run_classifier.py 26.6 KB
Newer Older
1
# coding=utf-8
thomwolf's avatar
thomwolf committed
2
# Copyright 2018 The Google AI Language Team Authors and The HugginFace Inc. team.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""BERT finetuning runner."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

21
22
import csv
import os
23
24
import logging
import argparse
VictorSanh's avatar
VictorSanh committed
25
import random
thomwolf's avatar
thomwolf committed
26
from tqdm import tqdm, trange
thomwolf's avatar
thomwolf committed
27
28

import numpy as np
VictorSanh's avatar
VictorSanh committed
29
import torch
30
31
32
from torch.utils.data import TensorDataset, DataLoader, RandomSampler, SequentialSampler
from torch.utils.data.distributed import DistributedSampler

33
from pytorch_pretrained_bert.tokenization import BertTokenizer
thomwolf's avatar
thomwolf committed
34
35
from pytorch_pretrained_bert.modeling import BertForSequenceClassification
from pytorch_pretrained_bert.optimization import BertAdam
36
from pytorch_pretrained_bert.file_utils import PYTORCH_PRETRAINED_BERT_CACHE
37
38
39
40
41

logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s -   %(message)s', 
                    datefmt = '%m/%d/%Y %H:%M:%S',
                    level = logging.INFO)
logger = logging.getLogger(__name__)
42

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

class InputExample(object):
    """A single training/test example for simple sequence classification."""

    def __init__(self, guid, text_a, text_b=None, label=None):
        """Constructs a InputExample.

        Args:
            guid: Unique id for the example.
            text_a: string. The untokenized text of the first sequence. For single
            sequence tasks, only this sequence must be specified.
            text_b: (Optional) string. The untokenized text of the second sequence.
            Only must be specified for sequence pair tasks.
            label: (Optional) string. The label of the example. This should be
            specified for train and dev examples, but not for test examples.
        """
        self.guid = guid
        self.text_a = text_a
        self.text_b = text_b
        self.label = label


class InputFeatures(object):
    """A single set of features of data."""

    def __init__(self, input_ids, input_mask, segment_ids, label_id):
        self.input_ids = input_ids
        self.input_mask = input_mask
        self.segment_ids = segment_ids
        self.label_id = label_id
thomwolf's avatar
thomwolf committed
73

74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98

class DataProcessor(object):
    """Base class for data converters for sequence classification data sets."""

    def get_train_examples(self, data_dir):
        """Gets a collection of `InputExample`s for the train set."""
        raise NotImplementedError()

    def get_dev_examples(self, data_dir):
        """Gets a collection of `InputExample`s for the dev set."""
        raise NotImplementedError()

    def get_labels(self):
        """Gets the list of labels for this data set."""
        raise NotImplementedError()

    @classmethod
    def _read_tsv(cls, input_file, quotechar=None):
        """Reads a tab separated value file."""
        with open(input_file, "r") as f:
            reader = csv.reader(f, delimiter="\t", quotechar=quotechar)
            lines = []
            for line in reader:
                lines.append(line)
            return lines
thomwolf's avatar
thomwolf committed
99
100


VictorSanh's avatar
wip  
VictorSanh committed
101
102
103
104
105
class MrpcProcessor(DataProcessor):
    """Processor for the MRPC data set (GLUE version)."""

    def get_train_examples(self, data_dir):
        """See base class."""
thomwolf's avatar
thomwolf committed
106
        logger.info("LOOKING AT {}".format(os.path.join(data_dir, "train.tsv")))
VictorSanh's avatar
wip  
VictorSanh committed
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
        return self._create_examples(
            self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")

    def get_dev_examples(self, data_dir):
        """See base class."""
        return self._create_examples(
            self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")

    def get_labels(self):
        """See base class."""
        return ["0", "1"]

    def _create_examples(self, lines, set_type):
        """Creates examples for the training and dev sets."""
        examples = []
        for (i, line) in enumerate(lines):
            if i == 0:
                continue
            guid = "%s-%s" % (set_type, i)
126
127
128
            text_a = line[3]
            text_b = line[4]
            label = line[0]
VictorSanh's avatar
wip  
VictorSanh committed
129
130
131
132
            examples.append(
                InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
        return examples

