run_classifier.py 40.9 KB
Newer Older
1
# coding=utf-8
thomwolf's avatar
thomwolf committed
2
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
3
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
4
5
6
7
8
9
10
11
12
13
14
15
16
17
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""BERT finetuning runner."""

thomwolf's avatar
thomwolf committed
18
from __future__ import absolute_import, division, print_function
19

thomwolf's avatar
thomwolf committed
20
import argparse
21
import csv
22
import logging
thomwolf's avatar
thomwolf committed
23
import os
VictorSanh's avatar
VictorSanh committed
24
import random
thomwolf's avatar
thomwolf committed
25
import sys
thomwolf's avatar
thomwolf committed
26
27

import numpy as np
28
import math
VictorSanh's avatar
VictorSanh committed
29
import torch
thomwolf's avatar
thomwolf committed
30
31
from torch.utils.data import (DataLoader, RandomSampler, SequentialSampler,
                              TensorDataset)
32
from torch.utils.data.distributed import DistributedSampler
thomwolf's avatar
thomwolf committed
33
from tqdm import tqdm, trange
34

35
36
37
38
from torch.nn import CrossEntropyLoss, MSELoss
from scipy.stats import pearsonr, spearmanr
from sklearn.metrics import matthews_corrcoef, f1_score

39
40
from pytorch_pretrained_bert.file_utils import PYTORCH_PRETRAINED_BERT_CACHE, WEIGHTS_NAME, CONFIG_NAME
from pytorch_pretrained_bert.modeling import BertForSequenceClassification, BertConfig
thomwolf's avatar
thomwolf committed
41
from pytorch_pretrained_bert.tokenization import BertTokenizer
42
from pytorch_pretrained_bert.optimization import BertAdam, WarmupLinearSchedule
43
44

logger = logging.getLogger(__name__)
45

46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75

class InputExample(object):
    """A single training/test example for simple sequence classification."""

    def __init__(self, guid, text_a, text_b=None, label=None):
        """Constructs a InputExample.

        Args:
            guid: Unique id for the example.
            text_a: string. The untokenized text of the first sequence. For single
            sequence tasks, only this sequence must be specified.
            text_b: (Optional) string. The untokenized text of the second sequence.
            Only must be specified for sequence pair tasks.
            label: (Optional) string. The label of the example. This should be
            specified for train and dev examples, but not for test examples.
        """
        self.guid = guid
        self.text_a = text_a
        self.text_b = text_b
        self.label = label


class InputFeatures(object):
    """A single set of features of data."""

    def __init__(self, input_ids, input_mask, segment_ids, label_id):
        self.input_ids = input_ids
        self.input_mask = input_mask
        self.segment_ids = segment_ids
        self.label_id = label_id
thomwolf's avatar
thomwolf committed
76

77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

class DataProcessor(object):
    """Base class for data converters for sequence classification data sets."""

    def get_train_examples(self, data_dir):
        """Gets a collection of `InputExample`s for the train set."""
        raise NotImplementedError()

    def get_dev_examples(self, data_dir):
        """Gets a collection of `InputExample`s for the dev set."""
        raise NotImplementedError()

    def get_labels(self):
        """Gets the list of labels for this data set."""
        raise NotImplementedError()

    @classmethod
    def _read_tsv(cls, input_file, quotechar=None):
        """Reads a tab separated value file."""
Jie Yang's avatar
Jie Yang committed
96
        with open(input_file, "r", encoding="utf-8") as f:
97
98
99
            reader = csv.reader(f, delimiter="\t", quotechar=quotechar)
            lines = []
            for line in reader:
thomwolf's avatar
thomwolf committed
100
101
                if sys.version_info[0] == 2:
                    line = list(unicode(cell, 'utf-8') for cell in line)
102
103
                lines.append(line)
            return lines
thomwolf's avatar
thomwolf committed
104
105


VictorSanh's avatar
wip  
VictorSanh committed
106
107
108
109
110
class MrpcProcessor(DataProcessor):
    """Processor for the MRPC data set (GLUE version)."""

    def get_train_examples(self, data_dir):
        """See base class."""
thomwolf's avatar
thomwolf committed
111
        logger.info("LOOKING AT {}".format(os.path.join(data_dir, "train.tsv")))
VictorSanh's avatar
wip  
VictorSanh committed
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
        return self._create_examples(
            self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")

    def get_dev_examples(self, data_dir):
        """See base class."""
        return self._create_examples(
            self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")

    def get_labels(self):
        """See base class."""
        return ["0", "1"]

    def _create_examples(self, lines, set_type):
        """Creates examples for the training and dev sets."""
        examples = []
        for (i, line) in enumerate(lines):
            if i == 0:
                continue
            guid = "%s-%s" % (set_type, i)
131
132
133
            text_a = line[3]
            text_b = line[4]
            label = line[0]
VictorSanh's avatar
wip  
VictorSanh committed
134
135
136
137
            examples.append(
                InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
        return examples

138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162

class MnliProcessor(DataProcessor):
    """Processor for the MultiNLI data set (GLUE version)."""

    def get_train_examples(self, data_dir):
        """See base class."""
        return self._create_examples(
            self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")

    def get_dev_examples(self, data_dir):
        """See base class."""
        return self._create_examples(
            self._read_tsv(os.path.join(data_dir, "dev_matched.tsv")),
            "dev_matched")

    def get_labels(self):
        """See base class."""
        return ["contradiction", "entailment", "neutral"]

    def _create_examples(self, lines, set_type):
        """Creates examples for the training and dev sets."""
        examples = []
        for (i, line) in enumerate(lines):
            if i == 0:
                continue
163
            guid = "%s-%s" % (set_type, line[0])
164
165
            text_a = line[8]
            text_b = line[9]
166
            label = line[-1]
167
168
169
            examples.append(
                InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
        return examples
thomwolf's avatar
thomwolf committed
170

171

172
173
174
175
176
177
178
179
180
181
class MnliMismatchedProcessor(MnliProcessor):
    """Processor for the MultiNLI Mismatched data set (GLUE version)."""

    def get_dev_examples(self, data_dir):
        """See base class."""
        return self._create_examples(
            self._read_tsv(os.path.join(data_dir, "dev_mismatched.tsv")),
            "dev_matched")


182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
class ColaProcessor(DataProcessor):
    """Processor for the CoLA data set (GLUE version)."""

    def get_train_examples(self, data_dir):
        """See base class."""
        return self._create_examples(
            self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")

    def get_dev_examples(self, data_dir):
        """See base class."""
        return self._create_examples(
            self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")

    def get_labels(self):
        """See base class."""
        return ["0", "1"]

    def _create_examples(self, lines, set_type):
        """Creates examples for the training and dev sets."""
        examples = []
        for (i, line) in enumerate(lines):
            guid = "%s-%s" % (set_type, i)
204
205
            text_a = line[3]
            label = line[1]
206
207
208
            examples.append(
                InputExample(guid=guid, text_a=text_a, text_b=None, label=label))
        return examples
thomwolf's avatar
thomwolf committed
209
210


211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
class Sst2Processor(DataProcessor):
    """Processor for the SST-2 data set (GLUE version)."""

    def get_train_examples(self, data_dir):
        """See base class."""
        return self._create_examples(
            self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")

    def get_dev_examples(self, data_dir):
        """See base class."""
        return self._create_examples(
            self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")

    def get_labels(self):
        """See base class."""
        return ["0", "1"]

    def _create_examples(self, lines, set_type):
        """Creates examples for the training and dev sets."""
        examples = []
        for (i, line) in enumerate(lines):
            if i == 0:
                continue
            guid = "%s-%s" % (set_type, i)
            text_a = line[0]
            label = line[1]
            examples.append(
                InputExample(guid=guid, text_a=text_a, text_b=None, label=label))
        return examples


242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
class StsbProcessor(DataProcessor):
    """Processor for the STS-B data set (GLUE version)."""

    def get_train_examples(self, data_dir):
        """See base class."""
        return self._create_examples(
            self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")

    def get_dev_examples(self, data_dir):
        """See base class."""
        return self._create_examples(
            self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")

    def get_labels(self):
        """See base class."""
        return [None]

    def _create_examples(self, lines, set_type):
        """Creates examples for the training and dev sets."""
        examples = []
        for (i, line) in enumerate(lines):
            if i == 0:
                continue
            guid = "%s-%s" % (set_type, line[0])
            text_a = line[7]
            text_b = line[8]
            label = line[-1]
            examples.append(
                InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
        return examples


class QqpProcessor(DataProcessor):
MottoX's avatar
MottoX committed
275
    """Processor for the QQP data set (GLUE version)."""
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309

    def get_train_examples(self, data_dir):
        """See base class."""
        return self._create_examples(
            self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")

    def get_dev_examples(self, data_dir):
        """See base class."""
        return self._create_examples(
            self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")

    def get_labels(self):
        """See base class."""
        return ["0", "1"]

    def _create_examples(self, lines, set_type):
        """Creates examples for the training and dev sets."""
        examples = []
        for (i, line) in enumerate(lines):
            if i == 0:
                continue
            guid = "%s-%s" % (set_type, line[0])
            try:
                text_a = line[3]
                text_b = line[4]
                label = line[5]
            except IndexError:
                continue
            examples.append(
                InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
        return examples


class QnliProcessor(DataProcessor):
MottoX's avatar
MottoX committed
310
    """Processor for the QNLI data set (GLUE version)."""
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405

    def get_train_examples(self, data_dir):
        """See base class."""
        return self._create_examples(
            self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")

    def get_dev_examples(self, data_dir):
        """See base class."""
        return self._create_examples(
            self._read_tsv(os.path.join(data_dir, "dev.tsv")), 
            "dev_matched")

    def get_labels(self):
        """See base class."""
        return ["entailment", "not_entailment"]

    def _create_examples(self, lines, set_type):
        """Creates examples for the training and dev sets."""
        examples = []
        for (i, line) in enumerate(lines):
            if i == 0:
                continue
            guid = "%s-%s" % (set_type, line[0])
            text_a = line[1]
            text_b = line[2]
            label = line[-1]
            examples.append(
                InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
        return examples


class RteProcessor(DataProcessor):
    """Processor for the RTE data set (GLUE version)."""

