test_utils.py 142 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# coding=utf-8
# Copyright 2020 The HuggingFace Team Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a clone of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


17
import copy
18
import inspect
19
import tempfile
20
import unittest
21
import warnings
22

23
import numpy as np
24
from parameterized import parameterized
25

26
from transformers import is_torch_available, pipeline, set_seed
27
from transformers.testing_utils import (
28
    is_flaky,
29
    require_accelerate,
Ahmed Moubtahij's avatar
Ahmed Moubtahij committed
30
    require_auto_gptq,
31
    require_quanto,
32
33
34
35
36
    require_torch,
    require_torch_multi_accelerator,
    slow,
    torch_device,
)
37

38
from ..test_modeling_common import floats_tensor, ids_tensor
39
from .test_framework_agnostic import GenerationIntegrationTestsMixin
40

41
42
43
44

if is_torch_available():
    import torch

45
    from transformers import (
46
        AutoModelForCausalLM,
47
        AutoModelForSeq2SeqLM,
48
49
        AutoModelForSpeechSeq2Seq,
        AutoModelForVision2Seq,
50
        AutoProcessor,
51
        AutoTokenizer,
52
        BartForCausalLM,
53
54
55
56
        BartForConditionalGeneration,
        BartTokenizer,
        GPT2LMHeadModel,
        GPT2Tokenizer,
57
        ImageGPTForCausalImageModeling,
58
        SpeechEncoderDecoderModel,
59
    )
60
    from transformers.cache_utils import DynamicCache, QuantoQuantizedCache
61
62
63
64
65
66
    from transformers.generation import (
        BeamSampleDecoderOnlyOutput,
        BeamSampleEncoderDecoderOutput,
        BeamSearchDecoderOnlyOutput,
        BeamSearchEncoderDecoderOutput,
        DisjunctiveConstraint,
67
68
69
70
        GenerateBeamDecoderOnlyOutput,
        GenerateBeamEncoderDecoderOutput,
        GenerateDecoderOnlyOutput,
        GenerateEncoderDecoderOutput,
71
        GenerationConfig,
72
73
        GreedySearchDecoderOnlyOutput,
        GreedySearchEncoderDecoderOutput,
74
        LogitsProcessorList,
75
        MaxLengthCriteria,
76
        MinLengthLogitsProcessor,
77
78
79
80
81
        PhrasalConstraint,
        SampleDecoderOnlyOutput,
        SampleEncoderDecoderOutput,
        StoppingCriteria,
        StoppingCriteriaList,
82
83
        WatermarkDetector,
        WatermarkingConfig,
84
    )
85
    from transformers.generation.utils import _speculative_sampling
86
87
88
89
90


class GenerationTesterMixin:
    model_tester = None
    all_generative_model_classes = ()
Suraj Patil's avatar
Suraj Patil committed
91
    input_name = "input_ids"
92
    max_new_tokens = 3
93

94
    def _get_input_ids_and_config(self, batch_size=2):
95
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
Suraj Patil's avatar
Suraj Patil committed
96
        input_ids = inputs_dict[self.input_name]
97

98
        input_ids = input_ids[:batch_size]
99
100
101

        if config.eos_token_id is not None and config.pad_token_id is None:
            # hack to allow generate for models such as GPT2 as is done in `generate()`
102
103
104
            if isinstance(config.eos_token_id, int):
                config.eos_token_id = [config.eos_token_id]
            config.pad_token_id = config.eos_token_id[0]
105
106
107
108
109

        if self.has_attentions:
            attention_mask = torch.ones_like(input_ids, dtype=torch.long)
        else:
            attention_mask = None
110

111
112
113
114
115
        # It is important set set the eos_token_id to None to ensure that no sequences
        # shorter than `max_length` can be generated
        config.eos_token_id = None
        config.forced_eos_token_id = None

116
        return config, input_ids, attention_mask
117
118

    @staticmethod
119
    def _get_logits_processor_and_warper_kwargs(
120
121
122
123
        input_length,
        forced_bos_token_id=None,
        forced_eos_token_id=None,
    ):
124
125
126
        process_kwargs = {
            "bad_words_ids": [[1, 0]],
            "repetition_penalty": 1.2,
127
            "remove_invalid_values": True,
128
        }
129
130
131
132
        # NoRepeatNGramLogitsProcessor + forced tokens may result in no valid continuations
        if forced_bos_token_id is None and forced_eos_token_id is None:
            process_kwargs["no_repeat_ngram_size"] = 2

133
        warp_kwargs = {"top_k": 10, "top_p": 0.7, "temperature": 0.7}
134
        return process_kwargs, warp_kwargs
135
136

    @staticmethod
137
    def _get_beam_kwargs(num_return_sequences=1):
138
139
140
141
142
143
        beam_kwargs = {
            "early_stopping": False,
            "length_penalty": 2.0,
            "num_beams": 2,
            "num_return_sequences": num_return_sequences,
        }
144
        return beam_kwargs
145

146
    @staticmethod
147
    def _get_diverse_beam_kwargs(num_return_sequences=1):
148
149
150
151
152
153
154
155
        beam_kwargs = {
            "early_stopping": False,
            "length_penalty": 2.0,
            "num_beams": 2,
            "num_return_sequences": num_return_sequences,
            "num_beam_groups": 2,  # one beam per group
            "diversity_penalty": 2.0,
        }
156
        return beam_kwargs
157

158
    @staticmethod
159
    def _get_constrained_beam_kwargs(num_return_sequences=1):
160
161
162
163
164
165
        beam_kwargs = {
            "early_stopping": False,
            "length_penalty": 2.0,
            "num_beams": num_return_sequences * 4,
            "num_return_sequences": num_return_sequences,
        }
166
        return beam_kwargs
167

168
    @staticmethod
169
170
171
    def _get_encoder_outputs(
        model, input_ids, attention_mask, output_attentions=None, output_hidden_states=None, num_interleave=1
    ):
172
        encoder = model.get_encoder()
173
174
175
176
177
178
        encoder_outputs = encoder(
            input_ids,
            attention_mask=attention_mask,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
        )
179
180
181
        encoder_outputs["last_hidden_state"] = encoder_outputs.last_hidden_state.repeat_interleave(
            num_interleave, dim=0
        )
182
183
184
        generation_config = copy.deepcopy(model.generation_config)
        model._prepare_special_tokens(generation_config)
        input_ids = torch.zeros_like(input_ids[:, :1]) + generation_config.decoder_start_token_id
185
186
187
        attention_mask = None
        return encoder_outputs, input_ids, attention_mask

188
189
190
191
192
193
    def _greedy_generate(
        self,
        model,
        input_ids,
        attention_mask,
        output_scores=False,
194
        output_logits=False,
195
196
197
198
        output_attentions=False,
        output_hidden_states=False,
        return_dict_in_generate=False,
    ):
199
        logits_process_kwargs, _ = self._get_logits_processor_and_warper_kwargs(
200
201
202
            input_ids.shape[-1],
            forced_bos_token_id=model.config.forced_bos_token_id,
            forced_eos_token_id=model.config.forced_eos_token_id,
203
204
        )

205
        model_kwargs = {"attention_mask": attention_mask} if attention_mask is not None else {}
206
207
208
209
        output_generate = model.generate(
            input_ids,
            do_sample=False,
            num_beams=1,
210
            max_new_tokens=self.max_new_tokens,
211
212
213
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            output_scores=output_scores,
214
            output_logits=output_logits,
215
216
            return_dict_in_generate=return_dict_in_generate,
            **logits_process_kwargs,
217
            **model_kwargs,
218
219
        )

220
        return output_generate
221
222
223
224
225
226
227
228
229
230

    def _sample_generate(
        self,
        model,
        input_ids,
        attention_mask,
        num_return_sequences,
        logits_warper_kwargs,
        process_kwargs,
        output_scores=False,
231
        output_logits=False,
232
233
234
235
236
        output_attentions=False,
        output_hidden_states=False,
        return_dict_in_generate=False,
    ):
        torch.manual_seed(0)
237
        model_kwargs = {"attention_mask": attention_mask} if attention_mask is not None else {}
238
239
240
241
        output_generate = model.generate(
            input_ids,
            do_sample=True,
            num_beams=1,
242
            max_new_tokens=self.max_new_tokens,
243
244
            num_return_sequences=num_return_sequences,
            output_scores=output_scores,
245
            output_logits=output_logits,
246
247
248
249
250
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict_in_generate=return_dict_in_generate,
            **logits_warper_kwargs,
            **process_kwargs,
251
            **model_kwargs,
252
253
        )

254
        return output_generate
255
256
257
258
259
260
261
262
263

    def _beam_search_generate(
        self,
        model,
        input_ids,
        attention_mask,
        beam_kwargs,
        logits_process_kwargs,
        output_scores=False,
264
        output_logits=False,
265
266
267
268
        output_attentions=False,
        output_hidden_states=False,
        return_dict_in_generate=False,
    ):
269
        model_kwargs = {"attention_mask": attention_mask} if attention_mask is not None else {}
270
271
272
        output_generate = model.generate(
            input_ids,
            do_sample=False,
273
            max_new_tokens=self.max_new_tokens,
274
            output_scores=output_scores,
275
            output_logits=output_logits,
276
277
278
279
280
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict_in_generate=return_dict_in_generate,
            **beam_kwargs,
            **logits_process_kwargs,
281
            **model_kwargs,
282
283
        )

284
        return output_generate
285
286
287
288
289
290
291
292
293

    def _beam_sample_generate(
        self,
        model,
        input_ids,
        attention_mask,
        beam_kwargs,
        logits_warper_kwargs,
        output_scores=False,
294
        output_logits=False,
295
296
297
298
299
        output_attentions=False,
        output_hidden_states=False,
        return_dict_in_generate=False,
    ):
        torch.manual_seed(0)
300
        model_kwargs = {"attention_mask": attention_mask} if attention_mask is not None else {}
301
302
303
        output_generate = model.generate(
            input_ids,
            do_sample=True,
304
            max_new_tokens=self.max_new_tokens,
305
            output_scores=output_scores,
306
            output_logits=output_logits,
307
308
309
310
311
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict_in_generate=return_dict_in_generate,
            **beam_kwargs,
            **logits_warper_kwargs,
312
            **model_kwargs,
313
314
        )

315
        return output_generate
316
317
318
319
320
321
322
323
324

    def _group_beam_search_generate(
        self,
        model,
        input_ids,
        attention_mask,
        beam_kwargs,
        logits_process_kwargs,
        output_scores=False,
325
        output_logits=False,
326
327
328
329
        output_attentions=False,
        output_hidden_states=False,
        return_dict_in_generate=False,
    ):
330
        model_kwargs = {"attention_mask": attention_mask} if attention_mask is not None else {}
331
332
333
        output_generate = model.generate(
            input_ids,
            do_sample=False,
334
            max_new_tokens=self.max_new_tokens,
335
            output_scores=output_scores,
336
            output_logits=output_logits,
337
338
339
340
341
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict_in_generate=return_dict_in_generate,
            **beam_kwargs,
            **logits_process_kwargs,
342
            **model_kwargs,
343
344
        )

345
        return output_generate
346

347
348
349
350
351
352
353
354
355
    def _constrained_beam_search_generate(
        self,
        model,
        input_ids,
        attention_mask,
        constraints,
        beam_kwargs,
        logits_process_kwargs,
        output_scores=False,
356
        output_logits=False,
357
358
359
360
        output_attentions=False,
        output_hidden_states=False,
        return_dict_in_generate=False,
    ):
361
        model_kwargs = {"attention_mask": attention_mask} if attention_mask is not None else {}
362
363
364
        output_generate = model.generate(
            input_ids,
            do_sample=False,
365
            max_new_tokens=self.max_new_tokens,
366
            output_scores=output_scores,
367
            output_logits=output_logits,
368
369
370
371
372
373
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict_in_generate=return_dict_in_generate,
            constraints=constraints,
            **beam_kwargs,
            **logits_process_kwargs,
374
            **model_kwargs,
375
376
        )

377
        return output_generate
378

379
380
381
382
383
384
    def _contrastive_generate(
        self,
        model,
        input_ids,
        attention_mask,
        output_scores=False,
385
        output_logits=False,
386
387
388
389
390
391
392
393
394
        output_attentions=False,
        output_hidden_states=False,
        return_dict_in_generate=False,
    ):
        contrastive_search_kwargs = {
            "penalty_alpha": 0.6,
            "top_k": 5,
        }

395
        logits_process_kwargs, _ = self._get_logits_processor_and_warper_kwargs(
396
397
398
399
400
401
402
403
404
405
            input_ids.shape[-1],
            forced_bos_token_id=model.config.forced_bos_token_id,
            forced_eos_token_id=model.config.forced_eos_token_id,
        )

        model_kwargs = {"attention_mask": attention_mask} if attention_mask is not None else {}
        output_generate = model.generate(
            input_ids,
            do_sample=False,
            num_beams=1,
406
            max_new_tokens=self.max_new_tokens,
407
408
409
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            output_scores=output_scores,
410
            output_logits=output_logits,
411
412
413
414
415
416
            return_dict_in_generate=return_dict_in_generate,
            **logits_process_kwargs,
            **model_kwargs,
            **contrastive_search_kwargs,
        )

417
        return output_generate
418

419
420
    def test_greedy_generate(self):
        for model_class in self.all_generative_model_classes:
421
            config, input_ids, attention_mask = self._get_input_ids_and_config()
422

423
            model = model_class(config).to(torch_device).eval()
424
            output_generate = self._greedy_generate(model=model, input_ids=input_ids, attention_mask=attention_mask)
425

426
427
428
429
            if model.config.is_encoder_decoder:
                self.assertTrue(output_generate.shape[-1] == self.max_new_tokens + 1)
            else:
                self.assertTrue(output_generate.shape[-1] == self.max_new_tokens + input_ids.shape[-1])
430

431
432
    def test_greedy_generate_dict_outputs(self):
        for model_class in self.all_generative_model_classes:
433
            config, input_ids, attention_mask = self._get_input_ids_and_config()
434

435
436
            config.use_cache = False
            model = model_class(config).to(torch_device).eval()
437
            output_generate = self._greedy_generate(
438
439
440
441
                model=model,
                input_ids=input_ids,
                attention_mask=attention_mask,
                output_scores=True,
442
                output_logits=True,
443
                output_hidden_states=True,
444
                output_attentions=self.has_attentions,
445
446
                return_dict_in_generate=True,
            )
447
448

            if model.config.is_encoder_decoder:
449
                self.assertTrue(output_generate.sequences.shape[-1] == self.max_new_tokens + 1)
450
451
                self.assertIsInstance(output_generate, GenerateEncoderDecoderOutput)
                # Retrocompatibility check
452
453
                self.assertIsInstance(output_generate, GreedySearchEncoderDecoderOutput)
            else:
454
                self.assertTrue(output_generate.sequences.shape[-1] == self.max_new_tokens + input_ids.shape[-1])
455
456
                self.assertIsInstance(output_generate, GenerateDecoderOnlyOutput)
                # Retrocompatibility check
457
                self.assertIsInstance(output_generate, GreedySearchDecoderOnlyOutput)
458

459
            self._check_outputs(output_generate, input_ids, model.config)
460
461
462

    def test_greedy_generate_dict_outputs_use_cache(self):
        for model_class in self.all_generative_model_classes:
463
            config, input_ids, attention_mask = self._get_input_ids_and_config()
464
465

            if not hasattr(config, "use_cache"):
466
                self.skipTest("This model doesn't support caching")
467
468

            config.use_cache = True
469
            config.is_decoder = True
470
            model = model_class(config).to(torch_device).eval()
471
            output_generate = self._greedy_generate(
472
473
                model=model,
                input_ids=input_ids,
474
                attention_mask=attention_mask,
475
                output_scores=True,
476
                output_logits=True,
477
                output_hidden_states=True,
478
                output_attentions=self.has_attentions,
479
                return_dict_in_generate=True,
480
            )
481

482
483
484
485
            if model.config.is_encoder_decoder:
                self.assertTrue(output_generate.sequences.shape[-1] == self.max_new_tokens + 1)
            else:
                self.assertTrue(output_generate.sequences.shape[-1] == self.max_new_tokens + input_ids.shape[-1])
486
            self._check_outputs(output_generate, input_ids, model.config, use_cache=True)
487
488
489

    def test_sample_generate(self):
        for model_class in self.all_generative_model_classes:
490
            config, input_ids, attention_mask = self._get_input_ids_and_config()
491

492
493
            model = model_class(config).to(torch_device).eval()
            process_kwargs, logits_warper_kwargs = self._get_logits_processor_and_warper_kwargs(
494
495
496
497
498
                input_ids.shape[-1],
                forced_bos_token_id=model.config.forced_bos_token_id,
                forced_eos_token_id=model.config.forced_eos_token_id,
            )

