run_classifier.py 25.8 KB
Newer Older
1
# coding=utf-8
thomwolf's avatar
thomwolf committed
2
# Copyright 2018 The Google AI Language Team Authors and The HugginFace Inc. team.
3
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
4
5
6
7
8
9
10
11
12
13
14
15
16
17
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""BERT finetuning runner."""

thomwolf's avatar
thomwolf committed
18
from __future__ import absolute_import, division, print_function
19

thomwolf's avatar
thomwolf committed
20
import argparse
21
import csv
22
import logging
thomwolf's avatar
thomwolf committed
23
import os
VictorSanh's avatar
VictorSanh committed
24
import random
thomwolf's avatar
thomwolf committed
25
26
import sys
from io import open
thomwolf's avatar
thomwolf committed
27
28

import numpy as np
VictorSanh's avatar
VictorSanh committed
29
import torch
thomwolf's avatar
thomwolf committed
30
31
from torch.utils.data import (DataLoader, RandomSampler, SequentialSampler,
                              TensorDataset)
32
from torch.utils.data.distributed import DistributedSampler
thomwolf's avatar
thomwolf committed
33
from tqdm import tqdm, trange
34

thomwolf's avatar
thomwolf committed
35
from pytorch_pretrained_bert.file_utils import PYTORCH_PRETRAINED_BERT_CACHE
thomwolf's avatar
thomwolf committed
36
from pytorch_pretrained_bert.modeling import BertForSequenceClassification
thomwolf's avatar
thomwolf committed
37
from pytorch_pretrained_bert.tokenization import BertTokenizer
38
from pytorch_pretrained_bert.optimization import BertAdam, warmup_linear
39

40
logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s -   %(message)s',
41
42
43
                    datefmt = '%m/%d/%Y %H:%M:%S',
                    level = logging.INFO)
logger = logging.getLogger(__name__)
44

45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

class InputExample(object):
    """A single training/test example for simple sequence classification."""

    def __init__(self, guid, text_a, text_b=None, label=None):
        """Constructs a InputExample.

        Args:
            guid: Unique id for the example.
            text_a: string. The untokenized text of the first sequence. For single
            sequence tasks, only this sequence must be specified.
            text_b: (Optional) string. The untokenized text of the second sequence.
            Only must be specified for sequence pair tasks.
            label: (Optional) string. The label of the example. This should be
            specified for train and dev examples, but not for test examples.
        """
        self.guid = guid
        self.text_a = text_a
        self.text_b = text_b
        self.label = label


class InputFeatures(object):
    """A single set of features of data."""

    def __init__(self, input_ids, input_mask, segment_ids, label_id):
        self.input_ids = input_ids
        self.input_mask = input_mask
        self.segment_ids = segment_ids
        self.label_id = label_id
thomwolf's avatar
thomwolf committed
75

76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94

class DataProcessor(object):
    """Base class for data converters for sequence classification data sets."""

    def get_train_examples(self, data_dir):
        """Gets a collection of `InputExample`s for the train set."""
        raise NotImplementedError()

    def get_dev_examples(self, data_dir):
        """Gets a collection of `InputExample`s for the dev set."""
        raise NotImplementedError()

    def get_labels(self):
        """Gets the list of labels for this data set."""
        raise NotImplementedError()

    @classmethod
    def _read_tsv(cls, input_file, quotechar=None):
        """Reads a tab separated value file."""
thomwolf's avatar
thomwolf committed
95
        with open(input_file, "rb") as f:
96
97
98
            reader = csv.reader(f, delimiter="\t", quotechar=quotechar)
            lines = []
            for line in reader:
thomwolf's avatar
thomwolf committed
99
100
                if sys.version_info[0] == 2:
                    line = list(unicode(cell, 'utf-8') for cell in line)
101
102
                lines.append(line)
            return lines
thomwolf's avatar
thomwolf committed
103
104


