scale)
            warmup_linear = WarmupLinearSchedule(warmup=args.warmup_proportion,
                                                 t_total=num_train_optimization_steps)
thomwolf's avatar
thomwolf committed
279

280
        else:
281
282
283
284
            optimizer = BertAdam(optimizer_grouped_parameters,
                                 lr=args.learning_rate,
                                 warmup=args.warmup_proportion,
                                 t_total=num_train_optimization_steps)
thomwolf's avatar
thomwolf committed
285

samuel.broscheit's avatar
samuel.broscheit committed
286
287
288
289
        global_step = 0
        nb_tr_steps = 0
        tr_loss = 0

VictorSanh's avatar
WIP  
VictorSanh committed
290
291
292
        logger.info("***** Running training *****")
        logger.info("  Num examples = %d", len(train_examples))
        logger.info("  Batch size = %d", args.train_batch_size)
293
        logger.info("  Num steps = %d", num_train_optimization_steps)
294
295

        model.train()
296
        for _ in trange(int(args.num_train_epochs), desc="Epoch"):
297
298
            tr_loss = 0
            nb_tr_examples, nb_tr_steps = 0, 0
299
300
301
            for step, batch in enumerate(tqdm(train_dataloader, desc="Iteration")):
                batch = tuple(t.to(device) for t in batch)
                input_ids, input_mask, segment_ids, label_ids = batch
302
303
304
305
306
307
308
309
310
311
312

                # define a new function to compute loss values for both output_modes
                logits = model(input_ids, segment_ids, input_mask, labels=None)

                if output_mode == "classification":
                    loss_fct = CrossEntropyLoss()
                    loss = loss_fct(logits.view(-1, num_labels), label_ids.view(-1))
                elif output_mode == "regression":
                    loss_fct = MSELoss()
                    loss = loss_fct(logits.view(-1), label_ids.view(-1))

thomwolf's avatar
thomwolf committed
313
314
                if n_gpu > 1:
                    loss = loss.mean() # mean() to average on multi-gpu.
315
316
                if args.gradient_accumulation_steps > 1:
                    loss = loss / args.gradient_accumulation_steps
317
318
319
320
321
322

                if args.fp16:
                    optimizer.backward(loss)
                else:
                    loss.backward()

323
                tr_loss += loss.item()
324
                nb_tr_examples += input_ids.size(0)
325
                nb_tr_steps += 1
thomwolf's avatar
thomwolf committed
326
                if (step + 1) % args.gradient_accumulation_steps == 0:
327
328
329
                    if args.fp16:
                        # modify learning rate with special warm up BERT uses
                        # if args.fp16 is False, BertAdam is used that handles this automatically
330
                        lr_this_step = args.learning_rate * warmup_linear.get_lr(global_step, args.warmup_proportion)
331
332
                        for param_group in optimizer.param_groups:
                            param_group['lr'] = lr_this_step
333
334
                    optimizer.step()
                    optimizer.zero_grad()
thomwolf's avatar
thomwolf committed
335
                    global_step += 1
336
337
338
                    if args.local_rank in [-1, 0]:
                        tb_writer.add_scalar('lr', optimizer.get_lr()[0], global_step)
                        tb_writer.add_scalar('loss', loss.item(), global_step)
thomwolf's avatar
thomwolf committed
339

340
    if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
341
        # Save a trained model, configuration and tokenizer
342
        model_to_save = model.module if hasattr(model, 'module') else model  # Only save the model it-self
343
344

        # If we save using the predefined names, we can load using `from_pretrained`
345
346
347
        output_model_file = os.path.join(args.output_dir, WEIGHTS_NAME)
        output_config_file = os.path.join(args.output_dir, CONFIG_NAME)

348
349
        torch.save(model_to_save.state_dict(), output_model_file)
        model_to_save.config.to_json_file(output_config_file)
350
        tokenizer.save_vocabulary(args.output_dir)
351

352
353
        # Load a trained model and vocabulary that you have fine-tuned
        model = BertForSequenceClassification.from_pretrained(args.output_dir, num_labels=num_labels)
354
        tokenizer = BertTokenizer.from_pretrained(args.output_dir, do_lower_case=args.do_lower_case)
355
356
    else:
        model = BertForSequenceClassification.from_pretrained(args.bert_model, num_labels=num_labels)
357
    model.to(device)
358

359
    if args.do_eval and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
VictorSanh's avatar
WIP  
VictorSanh committed
360
361
        eval_examples = processor.get_dev_examples(args.data_dir)
        eval_features = convert_examples_to_features(
362
            eval_examples, label_list, args.max_seq_length, tokenizer, output_mode)
VictorSanh's avatar
wip  
VictorSanh committed
363
364
365
        logger.info("***** Running evaluation *****")
        logger.info("  Num examples = %d", len(eval_examples))
        logger.info("  Batch size = %d", args.eval_batch_size)
366
367
368
        all_input_ids = torch.tensor([f.input_ids for f in eval_features], dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in eval_features], dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in eval_features], dtype=torch.long)
369
370
371
372
373
374

        if output_mode == "classification":
            all_label_ids = torch.tensor([f.label_id for f in eval_features], dtype=torch.long)
        elif output_mode == "regression":
            all_label_ids = torch.tensor([f.label_id for f in eval_features], dtype=torch.float)

375
        eval_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids)
376
377
        # Run prediction for full data
        eval_sampler = SequentialSampler(eval_data)
378
379
380
        eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.eval_batch_size)

        model.eval()
381
382
383
        eval_loss = 0
        nb_eval_steps = 0
        preds = []
384