499
            output_generate = self._sample_generate(
500
501
502
503
504
505
506
507
                model=model,
                input_ids=input_ids,
                attention_mask=attention_mask,
                num_return_sequences=1,
                logits_warper_kwargs=logits_warper_kwargs,
                process_kwargs=process_kwargs,
            )

508
509
510
511
            if model.config.is_encoder_decoder:
                self.assertTrue(output_generate.shape[-1] == self.max_new_tokens + 1)
            else:
                self.assertTrue(output_generate.shape[-1] == self.max_new_tokens + input_ids.shape[-1])
512

513
514
    def test_sample_generate_dict_output(self):
        for model_class in self.all_generative_model_classes:
515
            config, input_ids, attention_mask = self._get_input_ids_and_config()
516

517
518
            config.use_cache = False
            model = model_class(config).to(torch_device).eval()
519

520
            process_kwargs, logits_warper_kwargs = self._get_logits_processor_and_warper_kwargs(
521
522
523
                input_ids.shape[-1],
                forced_bos_token_id=model.config.forced_bos_token_id,
                forced_eos_token_id=model.config.forced_eos_token_id,
524
            )
525

526
            output_generate = self._sample_generate(
527
528
                model=model,
                input_ids=input_ids,
529
                attention_mask=attention_mask,
530
531
532
533
                num_return_sequences=2,
                logits_warper_kwargs=logits_warper_kwargs,
                process_kwargs=process_kwargs,
                output_scores=True,
534
                output_logits=True,
535
                output_hidden_states=True,
536
                output_attentions=self.has_attentions,
537
                return_dict_in_generate=True,
538
539
540
            )

            if model.config.is_encoder_decoder:
541
                self.assertTrue(output_generate.sequences.shape[-1] == self.max_new_tokens + 1)
542
543
                self.assertIsInstance(output_generate, GenerateEncoderDecoderOutput)
                # Retrocompatibility check
544
                self.assertIsInstance(output_generate, SampleEncoderDecoderOutput)
545
            else:
546
                self.assertTrue(output_generate.sequences.shape[-1] == self.max_new_tokens + input_ids.shape[-1])
547
548
                self.assertIsInstance(output_generate, GenerateDecoderOnlyOutput)
                # Retrocompatibility check
549
550
                self.assertIsInstance(output_generate, SampleDecoderOnlyOutput)

551
            self._check_outputs(output_generate, input_ids, model.config, num_return_sequences=2)
552
553
554

    def test_beam_search_generate(self):
        for model_class in self.all_generative_model_classes:
555
            config, input_ids, attention_mask = self._get_input_ids_and_config()
556

557
            model = model_class(config).to(torch_device).eval()
558

559
            logits_process_kwargs, _ = self._get_logits_processor_and_warper_kwargs(
560
561
562
                input_ids.shape[-1],
                config.forced_bos_token_id,
                config.forced_eos_token_id,
563
            )
564
            beam_kwargs = self._get_beam_kwargs()
565

566
            output_generate = self._beam_search_generate(
567
568
                model=model,
                input_ids=input_ids,
569
                attention_mask=attention_mask,
570
571
                beam_kwargs=beam_kwargs,
                logits_process_kwargs=logits_process_kwargs,
572
            )
573

574
575
576
577
            if model.config.is_encoder_decoder:
                self.assertTrue(output_generate.shape[-1] == self.max_new_tokens + 1)
            else:
                self.assertTrue(output_generate.shape[-1] == self.max_new_tokens + input_ids.shape[-1])
578
579
580

    def test_beam_search_generate_dict_output(self):
        for model_class in self.all_generative_model_classes:
581
            config, input_ids, attention_mask = self._get_input_ids_and_config()
582
583

            # disable cache
584
            config.use_cache = False
585

586
            model = model_class(config).to(torch_device).eval()
587
            logits_process_kwargs, _ = self._get_logits_processor_and_warper_kwargs(
588
589
590
591
                input_ids.shape[-1],
                config.forced_bos_token_id,
                config.forced_eos_token_id,
            )
592
593
            beam_kwargs = self._get_beam_kwargs()
            output_generate = self._beam_search_generate(
594
595
                model=model,
                input_ids=input_ids,
596
                attention_mask=attention_mask,
597
598
599
                beam_kwargs=beam_kwargs,
                logits_process_kwargs=logits_process_kwargs,
                output_scores=True,
600
                output_logits=True,
601
                output_hidden_states=True,
602
                output_attentions=self.has_attentions,
603
                return_dict_in_generate=True,
604
605
            )
            if model.config.is_encoder_decoder:
606
                self.assertTrue(output_generate.sequences.shape[-1] == self.max_new_tokens + 1)
607
608
                self.assertIsInstance(output_generate, GenerateBeamEncoderDecoderOutput)
                # Retrocompatibility check
609
                self.assertIsInstance(output_generate, BeamSearchEncoderDecoderOutput)
610
            else:
611
                self.assertTrue(output_generate.sequences.shape[-1] == self.max_new_tokens + input_ids.shape[-1])
612
613
                self.assertIsInstance(output_generate, GenerateBeamDecoderOnlyOutput)
                # Retrocompatibility check
614
615
                self.assertIsInstance(output_generate, BeamSearchDecoderOnlyOutput)

616
617
            self._check_outputs(
                output_generate, input_ids, model.config, num_return_sequences=beam_kwargs["num_beams"]
618
619
620
621
622
            )

    def test_beam_search_generate_dict_outputs_use_cache(self):
        for model_class in self.all_generative_model_classes:
            # enable cache
623
            config, input_ids, attention_mask = self._get_input_ids_and_config()
624
625

            if not hasattr(config, "use_cache"):
626
                self.skipTest("This model doesn't support caching")
627
628

            model = model_class(config).to(torch_device).eval()
629
            logits_process_kwargs, _ = self._get_logits_processor_and_warper_kwargs(
630
631
632
                input_ids.shape[-1],
                config.forced_bos_token_id,
                config.forced_eos_token_id,
633
634
            )

635
            beam_kwargs = self._get_beam_kwargs()
636
637

            config.use_cache = True
638
            config.is_decoder = True
639
            model = model_class(config).to(torch_device).eval()
640
            output_generate = self._beam_search_generate(
641
642
643
644
645
646
                model=model,
                input_ids=input_ids,
                attention_mask=attention_mask,
                beam_kwargs=beam_kwargs,
                logits_process_kwargs=logits_process_kwargs,
                output_scores=True,
647
                output_logits=True,
648
                output_hidden_states=True,
649
                output_attentions=self.has_attentions,
650
651
652
                return_dict_in_generate=True,
            )

653
654
655
656
            if model.config.is_encoder_decoder:
                self.assertTrue(output_generate.sequences.shape[-1] == self.max_new_tokens + 1)
            else:
                self.assertTrue(output_generate.sequences.shape[-1] == self.max_new_tokens + input_ids.shape[-1])
657
658
659
            self._check_outputs(
                output_generate, input_ids, model.config, use_cache=True, num_return_sequences=beam_kwargs["num_beams"]
            )
660

661
    @require_accelerate
662
    @require_torch_multi_accelerator
663
664
    def test_model_parallel_beam_search(self):
        for model_class in self.all_generative_model_classes:
665
666
667
            if "xpu" in torch_device:
                return unittest.skip("device_map='auto' does not work with XPU devices")

668
669
670
            if model_class._no_split_modules is None:
                continue

671
            config, input_ids, attention_mask = self._get_input_ids_and_config()
672
673
674
675
676
677
678
679
680

            model = model_class(config).eval()
            with tempfile.TemporaryDirectory() as tmp_dir:
                model.cpu().save_pretrained(tmp_dir)
                new_model = model_class.from_pretrained(tmp_dir, device_map="auto")

                new_model.generate(
                    input_ids,
                    attention_mask=attention_mask,
681
                    max_new_tokens=self.max_new_tokens,
682
683
684
                    num_beams=2,
                )

685
686
    def test_beam_sample_generate(self):
        for model_class in self.all_generative_model_classes:
687
            config, input_ids, attention_mask = self._get_input_ids_and_config()
688

689
            _, logits_warper_kwargs = self._get_logits_processor_and_warper_kwargs(input_ids.shape[-1])
690

691
            model = model_class(config).to(torch_device).eval()
692
            beam_kwargs = self._get_beam_kwargs()
693

694
            output_generate = self._beam_sample_generate(
695
696
                model=model,
                input_ids=input_ids,
697
                attention_mask=attention_mask,
698
699
                beam_kwargs=beam_kwargs,
                logits_warper_kwargs=logits_warper_kwargs,
700
            )
701

702
703
704
705
706
            if model.config.is_encoder_decoder:
                self.assertTrue(output_generate.shape[-1] == self.max_new_tokens + 1)
            else:
                self.assertTrue(output_generate.shape[-1] == self.max_new_tokens + input_ids.shape[-1])

707
708
709
710
711
712
713
714
715
716
717
718
            if "inputs_embeds" in set(inspect.signature(model.prepare_inputs_for_generation).parameters):
                input_embeds = model.get_input_embeddings()(input_ids)
                beam_kwargs.update({"inputs_embeds": input_embeds})
                output_generate2 = self._beam_sample_generate(
                    model=model,
                    input_ids=None,
                    attention_mask=attention_mask,
                    beam_kwargs=beam_kwargs,
                    logits_warper_kwargs=logits_warper_kwargs,
                )

                torch.testing.assert_close(output_generate[:, input_embeds.shape[1] :], output_generate2)
719
720
721

    def test_beam_sample_generate_dict_output(self):
        for model_class in self.all_generative_model_classes:
722
            config, input_ids, attention_mask = self._get_input_ids_and_config()
723
724

            # disable cache
725
            config.use_cache = False
726

727
            model = model_class(config).to(torch_device).eval()
728
729
            _, logits_warper_kwargs = self._get_logits_processor_and_warper_kwargs(input_ids.shape[-1])
            beam_kwargs = self._get_beam_kwargs()
730

731
            output_generate = self._beam_sample_generate(
732
733
734
735
736
737
                model=model,
                input_ids=input_ids,
                attention_mask=attention_mask,
                beam_kwargs=beam_kwargs,
                logits_warper_kwargs=logits_warper_kwargs,
                output_scores=True,
738
                output_logits=True,
739
                output_hidden_states=True,
740
                output_attentions=self.has_attentions,
741
742
743
744
                return_dict_in_generate=True,
            )

            if model.config.is_encoder_decoder:
745
                self.assertTrue(output_generate.sequences.shape[-1] == self.max_new_tokens + 1)
746
747
                self.assertIsInstance(output_generate, GenerateBeamEncoderDecoderOutput)
                # Retrocompatibility check
748
                self.assertIsInstance(output_generate, BeamSampleEncoderDecoderOutput)
749
            else:
750
                self.assertTrue(output_generate.sequences.shape[-1] == self.max_new_tokens + input_ids.shape[-1])
751
752
                self.assertIsInstance(output_generate, GenerateBeamDecoderOnlyOutput)
                # Retrocompatibility check
753
                self.assertIsInstance(output_generate, BeamSampleDecoderOnlyOutput)
754

755
756
            self._check_outputs(
                output_generate, input_ids, model.config, num_return_sequences=beam_kwargs["num_beams"]
757
            )
758

759
    def test_generate_without_input_ids(self):
760
        config, _, _ = self._get_input_ids_and_config()
761

762
763
764
        # if no bos token id => cannot generate from None
        if config.bos_token_id is None:
            return
765

766
767
768
769
        # hack in case they are equal, otherwise the attn mask will be [0]
        if config.bos_token_id == config.pad_token_id:
            config.pad_token_id = None

770
771
772
        for model_class in self.all_generative_model_classes:
            model = model_class(config).to(torch_device)
            model.eval()
773

774
775
776
            output_ids_generate = model.generate(
                do_sample=False, max_new_tokens=self.max_new_tokens, remove_invalid_values=True
            )
777
            self.assertIsNotNone(output_ids_generate)
778

779
780
    def test_group_beam_search_generate(self):
        for model_class in self.all_generative_model_classes:
781
            config, input_ids, attention_mask = self._get_input_ids_and_config()
782

783
            model = model_class(config).to(torch_device).eval()
784
            logits_process_kwargs, _ = self._get_logits_processor_and_warper_kwargs(
785
786
787
                input_ids.shape[-1],
                config.forced_bos_token_id,
                config.forced_eos_token_id,
788
789
790
            )

            # check `generate()` and `group_beam_search()` are equal
791
792
            beam_kwargs = self._get_diverse_beam_kwargs()
            output_generate = self._group_beam_search_generate(
793
794
                model=model,
                input_ids=input_ids,
795
                attention_mask=attention_mask,
796
797
                beam_kwargs=beam_kwargs,
                logits_process_kwargs=logits_process_kwargs,
798
            )
799
800
801
802
            if model.config.is_encoder_decoder:
                self.assertTrue(output_generate.shape[-1] == self.max_new_tokens + 1)
            else:
                self.assertTrue(output_generate.shape[-1] == self.max_new_tokens + input_ids.shape[-1])
803

804
            # check `group_beam_search` for higher than 1 `num_return_sequences`
805
            num_return_sequences = 2
806
807
            beam_kwargs = self._get_diverse_beam_kwargs(num_return_sequences=num_return_sequences)
            output_generate = self._group_beam_search_generate(
808
809
810
811
812
813
                model=model,
                input_ids=input_ids,
                attention_mask=attention_mask,
                beam_kwargs=beam_kwargs,
                logits_process_kwargs=logits_process_kwargs,
            )
814
815
816
817
            if model.config.is_encoder_decoder:
                self.assertTrue(output_generate.shape[-1] == self.max_new_tokens + 1)
            else:
                self.assertTrue(output_generate.shape[-1] == self.max_new_tokens + input_ids.shape[-1])
818

819
820
    def test_group_beam_search_generate_dict_output(self):
        for model_class in self.all_generative_model_classes:
821
            config, input_ids, attention_mask = self._get_input_ids_and_config()
822
            config.use_cache = False
823

824
            model = model_class(config).to(torch_device).eval()
825
            logits_process_kwargs, _ = self._get_logits_processor_and_warper_kwargs(
826
827
828
                input_ids.shape[-1],
                config.forced_bos_token_id,
                config.forced_eos_token_id,
829
830
            )

831
832
            beam_kwargs = self._get_diverse_beam_kwargs()
            output_generate = self._group_beam_search_generate(
833
834
                model=model,
                input_ids=input_ids,
835
                attention_mask=attention_mask,
836
837
838
                beam_kwargs=beam_kwargs,
                logits_process_kwargs=logits_process_kwargs,
                output_scores=True,
839
                output_logits=True,
840
                output_hidden_states=True,
841
                output_attentions=self.has_attentions,
842
                return_dict_in_generate=True,
843
844
            )
            if model.config.is_encoder_decoder:
845
                self.assertTrue(output_generate.sequences.shape[-1] == self.max_new_tokens + 1)
846
847
                self.assertIsInstance(output_generate, GenerateBeamEncoderDecoderOutput)
                # Retrocompatibility check
848
                self.assertIsInstance(output_generate, BeamSearchEncoderDecoderOutput)
849
            else:
850
                self.assertTrue(output_generate.sequences.shape[-1] == self.max_new_tokens + input_ids.shape[-1])
851
852
                self.assertIsInstance(output_generate, GenerateBeamDecoderOnlyOutput)
                # Retrocompatibility check
853
854
                self.assertIsInstance(output_generate, BeamSearchDecoderOnlyOutput)

855
856
            self._check_outputs(
                output_generate, input_ids, model.config, num_return_sequences=beam_kwargs["num_beams"]
857
858
            )

859
860
    # TODO: @gante
    @is_flaky()
861
862
    def test_constrained_beam_search_generate(self):
        for model_class in self.all_generative_model_classes:
863
            config, input_ids, attention_mask = self._get_input_ids_and_config()
864
865
866

            model = model_class(config).to(torch_device).eval()

867
            logits_process_kwargs, _ = self._get_logits_processor_and_warper_kwargs(
868
869
870
871
872
873
                input_ids.shape[-1],
                config.forced_bos_token_id,
                config.forced_eos_token_id,
            )

            # Sample constraints
874
875
            min_id = 3
            max_id = config.vocab_size
876

877
            force_tokens = torch.randint(min_id, max_id, (1, 2)).tolist()[0]
878
879
880
881
            constraints = [
                PhrasalConstraint(force_tokens),
            ]