VictorSanh's avatar
wip  
VictorSanh committed
105
106
107
108
109
class MrpcProcessor(DataProcessor):
    """Processor for the MRPC data set (GLUE version)."""

    def get_train_examples(self, data_dir):
        """See base class."""
thomwolf's avatar
thomwolf committed
110
        logger.info("LOOKING AT {}".format(os.path.join(data_dir, "train.tsv")))
VictorSanh's avatar
wip  
VictorSanh committed
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
        return self._create_examples(
            self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")

    def get_dev_examples(self, data_dir):
        """See base class."""
        return self._create_examples(
            self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")

    def get_labels(self):
        """See base class."""
        return ["0", "1"]

    def _create_examples(self, lines, set_type):
        """Creates examples for the training and dev sets."""
        examples = []
        for (i, line) in enumerate(lines):
            if i == 0:
                continue
            guid = "%s-%s" % (set_type, i)
130
131
132
            text_a = line[3]
            text_b = line[4]
            label = line[0]
VictorSanh's avatar
wip  
VictorSanh committed
133
134
135
136
            examples.append(
                InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
        return examples

137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

class MnliProcessor(DataProcessor):
    """Processor for the MultiNLI data set (GLUE version)."""

    def get_train_examples(self, data_dir):
        """See base class."""
        return self._create_examples(
            self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")

    def get_dev_examples(self, data_dir):
        """See base class."""
        return self._create_examples(
            self._read_tsv(os.path.join(data_dir, "dev_matched.tsv")),
            "dev_matched")

    def get_labels(self):
        """See base class."""
        return ["contradiction", "entailment", "neutral"]

    def _create_examples(self, lines, set_type):
        """Creates examples for the training and dev sets."""
        examples = []
        for (i, line) in enumerate(lines):
            if i == 0:
                continue
162
            guid = "%s-%s" % (set_type, line[0])
163
164
            text_a = line[8]
            text_b = line[9]
165
            label = line[-1]
166
167
168
            examples.append(
                InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
        return examples
thomwolf's avatar
thomwolf committed
169

170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192

class ColaProcessor(DataProcessor):
    """Processor for the CoLA data set (GLUE version)."""

    def get_train_examples(self, data_dir):
        """See base class."""
        return self._create_examples(
            self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")

    def get_dev_examples(self, data_dir):
        """See base class."""
        return self._create_examples(
            self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")

    def get_labels(self):
        """See base class."""
        return ["0", "1"]

    def _create_examples(self, lines, set_type):
        """Creates examples for the training and dev sets."""
        examples = []
        for (i, line) in enumerate(lines):
            guid = "%s-%s" % (set_type, i)
193
194
            text_a = line[3]
            label = line[1]
195
196
197
            examples.append(
                InputExample(guid=guid, text_a=text_a, text_b=None, label=label))
        return examples
thomwolf's avatar
thomwolf committed
198
199
200


def convert_examples_to_features(examples, label_list, max_seq_length, tokenizer):
201
202
    """Loads a data file into a list of `InputBatch`s."""

203
    label_map = {label : i for i, label in enumerate(label_list)}
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218

    features = []
    for (ex_index, example) in enumerate(examples):
        tokens_a = tokenizer.tokenize(example.text_a)

        tokens_b = None
        if example.text_b:
            tokens_b = tokenizer.tokenize(example.text_b)
            # Modifies `tokens_a` and `tokens_b` in place so that the total
            # length is less than the specified length.
            # Account for [CLS], [SEP], [SEP] with "- 3"
            _truncate_seq_pair(tokens_a, tokens_b, max_seq_length - 3)
        else:
            # Account for [CLS] and [SEP] with "- 2"
            if len(tokens_a) > max_seq_length - 2:
219
                tokens_a = tokens_a[:(max_seq_length - 2)]
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238

