Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
chenpangpang
transformers
Commits
d94c6b01
Commit
d94c6b01
authored
Apr 23, 2019
by
thomwolf
Browse files
fix training schedules in examples to match new API
parent
c36cca07
Changes
5
Hide whitespace changes
Inline
Side-by-side
Showing
5 changed files
with
25 additions
and
12 deletions
+25
-12
examples/lm_finetuning/finetune_on_pregenerated.py
examples/lm_finetuning/finetune_on_pregenerated.py
+5
-4
examples/lm_finetuning/simple_lm_finetuning.py
examples/lm_finetuning/simple_lm_finetuning.py
+5
-2
examples/run_classifier.py
examples/run_classifier.py
+5
-2
examples/run_squad.py
examples/run_squad.py
+5
-2
examples/run_swag.py
examples/run_swag.py
+5
-2
No files found.
examples/lm_finetuning/finetune_on_pregenerated.py
View file @
d94c6b01
...
@@ -14,7 +14,7 @@ from tqdm import tqdm
...
@@ -14,7 +14,7 @@ from tqdm import tqdm
from
pytorch_pretrained_bert.modeling
import
BertForPreTraining
from
pytorch_pretrained_bert.modeling
import
BertForPreTraining
from
pytorch_pretrained_bert.tokenization
import
BertTokenizer
from
pytorch_pretrained_bert.tokenization
import
BertTokenizer
from
pytorch_pretrained_bert.optimization
import
BertAdam
,
w
armup
_l
inear
from
pytorch_pretrained_bert.optimization
import
BertAdam
,
W
armup
L
inear
Schedule
InputFeatures
=
namedtuple
(
"InputFeatures"
,
"input_ids input_mask segment_ids lm_label_ids is_next"
)
InputFeatures
=
namedtuple
(
"InputFeatures"
,
"input_ids input_mask segment_ids lm_label_ids is_next"
)
...
@@ -268,7 +268,8 @@ def main():
...
@@ -268,7 +268,8 @@ def main():
optimizer
=
FP16_Optimizer
(
optimizer
,
dynamic_loss_scale
=
True
)
optimizer
=
FP16_Optimizer
(
optimizer
,
dynamic_loss_scale
=
True
)
else
:
else
:
optimizer
=
FP16_Optimizer
(
optimizer
,
static_loss_scale
=
args
.
loss_scale
)
optimizer
=
FP16_Optimizer
(
optimizer
,
static_loss_scale
=
args
.
loss_scale
)
warmup_linear
=
WarmupLinearSchedule
(
warmup
=
args
.
warmup_proportion
,
t_total
=
num_train_optimization_steps
)
else
:
else
:
optimizer
=
BertAdam
(
optimizer_grouped_parameters
,
optimizer
=
BertAdam
(
optimizer_grouped_parameters
,
lr
=
args
.
learning_rate
,
lr
=
args
.
learning_rate
,
...
@@ -314,8 +315,8 @@ def main():
...
@@ -314,8 +315,8 @@ def main():
if
args
.
fp16
:
if
args
.
fp16
:
# modify learning rate with special warm up BERT uses
# modify learning rate with special warm up BERT uses
# if args.fp16 is False, BertAdam is used that handles this automatically
# if args.fp16 is False, BertAdam is used that handles this automatically
lr_this_step
=
args
.
learning_rate
*
warmup_linear
(
global_step
/
num_train_optimization_steps
,
lr_this_step
=
args
.
learning_rate
*
warmup_linear
.
get_lr
(
global_step
/
num_train_optimization_steps
,
args
.
warmup_proportion
)
args
.
warmup_proportion
)
for
param_group
in
optimizer
.
param_groups
:
for
param_group
in
optimizer
.
param_groups
:
param_group
[
'lr'
]
=
lr_this_step
param_group
[
'lr'
]
=
lr_this_step
optimizer
.
step
()
optimizer
.
step
()
...
...
examples/lm_finetuning/simple_lm_finetuning.py
View file @
d94c6b01
...
@@ -31,7 +31,7 @@ from tqdm import tqdm, trange
...