133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157

class MnliProcessor(DataProcessor):
    """Processor for the MultiNLI data set (GLUE version)."""

    def get_train_examples(self, data_dir):
        """See base class."""
        return self._create_examples(
            self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")

    def get_dev_examples(self, data_dir):
        """See base class."""
        return self._create_examples(
            self._read_tsv(os.path.join(data_dir, "dev_matched.tsv")),
            "dev_matched")

    def get_labels(self):
        """See base class."""
        return ["contradiction", "entailment", "neutral"]

    def _create_examples(self, lines, set_type):
        """Creates examples for the training and dev sets."""
        examples = []
        for (i, line) in enumerate(lines):
            if i == 0:
                continue
158
            guid = "%s-%s" % (set_type, line[0])
159
160
            text_a = line[8]
            text_b = line[9]
161
            label = line[-1]
162
163
164
            examples.append(
                InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
        return examples
thomwolf's avatar
thomwolf committed
165

166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188

class ColaProcessor(DataProcessor):
    """Processor for the CoLA data set (GLUE version)."""

    def get_train_examples(self, data_dir):
        """See base class."""
        return self._create_examples(
            self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")

    def get_dev_examples(self, data_dir):
        """See base class."""
        return self._create_examples(
            self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")

    def get_labels(self):
        """See base class."""
        return ["0", "1"]

    def _create_examples(self, lines, set_type):
        """Creates examples for the training and dev sets."""
        examples = []
        for (i, line) in enumerate(lines):
            guid = "%s-%s" % (set_type, i)
189
190
            text_a = line[3]
            label = line[1]
191
192
193
            examples.append(
                InputExample(guid=guid, text_a=text_a, text_b=None, label=label))
        return examples
thomwolf's avatar
thomwolf committed
194
195
196


def convert_examples_to_features(examples, label_list, max_seq_length, tokenizer):
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
    """Loads a data file into a list of `InputBatch`s."""

    label_map = {}
    for (i, label) in enumerate(label_list):
        label_map[label] = i

    features = []
    for (ex_index, example) in enumerate(examples):
        tokens_a = tokenizer.tokenize(example.text_a)

        tokens_b = None
        if example.text_b:
            tokens_b = tokenizer.tokenize(example.text_b)

        if tokens_b:
            # Modifies `tokens_a` and `tokens_b` in place so that the total
            # length is less than the specified length.
            # Account for [CLS], [SEP], [SEP] with "- 3"
            _truncate_seq_pair(tokens_a, tokens_b, max_seq_length - 3)
        else:
            # Account for [CLS] and [SEP] with "- 2"
            if len(tokens_a) > max_seq_length - 2:
                tokens_a = tokens_a[0:(max_seq_length - 2)]

        # The convention in BERT is:
        # (a) For sequence pairs:
        #  tokens:   [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP]
        #  type_ids: 0   0  0    0    0     0       0 0    1  1  1  1   1 1
        # (b) For single sequences:
        #  tokens:   [CLS] the dog is hairy . [SEP]
        #  type_ids: 0   0   0   0  0     0 0
        #
        # Where "type_ids" are used to indicate whether this is the first
        # sequence or the second sequence. The embedding vectors for `type=0` and
        # `type=1` were learned during pre-training and are added to the wordpiece
        # embedding vector (and position vector). This is not *strictly* necessary
        # since the [SEP] token unambigiously separates the sequences, but it makes
        # it easier for the model to learn the concept of sequences.
        #
        # For classification tasks, the first vector (corresponding to [CLS]) is
        # used as as the "sentence vector". Note that this only makes sense because
        # the entire model is fine-tuned.
        tokens = []
        segment_ids = []
        tokens.append("[CLS]")
        segment_ids.append(0)
        for token in tokens_a:
            tokens.append(token)
            segment_ids.append(0)
        tokens.append("[SEP]")
        segment_ids.append(0)

        if tokens_b:
            for token in tokens_b:
                tokens.append(token)
                segment_ids.append(1)
            tokens.append("[SEP]")
            segment_ids.append(1)

        input_ids = tokenizer.convert_tokens_to_ids(tokens)

        # The mask has 1 for real tokens and 0 for padding tokens. Only real
        # tokens are attended to.
        input_mask = [1] * len(input_ids)

        # Zero-pad up to the sequence length.
        while len(input_ids) < max_seq_length:
            input_ids.append(0)
            input_mask.append(0)
            segment_ids.append(0)

        assert len(input_ids) == max_seq_length
        assert len(input_mask) == max_seq_length
        assert len(segment_ids) == max_seq_length

        label_id = label_map[example.label]
        if ex_index < 5:
            logger.info("*** Example ***")
            logger.info("guid: %s" % (example.guid))
            logger.info("tokens: %s" % " ".join(
277
                    [str(x) for x in tokens]))
278
279
280
281
282
283
284
            logger.info("input_ids: %s" % " ".join([str(x) for x in input_ids]))
            logger.info("input_mask: %s" % " ".join([str(x) for x in input_mask]))
            logger.info(
                    "segment_ids: %s" % " ".join([str(x) for x in segment_ids]))
            logger.info("label: %s (id = %d)" % (example.label, label_id))

        features.append(
thomwolf's avatar
thomwolf committed
285
286
287
288
                InputFeatures(input_ids=input_ids,
                              input_mask=input_mask,
                              segment_ids=segment_ids,
                              label_id=label_id))
289
    return features
thomwolf's avatar
thomwolf committed
290
291


292
293
294
295
296
297
298
299
300
301
302
303
304
305
def _truncate_seq_pair(tokens_a, tokens_b, max_length):
    """Truncates a sequence pair in place to the maximum length."""

    # This is a simple heuristic which will always truncate the longer sequence
    # one token at a time. This makes more sense than truncating an equal percent
    # of tokens from each, since if one sequence is very short then each token
    # that's truncated likely contains more information than a longer sequence.
    while True:
        total_length = len(tokens_a) + len(tokens_b)
        if total_length <= max_length:
            break
        if len(tokens_a) > len(tokens_b):
            tokens_a.pop()
        else:
VictorSanh's avatar
VictorSanh committed
306
307
            tokens_b.pop()

308
309
def accuracy(out, labels):
    outputs = np.argmax(out, axis=1)
thomwolf's avatar
thomwolf committed
310
    return np.sum(outputs == labels)
VictorSanh's avatar
WIP  
VictorSanh committed
311

thomwolf's avatar
thomwolf committed
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
def copy_optimizer_params_to_model(named_params_model, named_params_optimizer):
    """ Utility function for optimize_on_cpu and 16-bits training.
        Copy the parameters optimized on CPU/RAM back to the model on GPU
    """
    for (name_opti, param_opti), (name_model, param_model) in zip(named_params_optimizer, named_params_model):
        if name_opti != name_model:
            logger.error("name_opti != name_model: {} {}".format(name_opti, name_model))
            raise ValueError
        param_model.data.copy_(param_opti.data)

def set_optimizer_params_grad(named_params_optimizer, named_params_model, test_nan=False):
    """ Utility function for optimize_on_cpu and 16-bits training.
        Copy the gradient of the GPU parameters to the CPU/RAMM copy of the model
    """
    is_nan = False
    for (name_opti, param_opti), (name_model, param_model) in zip(named_params_optimizer, named_params_model):
        if name_opti != name_model:
            logger.error("name_opti != name_model: {} {}".format(name_opti, name_model))
            raise ValueError
thomwolf's avatar
thomwolf committed
331
332
333
334
335
336
337
338
        if param_model.grad is not None:
            if test_nan and torch.isnan(param_model.grad).sum() > 0:
                is_nan = True
            if param_opti.grad is None:
                param_opti.grad = torch.nn.Parameter(param_opti.data.new().resize_(*param_opti.data.size()))
            param_opti.grad.data.copy_(param_model.grad.data)
        else:
            param_opti.grad = None
thomwolf's avatar
thomwolf committed
339
340
    return is_nan

341
def main():
342
343
344
345
346
347
348
349
    parser = argparse.ArgumentParser()

    ## Required parameters
    parser.add_argument("--data_dir",
                        default=None,
                        type=str,
                        required=True,
                        help="The input data dir. Should contain the .tsv files (or other data files) for the task.")
thomwolf's avatar
thomwolf committed
350
351
352
    parser.add_argument("--bert_model", default=None, type=str, required=True,
                        help="Bert pre-trained model selected in the list: bert-base-uncased, "
                             "bert-large-uncased, bert-base-cased, bert-base-multilingual, bert-base-chinese.")
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
    parser.add_argument("--task_name",
                        default=None,
                        type=str,
                        required=True,
                        help="The name of the task to train.")
    parser.add_argument("--output_dir",
                        default=None,
                        type=str,
                        required=True,
                        help="The output directory where the model checkpoints will be written.")

    ## Other parameters
    parser.add_argument("--max_seq_length",
                        default=128,
                        type=int,
                        help="The maximum total input sequence length after WordPiece tokenization. \n"
                             "Sequences longer than this will be truncated, and sequences shorter \n"
                             "than this will be padded.")
    parser.add_argument("--do_train",
                        default=False,
                        action='store_true',
                        help="Whether to run training.")
    parser.add_argument("--do_eval",
                        default=False,
                        action='store_true',
                        help="Whether to run eval on the dev set.")
    parser.add_argument("--train_batch_size",
                        default=32,
                        type=int,
                        help="Total batch size for training.")
    parser.add_argument("--eval_batch_size",
                        default=8,
                        type=int,
                        help="Total batch size for eval.")
    parser.add_argument("--learning_rate",
                        default=5e-5,
                        type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument("--num_train_epochs",
                        default=3.0,
                        type=float,
                        help="Total number of training epochs to perform.")
    parser.add_argument("--warmup_proportion",
                        default=0.1,
                        type=float,
                        help="Proportion of training to perform linear learning rate warmup for. "
                             "E.g., 0.1 = 10%% of training.")
    parser.add_argument("--no_cuda",
                        default=False,
                        action='store_true',
                        help="Whether not to use CUDA when available")
    parser.add_argument("--local_rank",
                        type=int,
                        default=-1,
                        help="local_rank for distributed training on gpus")
VictorSanh's avatar
VictorSanh committed
408
409
410
411
    parser.add_argument('--seed', 
                        type=int, 
                        default=42,
                        help="random seed for initialization")
412
413
414
415
    parser.add_argument('--gradient_accumulation_steps',
                        type=int,
                        default=1,
                        help="Number of updates steps to accumualte before performing a backward/update pass.")                       
thomwolf's avatar
thomwolf committed
416
417
418
419
420
421
422
423
424
425
426
427
    parser.add_argument('--optimize_on_cpu',
                        default=False,
                        action='store_true',
                        help="Whether to perform optimization and keep the optimizer averages on CPU")
    parser.add_argument('--fp16',
                        default=False,
                        action='store_true',
                        help="Whether to use 16-bit float precision instead of 32-bit")
    parser.add_argument('--loss_scale',
                        type=float, default=128,
                        help='Loss scaling, positive power of 2 values can improve fp16 convergence.')

428
429
    args = parser.parse_args()

VictorSanh's avatar
WIP  
VictorSanh committed
430
431
432
433
434
    processors = {
        "cola": ColaProcessor,
        "mnli": MnliProcessor,
        "mrpc": MrpcProcessor,
    }
thomwolf's avatar
thomwolf committed
435
436
437
438
439
440
441

    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
        n_gpu = torch.cuda.device_count()
    else:
        device = torch.device("cuda", args.local_rank)
        n_gpu = 1
thomwolf's avatar
thomwolf committed
442
443
        # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.distributed.init_process_group(backend='nccl')
thomwolf's avatar
thomwolf committed
444
445
446
        if args.fp16:
            logger.info("16-bits training currently not supported in distributed training")
            args.fp16 = False # (see https://github.com/pytorch/pytorch/pull/13496)
447
    logger.info("device %s n_gpu %d distributed training %r", device, n_gpu, bool(args.local_rank != -1))
thomwolf's avatar
thomwolf committed
448

449
450
451
    if args.gradient_accumulation_steps < 1:
        raise ValueError("Invalid gradient_accumulation_steps parameter: {}, should be >= 1".format(
                            args.gradient_accumulation_steps))
thomwolf's avatar
thomwolf committed
452

453
    args.train_batch_size = int(args.train_batch_size / args.gradient_accumulation_steps)
thomwolf's avatar
thomwolf committed
454

VictorSanh's avatar
VictorSanh committed
455
456
457
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
thomwolf's avatar
thomwolf committed
458
459
    if n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)
thomwolf's avatar
thomwolf committed
460

VictorSanh's avatar
WIP  
VictorSanh committed
461
462
    if not args.do_train and not args.do_eval:
        raise ValueError("At least one of `do_train` or `do_eval` must be True.")
thomwolf's avatar
thomwolf committed
463

VictorSanh's avatar
WIP  
VictorSanh committed
464
    if os.path.exists(args.output_dir) and os.listdir(args.output_dir):
thomwolf's avatar
thomwolf committed
465
        raise ValueError("Output directory ({}) already exists and is not empty.".format(args.output_dir))
VictorSanh's avatar
WIP  
VictorSanh committed
466
467
468
    os.makedirs(args.output_dir, exist_ok=True)

    task_name = args.task_name.lower()
thomwolf's avatar
thomwolf committed
469

VictorSanh's avatar
WIP  
VictorSanh committed
470
471
472
473
474
475
    if task_name not in processors:
        raise ValueError("Task not found: %s" % (task_name))

    processor = processors[task_name]()
    label_list = processor.get_labels()

thomwolf's avatar
thomwolf committed
476
    tokenizer = BertTokenizer.from_pretrained(args.bert_model)
thomwolf's avatar
thomwolf committed
477

VictorSanh's avatar
WIP  
VictorSanh committed
478
479
480
481
482
    train_examples = None
    num_train_steps = None
    if args.do_train:
        train_examples = processor.get_train_examples(args.data_dir)
        num_train_steps = int(
483
            len(train_examples) / args.train_batch_size / args.gradient_accumulation_steps * args.num_train_epochs)
thomwolf's avatar
thomwolf committed
484

thomwolf's avatar
thomwolf committed
485
    # Prepare model
486
    model = BertForSequenceClassification.from_pretrained(args.bert_model, 
487
                cache_dir=PYTORCH_PRETRAINED_BERT_CACHE / 'distributed_{}'.format(args.local_rank))
thomwolf's avatar
thomwolf committed
488
489
    if args.fp16:
        model.half()
thomwolf's avatar
thomwolf committed
490
    model.to(device)
thomwolf's avatar
thomwolf committed
491
492
493
494
    if args.local_rank != -1:
        model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank],
                                                          output_device=args.local_rank)
    elif n_gpu > 1:
495
        model = torch.nn.DataParallel(model)
thomwolf's avatar
thomwolf committed
496

thomwolf's avatar
thomwolf committed
497
498
499
500
501
502
503
504
505
    # Prepare optimizer
    if args.fp16:
        param_optimizer = [(n, param.clone().detach().to('cpu').float().requires_grad_()) \
                            for n, param in model.named_parameters()]
    elif args.optimize_on_cpu:
        param_optimizer = [(n, param.clone().detach().to('cpu').requires_grad_()) \
                            for n, param in model.named_parameters()]
    else:
        param_optimizer = list(model.named_parameters())
thomwolf's avatar
thomwolf committed
506
    no_decay = ['bias', 'gamma', 'beta']
thomwolf's avatar
thomwolf committed
507
    optimizer_grouped_parameters = [
xiaoda99's avatar
xiaoda99 committed
508
509
        {'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay_rate': 0.01},
        {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay_rate': 0.0}
thomwolf's avatar
thomwolf committed
510
        ]
511
512
513
    t_total = num_train_steps
    if args.local_rank != -1:
        t_total = t_total // torch.distributed.get_world_size()
thomwolf's avatar
thomwolf committed
514
    optimizer = BertAdam(optimizer_grouped_parameters,
thomwolf's avatar
thomwolf committed
515
                         lr=args.learning_rate,
thomwolf's avatar
thomwolf committed
516
                         warmup=args.warmup_proportion,
517
                         t_total=t_total)
thomwolf's avatar
thomwolf committed
518

thomwolf's avatar
thomwolf committed
519
    global_step = 0
VictorSanh's avatar
WIP  
VictorSanh committed
520
521
522
523
524
525
526
    if args.do_train:
        train_features = convert_examples_to_features(
            train_examples, label_list, args.max_seq_length, tokenizer)
        logger.info("***** Running training *****")
        logger.info("  Num examples = %d", len(train_examples))
        logger.info("  Batch size = %d", args.train_batch_size)
        logger.info("  Num steps = %d", num_train_steps)
527
528
529
530
        all_input_ids = torch.tensor([f.input_ids for f in train_features], dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in train_features], dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in train_features], dtype=torch.long)
        all_label_ids = torch.tensor([f.label_id for f in train_features], dtype=torch.long)
531
532
533
534
535
536
537
538
        train_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids)
        if args.local_rank == -1:
            train_sampler = RandomSampler(train_data)
        else:
            train_sampler = DistributedSampler(train_data)
        train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=args.train_batch_size)

        model.train()
539
        for _ in trange(int(args.num_train_epochs), desc="Epoch"):
540
541
            tr_loss = 0
            nb_tr_examples, nb_tr_steps = 0, 0
542
543
544
            for step, batch in enumerate(tqdm(train_dataloader, desc="Iteration")):
                batch = tuple(t.to(device) for t in batch)
                input_ids, input_mask, segment_ids, label_ids = batch
thomwolf's avatar
thomwolf committed
545
                loss, _ = model(input_ids, segment_ids, input_mask, label_ids)
thomwolf's avatar
thomwolf committed
546
547
                if n_gpu > 1:
                    loss = loss.mean() # mean() to average on multi-gpu.
thomwolf's avatar
thomwolf committed
548
549
550
551
                if args.fp16 and args.loss_scale != 1.0:
                    # rescale loss for fp16 training
                    # see https://docs.nvidia.com/deeplearning/sdk/mixed-precision-training/index.html
                    loss = loss * args.loss_scale
552
553
554
                if args.gradient_accumulation_steps > 1:
                    loss = loss / args.gradient_accumulation_steps
                loss.backward()
555
                tr_loss += loss.item()
556
                nb_tr_examples += input_ids.size(0)
557
                nb_tr_steps += 1
thomwolf's avatar
thomwolf committed
558
                if (step + 1) % args.gradient_accumulation_steps == 0:
thomwolf's avatar
thomwolf committed
559
560
561
562
                    if args.fp16 or args.optimize_on_cpu:
                        if args.fp16 and args.loss_scale != 1.0:
                            # scale down gradients for fp16 training
                            for param in model.parameters():
563
564
                                if param.grad is not None:
                                    param.grad.data = param.grad.data / args.loss_scale
thomwolf's avatar
thomwolf committed
565
566
567
568
569
570
571
572
573
574
                        is_nan = set_optimizer_params_grad(param_optimizer, model.named_parameters(), test_nan=True)
                        if is_nan:
                            logger.info("FP16 TRAINING: Nan in gradients, reducing loss scaling")
                            args.loss_scale = args.loss_scale / 2
                            model.zero_grad()
                            continue
                        optimizer.step()
                        copy_optimizer_params_to_model(model.named_parameters(), param_optimizer)
                    else:
                        optimizer.step()
thomwolf's avatar
thomwolf committed
575
576
                    model.zero_grad()
                    global_step += 1
thomwolf's avatar
thomwolf committed
577

578
    if args.do_eval and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
VictorSanh's avatar
WIP  
VictorSanh committed
579
580
581
        eval_examples = processor.get_dev_examples(args.data_dir)
        eval_features = convert_examples_to_features(
            eval_examples, label_list, args.max_seq_length, tokenizer)
VictorSanh's avatar
wip  
VictorSanh committed
582
583
584
        logger.info("***** Running evaluation *****")
        logger.info("  Num examples = %d", len(eval_examples))
        logger.info("  Batch size = %d", args.eval_batch_size)
585
586
587
588
        all_input_ids = torch.tensor([f.input_ids for f in eval_features], dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in eval_features], dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in eval_features], dtype=torch.long)
        all_label_ids = torch.tensor([f.label_id for f in eval_features], dtype=torch.long)
589
        eval_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids)
590
591
        # Run prediction for full data
        eval_sampler = SequentialSampler(eval_data)
592
593
594
        eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.eval_batch_size)

        model.eval()
595
        eval_loss, eval_accuracy = 0, 0
VictorSanh's avatar
VictorSanh committed
596
        nb_eval_steps, nb_eval_examples = 0, 0
597
        for input_ids, input_mask, segment_ids, label_ids in eval_dataloader:
598
            input_ids = input_ids.to(device)
thomwolf's avatar
thomwolf committed
599
            input_mask = input_mask.to(device)
600
            segment_ids = segment_ids.to(device)
601
            label_ids = label_ids.to(device)
602

603
604
            with torch.no_grad():
                tmp_eval_loss, logits = model(input_ids, segment_ids, input_mask, label_ids)
thomwolf's avatar
thomwolf committed
605
606
607

            logits = logits.detach().cpu().numpy()
            label_ids = label_ids.to('cpu').numpy()
608
609
            tmp_eval_accuracy = accuracy(logits, label_ids)

610
            eval_loss += tmp_eval_loss.mean().item()
611
            eval_accuracy += tmp_eval_accuracy
thomwolf's avatar
thomwolf committed
612

VictorSanh's avatar
VictorSanh committed
613
            nb_eval_examples += input_ids.size(0)
614
            nb_eval_steps += 1
VictorSanh's avatar
WIP  
VictorSanh committed
615

616
617
        eval_loss = eval_loss / nb_eval_steps
        eval_accuracy = eval_accuracy / nb_eval_examples
VictorSanh's avatar
WIP  
VictorSanh committed
618

619
620
621
        result = {'eval_loss': eval_loss,
                  'eval_accuracy': eval_accuracy,
                  'global_step': global_step,
622
                  'loss': tr_loss/nb_tr_steps}
VictorSanh's avatar
WIP  
VictorSanh committed
623
624

        output_eval_file = os.path.join(args.output_dir, "eval_results.txt")
VictorSanh's avatar
wip  
VictorSanh committed
625
626
        with open(output_eval_file, "w") as writer:
            logger.info("***** Eval results *****")
VictorSanh's avatar
WIP  
VictorSanh committed
627
            for key in sorted(result.keys()):
VictorSanh's avatar
wip  
VictorSanh committed
628
                logger.info("  %s = %s", key, str(result[key]))
VictorSanh's avatar
WIP  
VictorSanh committed
629
                writer.write("%s = %s\n" % (key, str(result[key])))
630

VictorSanh's avatar
WIP  
VictorSanh committed
631
632
if __name__ == "__main__":
    main()