        # The convention in BERT is:
        # (a) For sequence pairs:
        #  tokens:   [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP]
        #  type_ids: 0   0  0    0    0     0       0 0    1  1  1  1   1 1
        # (b) For single sequences:
        #  tokens:   [CLS] the dog is hairy . [SEP]
        #  type_ids: 0   0   0   0  0     0 0
        #
        # Where "type_ids" are used to indicate whether this is the first
        # sequence or the second sequence. The embedding vectors for `type=0` and
        # `type=1` were learned during pre-training and are added to the wordpiece
        # embedding vector (and position vector). This is not *strictly* necessary
        # since the [SEP] token unambigiously separates the sequences, but it makes
        # it easier for the model to learn the concept of sequences.
        #
        # For classification tasks, the first vector (corresponding to [CLS]) is
        # used as as the "sentence vector". Note that this only makes sense because
        # the entire model is fine-tuned.
239
240
        tokens = ["[CLS]"] + tokens_a + ["[SEP]"]
        segment_ids = [0] * len(tokens)
241
242

        if tokens_b:
243
244
            tokens += tokens_b + ["[SEP]"]
            segment_ids += [1] * (len(tokens_b) + 1)
245
246
247
248
249
250
251
252

        input_ids = tokenizer.convert_tokens_to_ids(tokens)

        # The mask has 1 for real tokens and 0 for padding tokens. Only real
        # tokens are attended to.
        input_mask = [1] * len(input_ids)

        # Zero-pad up to the sequence length.
253
254
255
256
        padding = [0] * (max_seq_length - len(input_ids))
        input_ids += padding
        input_mask += padding
        segment_ids += padding
257
258
259
260
261
262
263
264
265
266

        assert len(input_ids) == max_seq_length
        assert len(input_mask) == max_seq_length
        assert len(segment_ids) == max_seq_length

        label_id = label_map[example.label]
        if ex_index < 5:
            logger.info("*** Example ***")
            logger.info("guid: %s" % (example.guid))
            logger.info("tokens: %s" % " ".join(
267
                    [str(x) for x in tokens]))
268
269
270
271
272
273
274
            logger.info("input_ids: %s" % " ".join([str(x) for x in input_ids]))
            logger.info("input_mask: %s" % " ".join([str(x) for x in input_mask]))
            logger.info(
                    "segment_ids: %s" % " ".join([str(x) for x in segment_ids]))
            logger.info("label: %s (id = %d)" % (example.label, label_id))

        features.append(
thomwolf's avatar
thomwolf committed
275
276
277
278
                InputFeatures(input_ids=input_ids,
                              input_mask=input_mask,
                              segment_ids=segment_ids,
                              label_id=label_id))
279
    return features
thomwolf's avatar
thomwolf committed
280
281


282
283
284
285
286
287
288
289
290
291
292
293
294
295
def _truncate_seq_pair(tokens_a, tokens_b, max_length):
    """Truncates a sequence pair in place to the maximum length."""

    # This is a simple heuristic which will always truncate the longer sequence
    # one token at a time. This makes more sense than truncating an equal percent
    # of tokens from each, since if one sequence is very short then each token
    # that's truncated likely contains more information than a longer sequence.
    while True:
        total_length = len(tokens_a) + len(tokens_b)
        if total_length <= max_length:
            break
        if len(tokens_a) > len(tokens_b):
            tokens_a.pop()
        else:
VictorSanh's avatar
VictorSanh committed
296
297
            tokens_b.pop()

298
299
def accuracy(out, labels):
    outputs = np.argmax(out, axis=1)
thomwolf's avatar
thomwolf committed
300
    return np.sum(outputs == labels)
VictorSanh's avatar
WIP  
VictorSanh committed
301

302
def main():
303
304
305
306
307
308
309
310
    parser = argparse.ArgumentParser()