    def get_train_examples(self, data_dir):
        """See base class."""
        return self._create_examples(
            self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")

    def get_dev_examples(self, data_dir):
        """See base class."""
        return self._create_examples(
            self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")

    def get_labels(self):
        """See base class."""
        return ["entailment", "not_entailment"]

    def _create_examples(self, lines, set_type):
        """Creates examples for the training and dev sets."""
        examples = []
        for (i, line) in enumerate(lines):
            if i == 0:
                continue
            guid = "%s-%s" % (set_type, line[0])
            text_a = line[1]
            text_b = line[2]
            label = line[-1]
            examples.append(
                InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
        return examples


class WnliProcessor(DataProcessor):
    """Processor for the WNLI data set (GLUE version)."""

    def get_train_examples(self, data_dir):
        """See base class."""
        return self._create_examples(
            self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")

    def get_dev_examples(self, data_dir):
        """See base class."""
        return self._create_examples(
            self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")

    def get_labels(self):
        """See base class."""
        return ["0", "1"]

    def _create_examples(self, lines, set_type):
        """Creates examples for the training and dev sets."""
        examples = []
        for (i, line) in enumerate(lines):
            if i == 0:
                continue
            guid = "%s-%s" % (set_type, line[0])
            text_a = line[1]
            text_b = line[2]
            label = line[-1]
            examples.append(
                InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
        return examples


406
407
def convert_examples_to_features(examples, label_list, max_seq_length,
                                 tokenizer, output_mode):
408
409
    """Loads a data file into a list of `InputBatch`s."""

410
    label_map = {label : i for i, label in enumerate(label_list)}
411
412
413

    features = []
    for (ex_index, example) in enumerate(examples):
414
415
416
        if ex_index % 10000 == 0:
            logger.info("Writing example %d of %d" % (ex_index, len(examples)))

417
418
419
420
421
422
423
424
425
426
427
428
        tokens_a = tokenizer.tokenize(example.text_a)

        tokens_b = None
        if example.text_b:
            tokens_b = tokenizer.tokenize(example.text_b)
            # Modifies `tokens_a` and `tokens_b` in place so that the total
            # length is less than the specified length.
            # Account for [CLS], [SEP], [SEP] with "- 3"
            _truncate_seq_pair(tokens_a, tokens_b, max_seq_length - 3)
        else:
            # Account for [CLS] and [SEP] with "- 2"
            if len(tokens_a) > max_seq_length - 2:
429
                tokens_a = tokens_a[:(max_seq_length - 2)]
430
431
432
433
434
435
436
437
438
439
440
441
442

        # The convention in BERT is:
        # (a) For sequence pairs:
        #  tokens:   [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP]
        #  type_ids: 0   0  0    0    0     0       0 0    1  1  1  1   1 1
        # (b) For single sequences:
        #  tokens:   [CLS] the dog is hairy . [SEP]
        #  type_ids: 0   0   0   0  0     0 0
        #
        # Where "type_ids" are used to indicate whether this is the first
        # sequence or the second sequence. The embedding vectors for `type=0` and
        # `type=1` were learned during pre-training and are added to the wordpiece
        # embedding vector (and position vector). This is not *strictly* necessary
Weixin Wang's avatar
Weixin Wang committed
443
        # since the [SEP] token unambiguously separates the sequences, but it makes
444
445
446
447
448
        # it easier for the model to learn the concept of sequences.
        #
        # For classification tasks, the first vector (corresponding to [CLS]) is
        # used as as the "sentence vector". Note that this only makes sense because
        # the entire model is fine-tuned.
449
450
        tokens = ["[CLS]"] + tokens_a + ["[SEP]"]
        segment_ids = [0] * len(tokens)
451
452

        if tokens_b:
453
454
            tokens += tokens_b + ["[SEP]"]
            segment_ids += [1] * (len(tokens_b) + 1)
455
456
457
458
459
460
461
462

        input_ids = tokenizer.convert_tokens_to_ids(tokens)

        # The mask has 1 for real tokens and 0 for padding tokens. Only real
        # tokens are attended to.
        input_mask = [1] * len(input_ids)

        # Zero-pad up to the sequence length.
463
464
465
466
        padding = [0] * (max_seq_length - len(input_ids))
        input_ids += padding
        input_mask += padding
        segment_ids += padding
467
468
469
470
471

        assert len(input_ids) == max_seq_length
        assert len(input_mask) == max_seq_length
        assert len(segment_ids) == max_seq_length

472
473
474
475
476
477
478
        if output_mode == "classification":
            label_id = label_map[example.label]
        elif output_mode == "regression":
            label_id = float(example.label)
        else:
            raise KeyError(output_mode)

479
480
481
482
        if ex_index < 5:
            logger.info("*** Example ***")
            logger.info("guid: %s" % (example.guid))
            logger.info("tokens: %s" % " ".join(
483
                    [str(x) for x in tokens]))
484
485
486
487
488
489
490
            logger.info("input_ids: %s" % " ".join([str(x) for x in input_ids]))
            logger.info("input_mask: %s" % " ".join([str(x) for x in input_mask]))
            logger.info(
                    "segment_ids: %s" % " ".join([str(x) for x in segment_ids]))
            logger.info("label: %s (id = %d)" % (example.label, label_id))

        features.append(
thomwolf's avatar
thomwolf committed
491
492
493
494
                InputFeatures(input_ids=input_ids,
                              input_mask=input_mask,
                              segment_ids=segment_ids,
                              label_id=label_id))
495
    return features
thomwolf's avatar
thomwolf committed
496
497


498
499
500
501
502
503
504
505
506
507
508
509
510
511
def _truncate_seq_pair(tokens_a, tokens_b, max_length):
    """Truncates a sequence pair in place to the maximum length."""

    # This is a simple heuristic which will always truncate the longer sequence
    # one token at a time. This makes more sense than truncating an equal percent
    # of tokens from each, since if one sequence is very short then each token
    # that's truncated likely contains more information than a longer sequence.
    while True:
        total_length = len(tokens_a) + len(tokens_b)
        if total_length <= max_length:
            break
        if len(tokens_a) > len(tokens_b):
            tokens_a.pop()
        else:
VictorSanh's avatar
VictorSanh committed
512
513
            tokens_b.pop()

514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563

def simple_accuracy(preds, labels):
    return (preds == labels).mean()


def acc_and_f1(preds, labels):
    acc = simple_accuracy(preds, labels)
    f1 = f1_score(y_true=labels, y_pred=preds)
    return {
        "acc": acc,
        "f1": f1,
        "acc_and_f1": (acc + f1) / 2,
    }


def pearson_and_spearman(preds, labels):
    pearson_corr = pearsonr(preds, labels)[0]
    spearman_corr = spearmanr(preds, labels)[0]
    return {
        "pearson": pearson_corr,
        "spearmanr": spearman_corr,
        "corr": (pearson_corr + spearman_corr) / 2,
    }


def compute_metrics(task_name, preds, labels):
    assert len(preds) == len(labels)
    if task_name == "cola":
        return {"mcc": matthews_corrcoef(labels, preds)}
    elif task_name == "sst-2":
        return {"acc": simple_accuracy(preds, labels)}
    elif task_name == "mrpc":
        return acc_and_f1(preds, labels)
    elif task_name == "sts-b":
        return pearson_and_spearman(preds, labels)
    elif task_name == "qqp":
        return acc_and_f1(preds, labels)
    elif task_name == "mnli":
        return {"acc": simple_accuracy(preds, labels)}
    elif task_name == "mnli-mm":
        return {"acc": simple_accuracy(preds, labels)}
    elif task_name == "qnli":
        return {"acc": simple_accuracy(preds, labels)}
    elif task_name == "rte":
        return {"acc": simple_accuracy(preds, labels)}
    elif task_name == "wnli":
        return {"acc": simple_accuracy(preds, labels)}
    else:
        raise KeyError(task_name)

VictorSanh's avatar
WIP  
VictorSanh committed
564

565
def main():
566
567
568
569
570
571
572
573
    parser = argparse.ArgumentParser()

    ## Required parameters
    parser.add_argument("--data_dir",
                        default=None,
                        type=str,
                        required=True,
                        help="The input data dir. Should contain the .tsv files (or other data files) for the task.")
thomwolf's avatar
thomwolf committed
574
575
    parser.add_argument("--bert_model", default=None, type=str, required=True,
                        help="Bert pre-trained model selected in the list: bert-base-uncased, "
576
577
                        "bert-large-uncased, bert-base-cased, bert-large-cased, bert-base-multilingual-uncased, "
                        "bert-base-multilingual-cased, bert-base-chinese.")
578
579
580
581
582
583
584
585
586
    parser.add_argument("--task_name",
                        default=None,
                        type=str,
                        required=True,
                        help="The name of the task to train.")
    parser.add_argument("--output_dir",
                        default=None,
                        type=str,
                        required=True,
587
                        help="The output directory where the model predictions and checkpoints will be written.")
588
589

