utils.py 24.6 KB
Newer Older
Sylvain Gugger's avatar
Sylvain Gugger committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
16
import itertools
import json
17
import linecache
18
import math
19
import os
20
import pickle
21
import socket
22
from logging import getLogger
23
from pathlib import Path
24
from typing import Callable, Dict, Iterable, List, Tuple, Union
25

26
27
import git
import numpy as np
28
import torch
29
import torch.distributed as dist
30
from rouge_score import rouge_scorer, scoring
31
from sacrebleu import corpus_bleu
32
33
from torch import nn
from torch.utils.data import Dataset, Sampler
34

35
from sentence_splitter import add_newline_to_end_of_each_sentence
36
from transformers import BartTokenizer, EvalPrediction, PreTrainedTokenizer, T5Tokenizer
37
from transformers.file_utils import cached_property
38
from transformers.models.bart.modeling_bart import shift_tokens_right
39

40

41
42
43
44
45
46
47
48
try:
    from fairseq.data.data_utils import batch_by_size

    FAIRSEQ_AVAILABLE = True
except (ImportError, ModuleNotFoundError):
    FAIRSEQ_AVAILABLE = False


49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
def label_smoothed_nll_loss(lprobs, target, epsilon, ignore_index=-100):
    """From fairseq"""
    if target.dim() == lprobs.dim() - 1:
        target = target.unsqueeze(-1)
    nll_loss = -lprobs.gather(dim=-1, index=target)
    smooth_loss = -lprobs.sum(dim=-1, keepdim=True)
    if ignore_index is not None:
        pad_mask = target.eq(ignore_index)
        nll_loss.masked_fill_(pad_mask, 0.0)
        smooth_loss.masked_fill_(pad_mask, 0.0)
    else:
        nll_loss = nll_loss.squeeze(-1)
        smooth_loss = smooth_loss.squeeze(-1)

    nll_loss = nll_loss.sum()  # mean()? Scared to break other math.
    smooth_loss = smooth_loss.sum()
    eps_i = epsilon / lprobs.size(-1)
    loss = (1.0 - epsilon) * nll_loss + eps_i * smooth_loss
67
    return loss, nll_loss
68
69


70
71
def lmap(f: Callable, x: Iterable) -> List:
    """list(map(f, x))"""
72
73
74
    return list(map(f, x))


75
def calculate_bleu(output_lns, refs_lns, **kwargs) -> dict:
76
    """Uses sacrebleu's corpus_bleu implementation."""
77
    return {"bleu": round(corpus_bleu(output_lns, [refs_lns], **kwargs).score, 4)}
78
79


80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
def build_compute_metrics_fn(task_name: str, tokenizer: PreTrainedTokenizer) -> Callable[[EvalPrediction], Dict]:
    def non_pad_len(tokens: np.ndarray) -> int:
        return np.count_nonzero(tokens != tokenizer.pad_token_id)

    def decode_pred(pred: EvalPrediction) -> Tuple[List[str], List[str]]:
        pred_str = tokenizer.batch_decode(pred.predictions, skip_special_tokens=True)
        label_str = tokenizer.batch_decode(pred.label_ids, skip_special_tokens=True)
        pred_str = lmap(str.strip, pred_str)
        label_str = lmap(str.strip, label_str)
        return pred_str, label_str

    def summarization_metrics(pred: EvalPrediction) -> Dict:
        pred_str, label_str = decode_pred(pred)
        rouge: Dict = calculate_rouge(pred_str, label_str)
        summ_len = np.round(np.mean(lmap(non_pad_len, pred.predictions)), 1)
        rouge.update({"gen_len": summ_len})
        return rouge

    def translation_metrics(pred: EvalPrediction) -> Dict:
        pred_str, label_str = decode_pred(pred)
        bleu: Dict = calculate_bleu(pred_str, label_str)
        gen_len = np.round(np.mean(lmap(non_pad_len, pred.predictions)), 1)
        bleu.update({"gen_len": gen_len})
        return bleu

    compute_metrics_fn = summarization_metrics if "summarization" in task_name else translation_metrics
    return compute_metrics_fn


109
def trim_batch(
Lysandre's avatar
Lysandre committed
110
111
112
    input_ids,
    pad_token_id,
    attention_mask=None,
113
114
115
116
117
118
119
120
121
):
    """Remove columns that are populated exclusively by pad_token_id"""
    keep_column_mask = input_ids.ne(pad_token_id).any(dim=0)
    if attention_mask is None:
        return input_ids[:, keep_column_mask]
    else:
        return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask])


122
class AbstractSeq2SeqDataset(Dataset):
123
124
125
    def __init__(
        self,
        tokenizer,
126
        data_dir,
127
128
        max_source_length,
        max_target_length,
129
        type_path="train",
130
        n_obs=None,
131
        prefix="",
132
        **dataset_kwargs
133
134
    ):
        super().__init__()
135
136
        self.src_file = Path(data_dir).joinpath(type_path + ".source")
        self.tgt_file = Path(data_dir).joinpath(type_path + ".target")
137
138
139
140
141
142
143
        self.len_file = Path(data_dir).joinpath(type_path + ".len")
        if os.path.exists(self.len_file):
            self.src_lens = pickle_load(self.len_file)
            self.used_char_len = False
        else:
            self.src_lens = self.get_char_lens(self.src_file)
            self.used_char_len = True
144
145
146
147
        self.max_source_length = max_source_length
        self.max_target_length = max_target_length
        assert min(self.src_lens) > 0, f"found empty line in {self.src_file}"
        self.tokenizer = tokenizer
148
149
        self.prefix = prefix if prefix is not None else ""

150
        if n_obs is not None:
151
152
            self.src_lens = self.src_lens[:n_obs]
        self.pad_token_id = self.tokenizer.pad_token_id
153
154
        self.dataset_kwargs = dataset_kwargs
        dataset_kwargs.update({"add_prefix_space": True} if isinstance(self.tokenizer, BartTokenizer) else {})
155
156

    def __len__(self):
157
158
        return len(self.src_lens)

159
160
161
162
    @staticmethod
    def get_char_lens(data_file):
        return [len(x) for x in Path(data_file).open().readlines()]

163
164
165
166
167
    @cached_property
    def tgt_lens(self):
        """Length in characters of target documents"""
        return self.get_char_lens(self.tgt_file)

168
    def make_sortish_sampler(self, batch_size, distributed=False, shuffle=True, **kwargs):
169
        if distributed:
170
            return DistributedSortishSampler(self, batch_size, shuffle=shuffle, **kwargs)
171
        else:
172
            return SortishSampler(self.src_lens, batch_size, shuffle=shuffle)
173

174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
    def make_dynamic_sampler(self, max_tokens_per_batch=1024, **kwargs):
        assert FAIRSEQ_AVAILABLE, "Dynamic batch size requires `pip install fairseq`"
        assert not self.used_char_len, "You must call  python make_len_file.py before calling make_dynamic_sampler"
        sorted_indices = list(self.make_sortish_sampler(1024, shuffle=False))

        def num_tokens_in_example(i):
            return min(self.src_lens[i], self.max_target_length)

        # call fairseq cython function
        batch_sampler: List[List[int]] = batch_by_size(
            sorted_indices,
            num_tokens_fn=num_tokens_in_example,
            max_tokens=max_tokens_per_batch,
            required_batch_size_multiple=64,
        )
        shuffled_batches = [batch_sampler[i] for i in np.random.permutation(range(len(batch_sampler)))]
        # move the largest batch to the front to OOM quickly (uses an approximation for padding)
        approximate_toks_per_batch = [max(self.src_lens[i] for i in batch) * len(batch) for batch in shuffled_batches]
        largest_batch_idx = np.argmax(approximate_toks_per_batch)
        shuffled_batches[0], shuffled_batches[largest_batch_idx] = (
            shuffled_batches[largest_batch_idx],
            shuffled_batches[0],
        )
        return shuffled_batches

199
200
201
202
203
204
205
206
    def __getitem__(self, item):
        raise NotImplementedError("You must implement this")

    def collate_fn(self, batch):
        raise NotImplementedError("You must implement this")


class LegacySeq2SeqDataset(AbstractSeq2SeqDataset):
207
    def __getitem__(self, index) -> Dict[str, torch.Tensor]:
208
        """Call tokenizer on src and tgt_lines"""
209
210
211
212
213
        index = index + 1  # linecache starts at 1
        source_line = self.prefix + linecache.getline(str(self.src_file), index).rstrip("\n")
        tgt_line = linecache.getline(str(self.tgt_file), index).rstrip("\n")
        assert source_line, f"empty source line for index {index}"
        assert tgt_line, f"empty tgt line for index {index}"
214
215
        source_inputs = self.encode_line(self.tokenizer, source_line, self.max_source_length)
        target_inputs = self.encode_line(self.tokenizer, tgt_line, self.max_target_length)
216
217
218
219
220
221
222

        source_ids = source_inputs["input_ids"].squeeze()
        target_ids = target_inputs["input_ids"].squeeze()
        src_mask = source_inputs["attention_mask"].squeeze()
        return {
            "input_ids": source_ids,
            "attention_mask": src_mask,
223
            "labels": target_ids,
224
        }
225