    ## Required parameters
    parser.add_argument("--data_dir",
                        default=None,
                        type=str,
                        required=True,
                        help="The input data dir. Should contain the .tsv files (or other data files) for the task.")
thomwolf's avatar
thomwolf committed
311
312
    parser.add_argument("--bert_model", default=None, type=str, required=True,
                        help="Bert pre-trained model selected in the list: bert-base-uncased, "
313
314
                        "bert-large-uncased, bert-base-cased, bert-large-cased, bert-base-multilingual-uncased, "
                        "bert-base-multilingual-cased, bert-base-chinese.")
315
316
317
318
319
320
321
322
323
    parser.add_argument("--task_name",
                        default=None,
                        type=str,
                        required=True,
                        help="The name of the task to train.")
    parser.add_argument("--output_dir",
                        default=None,
                        type=str,
                        required=True,
324
                        help="The output directory where the model predictions and checkpoints will be written.")
325
326
327
328
329
330
331
332
333
334
335
336
337
338

    ## Other parameters
    parser.add_argument("--max_seq_length",
                        default=128,
                        type=int,
                        help="The maximum total input sequence length after WordPiece tokenization. \n"
                             "Sequences longer than this will be truncated, and sequences shorter \n"
                             "than this will be padded.")
    parser.add_argument("--do_train",
                        action='store_true',
                        help="Whether to run training.")
    parser.add_argument("--do_eval",
                        action='store_true',
                        help="Whether to run eval on the dev set.")
thomwolf's avatar
thomwolf committed
339
340
341
    parser.add_argument("--do_lower_case",
                        action='store_true',
                        help="Set this flag if you are using an uncased model.")
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
    parser.add_argument("--train_batch_size",
                        default=32,
                        type=int,
                        help="Total batch size for training.")
    parser.add_argument("--eval_batch_size",
                        default=8,
                        type=int,
                        help="Total batch size for eval.")
    parser.add_argument("--learning_rate",
                        default=5e-5,
                        type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument("--num_train_epochs",
                        default=3.0,
                        type=float,
                        help="Total number of training epochs to perform.")
    parser.add_argument("--warmup_proportion",
                        default=0.1,
                        type=float,
                        help="Proportion of training to perform linear learning rate warmup for. "
                             "E.g., 0.1 = 10%% of training.")
    parser.add_argument("--no_cuda",
                        action='store_true',
                        help="Whether not to use CUDA when available")
    parser.add_argument("--local_rank",
                        type=int,
                        default=-1,
                        help="local_rank for distributed training on gpus")
370
371
    parser.add_argument('--seed',
                        type=int,
VictorSanh's avatar
VictorSanh committed
372
373
                        default=42,
                        help="random seed for initialization")
374
375
376
    parser.add_argument('--gradient_accumulation_steps',
                        type=int,
                        default=1,
377
                        help="Number of updates steps to accumulate before performing a backward/update pass.")
thomwolf's avatar
thomwolf committed
378
379
380
381
    parser.add_argument('--fp16',
                        action='store_true',
                        help="Whether to use 16-bit float precision instead of 32-bit")
    parser.add_argument('--loss_scale',
382
383
384
385
                        type=float, default=0,
                        help="Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
                             "0 (default value): dynamic loss scaling.\n"
                             "Positive power of 2: static loss scaling value.\n")
thomwolf's avatar
thomwolf committed
386

387
388
    args = parser.parse_args()

VictorSanh's avatar
WIP  
VictorSanh committed
389
390
391
392
393
    processors = {
        "cola": ColaProcessor,
        "mnli": MnliProcessor,
        "mrpc": MrpcProcessor,
    }
thomwolf's avatar
thomwolf committed
394

395
396
397
398
399
400
    num_labels_task = {
        "cola": 2,
        "mnli": 3,
        "mrpc": 2,
    }

thomwolf's avatar
thomwolf committed
401
402
403
404
    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
        n_gpu = torch.cuda.device_count()
    else:
405
        torch.cuda.set_device(args.local_rank)
thomwolf's avatar
thomwolf committed
406
407
        device = torch.device("cuda", args.local_rank)
        n_gpu = 1
thomwolf's avatar
thomwolf committed
408
409
        # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.distributed.init_process_group(backend='nccl')
410
411
    logger.info("device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".format(
        device, n_gpu, bool(args.local_rank != -1), args.fp16))
thomwolf's avatar
thomwolf committed
412