    ## Other parameters
590
591
592
593
    parser.add_argument("--cache_dir",
                        default="",
                        type=str,
                        help="Where do you want to store the pre-trained models downloaded from s3")
594
595
596
597
598
599
600
601
602
603
604
605
    parser.add_argument("--max_seq_length",
                        default=128,
                        type=int,
                        help="The maximum total input sequence length after WordPiece tokenization. \n"
                             "Sequences longer than this will be truncated, and sequences shorter \n"
                             "than this will be padded.")
    parser.add_argument("--do_train",
                        action='store_true',
                        help="Whether to run training.")
    parser.add_argument("--do_eval",
                        action='store_true',
                        help="Whether to run eval on the dev set.")
thomwolf's avatar
thomwolf committed
606
607
608
    parser.add_argument("--do_lower_case",
                        action='store_true',
                        help="Set this flag if you are using an uncased model.")
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
    parser.add_argument("--train_batch_size",
                        default=32,
                        type=int,
                        help="Total batch size for training.")
    parser.add_argument("--eval_batch_size",
                        default=8,
                        type=int,
                        help="Total batch size for eval.")
    parser.add_argument("--learning_rate",
                        default=5e-5,
                        type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument("--num_train_epochs",
                        default=3.0,
                        type=float,
                        help="Total number of training epochs to perform.")
    parser.add_argument("--warmup_proportion",
                        default=0.1,
                        type=float,
                        help="Proportion of training to perform linear learning rate warmup for. "
                             "E.g., 0.1 = 10%% of training.")
    parser.add_argument("--no_cuda",
                        action='store_true',
                        help="Whether not to use CUDA when available")
    parser.add_argument("--local_rank",
                        type=int,
                        default=-1,
                        help="local_rank for distributed training on gpus")
637
638
    parser.add_argument('--seed',
                        type=int,
VictorSanh's avatar
VictorSanh committed
639
640
                        default=42,
                        help="random seed for initialization")
641
642
643
    parser.add_argument('--gradient_accumulation_steps',
                        type=int,
                        default=1,
644
                        help="Number of updates steps to accumulate before performing a backward/update pass.")
thomwolf's avatar
thomwolf committed
645
646
647
648
    parser.add_argument('--fp16',
                        action='store_true',
                        help="Whether to use 16-bit float precision instead of 32-bit")
    parser.add_argument('--loss_scale',
649
650
651
652
                        type=float, default=0,
                        help="Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
                             "0 (default value): dynamic loss scaling.\n"
                             "Positive power of 2: static loss scaling value.\n")
653
654
    parser.add_argument('--server_ip', type=str, default='', help="Can be used for distant debugging.")
    parser.add_argument('--server_port', type=str, default='', help="Can be used for distant debugging.")
655
656
    args = parser.parse_args()

657
658
659
660
661
662
663
    if args.server_ip and args.server_port:
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd
        print("Waiting for debugger attach")
        ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
        ptvsd.wait_for_attach()

VictorSanh's avatar
WIP  
VictorSanh committed
664
665
666
    processors = {
        "cola": ColaProcessor,
        "mnli": MnliProcessor,
667
        "mnli-mm": MnliMismatchedProcessor,
VictorSanh's avatar
WIP  
VictorSanh committed
668
        "mrpc": MrpcProcessor,
669
        "sst-2": Sst2Processor,
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
        "sts-b": StsbProcessor,
        "qqp": QqpProcessor,
        "qnli": QnliProcessor,
        "rte": RteProcessor,
        "wnli": WnliProcessor,
    }

    output_modes = {
        "cola": "classification",
        "mnli": "classification",
        "mrpc": "classification",
        "sst-2": "classification",
        "sts-b": "regression",
        "qqp": "classification",
        "qnli": "classification",
        "rte": "classification",
        "wnli": "classification",
VictorSanh's avatar
WIP  
VictorSanh committed
687
    }
thomwolf's avatar
thomwolf committed
688
689
690
691
692

    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
        n_gpu = torch.cuda.device_count()
    else:
693
        torch.cuda.set_device(args.local_rank)
thomwolf's avatar
thomwolf committed
694
695
        device = torch.device("cuda", args.local_rank)
        n_gpu = 1
thomwolf's avatar
thomwolf committed
696
697
        # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.distributed.init_process_group(backend='nccl')
698
699
700
701
702

    logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s -   %(message)s',
                        datefmt = '%m/%d/%Y %H:%M:%S',
                        level = logging.INFO if args.local_rank in [-1, 0] else logging.WARN)

703
704
    logger.info("device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".format(
        device, n_gpu, bool(args.local_rank != -1), args.fp16))
thomwolf's avatar
thomwolf committed
705

706
707
708
    if args.gradient_accumulation_steps < 1:
        raise ValueError("Invalid gradient_accumulation_steps parameter: {}, should be >= 1".format(
                            args.gradient_accumulation_steps))
thomwolf's avatar
thomwolf committed
709

710
    args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps
thomwolf's avatar
thomwolf committed
711

VictorSanh's avatar
VictorSanh committed
712
713
714
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
thomwolf's avatar
thomwolf committed
715
716
    if n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)
thomwolf's avatar
thomwolf committed
717

VictorSanh's avatar
WIP  
VictorSanh committed
718
719
    if not args.do_train and not args.do_eval:
        raise ValueError("At least one of `do_train` or `do_eval` must be True.")
thomwolf's avatar
thomwolf committed
720