882
883
            beam_kwargs = self._get_constrained_beam_kwargs()
            output_generate = self._constrained_beam_search_generate(
884
885
886
887
888
889
890
                model=model,
                input_ids=input_ids,
                attention_mask=attention_mask,
                constraints=constraints,
                beam_kwargs=beam_kwargs,
                logits_process_kwargs=logits_process_kwargs,
            )
891
892
893
894
895
896

            if model.config.is_encoder_decoder:
                self.assertTrue(output_generate.shape[-1] == self.max_new_tokens + 1)
            else:
                self.assertTrue(output_generate.shape[-1] == self.max_new_tokens + input_ids.shape[-1])

897
898
899
            for generation_output in output_generate:
                self._check_sequence_inside_sequence(force_tokens, generation_output)

900
            # check`constrained_beam_search` for higher than 1 `num_return_sequences`
901
            # Sample constraints
902
            force_tokens = torch.randint(min_id, max_id, (1, 2)).tolist()[0]
903
904
905
906
            constraints = [
                PhrasalConstraint(force_tokens),
            ]

907
            beam_kwargs = self._get_constrained_beam_kwargs(num_return_sequences=2)
908

909
            output_generate = self._constrained_beam_search_generate(
910
911
912
913
914
915
916
                model=model,
                input_ids=input_ids,
                attention_mask=attention_mask,
                constraints=constraints,
                beam_kwargs=beam_kwargs,
                logits_process_kwargs=logits_process_kwargs,
            )
917
918
919
920
921

            if model.config.is_encoder_decoder:
                self.assertTrue(output_generate.shape[-1] == self.max_new_tokens + 1)
            else:
                self.assertTrue(output_generate.shape[-1] == self.max_new_tokens + input_ids.shape[-1])
922
923
924
925
926
927

            for generation_output in output_generate:
                self._check_sequence_inside_sequence(force_tokens, generation_output)

    def test_constrained_beam_search_generate_dict_output(self):
        for model_class in self.all_generative_model_classes:
928
            config, input_ids, attention_mask = self._get_input_ids_and_config()
929
930
931
932
933

            # disable cache
            config.use_cache = False

            model = model_class(config).to(torch_device).eval()
934
            logits_process_kwargs, _ = self._get_logits_processor_and_warper_kwargs(
935
936
937
938
939
940
                input_ids.shape[-1],
                config.forced_bos_token_id,
                config.forced_eos_token_id,
            )

            # Sample constraints
941
942
            min_id = 3
            max_id = model.config.vocab_size
943
            force_tokens = torch.randint(min_id, max_id, (1, 2)).tolist()[0]
944
945
946
947
            constraints = [
                PhrasalConstraint(force_tokens),
            ]

948
949
            beam_kwargs = self._get_constrained_beam_kwargs()
            output_generate = self._constrained_beam_search_generate(
950
951
952
953
954
955
956
                model=model,
                input_ids=input_ids,
                attention_mask=attention_mask,
                constraints=constraints,
                beam_kwargs=beam_kwargs,
                logits_process_kwargs=logits_process_kwargs,
                output_scores=True,
957
                output_logits=True,
958
                output_hidden_states=True,
959
                output_attentions=self.has_attentions,
960
961
962
963
                return_dict_in_generate=True,
            )

            if model.config.is_encoder_decoder:
964
                self.assertTrue(output_generate.sequences.shape[-1] == self.max_new_tokens + 1)
965
966
                self.assertIsInstance(output_generate, GenerateBeamEncoderDecoderOutput)
                # Retrocompatibility check
967
968
                self.assertIsInstance(output_generate, BeamSearchEncoderDecoderOutput)
            else:
969
                self.assertTrue(output_generate.sequences.shape[-1] == self.max_new_tokens + input_ids.shape[-1])
970
971
                self.assertIsInstance(output_generate, GenerateBeamDecoderOnlyOutput)
                # Retrocompatibility check
972
973
                self.assertIsInstance(output_generate, BeamSearchDecoderOnlyOutput)

974
975
            self._check_outputs(
                output_generate, input_ids, model.config, num_return_sequences=beam_kwargs["num_beams"]
976
977
            )

978
979
    def test_contrastive_generate(self):
        for model_class in self.all_generative_model_classes:
980
981
982
            if model_class._is_stateful:
                self.skipTest("Stateful models don't support contrastive search generation")

983
            # won't fix: FSMT and Reformer have a different cache variable type (and format).
984
            if any(model_name in model_class.__name__.lower() for model_name in ["fsmt", "reformer"]):
985
                self.skipTest("Won't fix: old model with different cache format")
986

987
            config, input_ids, attention_mask = self._get_input_ids_and_config()
988
989
990

            # NOTE: contrastive search only works with cache on at the moment.
            if not hasattr(config, "use_cache"):
991
                self.skipTest("This model doesn't support caching")
992
993
994
995
996
            config.use_cache = True
            config.is_decoder = True

            # test old generation output for backwards compatibility
            model = model_class(config).to(torch_device).eval()
997
            output_generate = self._contrastive_generate(
998
                model=model, input_ids=input_ids, attention_mask=attention_mask
999
            )
1000
1001
1002
1003
            if model.config.is_encoder_decoder:
                self.assertTrue(output_generate.shape[-1] == self.max_new_tokens + 1)
            else:
                self.assertTrue(output_generate.shape[-1] == self.max_new_tokens + input_ids.shape[-1])
1004
1005
1006

    def test_contrastive_generate_dict_outputs_use_cache(self):
        for model_class in self.all_generative_model_classes:
1007
1008
1009
            if model_class._is_stateful:
                self.skipTest("Stateful models don't support contrastive search generation")

1010
            # won't fix: FSMT and Reformer have a different cache variable type (and format).
1011
            if any(model_name in model_class.__name__.lower() for model_name in ["fsmt", "reformer"]):
1012
                self.skipTest("Won't fix: old model with different cache format")
1013

1014
            config, input_ids, attention_mask = self._get_input_ids_and_config()
1015
1016
1017

            # NOTE: contrastive search only works with cache on at the moment.
            if not hasattr(config, "use_cache"):
1018
                self.skipTest("This model doesn't support caching")
1019
1020
1021
1022
            config.use_cache = True
            config.is_decoder = True

            model = model_class(config).to(torch_device).eval()
1023
            output_generate = self._contrastive_generate(
1024
1025
1026
1027
                model=model,
                input_ids=input_ids,
                attention_mask=attention_mask,
                output_scores=True,
1028
                output_logits=True,
1029
                output_hidden_states=True,
1030
                output_attentions=self.has_attentions,
1031
1032
1033
                return_dict_in_generate=True,
            )

1034
1035
1036
1037
            if model.config.is_encoder_decoder:
                self.assertTrue(output_generate.sequences.shape[-1] == self.max_new_tokens + 1)
            else:
                self.assertTrue(output_generate.sequences.shape[-1] == self.max_new_tokens + input_ids.shape[-1])
1038
            self._check_outputs(output_generate, input_ids, model.config, use_cache=True)
1039

1040
1041
1042
    def test_contrastive_generate_low_memory(self):
        # Check that choosing 'low_memory' does not change the model output
        for model_class in self.all_generative_model_classes:
1043
1044
1045
            if model_class._is_stateful:
                self.skipTest("Stateful models don't support contrastive search generation")

1046
1047
            if any(model_name in model_class.__name__.lower() for model_name in ["fsmt", "reformer", "speech2text"]):
                self.skipTest("Won't fix: old model with different cache format")
1048
            if any(model_name in model_class.__name__.lower() for model_name in ["gptbigcode"]):
1049
                self.skipTest("TODO: fix me")
1050

1051
            config, input_ids, attention_mask = self._get_input_ids_and_config(batch_size=1)
1052
1053
1054

            # NOTE: contrastive search only works with cache on at the moment.
            if not hasattr(config, "use_cache"):
1055
                self.skipTest("This model doesn't support caching")
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067

            config.use_cache = True
            config.is_decoder = True

            # test output equality of low versus high memory
            model = model_class(config).to(torch_device).eval()

            low_output = model.generate(
                input_ids,
                top_k=4,
                penalty_alpha=0.6,
                low_memory=True,
1068
                max_new_tokens=self.max_new_tokens,
1069
1070
1071
1072
1073
1074
1075
1076
                attention_mask=attention_mask,
            )

            high_output = model.generate(
                input_ids,
                top_k=4,
                penalty_alpha=0.6,
                low_memory=False,
1077
                max_new_tokens=self.max_new_tokens,
1078
1079
1080
1081
                attention_mask=attention_mask,
            )
            self.assertListEqual(low_output.tolist(), high_output.tolist())

1082
1083
1084
    def test_beam_search_low_memory(self):
        # Check that choosing 'low_memory' does not change the model output
        for model_class in self.all_generative_model_classes:
1085
1086
            if model_class._is_stateful:
                self.skipTest("May fix in the future: need custom cache handling")
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
            if any(model_name in model_class.__name__.lower() for model_name in ["fsmt", "reformer"]):
                self.skipTest("Won't fix: old model with different cache format")
            if any(
                model_name in model_class.__name__.lower()
                for model_name in [
                    "bloom",
                    "ctrl",
                    "gptbigcode",
                    "transo_xl",
                    "xlnet",
                    "cpm",
tomeras91's avatar
tomeras91 committed
1098
                    "jamba",
1099
1100
1101
                ]
            ):
                self.skipTest("May fix in the future: need model-specific fixes")
1102
            config, input_ids, _ = self._get_input_ids_and_config(batch_size=2)
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
            # batch_size=1 is ok, but batch_size>1 will cause non-identical output

            config.use_cache = True
            config.is_decoder = True

            # test output equality of low versus high memory
            model = model_class(config).to(torch_device).eval()

            low_output = model.generate(input_ids, max_new_tokens=8, num_beams=5, early_stopping=True, low_memory=True)

            high_output = model.generate(
                input_ids, max_new_tokens=8, num_beams=5, early_stopping=True, low_memory=False
            )
            self.assertListEqual(low_output.tolist(), high_output.tolist())

1118
    @parameterized.expand([("random",), ("same",)])
1119
    @is_flaky()  # Read NOTE (1) below. If there are API issues, all attempts will fail.
1120
    def test_assisted_decoding_matches_greedy_search(self, assistant_type):
1121
        # This test ensures that the assisted generation does not introduce output changes over greedy search.
1122
1123
1124
1125
1126
        # NOTE (1): The sentence above is true most of the time, there is a tiny difference in the logits due to matmul
        # shape differences -- and it may result in a different output. The input shape difference happens in the
        # main model, that runs the forward pass with several candidates at once (as opposed to generating one token at
        # a time). See https://github.com/huggingface/transformers/issues/25420#issuecomment-1775317535 for more info.
        # NOTE (2): It breaks the pattern in the tests above, for multiple reasons:
1127
        # - assisted_decoding, contrarily to the other methods, can't be called on its own (e.g. needs to
1128
        # prepare the assistant encoder outputs in the main generate body);
1129
1130
        # - assisted_decoding does not support `use_cache = False`
        # - assisted_decoding does not support `batch_size > 1`
1131
1132

        for model_class in self.all_generative_model_classes:
1133
1134
            if model_class._is_stateful:
                self.skipTest("Stateful models don't support assisted generation")
1135
            if any(model_name in model_class.__name__.lower() for model_name in ["fsmt", "reformer"]):
1136
                self.skipTest("Won't fix: old model with different cache format")
1137
1138
            if any(
                model_name in model_class.__name__.lower()
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
                for model_name in [
                    "bigbirdpegasus",
                    "led",
                    "mega",
                    "speech2text",
                    "git",
                    "prophetnet",
                    "seamlessm4t",
                    "clvp",
                ]
1149
            ):
1150
                self.skipTest("May fix in the future: need model-specific fixes")
1151

1152
            # enable cache
1153
            config, input_ids, attention_mask = self._get_input_ids_and_config(batch_size=1)
1154

1155
1156
1157
            # NOTE: assisted generation only works with cache on at the moment.
            if not hasattr(config, "use_cache"):
                self.skipTest("This model doesn't support caching")
1158

1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
            config.use_cache = True
            config.is_decoder = True
            model = model_class(config).to(torch_device).eval()
            # Sets assisted generation arguments such that:
            # a) no EOS is generated, to ensure generation doesn't break early
            # b) the assistant model always generates two tokens when it is called, to ensure the input preparation of
            #    the assistant model is correct
            # c) there are at least two forward passes in the main model, to ensure the input preparation of
            #    the main model is correct
            generation_kwargs = {
                "eos_token_id": -1,  # see a)
                "max_new_tokens": 4,  # see c)
                "num_beams": 1,
                "do_sample": False,
                "output_scores": True,
1174
                "output_logits": True,
1175
                "output_hidden_states": True,
1176
                "output_attentions": self.has_attentions,
1177
1178
1179
1180
                "return_dict_in_generate": True,
            }
            output_greedy = model.generate(input_ids, attention_mask=attention_mask, **generation_kwargs)

1181
1182
1183
1184
1185
1186
1187
            # test with the same assistant model or randomly init one
            # in the first case all candidate tokens are accepted, in the second none is accepted
            # case when some are accepted and some not is hard to reproduce, so let's hope this catches most errors :)
            if assistant_type == "random":
                assistant_model = model_class(config).to(torch_device).eval()
            else:
                assistant_model = model
1188
1189
1190
1191
1192
1193
1194
1195
1196
            assistant_model.generation_config.num_assistant_tokens = 2  # see b)
            assistant_model.generation_config.num_assistant_tokens_schedule = "constant"  # see b)
            generation_kwargs.update({"assistant_model": assistant_model})
            output_assisted = model.generate(input_ids, attention_mask=attention_mask, **generation_kwargs)

            # The two outputs must match and their shape must be as expected
            self.assertListEqual(output_greedy.sequences.tolist(), output_assisted.sequences.tolist())
            for output in (output_greedy, output_assisted):
                self._check_outputs(output, input_ids, model.config, use_cache=True)
1197

1198
1199
1200
1201
1202
1203
    @is_flaky()
    def test_prompt_lookup_decoding_matches_greedy_search(self):
        # This test ensures that the prompt lookup generation does not introduce output changes over greedy search.
        # This test is mostly a copy of test_assisted_decoding_matches_greedy_search

        for model_class in self.all_generative_model_classes:
1204
1205
            if model_class._is_stateful:
                self.skipTest("Stateful models don't support assisted generation")
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
            if any(model_name in model_class.__name__.lower() for model_name in ["fsmt", "reformer"]):
                self.skipTest("Won't fix: old model with different cache format")
            if any(
                model_name in model_class.__name__.lower()
                for model_name in [
                    "bigbirdpegasus",
                    "led",
                    "mega",
                    "speech2text",
                    "git",
                    "prophetnet",
                    "seamlessm4t",
                    "clvp",
                ]
            ):
                self.skipTest("May fix in the future: need model-specific fixes")

            # enable cache
1224
            config, input_ids, attention_mask = self._get_input_ids_and_config(batch_size=1)
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244

            # NOTE: assisted generation only works with cache on at the moment.
            if not hasattr(config, "use_cache"):
                self.skipTest("This model doesn't support caching")

            config.use_cache = True
            config.is_decoder = True
            model = model_class(config).to(torch_device).eval()
            # Sets assisted generation arguments such that:
            # a) no EOS is generated, to ensure generation doesn't break early
            # b) the prompt lookup tries to give the model 2 tokens, to ensure the input preparation of
            #    prompt lookup is correct
            # c) there are at least two forward passes in the main model, to ensure the input preparation of
            #    the main model is correct
            generation_kwargs = {
                "eos_token_id": -1,  # see a)
                "max_new_tokens": 4,  # see c)
                "num_beams": 1,
                "do_sample": False,
                "output_scores": True,
1245
                "output_logits": True,
1246
                "output_hidden_states": True,
1247
                "output_attentions": self.has_attentions,
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
                "return_dict_in_generate": True,
            }

            output_greedy = model.generate(input_ids, attention_mask=attention_mask, **generation_kwargs)

            generation_kwargs.update({"prompt_lookup_num_tokens": 2})  # see b)
            output_prompt_lookup = model.generate(input_ids, attention_mask=attention_mask, **generation_kwargs)

            # The two outputs must match and their shape must be as expected
            self.assertListEqual(output_greedy.sequences.tolist(), output_prompt_lookup.sequences.tolist())
            for output in (output_greedy, output_prompt_lookup):
                self._check_outputs(output, input_ids, model.config, use_cache=True)