226
227
228
229
230
231
232
233
234
235
236
    def encode_line(self, tokenizer, line, max_length, pad_to_max_length=True, return_tensors="pt"):
        """Only used by LegacyDataset"""
        return tokenizer(
            [line],
            max_length=max_length,
            padding="max_length" if pad_to_max_length else None,
            truncation=True,
            return_tensors=return_tensors,
            **self.dataset_kwargs,
        )

237
    def collate_fn(self, batch) -> Dict[str, torch.Tensor]:
238
239
        input_ids = torch.stack([x["input_ids"] for x in batch])
        masks = torch.stack([x["attention_mask"] for x in batch])
240
        target_ids = torch.stack([x["labels"] for x in batch])
241
        pad_token_id = self.pad_token_id
242
243
        y = trim_batch(target_ids, pad_token_id)
        source_ids, source_mask = trim_batch(input_ids, pad_token_id, attention_mask=masks)
244
245
246
        batch = {
            "input_ids": source_ids,
            "attention_mask": source_mask,
247
            "labels": y,
248
        }
249
250
        return batch

251

252
class Seq2SeqDataset(AbstractSeq2SeqDataset):
253
    """A dataset that calls prepare_seq2seq_batch."""
254

255
256
257
258
259
260
    def __getitem__(self, index) -> Dict[str, str]:
        index = index + 1  # linecache starts at 1
        source_line = self.prefix + linecache.getline(str(self.src_file), index).rstrip("\n")
        tgt_line = linecache.getline(str(self.tgt_file), index).rstrip("\n")
        assert source_line, f"empty source line for index {index}"
        assert tgt_line, f"empty tgt line for index {index}"
261
        return {"tgt_texts": tgt_line, "src_texts": source_line, "id": index - 1}
262
263

    def collate_fn(self, batch) -> Dict[str, torch.Tensor]:
264
        """Call prepare_seq2seq_batch."""
265
        batch_encoding: Dict[str, torch.Tensor] = self.tokenizer.prepare_seq2seq_batch(
266
267
268
            [x["src_texts"] for x in batch],
            tgt_texts=[x["tgt_texts"] for x in batch],
            max_length=self.max_source_length,
269
            max_target_length=self.max_target_length,
270
            return_tensors="pt",
271
            **self.dataset_kwargs,
272
273
274
        ).data
        batch_encoding["ids"] = torch.tensor([x["id"] for x in batch])
        return batch_encoding
275
276


277
class Seq2SeqDataCollator:
278
    def __init__(self, tokenizer, data_args, decoder_start_token_id, tpu_num_cores=None):
279
280
        self.tokenizer = tokenizer
        self.pad_token_id = tokenizer.pad_token_id
281
        self.decoder_start_token_id = decoder_start_token_id
282
283
284
285
286
        assert (
            self.pad_token_id is not None
        ), f"pad_token_id is not defined for ({self.tokenizer.__class__.__name__}), it must be defined."
        self.data_args = data_args
        self.tpu_num_cores = tpu_num_cores
Sam Shleifer's avatar
Sam Shleifer committed
287
        self.dataset_kwargs = {"add_prefix_space": True} if isinstance(tokenizer, BartTokenizer) else {}
288
289
290
291
        if data_args.src_lang is not None:
            self.dataset_kwargs["src_lang"] = data_args.src_lang
        if data_args.tgt_lang is not None:
            self.dataset_kwargs["tgt_lang"] = data_args.tgt_lang
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308

    def __call__(self, batch) -> Dict[str, torch.Tensor]:
        if hasattr(self.tokenizer, "prepare_seq2seq_batch"):
            batch = self._encode(batch)
            input_ids, attention_mask, labels = (
                batch["input_ids"],
                batch["attention_mask"],
                batch["labels"],
            )
        else:
            input_ids = torch.stack([x["input_ids"] for x in batch])
            attention_mask = torch.stack([x["attention_mask"] for x in batch])
            labels = torch.stack([x["labels"] for x in batch])

            labels = trim_batch(labels, self.pad_token_id)
            input_ids, attention_mask = trim_batch(input_ids, self.pad_token_id, attention_mask=attention_mask)