413
414
415
    if args.gradient_accumulation_steps < 1:
        raise ValueError("Invalid gradient_accumulation_steps parameter: {}, should be >= 1".format(
                            args.gradient_accumulation_steps))
thomwolf's avatar
thomwolf committed
416

417
    args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps
thomwolf's avatar
thomwolf committed
418

VictorSanh's avatar
VictorSanh committed
419
420
421
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
thomwolf's avatar
thomwolf committed
422
423
    if n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)
thomwolf's avatar
thomwolf committed
424

VictorSanh's avatar
WIP  
VictorSanh committed
425
426
    if not args.do_train and not args.do_eval:
        raise ValueError("At least one of `do_train` or `do_eval` must be True.")
thomwolf's avatar
thomwolf committed
427

428
    if os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train:
thomwolf's avatar
thomwolf committed
429
        raise ValueError("Output directory ({}) already exists and is not empty.".format(args.output_dir))
thomwolf's avatar
thomwolf committed
430
431
    if not os.path.exists(args.output_dir):
        os.makedirs(args.output_dir)
VictorSanh's avatar
WIP  
VictorSanh committed
432
433

    task_name = args.task_name.lower()
thomwolf's avatar
thomwolf committed
434

VictorSanh's avatar
WIP  
VictorSanh committed
435
436
437
438
    if task_name not in processors:
        raise ValueError("Task not found: %s" % (task_name))

    processor = processors[task_name]()
439
    num_labels = num_labels_task[task_name]
VictorSanh's avatar
WIP  
VictorSanh committed
440
441
    label_list = processor.get_labels()

thomwolf's avatar
thomwolf committed
442
    tokenizer = BertTokenizer.from_pretrained(args.bert_model, do_lower_case=args.do_lower_case)
thomwolf's avatar
thomwolf committed
443

VictorSanh's avatar
WIP  
VictorSanh committed
444
    train_examples = None
445
    num_train_optimization_steps = None
VictorSanh's avatar
WIP  
VictorSanh committed
446
447
    if args.do_train:
        train_examples = processor.get_train_examples(args.data_dir)
448
449
450
451
        num_train_optimization_steps = int(
            len(train_examples) / args.train_batch_size / args.gradient_accumulation_steps) * args.num_train_epochs
        if args.local_rank != -1:
            num_train_optimization_steps = num_train_optimization_steps // torch.distributed.get_world_size()
thomwolf's avatar
thomwolf committed
452

thomwolf's avatar
thomwolf committed
453
    # Prepare model
454
    model = BertForSequenceClassification.from_pretrained(args.bert_model,
thomwolf's avatar
thomwolf committed
455
              cache_dir=os.path.join(PYTORCH_PRETRAINED_BERT_CACHE, 'distributed_{}'.format(args.local_rank)),
456
              num_labels = num_labels)
thomwolf's avatar
thomwolf committed
457
458
    if args.fp16:
        model.half()
thomwolf's avatar
thomwolf committed
459
    model.to(device)
thomwolf's avatar
thomwolf committed
460
    if args.local_rank != -1:
thomwolf's avatar
thomwolf committed
461
462
463
464
465
        try:
            from apex.parallel import DistributedDataParallel as DDP
        except ImportError:
            raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.")

466
        model = DDP(model)
thomwolf's avatar
thomwolf committed
467
    elif n_gpu > 1:
468
        model = torch.nn.DataParallel(model)
thomwolf's avatar
thomwolf committed
469

thomwolf's avatar
thomwolf committed
470
    # Prepare optimizer
471
472
    param_optimizer = list(model.named_parameters())
    no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
thomwolf's avatar
thomwolf committed
473
    optimizer_grouped_parameters = [
474
475
        {'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01},
        {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
thomwolf's avatar
thomwolf committed
476
        ]
477
    if args.fp16:
thomwolf's avatar
thomwolf committed
478
479
480
481
482
483
        try:
            from apex.optimizers import FP16_Optimizer
            from apex.optimizers import FusedAdam
        except ImportError:
            raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.")