@@ -31,7 +31,7 @@ from tqdm import tqdm, trange
from
pytorch_pretrained_bert.modeling
import
BertForPreTraining
from
pytorch_pretrained_bert.modeling
import
BertForPreTraining
from
pytorch_pretrained_bert.tokenization
import
BertTokenizer
from
pytorch_pretrained_bert.tokenization
import
BertTokenizer
from
pytorch_pretrained_bert.optimization
import
BertAdam
,
w
armup
_l
inear
from
pytorch_pretrained_bert.optimization
import
BertAdam
,
W
armup
L
inear
Schedule
logging
.
basicConfig
(
format
=
'%(asctime)s - %(levelname)s - %(name)s - %(message)s'
,
logging
.
basicConfig
(
format
=
'%(asctime)s - %(levelname)s - %(name)s - %(message)s'
,
datefmt
=
'%m/%d/%Y %H:%M:%S'
,
datefmt
=
'%m/%d/%Y %H:%M:%S'
,
...
@@ -556,6 +556,8 @@ def main():
...
@@ -556,6 +556,8 @@ def main():
optimizer
=
FP16_Optimizer
(
optimizer
,
dynamic_loss_scale
=
True
)
optimizer
=
FP16_Optimizer
(
optimizer
,
dynamic_loss_scale
=
True
)
else
:
else
:
optimizer
=
FP16_Optimizer
(
optimizer
,
static_loss_scale
=
args
.
loss_scale
)
optimizer
=
FP16_Optimizer
(
optimizer
,
static_loss_scale
=
args
.
loss_scale
)
warmup_linear
=
WarmupLinearSchedule
(
warmup
=
args
.
warmup_proportion
,
t_total
=
num_train_optimization_steps
)
else
:
else
:
optimizer
=
BertAdam
(
optimizer_grouped_parameters
,
optimizer
=
BertAdam
(
optimizer_grouped_parameters
,
...
@@ -601,7 +603,8 @@ def main():
...
@@ -601,7 +603,8 @@ def main():
if
args
.
fp16
:
if
args
.
fp16
:
# modify learning rate with special warm up BERT uses
# modify learning rate with special warm up BERT uses
# if args.fp16 is False, BertAdam is used that handles this automatically
# if args.fp16 is False, BertAdam is used that handles this automatically
lr_this_step
=
args
.
learning_rate
*
warmup_linear
(
global_step
/
num_train_optimization_steps
,
args
.
warmup_proportion
)
lr_this_step
=
args
.
learning_rate
*
warmup_linear
.
get_lr
(
global_step
/
num_train_optimization_steps
,
args
.
warmup_proportion
)
for
param_group
in
optimizer
.
param_groups
:
for
param_group
in
optimizer
.
param_groups
:
param_group
[
'lr'
]
=
lr_this_step
param_group
[
'lr'
]
=
lr_this_step
optimizer
.
step
()
optimizer
.
step
()
...
...
examples/run_classifier.py
View file @
d94c6b01
...
@@ -38,7 +38,7 @@ from sklearn.metrics import matthews_corrcoef, f1_score
...
@@ -38,7 +38,7 @@ from sklearn.metrics import matthews_corrcoef, f1_score
from
pytorch_pretrained_bert.file_utils
import
PYTORCH_PRETRAINED_BERT_CACHE
,
WEIGHTS_NAME
,
CONFIG_NAME
from
pytorch_pretrained_bert.file_utils
import
PYTORCH_PRETRAINED_BERT_CACHE
,
WEIGHTS_NAME
,
CONFIG_NAME
from
pytorch_pretrained_bert.modeling
import
BertForSequenceClassification
,
BertConfig
from
pytorch_pretrained_bert.modeling
import
BertForSequenceClassification
,
BertConfig
from
pytorch_pretrained_bert.tokenization
import
BertTokenizer
from
pytorch_pretrained_bert.tokenization
import
BertTokenizer
from
pytorch_pretrained_bert.optimization
import
BertAdam
,
w
armup
_l
inear
from
pytorch_pretrained_bert.optimization
import
BertAdam
,
W
armup
L
inear
Schedule
logger
=
logging
.
getLogger
(
__name__
)
logger
=
logging
.
getLogger
(
__name__
)
...
@@ -784,6 +784,8 @@ def main():
...