721
    if os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train:
thomwolf's avatar
thomwolf committed
722
        raise ValueError("Output directory ({}) already exists and is not empty.".format(args.output_dir))
thomwolf's avatar
thomwolf committed
723
724
    if not os.path.exists(args.output_dir):
        os.makedirs(args.output_dir)
VictorSanh's avatar
WIP  
VictorSanh committed
725
726

    task_name = args.task_name.lower()
thomwolf's avatar
thomwolf committed
727

VictorSanh's avatar
WIP  
VictorSanh committed
728
729
730
731
    if task_name not in processors:
        raise ValueError("Task not found: %s" % (task_name))

    processor = processors[task_name]()
732
733
    output_mode = output_modes[task_name]

VictorSanh's avatar
WIP  
VictorSanh committed
734
    label_list = processor.get_labels()
735
    num_labels = len(label_list)
VictorSanh's avatar
WIP  
VictorSanh committed
736

thomwolf's avatar
thomwolf committed
737
    tokenizer = BertTokenizer.from_pretrained(args.bert_model, do_lower_case=args.do_lower_case)
thomwolf's avatar
thomwolf committed
738

samuel.broscheit's avatar
samuel.broscheit committed
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
    # Prepare model
    cache_dir = args.cache_dir if args.cache_dir else os.path.join(str(PYTORCH_PRETRAINED_BERT_CACHE), 'distributed_{}'.format(args.local_rank))
    model = BertForSequenceClassification.from_pretrained(args.bert_model,
              cache_dir=cache_dir,
              num_labels=num_labels)
    if args.fp16:
        model.half()
    model.to(device)
    if args.local_rank != -1:
        try:
            from apex.parallel import DistributedDataParallel as DDP
        except ImportError:
            raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.")

        model = DDP(model)
    elif n_gpu > 1:
        model = torch.nn.DataParallel(model)

VictorSanh's avatar
WIP  
VictorSanh committed
757
    if args.do_train:
samuel.broscheit's avatar
samuel.broscheit committed
758
759
760

        # Prepare data loader

VictorSanh's avatar
WIP  
VictorSanh committed
761
        train_examples = processor.get_train_examples(args.data_dir)
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
        train_features = convert_examples_to_features(
            train_examples, label_list, args.max_seq_length, tokenizer, output_mode)
        all_input_ids = torch.tensor([f.input_ids for f in train_features], dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in train_features], dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in train_features], dtype=torch.long)

        if output_mode == "classification":
            all_label_ids = torch.tensor([f.label_id for f in train_features], dtype=torch.long)
        elif output_mode == "regression":
            all_label_ids = torch.tensor([f.label_id for f in train_features], dtype=torch.float)

        train_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids)
        if args.local_rank == -1:
            train_sampler = RandomSampler(train_data)
        else:
            train_sampler = DistributedSampler(train_data)
        train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=args.train_batch_size)

780
        num_train_optimization_steps = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs
781
782
        if args.local_rank != -1:
            num_train_optimization_steps = num_train_optimization_steps // torch.distributed.get_world_size()
thomwolf's avatar
thomwolf committed
783

samuel.broscheit's avatar
samuel.broscheit committed
784
        # Prepare optimizer
thomwolf's avatar
thomwolf committed
785

786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
        param_optimizer = list(model.named_parameters())
        no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
        optimizer_grouped_parameters = [
            {'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01},
            {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
            ]
        if args.fp16:
            try:
                from apex.optimizers import FP16_Optimizer
                from apex.optimizers import FusedAdam
            except ImportError:
                raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.")

            optimizer = FusedAdam(optimizer_grouped_parameters,
                                  lr=args.learning_rate,
                                  bias_correction=False,
                                  max_grad_norm=1.0)
            if args.loss_scale == 0:
                optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
            else:
                optimizer = FP16_Optimizer(optimizer, static_loss_scale=args.loss_scale)
            warmup_linear = WarmupLinearSchedule(warmup=args.warmup_proportion,
                                                 t_total=num_train_optimization_steps)
thomwolf's avatar
thomwolf committed
809

810
        else:
811
812
813
814
            optimizer = BertAdam(optimizer_grouped_parameters,
                                 lr=args.learning_rate,
                                 warmup=args.warmup_proportion,
                                 t_total=num_train_optimization_steps)
thomwolf's avatar
thomwolf committed
815

samuel.broscheit's avatar
samuel.broscheit committed
816
817
818
819
        global_step = 0
        nb_tr_steps = 0
        tr_loss = 0

VictorSanh's avatar
WIP  
VictorSanh committed
820
821
822
        logger.info("***** Running training *****")
        logger.info("  Num examples = %d", len(train_examples))
        logger.info("  Batch size = %d", args.train_batch_size)
823
        logger.info("  Num steps = %d", num_train_optimization_steps)
824
825

        model.train()
826
        for _ in trange(int(args.num_train_epochs), desc="Epoch"):
827
828
            tr_loss = 0
            nb_tr_examples, nb_tr_steps = 0, 0
829
830
831
            for step, batch in enumerate(tqdm(train_dataloader, desc="Iteration")):
                batch = tuple(t.to(device) for t in batch)
                input_ids, input_mask, segment_ids, label_ids = batch
832
833
834
835
836
837
838
839
840
841
842