484
485
486
487
488
489
490
491
492
493
494
495
496
        optimizer = FusedAdam(optimizer_grouped_parameters,
                              lr=args.learning_rate,
                              bias_correction=False,
                              max_grad_norm=1.0)
        if args.loss_scale == 0:
            optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
        else:
            optimizer = FP16_Optimizer(optimizer, static_loss_scale=args.loss_scale)

    else:
        optimizer = BertAdam(optimizer_grouped_parameters,
                             lr=args.learning_rate,
                             warmup=args.warmup_proportion,
497
                             t_total=num_train_optimization_steps)
thomwolf's avatar
thomwolf committed
498

thomwolf's avatar
thomwolf committed
499
    global_step = 0
Jade Abbott's avatar
Jade Abbott committed
500
    nb_tr_steps = 0
501
    tr_loss = 0
VictorSanh's avatar
WIP  
VictorSanh committed
502
503
504
505
506
507
    if args.do_train:
        train_features = convert_examples_to_features(
            train_examples, label_list, args.max_seq_length, tokenizer)
        logger.info("***** Running training *****")
        logger.info("  Num examples = %d", len(train_examples))
        logger.info("  Batch size = %d", args.train_batch_size)
508
        logger.info("  Num steps = %d", num_train_optimization_steps)
509
510
511
512
        all_input_ids = torch.tensor([f.input_ids for f in train_features], dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in train_features], dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in train_features], dtype=torch.long)
        all_label_ids = torch.tensor([f.label_id for f in train_features], dtype=torch.long)
513
514
515
516
517
518
519
520
        train_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids)
        if args.local_rank == -1:
            train_sampler = RandomSampler(train_data)
        else:
            train_sampler = DistributedSampler(train_data)
        train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=args.train_batch_size)

        model.train()
521
        for _ in trange(int(args.num_train_epochs), desc="Epoch"):
522
523
            tr_loss = 0
            nb_tr_examples, nb_tr_steps = 0, 0
524
525
526
            for step, batch in enumerate(tqdm(train_dataloader, desc="Iteration")):
                batch = tuple(t.to(device) for t in batch)
                input_ids, input_mask, segment_ids, label_ids = batch
527
                loss = model(input_ids, segment_ids, input_mask, label_ids)
thomwolf's avatar
thomwolf committed
528
529
                if n_gpu > 1:
                    loss = loss.mean() # mean() to average on multi-gpu.
530
531
                if args.gradient_accumulation_steps > 1:
                    loss = loss / args.gradient_accumulation_steps
532
533
534
535
536
537

                if args.fp16:
                    optimizer.backward(loss)
                else:
                    loss.backward()

538
                tr_loss += loss.item()
539
                nb_tr_examples += input_ids.size(0)
540
                nb_tr_steps += 1
thomwolf's avatar
thomwolf committed
541
                if (step + 1) % args.gradient_accumulation_steps == 0:
542
543
544
                    if args.fp16:
                        # modify learning rate with special warm up BERT uses
                        # if args.fp16 is False, BertAdam is used that handles this automatically
545
                        lr_this_step = args.learning_rate * warmup_linear(global_step/num_train_optimization_steps, args.warmup_proportion)
546
547
                        for param_group in optimizer.param_groups:
                            param_group['lr'] = lr_this_step
548
549
                    optimizer.step()
                    optimizer.zero_grad()
thomwolf's avatar
thomwolf committed
550
                    global_step += 1
thomwolf's avatar
thomwolf committed
551