309
310
311
312
313
        if isinstance(self.tokenizer, T5Tokenizer):
            decoder_input_ids = self._shift_right_t5(labels)
        else:
            decoder_input_ids = shift_tokens_right(labels, self.pad_token_id, self.decoder_start_token_id)

314
315
316
        batch = {
            "input_ids": input_ids,
            "attention_mask": attention_mask,
317
            "decoder_input_ids": decoder_input_ids,
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
            "labels": labels,
        }
        return batch

    def _shift_right_t5(self, input_ids):
        # shift inputs to the right
        shifted_input_ids = input_ids.new_zeros(input_ids.shape)
        shifted_input_ids[..., 1:] = input_ids[..., :-1].clone()
        shifted_input_ids[..., 0] = self.pad_token_id
        return shifted_input_ids

    def _encode(self, batch) -> Dict[str, torch.Tensor]:
        batch_encoding = self.tokenizer.prepare_seq2seq_batch(
            [x["src_texts"] for x in batch],
            tgt_texts=[x["tgt_texts"] for x in batch],
            max_length=self.data_args.max_source_length,
334
            max_target_length=self.data_args.max_target_length,
335
336
            padding="max_length" if self.tpu_num_cores is not None else "longest",  # TPU hack
            return_tensors="pt",
337
            **self.dataset_kwargs,
338
339
340
341
        )
        return batch_encoding.data


342
343
344
class SortishSampler(Sampler):
    "Go through the text data by order of src length with a bit of randomness. From fastai repo."

345
346
    def __init__(self, data, batch_size, shuffle=True):
        self.data, self.bs, self.shuffle = data, batch_size, shuffle
347
348
349
350
351

    def __len__(self) -> int:
        return len(self.data)

    def __iter__(self):
352
        return iter(sortish_sampler_indices(self.data, self.bs, shuffle=self.shuffle))
353
354


355
def sortish_sampler_indices(data: List, bs: int, shuffle=True) -> np.array:
356
    "Go through the text data by order of src length with a bit of randomness. From fastai repo."
357
358
    if not shuffle:
        return np.argsort(np.array(data) * -1)
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378

    def key_fn(i):
        return data[i]

    idxs = np.random.permutation(len(data))
    sz = bs * 50
    ck_idx = [idxs[i : i + sz] for i in range(0, len(idxs), sz)]
    sort_idx = np.concatenate([sorted(s, key=key_fn, reverse=True) for s in ck_idx])
    sz = bs
    ck_idx = [sort_idx[i : i + sz] for i in range(0, len(sort_idx), sz)]
    max_ck = np.argmax([key_fn(ck[0]) for ck in ck_idx])  # find the chunk with the largest key,
    ck_idx[0], ck_idx[max_ck] = ck_idx[max_ck], ck_idx[0]  # then make sure it goes first.
    sort_idx = np.concatenate(np.random.permutation(ck_idx[1:])) if len(ck_idx) > 1 else np.array([], dtype=np.int)
    sort_idx = np.concatenate((ck_idx[0], sort_idx))
    return sort_idx


class DistributedSortishSampler(Sampler):
    """Copied from torch DistributedSampler"""

379
    def __init__(self, dataset, batch_size, num_replicas=None, rank=None, add_extra_examples=True, shuffle=True):
380
381
382
383
384
385
386
387
388
389
390
391
        if num_replicas is None:
            if not dist.is_available():
                raise RuntimeError("Requires distributed package to be available")
            num_replicas = dist.get_world_size()
        if rank is None:
            if not dist.is_available():
                raise RuntimeError("Requires distributed package to be available")
            rank = dist.get_rank()
        self.dataset = dataset
        self.num_replicas = num_replicas
        self.rank = rank
        self.epoch = 0
392
393
394
395
396
397
        if add_extra_examples:
            self.num_samples = int(math.ceil(len(self.dataset) * 1.0 / self.num_replicas))
            self.total_size = self.num_samples * self.num_replicas
        else:
            self.total_size = len(dataset)
            self.num_samples = len(self.available_indices)
398
        self.batch_size = batch_size
399
        self.add_extra_examples = add_extra_examples
400
        self.shuffle = shuffle
401
402
403
404
405

    def __iter__(self) -> Iterable:
        g = torch.Generator()
        g.manual_seed(self.epoch)

406
        sortish_data = [self.dataset.src_lens[i] for i in self.available_indices]
407
        sortish_indices = sortish_sampler_indices(sortish_data, self.batch_size, shuffle=self.shuffle)
408
        indices = [self.available_indices[i] for i in sortish_indices]
409
410
411
        assert len(indices) == self.num_samples
        return iter(indices)