385
        for input_ids, input_mask, segment_ids, label_ids in tqdm(eval_dataloader, desc="Evaluating"):
386
            input_ids = input_ids.to(device)
thomwolf's avatar
thomwolf committed
387
            input_mask = input_mask.to(device)
388
            segment_ids = segment_ids.to(device)
389
            label_ids = label_ids.to(device)
390

391
            with torch.no_grad():
392
                logits = model(input_ids, segment_ids, input_mask, labels=None)
393

394
395
396
397
398
399
400
401
            # create eval loss and other metric required by the task
            if output_mode == "classification":
                loss_fct = CrossEntropyLoss()
                tmp_eval_loss = loss_fct(logits.view(-1, num_labels), label_ids.view(-1))
            elif output_mode == "regression":
                loss_fct = MSELoss()
                tmp_eval_loss = loss_fct(logits.view(-1), label_ids.view(-1))
            
402
403
            eval_loss += tmp_eval_loss.mean().item()
            nb_eval_steps += 1
404
405
406
407
408
            if len(preds) == 0:
                preds.append(logits.detach().cpu().numpy())
            else:
                preds[0] = np.append(
                    preds[0], logits.detach().cpu().numpy(), axis=0)
VictorSanh's avatar
WIP  
VictorSanh committed
409

410
        eval_loss = eval_loss / nb_eval_steps
411
412
413
        preds = preds[0]
        if output_mode == "classification":
            preds = np.argmax(preds, axis=1)
414
415
        elif output_mode == "regression":
            preds = np.squeeze(preds)
416
        result = compute_metrics(task_name, preds, all_label_ids.numpy())
417
        loss = tr_loss/global_step if args.do_train else None
418
419
420
421

        result['eval_loss'] = eval_loss
        result['global_step'] = global_step
        result['loss'] = loss
VictorSanh's avatar
WIP  
VictorSanh committed
422
423

        output_eval_file = os.path.join(args.output_dir, "eval_results.txt")
VictorSanh's avatar
wip  
VictorSanh committed
424
425
        with open(output_eval_file, "w") as writer:
            logger.info("***** Eval results *****")
VictorSanh's avatar
WIP  
VictorSanh committed
426
            for key in sorted(result.keys()):
VictorSanh's avatar
wip  
VictorSanh committed
427
                logger.info("  %s = %s", key, str(result[key]))
VictorSanh's avatar
WIP  
VictorSanh committed
428
                writer.write("%s = %s\n" % (key, str(result[key])))
429

430
431
432
433
434
        # hack for MNLI-MM
        if task_name == "mnli":
            task_name = "mnli-mm"
            processor = processors[task_name]()

435
436
437
438
439
            if os.path.exists(args.output_dir + '-MM') and os.listdir(args.output_dir + '-MM') and args.do_train:
                raise ValueError("Output directory ({}) already exists and is not empty.".format(args.output_dir))
            if not os.path.exists(args.output_dir + '-MM'):
                os.makedirs(args.output_dir + '-MM')

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
            eval_examples = processor.get_dev_examples(args.data_dir)
            eval_features = convert_examples_to_features(
                eval_examples, label_list, args.max_seq_length, tokenizer, output_mode)
            logger.info("***** Running evaluation *****")
            logger.info("  Num examples = %d", len(eval_examples))
            logger.info("  Batch size = %d", args.eval_batch_size)
            all_input_ids = torch.tensor([f.input_ids for f in eval_features], dtype=torch.long)
            all_input_mask = torch.tensor([f.input_mask for f in eval_features], dtype=torch.long)
            all_segment_ids = torch.tensor([f.segment_ids for f in eval_features], dtype=torch.long)
            all_label_ids = torch.tensor([f.label_id for f in eval_features], dtype=torch.long)

            eval_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids)
            # Run prediction for full data
            eval_sampler = SequentialSampler(eval_data)
            eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.eval_batch_size)

            model.eval()
            eval_loss = 0
            nb_eval_steps = 0
            preds = []

            for input_ids, input_mask, segment_ids, label_ids in tqdm(eval_dataloader, desc="Evaluating"):
                input_ids = input_ids.to(device)
                input_mask = input_mask.to(device)
                segment_ids = segment_ids.to(device)
                label_ids = label_ids.to(device)

                with torch.no_grad():
                    logits = model(input_ids, segment_ids, input_mask, labels=None)
            
                loss_fct = CrossEntropyLoss()
                tmp_eval_loss = loss_fct(logits.view(-1, num_labels), label_ids.view(-1))
            
                eval_loss += tmp_eval_loss.mean().item()
                nb_eval_steps += 1
                if len(preds) == 0:
                    preds.append(logits.detach().cpu().numpy())
                else:
                    preds[0] = np.append(
                        preds[0], logits.detach().cpu().numpy(), axis=0)
480

481
482
483
484
            eval_loss = eval_loss / nb_eval_steps
            preds = preds[0]
            preds = np.argmax(preds, axis=1)
            result = compute_metrics(task_name, preds, all_label_ids.numpy())
485
            loss = tr_loss/global_step if args.do_train else None
486
487
488
489
490
491
492
493
494
495
496

            result['eval_loss'] = eval_loss
            result['global_step'] = global_step
            result['loss'] = loss

            output_eval_file = os.path.join(args.output_dir + '-MM', "eval_results.txt")
            with open(output_eval_file, "w") as writer:
                logger.info("***** Eval results *****")
                for key in sorted(result.keys()):
                    logger.info("  %s = %s", key, str(result[key]))
                    writer.write("%s = %s\n" % (key, str(result[key])))
497

VictorSanh's avatar
WIP  
VictorSanh committed
498
499
if __name__ == "__main__":
    main()