test_seq2seq_examples.py 18.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
import argparse
import logging
import os
import sys
import tempfile
import unittest
from pathlib import Path
from unittest.mock import patch

import pytest
11
import pytorch_lightning as pl
12
13
import torch

14
import lightning_base
15
from convert_pl_checkpoint_to_hf import convert_pl_to_hf
16
from distillation import distill_main
17
18
19
from finetune import SummarizationModule, main
from run_eval import generate_summaries_or_translations, run_generate
from run_eval_search import run_search
20
from transformers import AutoConfig, AutoModelForSeq2SeqLM
21
22
from transformers.hf_api import HfApi
from transformers.testing_utils import CaptureStderr, CaptureStdout, require_multigpu, require_torch_and_cuda, slow
23
from utils import ROUGE_KEYS, label_smoothed_nll_loss, lmap, load_json
24
25
26
27
28
29
30


logging.basicConfig(level=logging.DEBUG)

logger = logging.getLogger()
CUDA_AVAILABLE = torch.cuda.is_available()
CHEAP_ARGS = {
31
    "max_tokens_per_batch": None,
32
33
    "supervise_forward": True,
    "normalize_hidden": True,
34
    "label_smoothing": 0.2,
35
    "eval_max_gen_length": None,
36
    "eval_beams": 1,
37
    "val_metric": "loss",
38
    "save_top_k": 1,
Sam Shleifer's avatar
Sam Shleifer committed
39
    "adafactor": True,
40
    "early_stopping_patience": 2,
41
    "logger_name": "default",
42
43
44
45
46
47
48
49
50
51
52
53
54
    "length_penalty": 0.5,
    "cache_dir": "",
    "task": "summarization",
    "num_workers": 2,
    "alpha_hid": 0,
    "freeze_embeds": True,
    "enc_only": False,
    "tgt_suffix": "",
    "resume_from_checkpoint": None,
    "sortish_sampler": True,
    "student_decoder_layers": 1,
    "val_check_interval": 1.0,
    "output_dir": "",
55
    "fp16": False,  # TODO: set this to CUDA_AVAILABLE if ci installs apex or start using native amp
56
57
58
59
60
61
62
    "no_teacher": False,
    "fp16_opt_level": "O1",
    "gpus": 1 if CUDA_AVAILABLE else 0,
    "n_tpu_cores": 0,
    "max_grad_norm": 1.0,
    "do_train": True,
    "do_predict": True,
63
    "accumulate_grad_batches": 1,
64
65
66
67
68
69
70
71
    "server_ip": "",
    "server_port": "",
    "seed": 42,
    "model_name_or_path": "sshleifer/bart-tiny-random",
    "config_name": "",
    "tokenizer_name": "facebook/bart-large",
    "do_lower_case": False,
    "learning_rate": 0.3,
72
    "lr_scheduler": "linear",
73
74
75
    "weight_decay": 0.0,
    "adam_epsilon": 1e-08,
    "warmup_steps": 0,
76
    "max_epochs": 1,
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
    "train_batch_size": 2,
    "eval_batch_size": 2,
    "max_source_length": 12,
    "max_target_length": 12,
    "val_max_target_length": 12,
    "test_max_target_length": 12,
    "fast_dev_run": False,
    "no_cache": False,
    "n_train": -1,
    "n_val": -1,
    "n_test": -1,
    "student_encoder_layers": 1,
    "freeze_encoder": False,
    "auto_scale_batch_size": False,
}


def _dump_articles(path: Path, articles: list):
95
96
    content = "\n".join(articles)
    Path(path).open("w").writelines(content)
97
98


99
ARTICLES = [" Sam ate lunch today.", "Sams lunch ingredients."]
100
101
102
103
104
SUMMARIES = ["A very interesting story about what I ate for lunch.", "Avocado, celery, turkey, coffee"]
T5_TINY = "patrickvonplaten/t5-tiny-random"
BART_TINY = "sshleifer/bart-tiny-random"
MBART_TINY = "sshleifer/tiny-mbart"
MARIAN_TINY = "sshleifer/tiny-marian-en-de"
105
FSMT_TINY = "stas/tiny-wmt19-en-de"
106

107

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
stream_handler = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
logging.disable(logging.CRITICAL)  # remove noisy download output from tracebacks


def make_test_data_dir(**kwargs):
    tmp_dir = Path(tempfile.mkdtemp(**kwargs))
    for split in ["train", "val", "test"]:
        _dump_articles((tmp_dir / f"{split}.source"), ARTICLES)
        _dump_articles((tmp_dir / f"{split}.target"), SUMMARIES)
    return tmp_dir


class TestSummarizationDistiller(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
        logging.disable(logging.CRITICAL)  # remove noisy download output from tracebacks
        return cls

127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
    @slow
    @require_torch_and_cuda
    def test_hub_configs(self):
        """I put require_torch_and_cuda cause I only want this to run with self-scheduled."""

        model_list = HfApi().model_list()
        org = "sshleifer"
        model_ids = [x.modelId for x in model_list if x.modelId.startswith(org)]
        allowed_to_be_broken = ["sshleifer/blenderbot-3B", "sshleifer/blenderbot-90M"]
        failures = []
        for m in model_ids:
            if m in allowed_to_be_broken:
                continue
            try:
                AutoConfig.from_pretrained(m)
            except Exception:
                failures.append(m)
        assert not failures, f"The following models could not be loaded through AutoConfig: {failures}"

146
    @require_multigpu
147
    @unittest.skip("Broken at the moment")
148
    def test_multigpu(self):
Lysandre's avatar
Lysandre committed
149
150
151
152
        updates = dict(
            no_teacher=True,
            freeze_encoder=True,
            gpus=2,
153
            sortish_sampler=True,
Lysandre's avatar
Lysandre committed
154
        )
155
        self._test_distiller_cli(updates, check_contents=False)
156
157
158
159
160
161
162
163
164

    def test_distill_no_teacher(self):
        updates = dict(student_encoder_layers=2, student_decoder_layers=1, no_teacher=True)
        self._test_distiller_cli(updates)

    def test_distill_checkpointing_with_teacher(self):
        updates = dict(
            student_encoder_layers=2,
            student_decoder_layers=1,
165
            max_epochs=4,
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
            val_check_interval=0.25,
            alpha_hid=2.0,
            model_name_or_path="IGNORE_THIS_IT_DOESNT_GET_USED",
        )
        model = self._test_distiller_cli(updates, check_contents=False)

        ckpts = list(Path(model.output_dir).glob("*.ckpt"))
        self.assertEqual(1, len(ckpts))
        transformer_ckpts = list(Path(model.output_dir).glob("**/*.bin"))
        self.assertEqual(len(transformer_ckpts), 2)
        examples = lmap(str.strip, model.hparams.data_dir.joinpath("test.source").open().readlines())
        out_path = tempfile.mktemp()
        generate_summaries_or_translations(examples, out_path, str(model.output_dir / "best_tfmr"))
        self.assertTrue(Path(out_path).exists())

181
182
183
        out_path_new = tempfile.mkdtemp()
        convert_pl_to_hf(ckpts[0], transformer_ckpts[0].parent, out_path_new)
        assert os.path.exists(os.path.join(out_path_new, "pytorch_model.bin"))
184

185
    def test_loss_fn(self):
186
        model = AutoModelForSeq2SeqLM.from_pretrained(BART_TINY, return_dict=True)
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
        input_ids, mask = model.dummy_inputs["input_ids"], model.dummy_inputs["attention_mask"]
        target_ids = torch.tensor([[0, 4, 8, 2], [0, 8, 2, 1]], dtype=torch.long, device=model.device)
        decoder_input_ids = target_ids[:, :-1].contiguous()  # Why this line?
        lm_labels = target_ids[:, 1:].clone()  # why clone?
        model_computed_loss = model(
            input_ids, attention_mask=mask, decoder_input_ids=decoder_input_ids, labels=lm_labels, use_cache=False
        ).loss

        logits = model(input_ids, attention_mask=mask, decoder_input_ids=decoder_input_ids, use_cache=False).logits

        lprobs = torch.nn.functional.log_softmax(logits, dim=-1)
        smoothed_loss, nll_loss = label_smoothed_nll_loss(
            lprobs, lm_labels, 0.1, ignore_index=model.config.pad_token_id
        )
        with self.assertRaises(AssertionError):
            # TODO: understand why this breaks
            self.assertEqual(nll_loss, model_computed_loss)

205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
    def test_distill_mbart(self):
        updates = dict(
            student_encoder_layers=2,
            student_decoder_layers=1,
            num_train_epochs=4,
            val_check_interval=0.25,
            alpha_hid=2.0,
            task="translation",
            model_name_or_path="IGNORE_THIS_IT_DOESNT_GET_USED",
            tokenizer_name=MBART_TINY,
            teacher=MBART_TINY,
            src_lang="en_XX",
            tgt_lang="ro_RO",
        )
        model = self._test_distiller_cli(updates, check_contents=False)
220
        assert model.model.config.model_type == "mbart"
221
222
223
224
225
226
227
228

        ckpts = list(Path(model.output_dir).glob("*.ckpt"))
        self.assertEqual(1, len(ckpts))
        transformer_ckpts = list(Path(model.output_dir).glob("**/*.bin"))
        all_files = list(Path(model.output_dir).glob("best_tfmr/*"))
        assert len(all_files) > 2
        self.assertEqual(len(transformer_ckpts), 2)

229
230
231
232
233
234
235
236
237
238
239
240
241
    def test_distill_t5(self):
        updates = dict(
            student_encoder_layers=1,
            student_decoder_layers=1,
            alpha_hid=2.0,
            teacher=T5_TINY,
            model_name_or_path=T5_TINY,
            tokenizer_name=T5_TINY,
        )
        self._test_distiller_cli(updates)

    def _test_distiller_cli(self, updates, check_contents=True):
        default_updates = dict(
242
            label_smoothing=0.0,
243
            early_stopping_patience=-1,
244
245
            train_batch_size=1,
            eval_batch_size=2,
246
            max_epochs=2,
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
            alpha_mlm=0.2,
            alpha_ce=0.8,
            do_predict=True,
            model_name_or_path="sshleifer/tinier_bart",
            teacher=CHEAP_ARGS["model_name_or_path"],
            val_check_interval=0.5,
        )
        default_updates.update(updates)
        args_d: dict = CHEAP_ARGS.copy()
        tmp_dir = make_test_data_dir()
        output_dir = tempfile.mkdtemp(prefix="output_")

        args_d.update(data_dir=tmp_dir, output_dir=output_dir, **default_updates)
        model = distill_main(argparse.Namespace(**args_d))
        if not check_contents:
            return model
        contents = os.listdir(output_dir)
        contents = {os.path.basename(p) for p in contents}
265
266
        ckpt_files = [p for p in contents if p.endswith("ckpt")]
        assert len(ckpt_files) > 0
267
268
269
270
271
272
273
274
275

        self.assertIn("test_generations.txt", contents)
        self.assertIn("test_results.txt", contents)

        metrics = load_json(model.metrics_save_path)
        last_step_stats = metrics["val"][-1]
        self.assertGreaterEqual(last_step_stats["val_avg_gen_time"], 0.01)
        self.assertGreaterEqual(1.0, last_step_stats["val_avg_gen_time"])
        self.assertIsInstance(last_step_stats[f"val_avg_{model.val_metric}"], float)
276
        desired_n_evals = int(args_d["max_epochs"] * (1 / args_d["val_check_interval"]) + 1)
277
278
279
280
281
        self.assertEqual(len(metrics["val"]), desired_n_evals)
        self.assertEqual(len(metrics["test"]), 1)
        return model


282
def run_eval_tester(model):
283
284
    input_file_name = Path(tempfile.mkdtemp()) / "utest_input.source"
    output_file_name = input_file_name.parent / "utest_output.txt"
285
286
    assert not output_file_name.exists()
    articles = [" New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County."]
287
    _dump_articles(input_file_name, articles)
288
289
    score_path = str(Path(tempfile.mkdtemp()) / "scores.json")
    task = "translation_en_to_de" if model == T5_TINY else "summarization"
290
291
292
293
294
295
296
297
298
299
300
    testargs = f"""
        run_eval_search.py
        {model}
        {input_file_name}
        {output_file_name}
        --score_path {score_path}
        --task {task}
        --num_beams 2
        --length_penalty 2.0
        """.split()

301
302
303
304
305
    with patch.object(sys, "argv", testargs):
        run_generate()
        assert Path(output_file_name).exists()
        os.remove(Path(output_file_name))

sgugger's avatar
sgugger committed
306

307
308
309
310
311
312
313
# test one model to quickly (no-@slow) catch simple problems and do an
# extensive testing of functionality with multiple models as @slow separately
def test_run_eval():
    run_eval_tester(T5_TINY)


# any extra models should go into the list here - can be slow
314
@slow
315
316
317
318
319
320
321
322
@pytest.mark.parametrize("model", [BART_TINY, MBART_TINY])
def test_run_eval_slow(model):
    run_eval_tester(model)


# testing with 2 models to validate: 1. translation (t5) 2. summarization (mbart)
@slow
@pytest.mark.parametrize("model", [T5_TINY, MBART_TINY])
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
def test_run_eval_search(model):
    input_file_name = Path(tempfile.mkdtemp()) / "utest_input.source"
    output_file_name = input_file_name.parent / "utest_output.txt"
    assert not output_file_name.exists()

    text = {
        "en": ["Machine learning is great, isn't it?", "I like to eat bananas", "Tomorrow is another great day!"],
        "de": [
            "Maschinelles Lernen ist gro脽artig, oder?",
            "Ich esse gerne Bananen",
            "Morgen ist wieder ein toller Tag!",
        ],
    }

    tmp_dir = Path(tempfile.mkdtemp())
    score_path = str(tmp_dir / "scores.json")
    reference_path = str(tmp_dir / "val.target")
    _dump_articles(input_file_name, text["en"])
    _dump_articles(reference_path, text["de"])
    task = "translation_en_to_de" if model == T5_TINY else "summarization"
343
344
    testargs = f"""
        run_eval_search.py
345
346
347
        {model}
        {str(input_file_name)}
        {str(output_file_name)}
348
        --score_path {score_path}
349
        --reference_path {reference_path}
350
351
        --task {task}
        """.split()
352
    testargs.extend(["--search", "num_beams=1:2 length_penalty=0.9:1.0"])
353

354
355
356
357
358
359
360
361
    with patch.object(sys, "argv", testargs):
        with CaptureStdout() as cs:
            run_search()
        expected_strings = [" num_beams | length_penalty", model, "Best score args"]
        un_expected_strings = ["Info"]
        if "translation" in task:
            expected_strings.append("bleu")
        else:
362
            expected_strings.extend(ROUGE_KEYS)
363
364
365
366
367
368
369
        for w in expected_strings:
            assert w in cs.out
        for w in un_expected_strings:
            assert w not in cs.out
        assert Path(output_file_name).exists()
        os.remove(Path(output_file_name))

370
371

@pytest.mark.parametrize(
372
    "model",
373
    [T5_TINY, BART_TINY, MBART_TINY, MARIAN_TINY, FSMT_TINY],
374
375
376
)
def test_finetune(model):
    args_d: dict = CHEAP_ARGS.copy()
377
    task = "translation" if model in [MBART_TINY, MARIAN_TINY, FSMT_TINY] else "summarization"
378
379
    args_d["label_smoothing"] = 0.1 if task == "translation" else 0

380
381
382
383
384
385
386
387
388
389
390
    tmp_dir = make_test_data_dir()
    output_dir = tempfile.mkdtemp(prefix="output_")
    args_d.update(
        data_dir=tmp_dir,
        model_name_or_path=model,
        tokenizer_name=None,
        train_batch_size=2,
        eval_batch_size=2,
        output_dir=output_dir,
        do_predict=True,
        task=task,
391
392
393
394
        src_lang="en_XX",
        tgt_lang="ro_RO",
        freeze_encoder=True,
        freeze_embeds=True,
395
396
397
    )
    assert "n_train" in args_d
    args = argparse.Namespace(**args_d)
398
399
400
401
402
403
404
405
    module = main(args)

    input_embeds = module.model.get_input_embeddings()
    assert not input_embeds.weight.requires_grad
    if model == T5_TINY:
        lm_head = module.model.lm_head
        assert not lm_head.weight.requires_grad
        assert (lm_head.weight == input_embeds.weight).all().item()
406
407
408
409
410
411
412
    elif model == FSMT_TINY:
        fsmt = module.model.model
        embed_pos = fsmt.decoder.embed_positions
        assert not embed_pos.weight.requires_grad
        assert not fsmt.decoder.embed_tokens.weight.requires_grad
        # check that embeds are not the same
        assert fsmt.decoder.embed_tokens != fsmt.encoder.embed_tokens
413
414
415
416
417
418
419
420
    else:
        bart = module.model.model
        embed_pos = bart.decoder.embed_positions
        assert not embed_pos.weight.requires_grad
        assert not bart.shared.weight.requires_grad
        # check that embeds are the same
        assert bart.decoder.embed_tokens == bart.encoder.embed_tokens
        assert bart.decoder.embed_tokens == bart.shared
421

422
423
424
425
    example_batch = load_json(module.output_dir / "text_batch.json")
    assert isinstance(example_batch, dict)
    assert len(example_batch) >= 4

426

427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
def test_finetune_extra_model_args():
    args_d: dict = CHEAP_ARGS.copy()

    task = "summarization"
    tmp_dir = make_test_data_dir()

    args_d.update(
        data_dir=tmp_dir,
        tokenizer_name=None,
        train_batch_size=2,
        eval_batch_size=2,
        do_predict=False,
        task=task,
        src_lang="en_XX",
        tgt_lang="ro_RO",
        freeze_encoder=True,
        freeze_embeds=True,
    )

    # test models whose config includes the extra_model_args
    model = BART_TINY
    output_dir = tempfile.mkdtemp(prefix="output_1_")
    args_d1 = args_d.copy()
    args_d1.update(
Lysandre's avatar
Lysandre committed
451
452
        model_name_or_path=model,
        output_dir=output_dir,
453
454
455
456
457
458
459
460
461
462
463
464
465
466
    )
    extra_model_params = ("encoder_layerdrop", "decoder_layerdrop", "dropout", "attention_dropout")
    for p in extra_model_params:
        args_d1[p] = 0.5
    args = argparse.Namespace(**args_d1)
    model = main(args)
    for p in extra_model_params:
        assert getattr(model.config, p) == 0.5, f"failed to override the model config for param {p}"

    # test models whose config doesn't include the extra_model_args
    model = T5_TINY
    output_dir = tempfile.mkdtemp(prefix="output_2_")
    args_d2 = args_d.copy()
    args_d2.update(
Lysandre's avatar
Lysandre committed
467
468
        model_name_or_path=model,
        output_dir=output_dir,
469
470
471
472
473
474
475
476
477
    )
    unsupported_param = "encoder_layerdrop"
    args_d2[unsupported_param] = 0.5
    args = argparse.Namespace(**args_d2)
    with pytest.raises(Exception) as excinfo:
        model = main(args)
    assert str(excinfo.value) == f"model config doesn't have a `{unsupported_param}` attribute"


478
def test_finetune_lr_schedulers():
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
    args_d: dict = CHEAP_ARGS.copy()

    task = "summarization"
    tmp_dir = make_test_data_dir()

    model = BART_TINY
    output_dir = tempfile.mkdtemp(prefix="output_1_")

    args_d.update(
        data_dir=tmp_dir,
        model_name_or_path=model,
        output_dir=output_dir,
        tokenizer_name=None,
        train_batch_size=2,
        eval_batch_size=2,
        do_predict=False,
        task=task,
        src_lang="en_XX",
        tgt_lang="ro_RO",
        freeze_encoder=True,
        freeze_embeds=True,
    )

    # emulate finetune.py
    parser = argparse.ArgumentParser()
    parser = pl.Trainer.add_argparse_args(parser)
    parser = SummarizationModule.add_model_specific_args(parser, os.getcwd())
    args = {"--help": True}

    # --help test
    with pytest.raises(SystemExit) as excinfo:
510
511
        with CaptureStdout() as cs:
            args = parser.parse_args(args)
512
513
514
        assert False, "--help is expected to sys.exit"
    assert excinfo.type == SystemExit
    expected = lightning_base.arg_to_scheduler_metavar
515
    assert expected in cs.out, "--help is expected to list the supported schedulers"
516
517
518
519
520

    # --lr_scheduler=non_existing_scheduler test
    unsupported_param = "non_existing_scheduler"
    args = {f"--lr_scheduler={unsupported_param}"}
    with pytest.raises(SystemExit) as excinfo:
521
522
        with CaptureStderr() as cs:
            args = parser.parse_args(args)
523
524
525
        assert False, "invalid argument is expected to sys.exit"
    assert excinfo.type == SystemExit
    expected = f"invalid choice: '{unsupported_param}'"
526
    assert expected in cs.err, f"should have bailed on invalid choice of scheduler {unsupported_param}"
527
528
529
530
531
532
533
534

    # --lr_scheduler=existing_scheduler test
    supported_param = "cosine"
    args_d1 = args_d.copy()
    args_d1["lr_scheduler"] = supported_param
    args = argparse.Namespace(**args_d1)
    model = main(args)
    assert getattr(model.hparams, "lr_scheduler") == supported_param, f"lr_scheduler={supported_param} shouldn't fail"