412
413
    @cached_property
    def available_indices(self) -> np.array:
414
415
416
417
418
419
420
421
422
423
424
425
426
        indices = list(range(len(self.dataset)))
        # add extra samples to make it evenly divisible
        indices += indices[: (self.total_size - len(indices))]
        assert len(indices) == self.total_size
        # subsample
        available_indices = indices[self.rank : self.total_size : self.num_replicas]
        return available_indices

    def __len__(self):
        return self.num_samples

    def set_epoch(self, epoch):
        self.epoch = epoch
427
428


429
430
431
logger = getLogger(__name__)


432
def use_task_specific_params(model, task):
433
    """Update config with summarization specific params."""
434
    task_specific_params = model.config.task_specific_params
435

436
    if task_specific_params is not None:
437
        pars = task_specific_params.get(task, {})
Stas Bekman's avatar
Stas Bekman committed
438
439
        logger.info(f"setting model.config to task specific params for {task}:\n {pars}")
        logger.info("note: command line args may override some of these")
440
        model.config.update(pars)
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458


def pickle_load(path):
    """pickle.load(path)"""
    with open(path, "rb") as f:
        return pickle.load(f)


def pickle_save(obj, path):
    """pickle.dump(obj, path)"""
    with open(path, "wb") as f:
        return pickle.dump(obj, f)


def flatten_list(summary_ids: List[List]):
    return [x for x in itertools.chain.from_iterable(summary_ids)]


459
460
def save_git_info(folder_path: str) -> None:
    """Save git information to output_dir/git_log.json"""
461
    repo_infos = get_git_info()
462
    save_json(repo_infos, os.path.join(folder_path, "git_log.json"))
463

464

465
def save_json(content, path, indent=4, **json_dump_kwargs):
466
    with open(path, "w") as f:
467
        json.dump(content, f, indent=indent, sort_keys=True, **json_dump_kwargs)
468
469
470
471
472


def load_json(path):
    with open(path) as f:
        return json.load(f)
473
474
475


def get_git_info():
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
    try:
        repo = git.Repo(search_parent_directories=True)
        repo_infos = {
            "repo_id": str(repo),
            "repo_sha": str(repo.head.object.hexsha),
            "repo_branch": str(repo.active_branch),
            "hostname": str(socket.gethostname()),
        }
        return repo_infos
    except TypeError:
        return {
            "repo_id": None,
            "repo_sha": None,
            "repo_branch": None,
            "hostname": None,
        }
492
493


494
ROUGE_KEYS = ["rouge1", "rouge2", "rougeL", "rougeLsum"]
495
496


497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
def extract_rouge_mid_statistics(dct):
    new_dict = {}
    for k1, v1 in dct.items():
        mid = v1.mid
        new_dict[k1] = {stat: round(getattr(mid, stat), 4) for stat in ["precision", "recall", "fmeasure"]}
    return new_dict


def calculate_rouge(
    pred_lns: List[str],
    tgt_lns: List[str],
    use_stemmer=True,
    rouge_keys=ROUGE_KEYS,
    return_precision_and_recall=False,
    bootstrap_aggregation=True,
    newline_sep=True,
) -> Dict:
    """Calculate rouge using rouge_scorer package.
515

516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
    Args:
        pred_lns: list of summaries generated by model
        tgt_lns: list of groundtruth summaries (e.g. contents of val.target)
        use_stemmer:  Bool indicating whether Porter stemmer should be used to
        strip word suffixes to improve matching.
        rouge_keys:  which metrics to compute, defaults to rouge1, rouge2, rougeL, rougeLsum
        return_precision_and_recall: (False) whether to also return precision and recall.
        bootstrap_aggregation: whether to do the typical bootstrap resampling of scores. Defaults to True, if False
            this function returns a collections.defaultdict[metric: list of values for each observation for each subscore]``
        newline_sep:(default=True) whether to add newline between sentences. This is essential for calculation rougeL
        on multi sentence summaries (CNN/DM dataset).

    Returns:
         Dict[score: value] if aggregate else defaultdict(list) keyed by rouge_keys

    """
    scorer = rouge_scorer.RougeScorer(rouge_keys, use_stemmer=use_stemmer)
    aggregator = scoring.BootstrapAggregator()
    for pred, tgt in zip(tgt_lns, pred_lns):
        # rougeLsum expects "\n" separated sentences within a summary
        if newline_sep:
            pred = add_newline_to_end_of_each_sentence(pred)
            tgt = add_newline_to_end_of_each_sentence(tgt)
        scores = scorer.score(pred, tgt)
540
541
        aggregator.add_scores(scores)

542
543
544
545
546
547
548
549
550
    if bootstrap_aggregation:
        result = aggregator.aggregate()
        if return_precision_and_recall:
            return extract_rouge_mid_statistics(result)  # here we return dict
        else:
            return {k: round(v.mid.fmeasure * 100, 4) for k, v in result.items()}

    else:
        return aggregator._scores  # here we return defaultdict(list)
551
552


553
554
555
# Utilities for freezing parameters and checking whether they are frozen


556
def freeze_params(model: nn.Module):
557
    """Set requires_grad=False for each of model.parameters()"""
558
559
560
561
    for par in model.parameters():
        par.requires_grad = False


562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
def freeze_embeds(model):
    """Freeze token embeddings and positional embeddings for bart, just token embeddings for t5."""
    model_type = model.config.model_type

    if model_type == "t5":
        freeze_params(model.shared)
        for d in [model.encoder, model.decoder]:
            freeze_params(d.embed_tokens)
    elif model_type == "fsmt":
        for d in [model.model.encoder, model.model.decoder]:
            freeze_params(d.embed_positions)
            freeze_params(d.embed_tokens)
    else:
        freeze_params(model.model.shared)
        for d in [model.model.encoder, model.model.decoder]:
            freeze_params(d.embed_positions)
            freeze_params(d.embed_tokens)


581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
def grad_status(model: nn.Module) -> Iterable:
    return (par.requires_grad for par in model.parameters())


def any_requires_grad(model: nn.Module) -> bool:
    return any(grad_status(model))


def assert_all_frozen(model):
    model_grads: List[bool] = list(grad_status(model))
    n_require_grad = sum(lmap(int, model_grads))
    npars = len(model_grads)
    assert not any(model_grads), f"{n_require_grad/npars:.1%} of {npars} weights require grad"


def assert_not_all_frozen(model):
    model_grads: List[bool] = list(grad_status(model))
    npars = len(model_grads)
    assert any(model_grads), f"none of {npars} weights require grad"
600
601


602
603
604
605
606
def parse_numeric_n_bool_cl_kwargs(unparsed_args: List[str]) -> Dict[str, Union[int, float, bool]]:
    """
    Parse an argv list of unspecified command line args to a dict.
    Assumes all values are either numeric or boolean in the form of true/false.
    """
607
608
609
610
611
612
    result = {}
    assert len(unparsed_args) % 2 == 0, f"got odd number of unparsed args: {unparsed_args}"
    num_pairs = len(unparsed_args) // 2
    for pair_num in range(num_pairs):
        i = 2 * pair_num
        assert unparsed_args[i].startswith("--")
613
614
615
616
617
618
619
620
621
        if unparsed_args[i + 1].lower() == "true":
            value = True
        elif unparsed_args[i + 1].lower() == "false":
            value = False
        else:
            try:
                value = int(unparsed_args[i + 1])
            except ValueError:
                value = float(unparsed_args[i + 1])  # this can raise another informative ValueError
622
623
624

        result[unparsed_args[i][2:]] = value
    return result
625
626
627
628
629
630
631


def write_txt_file(ordered_tgt, path):
    f = Path(path).open("w")
    for ln in ordered_tgt:
        f.write(ln + "\n")
        f.flush()
632
633
634
635
636
637


def chunks(lst, n):
    """Yield successive n-sized chunks from lst."""
    for i in range(0, len(lst), n):
        yield lst[i : i + n]
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658


def check_output_dir(args, expected_items=0):
    """
    Checks whether to bail out if output_dir already exists and has more than expected_items in it

    `args`: needs to have the following attributes of `args`:
      - output_dir
      - do_train
      - overwrite_output_dir

    `expected_items`: normally 0 (default) - i.e. empty dir, but in some cases a few files are expected (e.g. recovery from OOM)
    """
    if (
        os.path.exists(args.output_dir)
        and len(os.listdir(args.output_dir)) > expected_items
        and args.do_train
        and not args.overwrite_output_dir
    ):
        raise ValueError(
            f"Output directory ({args.output_dir}) already exists and "
659
            f"has {len(os.listdir(args.output_dir))} items in it (expected {expected_items} items). "
660
661
            "Use --overwrite_output_dir to overcome."
        )