                # define a new function to compute loss values for both output_modes
                logits = model(input_ids, segment_ids, input_mask, labels=None)

                if output_mode == "classification":
                    loss_fct = CrossEntropyLoss()
                    loss = loss_fct(logits.view(-1, num_labels), label_ids.view(-1))
                elif output_mode == "regression":
                    loss_fct = MSELoss()
                    loss = loss_fct(logits.view(-1), label_ids.view(-1))

thomwolf's avatar
thomwolf committed
843
844
                if n_gpu > 1:
                    loss = loss.mean() # mean() to average on multi-gpu.
845
846
                if args.gradient_accumulation_steps > 1:
                    loss = loss / args.gradient_accumulation_steps
847
848
849
850
851
852

                if args.fp16:
                    optimizer.backward(loss)
                else:
                    loss.backward()

853
                tr_loss += loss.item()
854
                nb_tr_examples += input_ids.size(0)
855
                nb_tr_steps += 1
thomwolf's avatar
thomwolf committed
856
                if (step + 1) % args.gradient_accumulation_steps == 0:
857
858
859
                    if args.fp16:
                        # modify learning rate with special warm up BERT uses
                        # if args.fp16 is False, BertAdam is used that handles this automatically
860
                        lr_this_step = args.learning_rate * warmup_linear.get_lr(global_step, args.warmup_proportion)
861
862
                        for param_group in optimizer.param_groups:
                            param_group['lr'] = lr_this_step
863
864
                    optimizer.step()
                    optimizer.zero_grad()
thomwolf's avatar
thomwolf committed
865
                    global_step += 1
thomwolf's avatar
thomwolf committed
866

867
    if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
868
        # Save a trained model, configuration and tokenizer
869
        model_to_save = model.module if hasattr(model, 'module') else model  # Only save the model it-self
870
871

        # If we save using the predefined names, we can load using `from_pretrained`
872
873
874
        output_model_file = os.path.join(args.output_dir, WEIGHTS_NAME)
        output_config_file = os.path.join(args.output_dir, CONFIG_NAME)

875
876
        torch.save(model_to_save.state_dict(), output_model_file)
        model_to_save.config.to_json_file(output_config_file)
877
        tokenizer.save_vocabulary(args.output_dir)
878

879
880
        # Load a trained model and vocabulary that you have fine-tuned
        model = BertForSequenceClassification.from_pretrained(args.output_dir, num_labels=num_labels)
881
        tokenizer = BertTokenizer.from_pretrained(args.output_dir, do_lower_case=args.do_lower_case)
882
883
    else:
        model = BertForSequenceClassification.from_pretrained(args.bert_model, num_labels=num_labels)
884
    model.to(device)
885

886
    if args.do_eval and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
VictorSanh's avatar
WIP  
VictorSanh committed
887
888
        eval_examples = processor.get_dev_examples(args.data_dir)
        eval_features = convert_examples_to_features(
889
            eval_examples, label_list, args.max_seq_length, tokenizer, output_mode)
VictorSanh's avatar
wip  
VictorSanh committed
890
891
892
        logger.info("***** Running evaluation *****")
        logger.info("  Num examples = %d", len(eval_examples))
        logger.info("  Batch size = %d", args.eval_batch_size)
893
894
895
        all_input_ids = torch.tensor([f.input_ids for f in eval_features], dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in eval_features], dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in eval_features], dtype=torch.long)
896
897
898
899
900
901

        if output_mode == "classification":
            all_label_ids = torch.tensor([f.label_id for f in eval_features], dtype=torch.long)
        elif output_mode == "regression":
            all_label_ids = torch.tensor([f.label_id for f in eval_features], dtype=torch.float)

902
        eval_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids)
903
904
        # Run prediction for full data
        eval_sampler = SequentialSampler(eval_data)
905
906
907
        eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.eval_batch_size)

        model.eval()
908
909
910
        eval_loss = 0
        nb_eval_steps = 0
        preds = []
911

912
        for input_ids, input_mask, segment_ids, label_ids in tqdm(eval_dataloader, desc="Evaluating"):
913
            input_ids = input_ids.to(device)
thomwolf's avatar
thomwolf committed
914
            input_mask = input_mask.to(device)
915
            segment_ids = segment_ids.to(device)
916
            label_ids = label_ids.to(device)
917

918
            with torch.no_grad():
919
                logits = model(input_ids, segment_ids, input_mask, labels=None)
920

921
922
923
924
925
926
927
928
            # create eval loss and other metric required by the task
            if output_mode == "classification":
                loss_fct = CrossEntropyLoss()
                tmp_eval_loss = loss_fct(logits.view(-1, num_labels), label_ids.view(-1))
            elif output_mode == "regression":
                loss_fct = MSELoss()
                tmp_eval_loss = loss_fct(logits.view(-1), label_ids.view(-1))
            
929
930
            eval_loss += tmp_eval_loss.mean().item()
            nb_eval_steps += 1
931
932
933
934
935
            if len(preds) == 0:
                preds.append(logits.detach().cpu().numpy())
            else:
                preds[0] = np.append(
                    preds[0], logits.detach().cpu().numpy(), axis=0)
VictorSanh's avatar
WIP  
VictorSanh committed
936

937
        eval_loss = eval_loss / nb_eval_steps
938
939
940
        preds = preds[0]
        if output_mode == "classification":
            preds = np.argmax(preds, axis=1)
941
942
        elif output_mode == "regression":
            preds = np.squeeze(preds)
943
        result = compute_metrics(task_name, preds, all_label_ids.numpy())
944
        loss = tr_loss/global_step if args.do_train else None
945
946
947
948

        result['eval_loss'] = eval_loss
        result['global_step'] = global_step
        result['loss'] = loss
VictorSanh's avatar
WIP  
VictorSanh committed
949
950

        output_eval_file = os.path.join(args.output_dir, "eval_results.txt")
VictorSanh's avatar
wip  
VictorSanh committed
951
952
        with open(output_eval_file, "w") as writer:
            logger.info("***** Eval results *****")
VictorSanh's avatar
WIP  
VictorSanh committed
953
            for key in sorted(result.keys()):
VictorSanh's avatar
wip  
VictorSanh committed
954
                logger.info("  %s = %s", key, str(result[key]))
VictorSanh's avatar
WIP  
VictorSanh committed
955
                writer.write("%s = %s\n" % (key, str(result[key])))
956

957
958
959
960
961
        # hack for MNLI-MM
        if task_name == "mnli":
            task_name = "mnli-mm"
            processor = processors[task_name]()

962
963
964
965
966
            if os.path.exists(args.output_dir + '-MM') and os.listdir(args.output_dir + '-MM') and args.do_train:
                raise ValueError("Output directory ({}) already exists and is not empty.".format(args.output_dir))
            if not os.path.exists(args.output_dir + '-MM'):
                os.makedirs(args.output_dir + '-MM')

967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
            eval_examples = processor.get_dev_examples(args.data_dir)
            eval_features = convert_examples_to_features(
                eval_examples, label_list, args.max_seq_length, tokenizer, output_mode)
            logger.info("***** Running evaluation *****")
            logger.info("  Num examples = %d", len(eval_examples))
            logger.info("  Batch size = %d", args.eval_batch_size)
            all_input_ids = torch.tensor([f.input_ids for f in eval_features], dtype=torch.long)
            all_input_mask = torch.tensor([f.input_mask for f in eval_features], dtype=torch.long)
            all_segment_ids = torch.tensor([f.segment_ids for f in eval_features], dtype=torch.long)
            all_label_ids = torch.tensor([f.label_id for f in eval_features], dtype=torch.long)

            eval_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids)
            # Run prediction for full data
            eval_sampler = SequentialSampler(eval_data)
            eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.eval_batch_size)

            model.eval()
            eval_loss = 0
            nb_eval_steps = 0
            preds = []

            for input_ids, input_mask, segment_ids, label_ids in tqdm(eval_dataloader, desc="Evaluating"):
                input_ids = input_ids.to(device)
                input_mask = input_mask.to(device)
                segment_ids = segment_ids.to(device)
                label_ids = label_ids.to(device)

                with torch.no_grad():
                    logits = model(input_ids, segment_ids, input_mask, labels=None)
            
                loss_fct = CrossEntropyLoss()
                tmp_eval_loss = loss_fct(logits.view(-1, num_labels), label_ids.view(-1))
            
                eval_loss += tmp_eval_loss.mean().item()
                nb_eval_steps += 1
                if len(preds) == 0:
                    preds.append(logits.detach().cpu().numpy())
                else:
                    preds[0] = np.append(
                        preds[0], logits.detach().cpu().numpy(), axis=0)
1007

1008
1009
1010
1011
            eval_loss = eval_loss / nb_eval_steps
            preds = preds[0]
            preds = np.argmax(preds, axis=1)
            result = compute_metrics(task_name, preds, all_label_ids.numpy())
1012
            loss = tr_loss/global_step if args.do_train else None
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023

            result['eval_loss'] = eval_loss
            result['global_step'] = global_step
            result['loss'] = loss

            output_eval_file = os.path.join(args.output_dir + '-MM', "eval_results.txt")
            with open(output_eval_file, "w") as writer:
                logger.info("***** Eval results *****")
                for key in sorted(result.keys()):
                    logger.info("  %s = %s", key, str(result[key]))
                    writer.write("%s = %s\n" % (key, str(result[key])))
1024

VictorSanh's avatar
WIP  
VictorSanh committed
1025
1026
if __name__ == "__main__":
    main()