@@ -784,6 +784,8 @@ def main():
optimizer
=
FP16_Optimizer
(
optimizer
,
dynamic_loss_scale
=
True
)
optimizer
=
FP16_Optimizer
(
optimizer
,
dynamic_loss_scale
=
True
)
else
:
else
:
optimizer
=
FP16_Optimizer
(
optimizer
,
static_loss_scale
=
args
.
loss_scale
)
optimizer
=
FP16_Optimizer
(
optimizer
,
static_loss_scale
=
args
.
loss_scale
)
warmup_linear
=
WarmupLinearSchedule
(
warmup
=
args
.
warmup_proportion
,
t_total
=
num_train_optimization_steps
)
else
:
else
:
optimizer
=
BertAdam
(
optimizer_grouped_parameters
,
optimizer
=
BertAdam
(
optimizer_grouped_parameters
,
...
@@ -852,7 +854,8 @@ def main():
...
@@ -852,7 +854,8 @@ def main():
if
args
.
fp16
:
if
args
.
fp16
:
# modify learning rate with special warm up BERT uses
# modify learning rate with special warm up BERT uses
# if args.fp16 is False, BertAdam is used that handles this automatically
# if args.fp16 is False, BertAdam is used that handles this automatically
lr_this_step
=
args
.
learning_rate
*
warmup_linear
(
global_step
/
num_train_optimization_steps
,
args
.
warmup_proportion
)
lr_this_step
=
args
.
learning_rate
*
warmup_linear
.
get_lr
(
global_step
/
num_train_optimization_steps
,
args
.
warmup_proportion
)
for
param_group
in
optimizer
.
param_groups
:
for
param_group
in
optimizer
.
param_groups
:
param_group
[
'lr'
]
=
lr_this_step
param_group
[
'lr'
]
=
lr_this_step
optimizer
.
step
()
optimizer
.
step
()
...
...
examples/run_squad.py
View file @
d94c6b01
...
@@ -36,7 +36,7 @@ from tqdm import tqdm, trange
...
@@ -36,7 +36,7 @@ from tqdm import tqdm, trange
from
pytorch_pretrained_bert.file_utils
import
PYTORCH_PRETRAINED_BERT_CACHE
,
WEIGHTS_NAME
,
CONFIG_NAME
from
pytorch_pretrained_bert.file_utils
import
PYTORCH_PRETRAINED_BERT_CACHE
,
WEIGHTS_NAME
,
CONFIG_NAME
from
pytorch_pretrained_bert.modeling
import
BertForQuestionAnswering
,
BertConfig
from
pytorch_pretrained_bert.modeling
import
BertForQuestionAnswering
,
BertConfig
from
pytorch_pretrained_bert.optimization
import
BertAdam
,
w
armup
_l
inear
from
pytorch_pretrained_bert.optimization
import
BertAdam
,
W
armup
L
inear
Schedule
from
pytorch_pretrained_bert.tokenization
import
(
BasicTokenizer
,
from
pytorch_pretrained_bert.tokenization
import
(
BasicTokenizer
,
BertTokenizer
,
BertTokenizer
,
whitespace_tokenize
)
whitespace_tokenize
)
...
@@ -949,6 +949,8 @@ def main():
...
@@ -949,6 +949,8 @@ def main():
optimizer
=
FP16_Optimizer
(
optimizer
,
dynamic_loss_scale
=
True
)
optimizer
=
FP16_Optimizer
(
optimizer
,
dynamic_loss_scale
=
True
)
else
:
else
:
optimizer
=
FP16_Optimizer
(
optimizer
,
static_loss_scale
=
args
.
loss_scale
)
optimizer
=
FP16_Optimizer
(
optimizer
,
static_loss_scale
=
args
.
loss_scale
)
warmup_linear
=
WarmupLinearSchedule
(
warmup
=
args
.
warmup_proportion
,
t_total
=
num_train_optimization_steps
)
else
:
else
:
optimizer
=
BertAdam
(
optimizer_grouped_parameters
,
optimizer
=
BertAdam
(
optimizer_grouped_parameters
,
lr
=
args
.
learning_rate
,
lr
=
args
.
learning_rate
,
...
@@ -1013,7 +1015,8 @@ def main():
...