1261
    def test_assisted_decoding_sample(self):
1262
1263
1264
        # In this test we don't check assisted vs non-assisted output -- seeded assisted decoding with sample will not
        # match sample for the same seed, as the forward pass does not return the exact same logits (due to matmul with
        # different shapes, see https://github.com/huggingface/transformers/issues/25420#issuecomment-1775317535).
1265
        for model_class in self.all_generative_model_classes:
1266
1267
            if model_class._is_stateful:
                self.skipTest("Stateful models don't support assisted generation")
1268
            if any(model_name in model_class.__name__.lower() for model_name in ["fsmt", "reformer"]):
1269
                self.skipTest("Won't fix: old model with different cache format")
1270
1271
            if any(
                model_name in model_class.__name__.lower()
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
                for model_name in [
                    "bigbirdpegasus",
                    "led",
                    "mega",
                    "speech2text",
                    "git",
                    "prophetnet",
                    "seamlessm4t",
                    "clvp",
                ]
1282
            ):
1283
                self.skipTest("May fix in the future: need model-specific fixes")
1284
1285

            # enable cache
1286
            config, input_ids, attention_mask = self._get_input_ids_and_config(batch_size=1)
1287
1288
1289

            # NOTE: assisted generation only works with cache on at the moment.
            if not hasattr(config, "use_cache"):
1290
                self.skipTest("This model doesn't support caching")
1291
1292
1293
1294

            config.use_cache = True
            config.is_decoder = True
            model = model_class(config).to(torch_device).eval()
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
            # Sets assisted generation arguments such that:
            # a) no EOS is generated, to ensure generation doesn't break early
            # b) the assistant model always generates two tokens when it is called, to ensure the input preparation of
            #    the assistant model is correct
            # c) there are at least two forward passes in the main model, to ensure the input preparation of
            #    the main model is correct
            assistant_model = model
            assistant_model.generation_config.num_assistant_tokens = 2  # see b)
            assistant_model.generation_config.num_assistant_tokens_schedule = "constant"  # see b)
            generation_kwargs = {
                "eos_token_id": -1,  # see a)
                "max_new_tokens": 4,  # see c)
                "num_beams": 1,
                "do_sample": True,
                "assistant_model": assistant_model,
                "output_scores": True,
1311
                "output_logits": True,
1312
                "output_hidden_states": True,
1313
                "output_attentions": self.has_attentions,
1314
1315
1316
                "return_dict_in_generate": True,
            }
            output_assisted = model.generate(input_ids, attention_mask=attention_mask, **generation_kwargs)
1317
1318
1319

            self._check_outputs(output_assisted, input_ids, model.config, use_cache=True)

1320
1321
1322
1323
    def test_generate_with_head_masking(self):
        """Test designed for encoder-decoder models to ensure the attention head masking is used."""
        attention_names = ["encoder_attentions", "decoder_attentions", "cross_attentions"]
        for model_class in self.all_generative_model_classes:
1324
            config, input_ids, attention_mask = self._get_input_ids_and_config()
1325
1326
1327
            # We want to test only encoder-decoder models
            if not config.is_encoder_decoder:
                continue
Joao Gante's avatar
Joao Gante committed
1328
            model = model_class(config).to(torch_device)
1329
1330

            head_masking = {
1331
1332
1333
1334
1335
1336
1337
                "head_mask": torch.zeros(config.encoder_layers, config.encoder_attention_heads, device=torch_device),
                "decoder_head_mask": torch.zeros(
                    config.decoder_layers, config.decoder_attention_heads, device=torch_device
                ),
                "cross_attn_head_mask": torch.zeros(
                    config.decoder_layers, config.decoder_attention_heads, device=torch_device
                ),
1338
1339
1340
1341
            }

            signature = inspect.signature(model.forward)
            # We want to test only models where encoder/decoder head masking is implemented
1342
            if not set(head_masking.keys()) < {*signature.parameters.keys()}:
1343
1344
1345
1346
1347
                continue

            for attn_name, (name, mask) in zip(attention_names, head_masking.items()):
                out = model.generate(
                    input_ids,
1348
                    attention_mask=attention_mask,
1349
                    num_beams=1,
1350
                    output_attentions=self.has_attentions,
1351
                    return_dict_in_generate=True,
1352
                    remove_invalid_values=True,
1353
1354
1355
1356
1357
1358
                    **{name: mask},
                )
                # We check the state of decoder_attentions and cross_attentions just from the last step
                attn_weights = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1]
                self.assertEqual(sum([w.sum().item() for w in attn_weights]), 0.0)

1359
    def test_left_padding_compatibility(self):
1360
1361
        # NOTE: left-padding results in small numerical differences. This is expected.
        # See https://github.com/huggingface/transformers/issues/25420#issuecomment-1775317535
1362

1363
1364
1365
1366
1367
        # First, filter out models that don't support left padding
        # - The model must have generative capabilities
        if len(self.all_generative_model_classes) == 0:
            self.skipTest(reason="No generative architecture available for this model.")

1368
1369
1370
1371
        # - The model must support padding
        if not self.has_attentions:
            self.skipTest(reason="This model doesn't support padding.")

1372
1373
        # - The model must be a decoder-only architecture (encoder-based architectures use right-padding)
        decoder_only_classes = []
1374
        for model_class in self.all_generative_model_classes:
1375
            config, _, _ = self._get_input_ids_and_config()
1376
            if config.is_encoder_decoder:
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
                continue
            else:
                decoder_only_classes.append(model_class)
        if len(decoder_only_classes) == 0:
            self.skipTest(reason="No decoder-only architecture available for this model.")

        # - Decoder-only architectures derived from encoder-decoder models could support it in theory, but we haven't
        #   added support for it yet. We skip these models for now.
        has_encoder_attributes = any(
            attr_name
            for attr_name in config.to_dict().keys()
            if attr_name.startswith("encoder") and attr_name != "encoder_no_repeat_ngram_size"
        )
        if has_encoder_attributes:
            self.skipTest(
                reason="The decoder-only derived from encoder-decoder models are not expected to support left-padding."
            )

        # Then, test left-padding
        def _prepare_model_kwargs(input_ids, attention_mask, signature):
            model_kwargs = {"input_ids": input_ids, "attention_mask": attention_mask}
            if "position_ids" in signature:
                position_ids = torch.cumsum(attention_mask, dim=-1) - 1
                position_ids.masked_fill_(attention_mask == 0, 1)
                model_kwargs["position_ids"] = position_ids
            if "cache_position" in signature:
                cache_position = torch.arange(input_ids.shape[-1], device=torch_device)
                model_kwargs["cache_position"] = cache_position
            return model_kwargs

        for model_class in decoder_only_classes:
1408
            config, input_ids, attention_mask = self._get_input_ids_and_config()
1409
1410
1411
            model = model_class(config).to(torch_device).eval()
            signature = inspect.signature(model.forward).parameters.keys()

1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
            # Without padding
            model_kwargs = _prepare_model_kwargs(input_ids, attention_mask, signature)
            next_logits_wo_padding = model(**model_kwargs).logits[:, -1, :]

            # With left-padding (length 32)
            pad_size = (input_ids.shape[0], 32)
            padding = torch.ones(pad_size, dtype=input_ids.dtype, device=torch_device) * config.pad_token_id
            padded_input_ids = torch.cat((padding, input_ids), dim=1)
            padded_attention_mask = torch.cat((torch.zeros_like(padding), attention_mask), dim=1)
            model_kwargs = _prepare_model_kwargs(padded_input_ids, padded_attention_mask, signature)
            next_logits_with_padding = model(**model_kwargs).logits[:, -1, :]

            # They should result in very similar logits
            self.assertTrue(torch.allclose(next_logits_wo_padding, next_logits_with_padding, atol=1e-5))
1426

1427
1428
1429
1430
1431
1432
1433
1434
    def test_past_key_values_format(self):
        # Test that the KV cache is formatted correctly. Exceptions need to explicitly overwrite this test. Having a
        # standard KV cache format is important for a consistent API (and for advanced generation methods).
        for model_class in self.all_generative_model_classes:
            config, inputs = self.model_tester.prepare_config_and_inputs_for_common()

            # If it doesn't support cache, pass the test
            if not hasattr(config, "use_cache"):
1435
                self.skipTest("This model doesn't support caching")
1436
1437
1438
1439
1440
1441
1442
1443

            model = model_class(config).to(torch_device)
            if "use_cache" not in inputs:
                inputs["use_cache"] = True
            outputs = model(**inputs)

            # If "past_key_values" is not returned, pass the test (e.g. RWKV uses a different cache name and format)
            if "past_key_values" not in outputs:
1444
                self.skipTest("This model doesn't return `past_key_values`")
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497

            num_hidden_layers = (
                getattr(config, "decoder_layers", None)
                or getattr(config, "num_decoder_layers", None)
                or config.num_hidden_layers
            )
            num_attention_heads = getattr(config, "decoder_attention_heads", config.num_attention_heads)
            embed_dim = getattr(config, "d_model", config.hidden_size)
            per_head_embed_dim = embed_dim // num_attention_heads

            past_kv = outputs["past_key_values"]
            self.assertEqual(len(past_kv), num_hidden_layers)

            # Encoder-Decoder checks
            if config.is_encoder_decoder:
                encoder_num_attention_heads = config.encoder_attention_heads
                encoder_per_head_embed_dim = embed_dim // encoder_num_attention_heads
                batch_size, seq_length = inputs["decoder_input_ids"].shape
                for i in range(num_hidden_layers):
                    self.assertEqual(len(past_kv[i]), 4)  # K V for the decoder + K V for the encoder = 4
                    self.assertEqual(
                        past_kv[i][0].shape, (batch_size, num_attention_heads, seq_length, per_head_embed_dim)
                    )
                    self.assertEqual(
                        past_kv[i][1].shape, (batch_size, num_attention_heads, seq_length, per_head_embed_dim)
                    )
                    # The sequence length for the encoder K V depends on the model. Since it is not manipulated in
                    # autoregressive generation, I'm keeping the test general and not checking the 3rd dim
                    self.assertEqual(
                        (past_kv[i][2].shape[0], past_kv[i][2].shape[1], past_kv[i][2].shape[3]),
                        (batch_size, encoder_num_attention_heads, encoder_per_head_embed_dim),
                    )
                    self.assertEqual(
                        (past_kv[i][3].shape[0], past_kv[i][3].shape[1], past_kv[i][3].shape[3]),
                        (batch_size, encoder_num_attention_heads, encoder_per_head_embed_dim),
                    )

            # Decoder-only checks
            else:
                # TODO: this line is only needed because of imagegpt, where "pixel_values" = "input_ids". Fix the
                # tests in imagegpt such that `prepare_config_and_inputs_for_common` returns the later (and the other
                # tests use it)
                key = "input_ids" if "input_ids" in inputs else "pixel_values"
                batch_size, seq_length = inputs[key].shape
                for i in range(num_hidden_layers):
                    self.assertEqual(len(past_kv[0]), 2)  # K V for the decoder = 2
                    self.assertEqual(
                        past_kv[i][0].shape, (batch_size, num_attention_heads, seq_length, per_head_embed_dim)
                    )
                    self.assertEqual(
                        past_kv[i][1].shape, (batch_size, num_attention_heads, seq_length, per_head_embed_dim)
                    )

1498
1499
1500
1501
    def test_generate_from_inputs_embeds_decoder_only(self):
        # When supported, tests that the decoder model can generate from `inputs_embeds` instead of `input_ids`
        # if fails, you should probably update the `prepare_inputs_for_generation` function
        for model_class in self.all_generative_model_classes:
1502
            config, input_ids, _ = self._get_input_ids_and_config()
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544

            # Ignore:
            # a) eos (to always output 20 tokens) and pad (so we don't try to infer the attn mask from the input_ids,
            #   which would cause a mismatch),
            config.pad_token_id = config.eos_token_id = -1
            # b) embedding scaling, the scaling factor applied after embeding from input_ids (requires knowledge of the
            #   variable that holds the scaling factor, which is model-dependent)
            if hasattr(config, "scale_embedding"):
                config.scale_embedding = False

            # This test is for decoder-only models (encoder-decoder models have native input embeddings support in the
            # decoder)
            if config.is_encoder_decoder:
                continue

            # Skip models without explicit support
            model = model_class(config).to(torch_device).eval()
            if "inputs_embeds" not in inspect.signature(model.prepare_inputs_for_generation).parameters.keys():
                continue

            # Traditional way of generating text
            outputs_from_ids = model.generate(input_ids)
            self.assertEqual(outputs_from_ids.shape, (2, 20))

            # Same thing, but from input embeddings (`input_ids` is passed so the prompt is present in the output)
            inputs_embeds = model.get_input_embeddings()(input_ids)
            outputs_from_embeds = model.generate(input_ids, inputs_embeds=inputs_embeds)
            self.assertListEqual(outputs_from_ids.tolist(), outputs_from_embeds.tolist())

            # But if we pass different inputs_embeds, we should get different outputs
            torch.manual_seed(0)
            random_embeds = torch.rand_like(inputs_embeds)
            outputs_from_rand_embeds = model.generate(input_ids, inputs_embeds=random_embeds)
            with self.assertRaises(AssertionError):
                self.assertListEqual(outputs_from_rand_embeds.tolist(), outputs_from_embeds.tolist())

            # input_ids is not a required input -- if we don't pass it, the newly generated tokens will be the same
            outputs_from_embeds_wo_ids = model.generate(
                inputs_embeds=inputs_embeds, max_new_tokens=20 - inputs_embeds.shape[1]
            )
            self.assertListEqual(
                outputs_from_embeds[:, inputs_embeds.shape[1] :].tolist(),
1545
                outputs_from_embeds_wo_ids.tolist(),
1546
1547
            )

1548
1549
1550
1551
    def test_generate_continue_from_past_key_values(self):
        # Tests that we can continue generating from past key values, returned from a previous `generate` call
        for model_class in self.all_generative_model_classes:
            if any(model_name in model_class.__name__.lower() for model_name in ["imagegpt"]):
1552
                self.skipTest("Won't fix: old model with unique inputs/caches/other")
1553
            if any(model_name in model_class.__name__.lower() for model_name in ["umt5"]):
1554
                self.skipTest("TODO: needs modeling or test input preparation fixes for compatibility")
1555
1556
1557
1558

            config, inputs = self.model_tester.prepare_config_and_inputs_for_common()

            if not hasattr(config, "use_cache"):
1559
                self.skipTest("This model doesn't support caching")
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577

            # Let's make it always:
            # 1. use cache (for obvious reasons)
            # 2. generate to max length (which can be achieved by setting the eos token to an invalid value), which
            #    would make the test flaky (e.g. EOS is generated on iteration 1 on both generations, but the
            #    continuation would force it to generate beyond an EOS token)
            # 3. ignore `token_type_ids` for simplicity
            # 4. ignore `forced_eos_token_id`, which requires further manipulation of the continuation inputs and is
            #    active by default on some models
            config.use_cache = True
            if "token_type_ids" in inputs:
                del inputs["token_type_ids"]

            model = model_class(config).to(torch_device)
            model.eval()
            model.generation_config.pad_token_id = model.generation_config.eos_token_id = -1
            model.generation_config.forced_eos_token_id = None

1578
            # If "past_key_values" is not returned, skip the test (e.g. RWKV uses a different cache name and format)
1579
1580
            outputs = model(**inputs)
            if "past_key_values" not in outputs:
1581
                self.skipTest("This model doesn't return `past_key_values`")
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623

            # Traditional way of generating text, with `return_dict_in_generate` to return the past key values
            outputs = model.generate(**inputs, do_sample=False, max_new_tokens=4, return_dict_in_generate=True)

            # Let's generate again, but passing the past key values in between (3 + 1 = 4 tokens). Note that the
            # inputs may need to be tweaked across `generate` calls (like the attention mask).
            outputs_cached = model.generate(**inputs, do_sample=False, max_new_tokens=3, return_dict_in_generate=True)

            # Continue from the tokens generated above, preparing the inputs accordingly
            inputs["past_key_values"] = outputs_cached.past_key_values
            new_attention_len = outputs_cached.sequences.shape[-1]
            if config.is_encoder_decoder:
                inputs["decoder_input_ids"] = outputs_cached.sequences
                if "decoder_attention_mask" in inputs:
                    inputs["decoder_attention_mask"] = torch.nn.functional.pad(
                        inputs["decoder_attention_mask"],
                        (0, new_attention_len - inputs["decoder_attention_mask"].shape[1]),
                        mode="constant",
                        value=1,
                    )
            else:
                inputs["input_ids"] = outputs_cached.sequences
                if "attention_mask" in inputs:
                    inputs["attention_mask"] = torch.nn.functional.pad(
                        inputs["attention_mask"],
                        (0, new_attention_len - inputs["attention_mask"].shape[1]),
                        mode="constant",
                        value=1,
                    )
            outputs_cached = model.generate(**inputs, do_sample=False, max_new_tokens=1, return_dict_in_generate=True)

            # The two sets of generated text and past kv should be equal to each other
            self.assertListEqual(outputs.sequences.tolist(), outputs_cached.sequences.tolist())
            for layer_idx in range(len(outputs_cached.past_key_values)):
                for kv_idx in range(len(outputs_cached.past_key_values[layer_idx])):
                    self.assertTrue(
                        torch.allclose(
                            outputs.past_key_values[layer_idx][kv_idx],
                            outputs_cached.past_key_values[layer_idx][kv_idx],
                        )
                    )

1624
1625
1626
1627
1628
1629
1630
1631
1632
    @parameterized.expand([(1, False), (1, True), (4, False)])
    def test_new_cache_format(self, num_beams, do_sample):
        # Tests that generating with the new format is exactly the same as the legacy one (for models that support it).
        # 馃憠 tests with and without beam search so that we can test with and without cache reordering.
        # 馃憠 tests with and without sampling so we can cover the most common use cases.
        for model_class in self.all_generative_model_classes:
            if not model_class._supports_cache_class:
                self.skipTest("This model does not support the new cache format")

1633
            config, input_ids, attention_mask = self._get_input_ids_and_config()
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
            config.use_cache = True
            config.is_decoder = True

            model = model_class(config).to(torch_device).eval()
            generation_kwargs = {
                "max_new_tokens": 5,
                "do_sample": do_sample,
                "num_beams": num_beams,
                "num_return_sequences": num_beams,
                "return_dict_in_generate": True,  # Required to return `past_key_values`
            }

            # Sets seed before calling `generate` for the case with do_sample=True
            seed = torch.randint(0, 1000000, (1,)).item()
            set_seed(seed)
            legacy_results = model.generate(input_ids, attention_mask=attention_mask, **generation_kwargs)
            set_seed(seed)
            new_results = model.generate(
                input_ids, attention_mask=attention_mask, past_key_values=DynamicCache(), **generation_kwargs
            )

            # The two sets of generated sequences must match, despite the cache format between forward passes being
            # different
            self.assertListEqual(legacy_results.sequences.tolist(), new_results.sequences.tolist())
            self.assertTrue(isinstance(legacy_results.past_key_values, tuple))
            self.assertTrue(isinstance(new_results.past_key_values, DynamicCache))

            # The contents of the two caches, when converted to the same format (in both directions!), must match
            legacy_cache = legacy_results.past_key_values
            new_cache_converted = new_results.past_key_values.to_legacy_cache()
            for layer_idx in range(len(legacy_cache)):
                for kv_idx in range(len(legacy_cache[layer_idx])):
                    self.assertTrue(
                        torch.allclose(
                            legacy_cache[layer_idx][kv_idx],
                            new_cache_converted[layer_idx][kv_idx],
                        )
                    )

            new_cache = new_results.past_key_values
            legacy_cache_converted = DynamicCache.from_legacy_cache(legacy_results.past_key_values)
            for layer_idx in range(len(new_cache)):
                for kv_idx in range(len(new_cache[layer_idx])):
                    self.assertTrue(
                        torch.allclose(
                            new_cache[layer_idx][kv_idx],
                            legacy_cache_converted[layer_idx][kv_idx],
                        )
                    )

1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
    @require_quanto
    def test_generate_with_quant_cache(self):
        for model_class in self.all_generative_model_classes:
            if not model_class._supports_quantized_cache:
                self.skipTest("This model does not support the quantized cache format")

            config, input_ids, attention_mask = self._get_input_ids_and_config()
            config.use_cache = True
            config.is_decoder = True

            model = model_class(config).to(torch_device).eval()
            generation_kwargs = {
                "max_new_tokens": 5,
                "cache_implementation": "quantized",
                # careful with group size, should be divisor of model's hidden size
                "cache_config": {"backend": "quanto", "nbits": 2, "q_group_size": 8, "residual_length": 128},
                "return_dict_in_generate": True,  # Required to return `past_key_values`
            }

            results = model.generate(input_ids, attention_mask=attention_mask, **generation_kwargs)
            self.assertTrue(isinstance(results.past_key_values, QuantoQuantizedCache))

            # passing past key values of different type should raise Error
            with self.assertRaises(ValueError):
                model.generate(
                    input_ids, attention_mask=attention_mask, past_key_valyes=DynamicCache(), **generation_kwargs
                )

            # setting incorrect cache_config args should raise an Error, i.e. nbits=60 does not make sense
            generation_kwargs["cache_config"] = {"nbits": 60, "q_group_size": 8, "residual_length": 128}
            with self.assertRaises(ValueError):
                model.generate(input_ids, attention_mask=attention_mask, **generation_kwargs)

1717
1718
1719
    def _check_outputs(self, output, input_ids, config, use_cache=False, num_return_sequences=1):
        batch_size, seq_length = input_ids.shape
        num_sequences_in_output = batch_size * num_return_sequences
1720

1721
1722
1723
1724
1725
1726
1727
        gen_len = (
            output.sequences.shape[-1] - 1 if config.is_encoder_decoder else output.sequences.shape[-1] - seq_length
        )

        # scores
        self._check_scores(num_sequences_in_output, output.scores, length=gen_len, config=config)

1728
1729
1730
        # unprocessed logits
        self._check_logits(num_sequences_in_output, output.logits, config=config)

1731
        # Attentions
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
        if self.has_attentions:
            if config.is_encoder_decoder:
                # encoder
                self._check_encoder_attention_for_generate(output.encoder_attentions, batch_size, config, seq_length)
                # decoder
                self._check_attentions_for_generate(
                    num_sequences_in_output,
                    output.decoder_attentions,
                    min_length=1,
                    max_length=output.sequences.shape[-1],
                    config=config,
                    use_cache=use_cache,
                )
            else:
                # if use_cache first input is equal to no use_cache, so skip here
                attentions = output.attentions if not use_cache else output.attentions[1:]
                min_length = seq_length if not use_cache else seq_length + 1
                self._check_attentions_for_generate(
                    num_sequences_in_output,
                    attentions=attentions,
                    min_length=min_length,
                    max_length=output.sequences.shape[-1],
                    config=config,
                    use_cache=use_cache,
                )
1757
1758
1759
1760

        # Hidden States
        if config.is_encoder_decoder:
            # encoder
1761
1762
            self._check_encoder_hidden_states_for_generate(
                output.encoder_hidden_states, batch_size, config, seq_length
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
            )

            # decoder
            self._check_hidden_states_for_generate(
                num_sequences_in_output,
                output.decoder_hidden_states,
                min_length=1,
                max_length=output.sequences.shape[-1],
                config=config,
                use_cache=use_cache,
            )
        else:
            # if use_cache first input is equal to no use_cache, so skip here
            hidden_states = output.hidden_states if not use_cache else output.hidden_states[1:]
            min_length = seq_length if not use_cache else seq_length + 1
            self._check_hidden_states_for_generate(
                num_sequences_in_output,
                hidden_states,
                min_length=min_length,
                max_length=output.sequences.shape[-1],
                config=config,
                use_cache=use_cache,
            )

tomeras91's avatar
tomeras91 committed
1787
        # Past Key Value States -- a few notes here:
1788
1789
        # 1. Its inner sequence length is with respect to the inputs of the latest forward pass, hence the "-1"
        # 2. Some old models still return `output.past_key_values` even without `use_cache=True`
tomeras91's avatar
tomeras91 committed
1790
1791
        # 3. TODO (joao): A few models have different formats/types, skipping those until the cache refactor is
        # complete
1792
        models_without_standard_cache = ("bloom", "ctrl", "fsmt", "gptbigcode", "mega", "reformer", "jamba", "mamba")
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
        has_standard_cache = not any(
            model_name in config.__class__.__name__.lower() for model_name in models_without_standard_cache
        )
        if use_cache and has_standard_cache:
            past_key_values = output.past_key_values
            past_sequence_length = output.sequences.shape[-1] - 1
            self._check_past_key_values_for_generate(
                num_sequences_in_output,
                past_key_values,
                seq_length=past_sequence_length,
                config=config,
            )

1806
1807
1808
1809
1810
1811
    def _check_scores(self, batch_size, scores, length, config):
        expected_shape = (batch_size, config.vocab_size)
        self.assertIsInstance(scores, tuple)
        self.assertEqual(len(scores), length)
        self.assertListEqual([iter_scores.shape for iter_scores in scores], [expected_shape] * len(scores))

1812
1813
1814
1815
1816
1817
1818
1819
    def _check_logits(self, batch_size, scores, config):
        self.assertIsInstance(scores, tuple)
        self.assertListEqual([iter_scores.shape[0] for iter_scores in scores], [batch_size] * len(scores))
        # vocabulary difference equal to one (imagegptmodel?) or zero (all other models)
        vocab_diff = config.vocab_size - scores[0].shape[-1]
        self.assertTrue(vocab_diff in [0, 1])
        self.assertListEqual([config.vocab_size - score.shape[-1] for score in scores], [vocab_diff] * len(scores))

1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
    def _check_attentions_for_generate(
        self, batch_size, attentions, min_length, max_length, config, use_cache=False, num_beam_groups=1
    ):
        self.assertIsInstance(attentions, tuple)
        self.assertListEqual(
            [isinstance(iter_attentions, tuple) for iter_attentions in attentions], [True] * len(attentions)
        )
        self.assertEqual(len(attentions), (max_length - min_length) * num_beam_groups)

        for idx, iter_attentions in enumerate(attentions):
            tgt_len = min_length + idx if not use_cache else 1
            src_len = min_length + idx

            expected_shape = (
                batch_size * num_beam_groups,
                config.num_attention_heads,
                tgt_len,
                src_len,
            )
            # check attn size
            self.assertListEqual(
                [layer_attention.shape for layer_attention in iter_attentions], [expected_shape] * len(iter_attentions)
            )

1844
1845
1846
1847
1848
1849
1850
1851
    def _check_encoder_attention_for_generate(self, attentions, batch_size, config, seq_length):
        encoder_expected_shape = (batch_size, config.num_attention_heads, seq_length, seq_length)
        self.assertIsInstance(attentions, tuple)
        self.assertListEqual(
            [layer_attentions.shape for layer_attentions in attentions],
            [encoder_expected_shape] * len(attentions),
        )

1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
    def _check_hidden_states_for_generate(
        self, batch_size, hidden_states, min_length, max_length, config, use_cache=False, num_beam_groups=1
    ):
        self.assertIsInstance(hidden_states, tuple)
        self.assertListEqual(
            [isinstance(iter_hidden_states, tuple) for iter_hidden_states in hidden_states],
            [True] * len(hidden_states),
        )
        self.assertEqual(len(hidden_states), (max_length - min_length) * num_beam_groups)

        for idx, iter_hidden_states in enumerate(hidden_states):
            seq_len = min_length + idx if not use_cache else 1
            expected_shape = (batch_size * num_beam_groups, seq_len, config.hidden_size)
            # check hidden size
            self.assertListEqual(
                [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states],
                [expected_shape] * len(iter_hidden_states),
            )
1870

1871
1872
1873
1874
1875
1876
1877
1878
    def _check_encoder_hidden_states_for_generate(self, hidden_states, batch_size, config, seq_length):
        encoder_expected_shape = (batch_size, seq_length, config.hidden_size)
        self.assertIsInstance(hidden_states, tuple)
        self.assertListEqual(
            [layer_hidden_states.shape for layer_hidden_states in hidden_states],
            [encoder_expected_shape] * len(hidden_states),
        )

1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
    def _check_past_key_values_for_generate(self, batch_size, past_key_values, seq_length, config, num_beam_groups=1):
        self.assertIsInstance(past_key_values, tuple)
        self.assertListEqual(
            [isinstance(iter_past_key_values, tuple) for iter_past_key_values in past_key_values],
            [True] * len(past_key_values),
        )

        # (batch, head, seq_length, head_features)
        expected_shape = (
            batch_size * num_beam_groups,
            config.num_key_value_heads if hasattr(config, "num_key_value_heads") else config.num_attention_heads,
            seq_length,
            config.hidden_size // config.num_attention_heads,
        )
        # check shape key, value
        self.assertListEqual(
            [layer_past_key_values[0].shape for layer_past_key_values in past_key_values],
            [expected_shape] * len(past_key_values),
        )
        self.assertListEqual(
            [layer_past_key_values[1].shape for layer_past_key_values in past_key_values],
            [expected_shape] * len(past_key_values),
        )

1903
    def _check_sequence_inside_sequence(self, tensor_1, tensor_2):
1904
        # check if tensor_1 inside tensor_2 or tensor_2 inside tensor_1.
1905
1906
        # set to same device. we don't care what device.

1907
1908
1909
1910
1911
1912
        if not isinstance(tensor_1, list):
            tensor_1 = tensor_1.cpu().tolist()
        if not isinstance(tensor_2, list):
            tensor_2 = tensor_2.cpu().tolist()

        in_order = len(tensor_1) <= len(tensor_2)
1913
1914
1915
1916
        longer = tensor_2 if in_order else tensor_1
        shorter = tensor_1 if in_order else tensor_2

        flag = False
1917
1918
        chunk_size = len(shorter)
        for chunk_idx in range(len(longer) - chunk_size + 1):
1919
            subseq = longer[chunk_idx : chunk_idx + chunk_size]
1920
            if subseq == shorter:
1921
1922
1923
1924
1925
                flag = True
                break

        self.assertTrue(flag)

1926
1927
1928

@require_torch
class UtilsFunctionsTest(unittest.TestCase):
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
    def test_speculative_sampling(self):
        # assume vocab size 10, input length 5 + 3 generated candidates
        candidate_input_ids = torch.tensor([[8, 0, 3, 9, 8, 1, 4, 5]])  # input tokens
        candidate_logits = torch.tensor(
            [
                [
                    [-10.0, 10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0],  # generated 1
                    [-10.0, -10.0, -10.0, -10.0, 10.0, -10.0, -10.0, -10.0, -10.0, -10.0],  # generated 4
                    [-10.0, -10.0, -10.0, -10.0, -10.0, 10.0, -10.0, -10.0, -10.0, -10.0],  # generated 5
                ]
            ]
        )
        candidate_length = 3
        inf = float("inf")
        new_logits = torch.tensor(
            [
                [
                    [-10.0, 10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0],  # accepts 1
                    [-10.0, -10.0, -10.0, -10.0, 10.0, -10.0, -10.0, -10.0, -10.0, -10.0],  # accepts 4
                    [-inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, 10.0, -inf],  # rejects 5, accepts 8
                    [-10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0],  # N/A
                ]
            ]
        )
        last_assistant_token_is_eos = False
        validated_tokens, n_matches = _speculative_sampling(
            candidate_input_ids,
            candidate_logits,
            candidate_length,
            new_logits,
            last_assistant_token_is_eos,
        )
        self.assertTrue(n_matches.item() == 2)
        self.assertTrue(validated_tokens.tolist()[0] == [1, 4, 8])

1964
1965

@require_torch
1966
1967
1968
1969
class GenerationIntegrationTests(unittest.TestCase, GenerationIntegrationTestsMixin):
    # setting framework_dependent_parameters needs to be gated, just like its contents' imports
    if is_torch_available():
        framework_dependent_parameters = {
1970
            "AutoModelForCausalLM": AutoModelForCausalLM,
1971
            "AutoModelForSpeechSeq2Seq": AutoModelForSpeechSeq2Seq,
1972
            "AutoModelForSeq2SeqLM": AutoModelForSeq2SeqLM,
1973
            "AutoModelForVision2Seq": AutoModelForVision2Seq,
1974
1975
            "LogitsProcessorList": LogitsProcessorList,
            "MinLengthLogitsProcessor": MinLengthLogitsProcessor,
1976
            "create_tensor_fn": torch.tensor,
1977
            "floats_tensor": floats_tensor,
1978
1979
1980
            "return_tensors": "pt",
        }

1981
1982
    @slow
    def test_diverse_beam_search(self):
1983
        # PT-only test: TF doesn't have a diverse beam search implementation
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
        article = """Justin Timberlake and Jessica Biel, welcome to parenthood.
        The celebrity couple announced the arrival of their son, Silas Randall Timberlake, in statements to People.
        "Silas was the middle name of Timberlake's maternal grandfather Bill Bomar, who died in 2012, while Randall is the musician's own middle name, as well as his father's first," People reports.
        The couple announced the pregnancy in January, with an Instagram post. It is the first baby for both."""

        bart_tokenizer = BartTokenizer.from_pretrained("facebook/bart-large-cnn")
        bart_model = BartForConditionalGeneration.from_pretrained("facebook/bart-large-cnn").to(torch_device)
        input_ids = bart_tokenizer(article, return_tensors="pt").input_ids.to(torch_device)

        outputs = bart_model.generate(
1994
1995
1996
1997
1998
1999
            input_ids,
            num_beams=4,
            num_return_sequences=2,
            num_beam_groups=4,
            diversity_penalty=2.0,
            remove_invalid_values=True,
2000
2001
2002
2003
2004
2005
2006
        )

        generated_text = bart_tokenizer.batch_decode(outputs, skip_special_tokens=True)

        self.assertListEqual(
            generated_text,
            [
Sylvain Gugger's avatar
Sylvain Gugger committed
2007
2008
2009
2010
2011
2012
                "The couple announced the birth of their son, Silas Randall Timberlake, in a statement. Silas was the"
                " middle name of Timberlake's maternal grandfather Bill Bomar. Randall is the musician's own middle"
                " name, as well as his father's first. It is the first baby for both of them.",
                "Justin Timberlake and Jessica Biel have a son. The baby is named Silas Randall Timberlake. It is the"
                " first child for both. The couple announced the pregnancy in January. The name Silas is the middle"
                " name of Timberlake's maternal grandfather. It's also his own middle name.",
2013
2014
            ],
        )
2015

2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
    def test_max_length_if_input_embeds(self):
        # PT-only test: TF doesn't have StoppingCriteria
        article = "Today a dragon flew over Paris."
        model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device)
        tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2")
        input_ids = tokenizer(article, return_tensors="pt").input_ids.to(torch_device)
        inputs_embeds = model.get_input_embeddings()(input_ids)

        max_length = 20
        input_len = input_ids.shape[-1]
        out_gen = model.generate(input_ids=input_ids, max_length=max_length)
        out_gen_embeds = model.generate(inputs_embeds=inputs_embeds, max_length=max_length)
        self.assertEqual(out_gen.shape[-1], input_len + out_gen_embeds.shape[-1])

2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
    def test_min_length_if_input_embeds(self):
        # PT-only test: TF doesn't have StoppingCriteria
        article = "Today a dragon flew over Paris."
        model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device)
        tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2")
        input_ids = tokenizer(article, return_tensors="pt").input_ids.to(torch_device)
        inputs_embeds = model.get_input_embeddings()(input_ids)

        min_length = 10
        input_len = input_ids.shape[-1]
        out_gen = model.generate(input_ids=input_ids, min_length=min_length)
        out_gen_embeds = model.generate(inputs_embeds=inputs_embeds, min_length=min_length)
        self.assertEqual(out_gen.shape[-1], input_len + out_gen_embeds.shape[-1])

2044
    def test_custom_stopping_criteria_overload_error(self):
2045
        # PT-only test: TF doesn't have StoppingCriteria
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
        article = """Justin Timberlake and Jessica Biel, welcome to parenthood."""
        bart_tokenizer = BartTokenizer.from_pretrained("sshleifer/bart-tiny-random")
        bart_model = BartForConditionalGeneration.from_pretrained("sshleifer/bart-tiny-random").to(torch_device)

        input_ids = bart_tokenizer(article, return_tensors="pt").input_ids.to(torch_device)
        stopping_criteria = StoppingCriteriaList()
        stopping_criteria.append(MaxLengthCriteria(max_length=42))
        with self.assertRaises(ValueError):
            bart_model.generate(input_ids, stopping_criteria=stopping_criteria)
        with self.assertRaises(ValueError):
            bart_model.generate(input_ids, stopping_criteria=stopping_criteria, max_length=32)

    def test_custom_stopping_criteria(self):
2059
        # PT-only test: TF doesn't have StoppingCriteria
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
        article = """Justin Timberlake and Jessica Biel, welcome to parenthood."""
        bart_tokenizer = BartTokenizer.from_pretrained("sshleifer/bart-tiny-random")
        bart_model = BartForConditionalGeneration.from_pretrained("sshleifer/bart-tiny-random").to(torch_device)
        input_ids = bart_tokenizer(article, return_tensors="pt").input_ids.to(torch_device)

        class DummyCriteria(StoppingCriteria):
            def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
                return input_ids.shape[-1] >= 20

        stopping_criteria = StoppingCriteriaList()
        stopping_criteria.append(DummyCriteria())

        self.assertEqual(
            list(bart_model.generate(input_ids, stopping_criteria=stopping_criteria, max_length=22).shape),
            [1, 20],
        )
        self.assertEqual(
            list(bart_model.generate(input_ids, stopping_criteria=stopping_criteria, max_length=18).shape),
            [1, 18],
        )

2081
    def test_stop_sequence_stopping_criteria(self):
2082
        # PT-only test: TF doesn't have StoppingCriteria
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
        prompt = """Hello I believe in"""
        generator = pipeline("text-generation", model="hf-internal-testing/tiny-random-bart")
        output = generator(prompt)
        self.assertEqual(
            output,
            [
                {
                    "generated_text": (
                        "Hello I believe in in in number number number number number number number number number"
                    )
                }
            ],
        )

        output = generator(prompt, stop_sequence=" number")
        self.assertEqual(output, [{"generated_text": "Hello I believe in in in number"}])

2100
    def test_generate_non_nlp_input_ids_as_kwarg(self):
2101
        # PT-only test: AFAIK there's no non-NLP model architecture in TF that supports `input_ids` as its only input
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
        model = ImageGPTForCausalImageModeling.from_pretrained(
            "hf-internal-testing/tiny-random-imagegpt", max_length=10
        ).to(torch_device)
        input_ids = ids_tensor((3, 5), vocab_size=10)

        output_sequences_kwargs = model.generate(input_ids=input_ids).cpu()
        output_sequences = model.generate(input_ids).cpu()

        self.assertListEqual(output_sequences.tolist(), output_sequences_kwargs.tolist())
        self.assertEqual(output_sequences.shape, (3, 10))

2113
    def test_generate_input_values_as_encoder_kwarg(self):
2114
        # PT-only test: AFAIK there's no generate-capable architecture in TF that supports `input_values` as its input
2115
2116
2117
2118
2119
2120
2121
2122
2123
        input_values = floats_tensor((2, 250))
        model = SpeechEncoderDecoderModel.from_pretrained("hf-internal-testing/tiny-random-speech-encoder-decoder")
        model = model.to(torch_device)
        output_sequences_kwargs = model.generate(input_values=input_values, max_length=5).cpu()
        output_sequences = model.generate(input_values, max_length=5).cpu()

        self.assertListEqual(output_sequences.tolist(), output_sequences_kwargs.tolist())
        self.assertEqual(output_sequences.shape, (2, 5))

2124
    def test_transition_scores_group_beam_search_encoder_decoder(self):
2125
        # PT-only test: TF doesn't have group beam search
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
        articles = [
            "Justin Timberlake and Jessica Biel, welcome to parenthood.",
            "Michael Phelps is arguably the most decorated Olympian of all time.",
        ]
        tokenizer = BartTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart")
        model = BartForConditionalGeneration.from_pretrained(
            "hf-internal-testing/tiny-random-bart",
            max_length=10,
            num_beams=2,
            num_beam_groups=2,
            num_return_sequences=2,
2137
            diversity_penalty=1.0,
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
            eos_token_id=None,
            return_dict_in_generate=True,
            output_scores=True,
            length_penalty=0.0,
        )
        model = model.to(torch_device)

        input_ids = tokenizer(articles, return_tensors="pt", padding=True).input_ids.to(torch_device)
        outputs = model.generate(input_ids=input_ids)

2148
        transition_scores = model.compute_transition_scores(outputs.sequences, outputs.scores, outputs.beam_indices)
2149
2150
2151
        transition_scores_sum = transition_scores.sum(-1)

        self.assertTrue(torch.allclose(transition_scores_sum, outputs.sequences_scores, atol=1e-3))
2152

2153
    def test_beam_search_low_memory(self):
2154
2155
        tokenizer = GPT2Tokenizer.from_pretrained("openai-community/gpt2")
        model = AutoModelForCausalLM.from_pretrained("openai-community/gpt2")
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
        tokenizer.pad_token_id = tokenizer.eos_token_id
        model_inputs = tokenizer("I", return_tensors="pt")["input_ids"]

        low_output = model.generate(model_inputs, max_new_tokens=40, num_beams=5, early_stopping=True, low_memory=True)

        high_output = model.generate(
            model_inputs, max_new_tokens=40, num_beams=5, early_stopping=True, low_memory=False
        )
        self.assertListEqual(low_output.tolist(), high_output.tolist())

2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
    @slow
    def test_watermark_generation(self):
        tokenizer = GPT2Tokenizer.from_pretrained("openai-community/gpt2")
        model = AutoModelForCausalLM.from_pretrained("openai-community/gpt2").to(torch_device)
        tokenizer.pad_token_id = tokenizer.eos_token_id
        model_inputs = tokenizer("I will be", return_tensors="pt").to(torch_device)
        input_len = model_inputs["input_ids"].shape[-1]

        # generation should work with both input types: WatermarkingConfig or Dict, so let's check it here :)
        watermark_config = WatermarkingConfig(bias=2.5, seeding_scheme="selfhash")
        _ = model.generate(**model_inputs, watermarking_config=watermark_config, do_sample=False, max_length=15)

2178
2179
        # We will not check watermarked text, since we check it in `logits_processors` tests
        # Checking if generated ids are as expected fails on different hardware
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
        args = {
            "bias": 2.0,
            "context_width": 1,
            "seeding_scheme": "selfhash",
            "greenlist_ratio": 0.25,
            "hashing_key": 15485863,
        }
        output = model.generate(**model_inputs, do_sample=False, max_length=15)
        output_selfhash = model.generate(**model_inputs, watermarking_config=args, do_sample=False, max_length=15)

2190
        # Check that the detector is detecting watermarked text
2191
2192
2193
2194
2195
2196
2197
        detector = WatermarkDetector(model_config=model.config, device=torch_device, watermarking_config=args)
        detection_out_watermarked = detector(output_selfhash[:, input_len:], return_dict=True)
        detection_out = detector(output[:, input_len:], return_dict=True)

        self.assertListEqual(detection_out_watermarked.prediction.tolist(), [True])
        self.assertListEqual(detection_out.prediction.tolist(), [False])

2198
2199
    @slow
    def test_beam_search_example_integration(self):
2200
        # PT-only test: TF doesn't have a BeamSearchScorer
2201
2202
        # exactly the example provided in the docstrings of beam search, which previously
        # failed after directly copying from it. Refer to PR #15555
2203
2204
        tokenizer = AutoTokenizer.from_pretrained("google-t5/t5-base")
        model = AutoModelForSeq2SeqLM.from_pretrained("google-t5/t5-base")
2205
2206
2207
2208
2209
2210
2211

        encoder_input_str = "translate English to German: How old are you?"
        encoder_input_ids = tokenizer(encoder_input_str, return_tensors="pt").input_ids

        # lets run beam search using 3 beams
        num_beams = 3
        # define decoder start token ids
2212
        input_ids = torch.ones((1, 1), device=model.device, dtype=torch.long)
2213
2214
2215
        input_ids = input_ids * model.config.decoder_start_token_id

        # add encoder_outputs to model keyword arguments
2216
        model_kwargs = {"encoder_outputs": model.get_encoder()(encoder_input_ids, return_dict=True)}
2217

2218
2219
        outputs = model.generate(
            input_ids, num_beams=num_beams, min_length=5, eos_token_id=model.config.eos_token_id, **model_kwargs
2220
2221
2222
2223
2224
        )
        outputs = tokenizer.batch_decode(outputs, skip_special_tokens=True)

        self.assertListEqual(outputs, ["Wie alt bist du?"])

2225
2226
    @slow
    def test_constrained_beam_search(self):
2227
        # PT-only test: TF doesn't have constrained beam search
2228
2229
        model = GPT2LMHeadModel.from_pretrained("openai-community/gpt2").to(torch_device)
        tokenizer = GPT2Tokenizer.from_pretrained("openai-community/gpt2")
2230

2231
2232
        force_tokens = tokenizer("scared", add_prefix_space=True, add_special_tokens=False).input_ids
        force_tokens_2 = tokenizer("big weapons", add_prefix_space=True, add_special_tokens=False).input_ids
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257

        constraints = [
            PhrasalConstraint(force_tokens),
            PhrasalConstraint(force_tokens_2),
        ]

        starting_text = ["The soldiers were not prepared and"]

        input_ids = tokenizer(starting_text, return_tensors="pt").input_ids.to(torch_device)

        outputs = model.generate(
            input_ids,
            constraints=constraints,
            num_beams=10,
            num_return_sequences=1,
            no_repeat_ngram_size=1,
            max_length=30,
            remove_invalid_values=True,
        )

        generated_text = tokenizer.batch_decode(outputs, skip_special_tokens=True)

        self.assertListEqual(
            generated_text,
            [
2258
2259
                "The soldiers were not prepared and didn't know what to do. They had no idea how they would react if"
                " the enemy attacked them, big weapons scared"
2260
2261
2262
            ],
        )

2263
2264
    @slow
    def test_constrained_beam_search_mixed(self):
2265
        # PT-only test: TF doesn't have constrained beam search
2266
2267
        model = GPT2LMHeadModel.from_pretrained("openai-community/gpt2").to(torch_device)
        tokenizer = GPT2Tokenizer.from_pretrained("openai-community/gpt2")
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297

        force_phrase = tokenizer("scared", add_prefix_space=True, add_special_tokens=False).input_ids
        flexible_phrases = tokenizer(
            ["scream", "screams", "screaming", "screamed"], add_prefix_space=True, add_special_tokens=False
        ).input_ids

        constraints = [
            PhrasalConstraint(force_phrase),
            DisjunctiveConstraint(flexible_phrases),
        ]

        starting_text = ["The soldiers", "The child"]

        input_ids = tokenizer(starting_text, return_tensors="pt").input_ids.to(torch_device)

        outputs = model.generate(
            input_ids,
            constraints=constraints,
            num_beams=10,
            num_return_sequences=1,
            no_repeat_ngram_size=1,
            # max_length=20,
            remove_invalid_values=True,
        )

        generated_text = tokenizer.batch_decode(outputs, skip_special_tokens=True)

        self.assertListEqual(
            generated_text,
            [
2298
2299
2300
                "The soldiers, who had been stationed at the base for more than a year before being evacuated"
                " screaming scared",
                "The child was taken to a local hospital where he died.\n 'I don't think screaming scared",
2301
2302
2303
2304
2305
            ],
        )

    @slow
    def test_constrained_beam_search_mixed_mixin(self):
2306
        # PT-only test: TF doesn't have constrained beam search
2307
2308
        model = GPT2LMHeadModel.from_pretrained("openai-community/gpt2").to(torch_device)
        tokenizer = GPT2Tokenizer.from_pretrained("openai-community/gpt2")
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335

        force_word = "scared"
        force_flexible = ["scream", "screams", "screaming", "screamed"]

        force_words_ids = [
            tokenizer([force_word], add_prefix_space=True, add_special_tokens=False).input_ids,
            tokenizer(force_flexible, add_prefix_space=True, add_special_tokens=False).input_ids,
        ]

        starting_text = ["The soldiers", "The child"]

        input_ids = tokenizer(starting_text, return_tensors="pt").input_ids.to(torch_device)

        outputs = model.generate(
            input_ids,
            force_words_ids=force_words_ids,
            num_beams=10,
            num_return_sequences=1,
            no_repeat_ngram_size=1,
            remove_invalid_values=True,
        )

        generated_text = tokenizer.batch_decode(outputs, skip_special_tokens=True)

        self.assertListEqual(
            generated_text,
            [
2336
2337
2338
                "The soldiers, who had been stationed at the base for more than a year before being evacuated"
                " screaming scared",
                "The child was taken to a local hospital where he died.\n 'I don't think screaming scared",
2339
2340
2341
            ],
        )

2342
2343
    @slow
    def test_cfg_mixin(self):
2344
2345
        model = GPT2LMHeadModel.from_pretrained("openai-community/gpt2").to(torch_device)
        tokenizer = GPT2Tokenizer.from_pretrained("openai-community/gpt2")
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381

        input = tokenizer(["The dragon flew over Paris,"], return_tensors="pt", return_attention_mask=True)
        input["input_ids"] = input["input_ids"].to(torch_device)
        input["attention_mask"] = input["attention_mask"].to(torch_device)

        outputs = model.generate(**input, max_new_tokens=32, guidance_scale=1.5)
        generated_text = tokenizer.batch_decode(outputs, skip_special_tokens=True)

        self.assertListEqual(
            generated_text,
            [
                "The dragon flew over Paris, landing in the Rue de la Bastille. The crowd was so excited "
                'that they had to leave the city.\n\n"We\'re going to Paris!"\n'
            ],
        )

        neg = tokenizer(["France,"], return_tensors="pt", return_attention_mask=True)
        neg["input_ids"] = neg["input_ids"].to(torch_device)
        neg["attention_mask"] = neg["attention_mask"].to(torch_device)
        outputs = model.generate(
            **input,
            max_new_tokens=32,
            guidance_scale=1.5,
            negative_prompt_ids=neg["input_ids"],
            negative_prompt_attention_mask=neg["attention_mask"],
        )
        generated_text = tokenizer.batch_decode(outputs, skip_special_tokens=True)

        self.assertListEqual(
            generated_text,
            [
                'The dragon flew over Paris, landing on the pavement.\n\n"Paris!"\n\n"Paris!"\n\n"'
                'Paris!"\n\n"Paris!"\n\n"Paris!"\n\n'
            ],
        )

2382
2383
    @slow
    def test_constrained_beam_search_example_translation_mixin(self):
2384
        # PT-only test: TF doesn't have constrained beam search
2385
2386
        tokenizer = AutoTokenizer.from_pretrained("google-t5/t5-base")
        model = AutoModelForSeq2SeqLM.from_pretrained("google-t5/t5-base")
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404

        encoder_input_str = "translate English to German: How old are you?"
        force_words = ["sind"]

        input_ids = tokenizer(encoder_input_str, return_tensors="pt").input_ids
        force_words_ids = tokenizer(force_words, add_special_tokens=False).input_ids

        outputs = model.generate(
            input_ids,
            force_words_ids=force_words_ids,
            num_beams=10,
            num_return_sequences=1,
            no_repeat_ngram_size=1,
            remove_invalid_values=True,
        )

        outputs = tokenizer.batch_decode(outputs, skip_special_tokens=True)

2405
        self.assertListEqual(outputs, ["Wie alt sind Sie?"])
2406

2407
2408
    @slow
    def test_constrained_beam_search_example_integration(self):
2409
        # PT-only test: TF doesn't have constrained beam search
2410
2411
        tokenizer = AutoTokenizer.from_pretrained("google-t5/t5-base")
        model = AutoModelForSeq2SeqLM.from_pretrained("google-t5/t5-base")
2412
2413
2414
2415
2416
2417
2418

        encoder_input_str = "translate English to German: How old are you?"
        encoder_input_ids = tokenizer(encoder_input_str, return_tensors="pt").input_ids

        # lets run beam search using 5 beams
        num_beams = 5
        # define decoder start token ids
2419
        input_ids = torch.ones((1, 1), device=model.device, dtype=torch.long)
2420
2421
2422
        input_ids = input_ids * model.config.decoder_start_token_id

        # add encoder_outputs to model keyword arguments
2423
        model_kwargs = {"encoder_outputs": model.get_encoder()(encoder_input_ids, return_dict=True)}
2424
2425
2426
2427

        constraint_str = "sind"
        constraint_token_ids = tokenizer.encode(constraint_str)[:-1]  # remove eos token

2428
2429
2430
2431
2432
2433
2434
        outputs = model.generate(
            input_ids,
            num_beams=num_beams,
            force_words_ids=[constraint_token_ids],
            min_length=5,
            eos_token_id=model.config.eos_token_id,
            **model_kwargs,
2435
2436
2437
        )
        outputs = tokenizer.batch_decode(outputs, skip_special_tokens=True)

2438
        self.assertListEqual(outputs, ["Wie alt sind Sie?"])
2439

2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
    @slow
    def test_per_row_stopping_criteria(self):
        text = [
            "They completed the challenging puzzle, revealing the hidden",
            "Today a dragon flew over France",
            "The aroma of freshly baked pizza filled the kitchen",
        ]
        stop_strings = ["secrets"]

        model = AutoModelForCausalLM.from_pretrained("openai-community/gpt2").to(torch_device)
        tokenizer = AutoTokenizer.from_pretrained("openai-community/gpt2")
        tokenizer.padding_side = "left"
        tokenizer.pad_token_id = tokenizer.eos_token_id
        input_ids = tokenizer(text, return_tensors="pt", padding="longest", add_special_tokens=False).input_ids.to(
            torch_device
        )

        # normal generation with one stopping criteria
        out = model.generate(input_ids, max_length=15)
        out_text = tokenizer.batch_decode(out)
        expected_out = [
            "They completed the challenging puzzle, revealing the hidden secrets of the world.\n",
            "<|endoftext|><|endoftext|><|endoftext|>Today a dragon flew over France and the French government was forced",
            "The aroma of freshly baked pizza filled the kitchen with a sense of freshness",
        ]
        self.assertListEqual(out_text, expected_out)

        # generation should stop at "secrets" for first batch only, filling the rest with eos tokens
        out = model.generate(input_ids, max_length=15, stop_strings=stop_strings, tokenizer=tokenizer)
        out_text = tokenizer.batch_decode(out)
        expected_out = [
            "They completed the challenging puzzle, revealing the hidden secrets<|endoftext|><|endoftext|><|endoftext|><|endoftext|><|endoftext|>",
            "<|endoftext|><|endoftext|><|endoftext|>Today a dragon flew over France and the French government was forced",
            "The aroma of freshly baked pizza filled the kitchen with a sense of freshness",
        ]
        self.assertListEqual(out_text, expected_out)

2477
    def test_constrained_beam_search_mixin_type_checks(self):
2478
        # PT-only test: TF doesn't have constrained beam search
2479
2480
        tokenizer = AutoTokenizer.from_pretrained("patrickvonplaten/t5-tiny-random")
        model = AutoModelForSeq2SeqLM.from_pretrained("patrickvonplaten/t5-tiny-random")
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516

        encoder_input_str = "translate English to German: How old are you?"
        input_ids = tokenizer(encoder_input_str, return_tensors="pt").input_ids

        with self.assertRaises(ValueError):
            force_words = ["sind"]
            force_words_ids = tokenizer(force_words, return_tensors="pt").input_ids
            model.generate(
                input_ids,
                force_words_ids=force_words_ids,
                num_beams=10,
                num_return_sequences=1,
                no_repeat_ngram_size=1,
                remove_invalid_values=True,
            )

        with self.assertRaises(ValueError):
            force_words = ["sind"]
            force_words_ids = [tokenizer(force_words, return_tensors="pt").input_ids]
            model.generate(
                input_ids,
                force_words_ids=force_words_ids,
                num_beams=10,
                num_return_sequences=1,
                no_repeat_ngram_size=1,
                remove_invalid_values=True,
            )

        with self.assertRaises(ValueError):
            model.generate(input_ids, force_words_ids=[])

        with self.assertRaises(ValueError):
            model.generate(input_ids, force_words_ids=[[-1]])

        with self.assertRaises(ValueError):
            model.generate(input_ids, force_words_ids=[[[-1]]])
2517

2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
    def test_batched_decoder_start_id(self):
        # PT-only test: TF doesn't support batched_decoder_start_id
        articles = [
            "Justin Timberlake and Jessica Biel, welcome to parenthood.",
            "Michael Phelps is arguably the most decorated Olympian of all time.",
        ]
        bart_tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart")
        bart_model = BartForConditionalGeneration.from_pretrained("hf-internal-testing/tiny-random-bart").to(
            torch_device
        )
        input_ids = bart_tokenizer(articles, return_tensors="pt", padding=True).input_ids.to(torch_device)
        decoder_start_token_id = bart_model.generation_config.decoder_start_token_id
        decoder_start_token_id_batch = [decoder_start_token_id] * input_ids.shape[0]

        outputs = bart_model.generate(input_ids, decoder_start_token_id=decoder_start_token_id)

        outputs_batched_ids = bart_model.generate(input_ids, decoder_start_token_id=decoder_start_token_id_batch)

        self.assertListEqual(outputs.tolist(), outputs_batched_ids.tolist())

2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
    def test_decoder_start_id_from_config(self):
        # Refer to: (#30899)
        articles = [
            "Justin Timberlake and Jessica Biel, welcome to parenthood.",
            "Michael Phelps is arguably the most decorated Olympian of all time.",
        ]
        bart_tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart")
        bart_model = BartForConditionalGeneration.from_pretrained("hf-internal-testing/tiny-random-bart").to(
            torch_device
        )
        input_ids = bart_tokenizer(articles, return_tensors="pt", padding=True).input_ids.to(torch_device)
        decoder_start_token_id = bart_model.generation_config.decoder_start_token_id

        # we should be able to take `decoder_start_token_id` from model's generation config if user passes a `GenerationConfig` type
        outputs = bart_model.generate(input_ids, generation_config=GenerationConfig(do_sample=False))

        # If the generatoin config has no `decoder_start_token_id` or `bos_token_id`, we will raise an error unless user passes it in config
        bart_model.generation_config.decoder_start_token_id = None
        bart_model.generation_config.bos_token_id = None
        outputs_with_user_id = bart_model.generate(
            input_ids,
            generation_config=GenerationConfig(do_sample=False, decoder_start_token_id=decoder_start_token_id),
        )

        self.assertListEqual(outputs.tolist(), outputs_with_user_id.tolist())

        with self.assertRaises(ValueError):
            outputs = bart_model.generate(input_ids, generation_config=GenerationConfig(do_sample=False))

2567
    def test_contrastive_search_batched(self):
2568
        # PT-only test: TF doesn't have constrained beam search
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
        # Tests that contrastive search works with batched inputs (i.e. has the same output as for non-batched inputs)
        articles = ["Foo", "Bar Baz"]
        tokenizer = BartTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart")
        model = BartForConditionalGeneration.from_pretrained("hf-internal-testing/tiny-random-bart").to(torch_device)

        model.config.eos_token_id = None
        input_ids_batched = tokenizer(articles, padding=True, return_tensors="pt").input_ids.to(torch_device)
        input_ids = tokenizer(articles[1], return_tensors="pt").input_ids.to(torch_device)

        output_sequences_batched = model.generate(
            input_ids=input_ids_batched, penalty_alpha=0.6, top_k=4, return_dict_in_generate=True, output_scores=True
        )
        output_sequences = model.generate(
            input_ids=input_ids, penalty_alpha=0.6, top_k=4, return_dict_in_generate=True, output_scores=True
        )

        batched_out = tokenizer.decode(output_sequences_batched.sequences[1], skip_special_tokens=True)
        out = tokenizer.decode(output_sequences.sequences[0], skip_special_tokens=True)
        self.assertEqual(batched_out, out)

        # output_sequences_batched.scores[0][1] -> 1st set of logits, 2nd sequence
        max_score_diff = (output_sequences_batched.scores[0][1] - output_sequences.scores[0][0]).abs().max()
        self.assertTrue(max_score_diff < 1e-5)

2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
    def test_logits_processor_not_inplace(self):
        # PT-only test: TF fixes were not made
        article = "Today a dragon flew over Paris."
        model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device)
        tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2")
        input_ids = tokenizer(article, return_tensors="pt").input_ids.to(torch_device)

        out = model.generate(input_ids, output_logits=True, output_scores=True, return_dict_in_generate=True)
        out_with_temp = model.generate(
            input_ids,
            temperature=0.5,
            do_sample=True,
            output_logits=True,
            output_scores=True,
            return_dict_in_generate=True,
        )

        # if no logits processor is used, scores == logits. Otherwise, the processor has to modify the scores
        self.assertListEqual(out.logits[-1].tolist(), out.scores[-1].tolist())
        self.assertNotEqual(out_with_temp.logits[-1].tolist(), out_with_temp.scores[-1].tolist())

2614
    def test_eos_token_id_int_and_list_top_k_top_sampling(self):
2615
        # Has TF equivalent: this test relies on random sampling
2616
2617
2618
2619
2620
2621
2622
        generation_kwargs = {
            "do_sample": True,
            "num_beams": 1,
            "top_p": 0.7,
            "top_k": 10,
            "temperature": 0.7,
        }
2623
        expectation = 20
2624

2625
        tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2")
2626
        text = """Hello, my dog is cute and"""
2627
        tokens = tokenizer(text, return_tensors="pt").to(torch_device)
2628
        model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device)
2629

2630
2631
2632
        # Only some seeds will work both on CPU/GPU for a fixed `expectation` value.
        # The selected seed is not guaranteed to work on all torch versions.
        torch.manual_seed(1)
2633
2634
2635
2636
        eos_token_id = 846
        generated_tokens = model.generate(**tokens, eos_token_id=eos_token_id, **generation_kwargs)
        self.assertTrue(expectation == len(generated_tokens[0]))

2637
        torch.manual_seed(1)
2638
        eos_token_id = [846, 198]
2639
2640
        generated_tokens = model.generate(**tokens, eos_token_id=eos_token_id, **generation_kwargs)
        self.assertTrue(expectation == len(generated_tokens[0]))
2641

2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
    def test_model_kwarg_encoder_signature_filtering(self):
        # Has TF equivalent: ample use of framework-specific code
        bart_tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart")
        article = """Hugging Face is a technology company based in New York and Paris."""
        input_ids = bart_tokenizer(article, return_tensors="pt").input_ids.to(torch_device)
        bart_model = BartForConditionalGeneration.from_pretrained("hf-internal-testing/tiny-random-bart").to(
            torch_device
        )
        output = bart_model.generate(input_ids).cpu().numpy()

        # Let's create a fake model that has a different signature. In particular, this fake model accepts "foo" as an
        # argument. Because "foo" is not in the encoder signature and doesn't start with "decoder_", it will be part of
        # the encoder kwargs prior to signature filtering, which would lead to an exception. But filtering kicks in and
        # saves the day.
        class FakeBart(BartForConditionalGeneration):
            def forward(self, input_ids, foo=None, **kwargs):
                return super().forward(input_ids, **kwargs)

        bart_model = FakeBart.from_pretrained("hf-internal-testing/tiny-random-bart").to(torch_device)
        fake_output = bart_model.generate(input_ids, foo="bar").cpu().numpy()
        self.assertTrue(np.array_equal(output, fake_output))

        # Encoder signature filtering only kicks in if it doesn't accept wildcard kwargs. The following test will fail
        # because it doesn't do signature filtering.
        class FakeEncoder(bart_model.model.encoder.__class__):
            def forward(self, input_ids, **kwargs):
                return super().forward(input_ids, **kwargs)

        fake_encoder = FakeEncoder(bart_model.config, bart_model.model.shared).to(torch_device)
        bart_model.model.encoder = fake_encoder

        # Normal generation still works (the output will be different because the encoder weights are different)
        fake_output = bart_model.generate(input_ids).cpu().numpy()
        with self.assertRaises(TypeError):
            # FakeEncoder.forward() accepts **kwargs -> no filtering -> type error due to unexpected input "foo"
            bart_model.generate(input_ids, foo="bar")
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698

    def test_default_max_length_warning(self):
        model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device)
        tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2")
        model.config.pad_token_id = tokenizer.eos_token_id

        text = "Hello world"
        tokenized_inputs = tokenizer([text], return_tensors="pt")
        input_ids = tokenized_inputs.input_ids.to(torch_device)

        # Default generation config value of 20 -> emits warning
        with self.assertWarns(UserWarning):
            model.generate(input_ids)

        # Explicitly setting max_length to 20 -> no warning
        with warnings.catch_warnings(record=True) as warning_list:
            model.generate(input_ids, max_length=20)
            self.assertEqual(len(warning_list), 0)

        # Generation config max_length != 20 -> no warning
        with warnings.catch_warnings(record=True) as warning_list:
2699
            # generation_config is modified -> legacy mode is disabled = generation_config takes precedence
2700
2701
2702
            model.generation_config.max_length = 10
            model.generate(input_ids)
            self.assertEqual(len(warning_list), 0)
2703

2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
    def test_length_warning_assisted_generation(self):
        # PT-only test: TF doesn't support assisted decoding yet.
        model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device)
        assistant = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device)
        tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2")
        model.config.pad_token_id = tokenizer.eos_token_id
        assistant.config.pad_token_id = tokenizer.eos_token_id

        text = "Hello world"
        tokenized_inputs = tokenizer([text], return_tensors="pt")
        input_ids = tokenized_inputs.input_ids.to(torch_device)

        # This should not raise any warning that min length is not feasible in candidate generation
        with warnings.catch_warnings(record=True) as warning_list:
            model.generate(
                input_ids,
                assistant_model=assistant,
                min_new_tokens=10,
                max_length=20,
            )
            self.assertEqual(len(warning_list), 0)

    def test_generated_length_assisted_generation(self):
        # PT-only test: TF doesn't support assisted decoding yet.
        model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device)
        assistant = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device)
        tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2")
        model.config.pad_token_id = tokenizer.eos_token_id
        assistant.config.pad_token_id = tokenizer.eos_token_id

        text = "Hello world"
        tokenized_inputs = tokenizer([text], return_tensors="pt")
        input_ids = tokenized_inputs.input_ids.to(torch_device)
        input_length = input_ids.shape[-1]

        out = model.generate(
            input_ids,
            assistant_model=assistant,
            min_new_tokens=10,
            max_new_tokens=20,
        )
        self.assertTrue((10 + input_length) <= out.shape[-1] <= (20 + input_length))

        out = model.generate(
            input_ids,
            assistant_model=assistant,
            min_new_tokens=10,
        )
        self.assertTrue((input_length + 10) <= out.shape[-1] <= 20)

2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
    def test_model_kwarg_assisted_decoding_decoder_only(self):
        # PT-only test: TF doesn't support assisted decoding yet.
        model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device)
        tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2")
        model.config.pad_token_id = tokenizer.eos_token_id

        text = "Hello world"
        tokenized_inputs = tokenizer([text], return_tensors="pt")
        input_ids = tokenized_inputs.input_ids.to(torch_device)

        # Traditional way of generating text
        outputs_normal = model.generate(input_ids)
        self.assertEqual(outputs_normal.shape, (1, 20))

        # Should be different with token_type_ids
        outputs_tti = model.generate(
            input_ids,
            token_type_ids=torch.zeros(input_ids.shape, dtype=torch.long).to(torch_device),
        )
        with self.assertRaises(AssertionError):
            self.assertListEqual(outputs_tti.tolist(), outputs_normal.tolist())

        # Assistant model
        assistant = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device)
        assistant.config.pad_token_id = tokenizer.eos_token_id

        # If assisted generation passes model_kwargs correctly, should be same as previous
        outputs_assisted = model.generate(
            input_ids,
            token_type_ids=torch.zeros(input_ids.shape, dtype=torch.long).to(torch_device),
            assistant_model=assistant,
        )
        self.assertListEqual(outputs_assisted.tolist(), outputs_tti.tolist())

    def test_model_kwarg_assisted_decoding_encoder_decoder(self):
2789
2790
2791
2792
2793
2794
2795
2796
        """
        Tests that the following scenario is compatible with assisted generation:
        1. encoder-decoder main model
        2. encoder-decoder assistant model
        3. both have a custom input
        (e.g. Whisper)
        """

2797
2798
2799
        # PT-only test: TF doesn't support assisted decoding yet.
        # Bart subclass with a kwarg that distorts the output
        class FakeBart(BartForConditionalGeneration):
2800
2801
            def forward(self, input_ids, past_key_values, foo=False, **kwargs):
                outs = super().forward(input_ids, past_key_values=past_key_values, **kwargs)
2802
2803
2804
2805
                if foo:
                    outs["logits"][:, :, :] = 0.0
                return outs

2806
2807
            def prepare_inputs_for_generation(self, *args, foo=False, encoder_outputs=None, **kwargs):
                kwargs["encoder_outputs"] = encoder_outputs
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
                inputs = super().prepare_inputs_for_generation(*args, **kwargs)
                inputs["foo"] = foo
                return inputs

        model = FakeBart.from_pretrained("hf-internal-testing/tiny-random-BartForConditionalGeneration").to(
            torch_device
        )
        tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-BartForConditionalGeneration")

        text = "Hello world"
        tokenized_inputs = tokenizer([text], return_tensors="pt")
        input_ids = tokenized_inputs.input_ids.to(torch_device)

        # Traditional way of generating text
        outputs_normal = model.generate(input_ids)
        self.assertEqual(outputs_normal.shape, (1, 20))

        # Should be different with foo
2826
        outputs_foo = model.generate(input_ids, foo=True)
2827
2828
2829
2830
        with self.assertRaises(AssertionError):
            self.assertListEqual(outputs_foo.tolist(), outputs_normal.tolist())

        # Assistant model
2831
2832
2833
        assistant = FakeBart.from_pretrained("hf-internal-testing/tiny-random-BartForConditionalGeneration").to(
            torch_device
        )
2834
2835
2836
2837
2838
2839
2840
2841

        # If assisted generation passes model_kwargs correctly, should be same as previous
        outputs_assisted = model.generate(
            input_ids,
            foo=True,
            assistant_model=assistant,
        )
        self.assertListEqual(outputs_assisted.tolist(), outputs_foo.tolist())
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852

        # Check that passing encoder_outputs directly also works as expected
        encoder_outputs = assistant.get_encoder()(input_ids)

        outputs_assisted = model.generate(
            foo=True,
            assistant_model=assistant,
            encoder_outputs=encoder_outputs,
            assistant_encoder_outputs=encoder_outputs,
        )
        self.assertListEqual(outputs_assisted.tolist(), outputs_foo.tolist())
2853
2854

    def test_assisted_decoding_encoder_decoder_shared_encoder(self):
2855
2856
2857
2858
2859
2860
2861
2862
        """
        Tests that the following scenario is compatible with assisted generation:
        1. encoder-decoder main model
        2. decoder-only assistant model
        3. both have a custom input
        (e.g. DistilWhisper)
        """

2863
2864
        # PT-only test: TF doesn't support assisted decoding yet.
        # Bart subclass with a kwarg called foo that distorts the output
2865
        class FakeBartSeq2Seq(BartForConditionalGeneration):
2866
2867
2868
2869
2870
2871
2872
2873
2874
            def forward(self, input_ids, foo=False, **kwargs):
                outs = super().forward(input_ids, **kwargs)
                if foo:
                    outs["logits"][:, :, :] = 0.0
                return outs

            def prepare_inputs_for_generation(self, *args, foo=False, encoder_outputs=None, **kwargs):
                kwargs["encoder_outputs"] = encoder_outputs
                inputs = super().prepare_inputs_for_generation(*args, **kwargs)
2875
2876
2877
2878
2879
2880
2881
2882
2883
                inputs["foo"] = foo
                return inputs

        class FakeBartCausalLM(BartForCausalLM):
            def forward(self, input_ids, attention_mask, past_key_values, foo=False, **kwargs):
                outs = super().forward(input_ids, attention_mask, past_key_values=past_key_values, **kwargs)
                if foo:
                    outs["logits"][:, :, :] = 0.0
                return outs
2884

2885
2886
2887
            def prepare_inputs_for_generation(self, *args, foo=False, encoder_outputs=None, **kwargs):
                kwargs["encoder_outputs"] = encoder_outputs
                inputs = super().prepare_inputs_for_generation(*args, **kwargs)
2888
2889
2890
                inputs["foo"] = foo
                return inputs

2891
        model = FakeBartSeq2Seq.from_pretrained("hf-internal-testing/tiny-random-BartForConditionalGeneration").to(
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
            torch_device
        )
        tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-BartForConditionalGeneration")

        text = "Hello world"
        tokenized_inputs = tokenizer([text], return_tensors="pt")
        input_ids = tokenized_inputs.input_ids.to(torch_device)

        # Traditional way of generating text
        outputs_normal = model.generate(input_ids)
        self.assertEqual(outputs_normal.shape, (1, 20))

        # Should be different with foo
        outputs_foo = model.generate(input_ids, foo=True)
        with self.assertRaises(AssertionError):
            self.assertListEqual(outputs_foo.tolist(), outputs_normal.tolist())

        # Assistant model
2910
2911
2912
        assistant = FakeBartCausalLM.from_pretrained(
            "hf-internal-testing/tiny-random-BartForConditionalGeneration"
        ).to(torch_device)
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930

        # If assisted generation passes model_kwargs correctly, should be same as previous
        outputs_assisted = model.generate(
            input_ids,
            foo=True,
            assistant_model=assistant,
        )
        self.assertListEqual(outputs_assisted.tolist(), outputs_foo.tolist())

        # Check that passing encoder_outputs directly also works as expected
        encoder_outputs = model.get_encoder()(input_ids)

        outputs_assisted = model.generate(
            foo=True,
            assistant_model=assistant,
            encoder_outputs=encoder_outputs,
        )
        self.assertListEqual(outputs_assisted.tolist(), outputs_foo.tolist())
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976

    def test_assisted_decoding_num_assistant_tokens_heuristic_schedule(self):
        # This test ensures that the assisted generation num_assistant_tokens 'heuristic' schedule works properly.

        prompt = "Alice and Bob"
        checkpoint = "EleutherAI/pythia-160m-deduped"
        tokenizer = AutoTokenizer.from_pretrained(checkpoint)
        inputs = tokenizer(prompt, return_tensors="pt")

        model = AutoModelForCausalLM.from_pretrained(checkpoint)

        assistant_model = model
        assistant_model.generation_config.num_assistant_tokens = 5
        assistant_model.generation_config.num_assistant_tokens_schedule = "heuristic"
        generation_kwargs = {
            "eos_token_id": -1,
            "max_new_tokens": 5,
            "do_sample": False,
            "assistant_model": assistant_model,
        }
        model.generate(**inputs, **generation_kwargs)
        # update_candidate_strategy is called only once and therefore, assistant_model.generation_config.num_assistant_tokens should be either 4 or 7
        self.assertTrue(assistant_model.generation_config.num_assistant_tokens in (4, 7))

    def test_assisted_decoding_num_assistant_tokens_heuristic_transient_schedule(self):
        # This test ensures that the assisted generation num_assistant_tokens 'heuristic' schedule works properly.

        prompt = "Alice and Bob"
        checkpoint = "EleutherAI/pythia-160m-deduped"
        tokenizer = AutoTokenizer.from_pretrained(checkpoint)
        inputs = tokenizer(prompt, return_tensors="pt")

        model = AutoModelForCausalLM.from_pretrained(checkpoint)

        assistant_model = model
        assistant_model.generation_config.num_assistant_tokens = 5
        assistant_model.generation_config.num_assistant_tokens_schedule = "heuristic_transient"
        generation_kwargs = {
            "eos_token_id": -1,
            "max_new_tokens": 5,
            "do_sample": False,
            "assistant_model": assistant_model,
        }
        model.generate(**inputs, **generation_kwargs)
        # update_candidate_strategy is called once but assistant_model.generation_config.num_assistant_tokens should stay 5
        self.assertEqual(assistant_model.generation_config.num_assistant_tokens, 5)
2977

2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
    @slow
    def test_validate_assistant(self):
        # Generate a random sample:
        inputs = np.random.rand(160000)

        # Load a main encoder-decoder model:
        model_id = "openai/whisper-large-v2"
        processor = AutoProcessor.from_pretrained(model_id)
        model = AutoModelForSpeechSeq2Seq.from_pretrained(
            model_id,
            low_cpu_mem_usage=True,
            use_safetensors=True,
        )
        model.to(torch_device)

        # process the input:
        features = processor(inputs, return_tensors="pt").to(torch_device)

        # Load an encoder-decoder assistant with same encoder as the main model:
        assistant_distil_model_id = "distil-whisper/distil-large-v2"
        assistant_seq_to_seq = AutoModelForSpeechSeq2Seq.from_pretrained(
            assistant_distil_model_id,
            use_safetensors=True,
        ).to(torch_device)
        self.assertTrue(model.generate(**features, assistant_model=assistant_seq_to_seq).sum())

        # Load its decoder only version:
        assistant_causal_lm = AutoModelForCausalLM.from_pretrained(
            assistant_distil_model_id,
            low_cpu_mem_usage=True,
            use_safetensors=True,
        ).to(torch_device)
        self.assertTrue(model.generate(**features, assistant_model=assistant_causal_lm).sum())

        # Load an encoder-decoder assistant with a different encoder than the main model:
        assistant_distil_model_id = "openai/whisper-tiny"
        assistant_seq_to_seq = AutoModelForSpeechSeq2Seq.from_pretrained(
            assistant_distil_model_id,
            use_safetensors=True,
        ).to(torch_device)
        self.assertTrue(model.generate(**features, assistant_model=assistant_seq_to_seq).sum())

        # Load its decoder only version:
        assistant_causal_lm = AutoModelForCausalLM.from_pretrained(
            assistant_distil_model_id,
            low_cpu_mem_usage=True,
            use_safetensors=True,
        ).to(torch_device)
        # It will raise an error as the encoder of the main and assistant model are not compatible:
        with self.assertRaises(ValueError):
            model.generate(**features, assistant_model=assistant_causal_lm)

        # Load an encoder-decoder model with a different tokenizer than the main model:
        assistant_distil_model_id = "hf-internal-testing/tiny-random-SeamlessM4Tv2ForSpeechToText"
        assistant_seq_to_seq = AutoModelForSpeechSeq2Seq.from_pretrained(
            assistant_distil_model_id,
        ).to(torch_device)
        # This should raise an error as the main and assistant model don't use the same tokenizer:
        with self.assertRaises(ValueError):
            model.generate(**features, assistant_model=assistant_seq_to_seq)

3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
    def test_compare_unprocessed_logit_scores(self):
        # Get unprocessed logit scores back from model generate function.
        # Assert that unprocessed logits from generate() are same as those from modal eval()

        # tell model to generate text and return unprocessed/unwarped logit scores
        tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2")
        text = "generate yes or no: "
        input_ids = tokenizer([text], return_tensors="pt").input_ids.to(torch_device)

        model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device)

        with torch.no_grad():
            # Get logits for the next token from fwd pass
            logits_fwd = model(input_ids).logits[:, -1, :][0]

        # Get logits for the next token from generate function
        outputs = model.generate(
            input_ids=input_ids,
            return_dict_in_generate=True,
            output_logits=True,
            max_new_tokens=1,
            do_sample=True,
        )
        logits_gen = outputs.logits[0][0]

        # assert that unprocessed logits from generate() are same as those from modal eval()
        self.assertListEqual(logits_fwd.tolist(), logits_gen.tolist())

    def test_return_unprocessed_logit_scores(self):
        # tell model to generate text and return unprocessed/unwarped logit scores
        tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2")
        text = "generate yes or no: "
        input_ids = tokenizer([text], return_tensors="pt").input_ids.to(torch_device)
        model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device)

        outputs = model.generate(
            input_ids=input_ids, return_dict_in_generate=True, output_logits=True, max_new_tokens=3
        )

        # perform dummy check if unpreprocessed logits make sense.
        # do preselection on high probabilities; find scores of y and n tokens
        probs_all = torch.nn.functional.softmax(outputs.logits[2][0], dim=-1)
        indices = torch.argwhere(probs_all > 0.001)
        indices = indices[:, -1]
        tokens_max = tokenizer.batch_decode(indices, skip_special_tokens=True)
        probs_max = probs_all[probs_all > 0.001]

        self.assertTrue(len(indices) >= 2)
        next_token_dict = {str(t): p for t, p in zip(tokens_max, probs_max)}
        self.assertTrue("n" in next_token_dict)
        self.assertTrue("y" in next_token_dict)
        y_prob = next_token_dict["y"]
        n_prob = next_token_dict["n"]

        self.assertTrue(y_prob > 0.001 and n_prob > 0.001)
        self.assertTrue(y_prob <= 1.0 and n_prob <= 1.0)
3095

Ahmed Moubtahij's avatar
Ahmed Moubtahij committed
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132

@require_torch
class TokenHealingTestCase(unittest.TestCase):
    @parameterized.expand(
        [
            (
                "square_bracket",
                'An example ["like this"] and another example [',
                'An example ["like this"] and another example ["',
            ),
            ("url", 'The link is <a href="http:', 'The link is <a href="http://'),
            # aggressive_healing: "http" shouldn't be replaced with "https"
            ("aggressive_healing", 'The link is <a href="http', 'The link is <a href="http'),
            ("trailing_whitespace", "I read a book about ", "I read a book about"),
            ("nothing_to_heal", "I read a book about", "I read a book about"),
            ("single_token", "I", "I"),
            ("empty_prompt", "", ""),
        ]
    )
    @require_auto_gptq
    def test_prompts(self, name, input, expected):
        model_name_or_path = "TheBloke/deepseek-llm-7B-base-GPTQ"
        tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
        completion_model = AutoModelForCausalLM.from_pretrained(
            model_name_or_path,
            device_map="auto",
            trust_remote_code=False,
            revision="main",
            use_cache=True,
        )
        input_ids = tokenizer(input, return_tensors="pt").input_ids.to(completion_model.device)

        healed_ids = completion_model.heal_tokens(input_ids)
        predicted = tokenizer.decode(healed_ids[0], skip_special_tokens=True)

        self.assertEqual(predicted, expected)

3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
    def test_generate_from_inputs_embeds_with_bos_token_id_is_none(self):
        article = "Today a dragon flew over Paris."
        model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device)
        tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2")
        input_ids = tokenizer(article, return_tensors="pt").input_ids.to(torch_device)
        inputs_embeds = model.get_input_embeddings()(input_ids)

        model.generate(inputs_embeds=inputs_embeds, max_length=20, bos_token_id=None)

        # bos_token_id is required when no input ids nor inputs_embeds is passed
        with self.assertRaises(ValueError):
            model.generate(max_length=20, bos_token_id=None)