test_feature_extraction_common.py 7.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# coding=utf-8
# Copyright 2021 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import json
import os
19
import sys
20
import tempfile
21
import unittest
22
import unittest.mock as mock
23
from pathlib import Path
24

25
from huggingface_hub import HfFolder, delete_repo, set_access_token
26
from requests.exceptions import HTTPError
27

28
from transformers import AutoFeatureExtractor, Wav2Vec2FeatureExtractor
29
from transformers.testing_utils import TOKEN, USER, check_json_file_has_correct_format, get_tests_dir, is_staging_test
30
31
32
33
34


sys.path.append(str(Path(__file__).parent.parent / "utils"))

from test_module.custom_feature_extraction import CustomFeatureExtractor  # noqa E402
NielsRogge's avatar
NielsRogge committed
35
36


Yih-Dar's avatar
Yih-Dar committed
37
SAMPLE_FEATURE_EXTRACTION_CONFIG_DIR = get_tests_dir("fixtures")
38
39


40
class FeatureExtractionSavingTestMixin:
41
42
    test_cast_dtype = None

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
    def test_feat_extract_to_json_string(self):
        feat_extract = self.feature_extraction_class(**self.feat_extract_dict)
        obj = json.loads(feat_extract.to_json_string())
        for key, value in self.feat_extract_dict.items():
            self.assertEqual(obj[key], value)

    def test_feat_extract_to_json_file(self):
        feat_extract_first = self.feature_extraction_class(**self.feat_extract_dict)

        with tempfile.TemporaryDirectory() as tmpdirname:
            json_file_path = os.path.join(tmpdirname, "feat_extract.json")
            feat_extract_first.to_json_file(json_file_path)
            feat_extract_second = self.feature_extraction_class.from_json_file(json_file_path)

        self.assertEqual(feat_extract_second.to_dict(), feat_extract_first.to_dict())

    def test_feat_extract_from_and_save_pretrained(self):
        feat_extract_first = self.feature_extraction_class(**self.feat_extract_dict)

        with tempfile.TemporaryDirectory() as tmpdirname:
63
64
            saved_file = feat_extract_first.save_pretrained(tmpdirname)[0]
            check_json_file_has_correct_format(saved_file)
65
66
67
68
69
70
71
            feat_extract_second = self.feature_extraction_class.from_pretrained(tmpdirname)

        self.assertEqual(feat_extract_second.to_dict(), feat_extract_first.to_dict())

    def test_init_without_params(self):
        feat_extract = self.feature_extraction_class()
        self.assertIsNotNone(feat_extract)
72
73


74
75
76
77
78
class FeatureExtractorUtilTester(unittest.TestCase):
    def test_cached_files_are_used_when_internet_is_down(self):
        # A mock response for an HTTP head request to emulate server down
        response_mock = mock.Mock()
        response_mock.status_code = 500
79
        response_mock.headers = {}
80
        response_mock.raise_for_status.side_effect = HTTPError
81
        response_mock.json.return_value = {}
82
83
84
85

        # Download this model to make sure it's in the cache.
        _ = Wav2Vec2FeatureExtractor.from_pretrained("hf-internal-testing/tiny-random-wav2vec2")
        # Under the mock environment we get a 500 error when trying to reach the model.
86
        with mock.patch("requests.request", return_value=response_mock) as mock_head:
87
88
89
90
            _ = Wav2Vec2FeatureExtractor.from_pretrained("hf-internal-testing/tiny-random-wav2vec2")
            # This check we did call the fake head request
            mock_head.assert_called()

91
92
93
94
95
96
    def test_legacy_load_from_url(self):
        # This test is for deprecated behavior and can be removed in v5
        _ = Wav2Vec2FeatureExtractor.from_pretrained(
            "https://huggingface.co/hf-internal-testing/tiny-random-wav2vec2/resolve/main/preprocessor_config.json"
        )

97

98
@is_staging_test
99
class FeatureExtractorPushToHubTester(unittest.TestCase):
100
101
    @classmethod
    def setUpClass(cls):
102
103
104
        cls._token = TOKEN
        set_access_token(TOKEN)
        HfFolder.save_token(TOKEN)
105
106
107

    @classmethod
    def tearDownClass(cls):
108
        try:
109
            delete_repo(token=cls._token, repo_id="test-feature-extractor")
110
111
112
113
        except HTTPError:
            pass

        try:
114
            delete_repo(token=cls._token, repo_id="valid_org/test-feature-extractor-org")
115
116
117
        except HTTPError:
            pass

118
        try:
119
            delete_repo(token=cls._token, repo_id="test-dynamic-feature-extractor")
120
121
122
        except HTTPError:
            pass

123
124
    def test_push_to_hub(self):
        feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(SAMPLE_FEATURE_EXTRACTION_CONFIG_DIR)
125
126
127
128
129
130
131
132
133
134
        feature_extractor.push_to_hub("test-feature-extractor", use_auth_token=self._token)

        new_feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(f"{USER}/test-feature-extractor")
        for k, v in feature_extractor.__dict__.items():
            self.assertEqual(v, getattr(new_feature_extractor, k))

        # Reset repo
        delete_repo(token=self._token, repo_id="test-feature-extractor")

        # Push to hub via save_pretrained
135
136
        with tempfile.TemporaryDirectory() as tmp_dir:
            feature_extractor.save_pretrained(
137
                tmp_dir, repo_id="test-feature-extractor", push_to_hub=True, use_auth_token=self._token
138
139
            )

140
141
142
        new_feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(f"{USER}/test-feature-extractor")
        for k, v in feature_extractor.__dict__.items():
            self.assertEqual(v, getattr(new_feature_extractor, k))
143
144
145

    def test_push_to_hub_in_organization(self):
        feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(SAMPLE_FEATURE_EXTRACTION_CONFIG_DIR)
146
147
148
149
150
151
152
153
        feature_extractor.push_to_hub("valid_org/test-feature-extractor", use_auth_token=self._token)

        new_feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("valid_org/test-feature-extractor")
        for k, v in feature_extractor.__dict__.items():
            self.assertEqual(v, getattr(new_feature_extractor, k))

        # Reset repo
        delete_repo(token=self._token, repo_id="valid_org/test-feature-extractor")
154

155
        # Push to hub via save_pretrained
156
157
        with tempfile.TemporaryDirectory() as tmp_dir:
            feature_extractor.save_pretrained(
158
                tmp_dir, repo_id="valid_org/test-feature-extractor-org", push_to_hub=True, use_auth_token=self._token
159
160
            )

161
162
163
        new_feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("valid_org/test-feature-extractor-org")
        for k, v in feature_extractor.__dict__.items():
            self.assertEqual(v, getattr(new_feature_extractor, k))
164

165
166
167
168
    def test_push_to_hub_dynamic_feature_extractor(self):
        CustomFeatureExtractor.register_for_auto_class()
        feature_extractor = CustomFeatureExtractor.from_pretrained(SAMPLE_FEATURE_EXTRACTION_CONFIG_DIR)

169
        feature_extractor.push_to_hub("test-dynamic-feature-extractor", use_auth_token=self._token)
170

171
172
173
174
175
        # This has added the proper auto_map field to the config
        self.assertDictEqual(
            feature_extractor.auto_map,
            {"AutoFeatureExtractor": "custom_feature_extraction.CustomFeatureExtractor"},
        )
176
177
178
179
180
181

        new_feature_extractor = AutoFeatureExtractor.from_pretrained(
            f"{USER}/test-dynamic-feature-extractor", trust_remote_code=True
        )
        # Can't make an isinstance check because the new_feature_extractor is from the CustomFeatureExtractor class of a dynamic module
        self.assertEqual(new_feature_extractor.__class__.__name__, "CustomFeatureExtractor")