@@ -1013,7 +1015,8 @@ def main():
if
args
.
fp16
:
if
args
.
fp16
:
# modify learning rate with special warm up BERT uses
# modify learning rate with special warm up BERT uses
# if args.fp16 is False, BertAdam is used and handles this automatically
# if args.fp16 is False, BertAdam is used and handles this automatically
lr_this_step
=
args
.
learning_rate
*
warmup_linear
(
global_step
/
num_train_optimization_steps
,
args
.
warmup_proportion
)
lr_this_step
=
args
.
learning_rate
*
warmup_linear
.
get_lr
(
global_step
/
num_train_optimization_steps
,
args
.
warmup_proportion
)
for
param_group
in
optimizer
.
param_groups
:
for
param_group
in
optimizer
.
param_groups
:
param_group
[
'lr'
]
=
lr_this_step
param_group
[
'lr'
]
=
lr_this_step
optimizer
.
step
()
optimizer
.
step
()
...
...
examples/run_swag.py
View file @
d94c6b01
...
@@ -34,7 +34,7 @@ from tqdm import tqdm, trange
...
@@ -34,7 +34,7 @@ from tqdm import tqdm, trange
from
pytorch_pretrained_bert.file_utils
import
PYTORCH_PRETRAINED_BERT_CACHE
,
WEIGHTS_NAME
,
CONFIG_NAME
from
pytorch_pretrained_bert.file_utils
import
PYTORCH_PRETRAINED_BERT_CACHE
,
WEIGHTS_NAME
,
CONFIG_NAME
from
pytorch_pretrained_bert.modeling
import
BertForMultipleChoice
,
BertConfig
from
pytorch_pretrained_bert.modeling
import
BertForMultipleChoice
,
BertConfig
from
pytorch_pretrained_bert.optimization
import
BertAdam
,
w
armup
_l
inear
from
pytorch_pretrained_bert.optimization
import
BertAdam
,
W
armup
L
inear
Schedule
from
pytorch_pretrained_bert.tokenization
import
BertTokenizer
from
pytorch_pretrained_bert.tokenization
import
BertTokenizer
logging
.
basicConfig
(
format
=
'%(asctime)s - %(levelname)s - %(name)s - %(message)s'
,
logging
.
basicConfig
(
format
=
'%(asctime)s - %(levelname)s - %(name)s - %(message)s'
,
...
@@ -411,6 +411,8 @@ def main():
...
@@ -411,6 +411,8 @@ def main():
optimizer
=
FP16_Optimizer
(
optimizer
,
dynamic_loss_scale
=
True
)
optimizer
=
FP16_Optimizer
(
optimizer
,
dynamic_loss_scale
=
True
)
else
:
else
:
optimizer
=
FP16_Optimizer
(
optimizer
,
static_loss_scale
=
args
.
loss_scale
)
optimizer
=
FP16_Optimizer
(
optimizer
,
static_loss_scale
=
args
.
loss_scale
)
warmup_linear
=
WarmupLinearSchedule
(
warmup
=
args
.
warmup_proportion
,
t_total
=
num_train_optimization_steps
)
else
:
else
:
optimizer
=
BertAdam
(
optimizer_grouped_parameters
,
optimizer
=
BertAdam
(
optimizer_grouped_parameters
,
lr
=
args
.
learning_rate
,
lr
=
args
.
learning_rate
,
...
@@ -464,7 +466,8 @@ def main():
...
@@ -464,7 +466,8 @@ def main():
if
args
.
fp16
:
if
args
.
fp16
:
# modify learning rate with special warm up BERT uses
# modify learning rate with special warm up BERT uses
# if args.fp16 is False, BertAdam is used that handles this automatically
# if args.fp16 is False, BertAdam is used that handles this automatically
lr_this_step
=
args
.
learning_rate
*
warmup_linear
(
global_step
/
num_train_optimization_steps
,
args
.
warmup_proportion
)
lr_this_step
=
args
.
learning_rate
*
warmup_linear
.
get_lr
(
global_step
/
num_train_optimization_steps
,
args
.
warmup_proportion
)
for
param_group
in
optimizer
.
param_groups
:
for
param_group
in
optimizer
.
param_groups
:
param_group
[
'lr'
]
=
lr_this_step
param_group
[
'lr'
]
=
lr_this_step
optimizer
.
step
()
optimizer
.
step
()
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment