test_feature_extraction_common.py 7.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# coding=utf-8
# Copyright 2021 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import json
import os
19
import sys
20
import tempfile
21
import unittest
22
import unittest.mock as mock
23
from pathlib import Path
24

25
from huggingface_hub import HfFolder, delete_repo, set_access_token
26
from requests.exceptions import HTTPError
27
from transformers import AutoFeatureExtractor, Wav2Vec2FeatureExtractor
28
from transformers.testing_utils import TOKEN, USER, check_json_file_has_correct_format, get_tests_dir, is_staging_test
29
30
31
32
33


sys.path.append(str(Path(__file__).parent.parent / "utils"))

from test_module.custom_feature_extraction import CustomFeatureExtractor  # noqa E402
NielsRogge's avatar
NielsRogge committed
34
35


Yih-Dar's avatar
Yih-Dar committed
36
SAMPLE_FEATURE_EXTRACTION_CONFIG_DIR = get_tests_dir("fixtures")
37
38


39
class FeatureExtractionSavingTestMixin:
40
41
    test_cast_dtype = None

42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
    def test_feat_extract_to_json_string(self):
        feat_extract = self.feature_extraction_class(**self.feat_extract_dict)
        obj = json.loads(feat_extract.to_json_string())
        for key, value in self.feat_extract_dict.items():
            self.assertEqual(obj[key], value)

    def test_feat_extract_to_json_file(self):
        feat_extract_first = self.feature_extraction_class(**self.feat_extract_dict)

        with tempfile.TemporaryDirectory() as tmpdirname:
            json_file_path = os.path.join(tmpdirname, "feat_extract.json")
            feat_extract_first.to_json_file(json_file_path)
            feat_extract_second = self.feature_extraction_class.from_json_file(json_file_path)

        self.assertEqual(feat_extract_second.to_dict(), feat_extract_first.to_dict())

    def test_feat_extract_from_and_save_pretrained(self):
        feat_extract_first = self.feature_extraction_class(**self.feat_extract_dict)

        with tempfile.TemporaryDirectory() as tmpdirname:
62
63
            saved_file = feat_extract_first.save_pretrained(tmpdirname)[0]
            check_json_file_has_correct_format(saved_file)
64
65
66
67
68
69
70
            feat_extract_second = self.feature_extraction_class.from_pretrained(tmpdirname)

        self.assertEqual(feat_extract_second.to_dict(), feat_extract_first.to_dict())

    def test_init_without_params(self):
        feat_extract = self.feature_extraction_class()
        self.assertIsNotNone(feat_extract)
71
72


73
74
75
76
77
class FeatureExtractorUtilTester(unittest.TestCase):
    def test_cached_files_are_used_when_internet_is_down(self):
        # A mock response for an HTTP head request to emulate server down
        response_mock = mock.Mock()
        response_mock.status_code = 500
78
        response_mock.headers = {}
79
        response_mock.raise_for_status.side_effect = HTTPError
80
        response_mock.json.return_value = {}
81
82
83
84

        # Download this model to make sure it's in the cache.
        _ = Wav2Vec2FeatureExtractor.from_pretrained("hf-internal-testing/tiny-random-wav2vec2")
        # Under the mock environment we get a 500 error when trying to reach the model.
85
        with mock.patch("requests.request", return_value=response_mock) as mock_head:
86
87
88
89
            _ = Wav2Vec2FeatureExtractor.from_pretrained("hf-internal-testing/tiny-random-wav2vec2")
            # This check we did call the fake head request
            mock_head.assert_called()

90
91
92
93
94
95
    def test_legacy_load_from_url(self):
        # This test is for deprecated behavior and can be removed in v5
        _ = Wav2Vec2FeatureExtractor.from_pretrained(
            "https://huggingface.co/hf-internal-testing/tiny-random-wav2vec2/resolve/main/preprocessor_config.json"
        )

96

97
@is_staging_test
98
class FeatureExtractorPushToHubTester(unittest.TestCase):
99
100
    @classmethod
    def setUpClass(cls):
101
102
103
        cls._token = TOKEN
        set_access_token(TOKEN)
        HfFolder.save_token(TOKEN)
104
105
106

    @classmethod
    def tearDownClass(cls):
107
        try:
108
            delete_repo(token=cls._token, repo_id="test-feature-extractor")
109
110
111
112
        except HTTPError:
            pass

        try:
113
            delete_repo(token=cls._token, repo_id="valid_org/test-feature-extractor-org")
114
115
116
        except HTTPError:
            pass

117
        try:
118
            delete_repo(token=cls._token, repo_id="test-dynamic-feature-extractor")
119
120
121
        except HTTPError:
            pass

122
123
    def test_push_to_hub(self):
        feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(SAMPLE_FEATURE_EXTRACTION_CONFIG_DIR)
124
125
126
127
128
129
130
131
132
133
        feature_extractor.push_to_hub("test-feature-extractor", use_auth_token=self._token)

        new_feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(f"{USER}/test-feature-extractor")
        for k, v in feature_extractor.__dict__.items():
            self.assertEqual(v, getattr(new_feature_extractor, k))

        # Reset repo
        delete_repo(token=self._token, repo_id="test-feature-extractor")

        # Push to hub via save_pretrained
134
135
        with tempfile.TemporaryDirectory() as tmp_dir:
            feature_extractor.save_pretrained(
136
                tmp_dir, repo_id="test-feature-extractor", push_to_hub=True, use_auth_token=self._token
137
138
            )

139
140
141
        new_feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(f"{USER}/test-feature-extractor")
        for k, v in feature_extractor.__dict__.items():
            self.assertEqual(v, getattr(new_feature_extractor, k))
142
143
144

    def test_push_to_hub_in_organization(self):
        feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(SAMPLE_FEATURE_EXTRACTION_CONFIG_DIR)
145
146
147
148
149
150
151
152
        feature_extractor.push_to_hub("valid_org/test-feature-extractor", use_auth_token=self._token)

        new_feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("valid_org/test-feature-extractor")
        for k, v in feature_extractor.__dict__.items():
            self.assertEqual(v, getattr(new_feature_extractor, k))

        # Reset repo
        delete_repo(token=self._token, repo_id="valid_org/test-feature-extractor")
153

154
        # Push to hub via save_pretrained
155
156
        with tempfile.TemporaryDirectory() as tmp_dir:
            feature_extractor.save_pretrained(
157
                tmp_dir, repo_id="valid_org/test-feature-extractor-org", push_to_hub=True, use_auth_token=self._token
158
159
            )

160
161
162
        new_feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("valid_org/test-feature-extractor-org")
        for k, v in feature_extractor.__dict__.items():
            self.assertEqual(v, getattr(new_feature_extractor, k))
163

164
165
166
167
    def test_push_to_hub_dynamic_feature_extractor(self):
        CustomFeatureExtractor.register_for_auto_class()
        feature_extractor = CustomFeatureExtractor.from_pretrained(SAMPLE_FEATURE_EXTRACTION_CONFIG_DIR)

168
        feature_extractor.push_to_hub("test-dynamic-feature-extractor", use_auth_token=self._token)
169

170
171
172
173
174
        # This has added the proper auto_map field to the config
        self.assertDictEqual(
            feature_extractor.auto_map,
            {"AutoFeatureExtractor": "custom_feature_extraction.CustomFeatureExtractor"},
        )
175
176
177
178
179
180

        new_feature_extractor = AutoFeatureExtractor.from_pretrained(
            f"{USER}/test-dynamic-feature-extractor", trust_remote_code=True
        )
        # Can't make an isinstance check because the new_feature_extractor is from the CustomFeatureExtractor class of a dynamic module
        self.assertEqual(new_feature_extractor.__class__.__name__, "CustomFeatureExtractor")