552
553
554
    # Save a trained model
    model_to_save = model.module if hasattr(model, 'module') else model  # Only save the model it-self
    output_model_file = os.path.join(args.output_dir, "pytorch_model.bin")
555
556
    if args.do_train:
        torch.save(model_to_save.state_dict(), output_model_file)
557
558
559

    # Load a trained model that you have fine-tuned
    model_state_dict = torch.load(output_model_file)
560
    model = BertForSequenceClassification.from_pretrained(args.bert_model, state_dict=model_state_dict, num_labels=num_labels)
561
    model.to(device)
562

563
    if args.do_eval and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
VictorSanh's avatar
WIP  
VictorSanh committed
564
565
566
        eval_examples = processor.get_dev_examples(args.data_dir)
        eval_features = convert_examples_to_features(
            eval_examples, label_list, args.max_seq_length, tokenizer)
VictorSanh's avatar
wip  
VictorSanh committed
567
568
569
        logger.info("***** Running evaluation *****")
        logger.info("  Num examples = %d", len(eval_examples))
        logger.info("  Batch size = %d", args.eval_batch_size)
570
571
572
573
        all_input_ids = torch.tensor([f.input_ids for f in eval_features], dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in eval_features], dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in eval_features], dtype=torch.long)
        all_label_ids = torch.tensor([f.label_id for f in eval_features], dtype=torch.long)
574
        eval_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids)
575
576
        # Run prediction for full data
        eval_sampler = SequentialSampler(eval_data)
577
578
579
        eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.eval_batch_size)

        model.eval()
580
        eval_loss, eval_accuracy = 0, 0
VictorSanh's avatar
VictorSanh committed
581
        nb_eval_steps, nb_eval_examples = 0, 0
582
583
 
        for input_ids, input_mask, segment_ids, label_ids in tqdm(eval_dataloader, desc="Evaluating"):
584
            input_ids = input_ids.to(device)
thomwolf's avatar
thomwolf committed
585
            input_mask = input_mask.to(device)
586
            segment_ids = segment_ids.to(device)
587
            label_ids = label_ids.to(device)
588

589
            with torch.no_grad():
590
591
                tmp_eval_loss = model(input_ids, segment_ids, input_mask, label_ids)
                logits = model(input_ids, segment_ids, input_mask)
thomwolf's avatar
thomwolf committed
592
593
594

            logits = logits.detach().cpu().numpy()
            label_ids = label_ids.to('cpu').numpy()
595
596
            tmp_eval_accuracy = accuracy(logits, label_ids)

597
            eval_loss += tmp_eval_loss.mean().item()
598
            eval_accuracy += tmp_eval_accuracy
thomwolf's avatar
thomwolf committed
599

VictorSanh's avatar
VictorSanh committed
600
            nb_eval_examples += input_ids.size(0)
601
            nb_eval_steps += 1
VictorSanh's avatar
WIP  
VictorSanh committed
602

603
604
        eval_loss = eval_loss / nb_eval_steps
        eval_accuracy = eval_accuracy / nb_eval_examples
605
        loss = tr_loss/nb_tr_steps if args.do_train else None
606
607
608
        result = {'eval_loss': eval_loss,
                  'eval_accuracy': eval_accuracy,
                  'global_step': global_step,
609
                  'loss': loss}
VictorSanh's avatar
WIP  
VictorSanh committed
610
611

        output_eval_file = os.path.join(args.output_dir, "eval_results.txt")
VictorSanh's avatar
wip  
VictorSanh committed
612
613
        with open(output_eval_file, "w") as writer:
            logger.info("***** Eval results *****")
VictorSanh's avatar
WIP  
VictorSanh committed
614
            for key in sorted(result.keys()):
VictorSanh's avatar
wip  
VictorSanh committed
615
                logger.info("  %s = %s", key, str(result[key]))
VictorSanh's avatar
WIP  
VictorSanh committed
616
                writer.write("%s = %s\n" % (key, str(result[key])))
617

VictorSanh's avatar
WIP  
VictorSanh committed
618
619
if __name__ == "__main__":
    main()