Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
chenpangpang
transformers
Commits
1701291e
"scripts/git@developer.sourcefind.cn:Wenxuan/LightX2V.git" did not exist on "e1f7729ef4f403e1e6c4261db069d1ae2f0860bf"
Commit
1701291e
authored
Nov 04, 2018
by
thomwolf
Browse files
multi-gpu cleanup
parent
5ee17168
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
6 additions
and
11 deletions
+6
-11
run_classifier.py
run_classifier.py
+3
-1
run_squad.py
run_squad.py
+3
-10
No files found.
run_classifier.py
View file @
1701291e
...
...
@@ -539,9 +539,11 @@ def main():
label_ids
=
label_ids
.
to
(
device
)
loss
,
_
=
model
(
input_ids
,
segment_ids
,
input_mask
,
label_ids
)
loss
=
loss
.
mean
()
# sum() is to account for multi-gpu support.
if
n_gpu
>
1
:
loss
=
loss
.
mean
()
# mean() to average on multi-gpu.
tr_loss
+=
loss
.
item
()
nb_tr_examples
+=
input_ids
.
size
(
0
)
model
.
zero_grad
()
loss
.
backward
()
optimizer
.
step
()
...
...
run_squad.py
View file @
1701291e
...
...
@@ -837,25 +837,19 @@ def main():
logger
.
info
(
" Batch size = %d"
,
args
.
train_batch_size
)
logger
.
info
(
" Num steps = %d"
,
num_train_steps
)
logger
.
info
(
"HHHHH Loading data"
)
all_input_ids
=
torch
.
tensor
([
f
.
input_ids
for
f
in
train_features
],
dtype
=
torch
.
long
)
all_input_mask
=
torch
.
tensor
([
f
.
input_mask
for
f
in
train_features
],
dtype
=
torch
.
long
)
all_segment_ids
=
torch
.
tensor
([
f
.
segment_ids
for
f
in
train_features
],
dtype
=
torch
.
long
)
#all_label_ids = torch.tensor([f.label_id for f in train_features], dtype=torch.long)
all_start_positions
=
torch
.
tensor
([
f
.
start_position
for
f
in
train_features
],
dtype
=
torch
.
long
)
all_end_positions
=
torch
.
tensor
([
f
.
end_position
for
f
in
train_features
],
dtype
=
torch
.
long
)
logger
.
info
(
"HHHHH Creating dataset"
)
#train_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids)
train_data
=
TensorDataset
(
all_input_ids
,
all_input_mask
,
all_segment_ids
,
all_start_positions
,
all_end_positions
)
if
args
.
local_rank
==
-
1
:
train_sampler
=
RandomSampler
(
train_data
)
else
:
train_sampler
=
DistributedSampler
(
train_data
)
logger
.
info
(
"HHHHH Dataloader"
)
train_dataloader
=
DataLoader
(
train_data
,
sampler
=
train_sampler
,
batch_size
=
args
.
train_batch_size
)
logger
.
info
(
"HHHHH Starting Traing"
)
model
.
train
()
for
epoch
in
trange
(
int
(
args
.
num_train_epochs
),
desc
=
"Epoch"
):
for
input_ids
,
input_mask
,
segment_ids
,
start_positions
,
end_positions
in
tqdm
(
train_dataloader
,
...
...
@@ -863,19 +857,18 @@ def main():
input_ids
=
input_ids
.
to
(
device
)
input_mask
=
input_mask
.
float
().
to
(
device
)
segment_ids
=
segment_ids
.
to
(
device
)
#label_ids = label_ids.to(device)
start_positions
=
start_positions
.
to
(
device
)
end_positions
=
start_positions
.
to
(
device
)
start_positions
=
start_positions
.
view
(
-
1
,
1
)
end_positions
=
end_positions
.
view
(
-
1
,
1
)
logger
.
info
(
"HHHHH Forward"
)
loss
,
_
=
model
(
input_ids
,
segment_ids
,
input_mask
,
start_positions
,
end_positions
)
if
n_gpu
>
1
:
loss
=
loss
.
mean
()
# mean() to average on multi-gpu.
model
.
zero_grad
()
logger
.
info
(
"HHHHH Backward, loss: {}"
.
format
(
loss
))
loss
.
backward
()
logger
.
info
(
"HHHHH Loading data"
)
optimizer
.
step
()
global_step
+=
1
logger
.
info
(
"Done %s steps"
,
global_step
)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment