test_feature_extraction_common.py 10.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# coding=utf-8
# Copyright 2021 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import json
import os
19
import sys
20
import tempfile
21
import unittest
22
import unittest.mock as mock
23
from pathlib import Path
24

25
from huggingface_hub import HfFolder, delete_repo, set_access_token
26
from requests.exceptions import HTTPError
27
from transformers import AutoFeatureExtractor, Wav2Vec2FeatureExtractor
28
from transformers.testing_utils import TOKEN, USER, check_json_file_has_correct_format, get_tests_dir, is_staging_test
29
from transformers.utils import is_torch_available, is_vision_available
30
31
32
33
34


sys.path.append(str(Path(__file__).parent.parent / "utils"))

from test_module.custom_feature_extraction import CustomFeatureExtractor  # noqa E402
NielsRogge's avatar
NielsRogge committed
35
36
37
38
39
40
41
42
43


if is_torch_available():
    import numpy as np
    import torch

if is_vision_available():
    from PIL import Image

44

Yih-Dar's avatar
Yih-Dar committed
45
SAMPLE_FEATURE_EXTRACTION_CONFIG_DIR = get_tests_dir("fixtures")
46
47


NielsRogge's avatar
NielsRogge committed
48
49
50
def prepare_image_inputs(feature_extract_tester, equal_resolution=False, numpify=False, torchify=False):
    """This function prepares a list of PIL images, or a list of numpy arrays if one specifies numpify=True,
    or a list of PyTorch tensors if one specifies torchify=True.
NielsRogge's avatar
NielsRogge committed
51
52

    One can specify whether the images are of the same resolution or not.
NielsRogge's avatar
NielsRogge committed
53
54
55
56
    """

    assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time"

NielsRogge's avatar
NielsRogge committed
57
58
59
60
61
62
63
64
65
66
    image_inputs = []
    for i in range(feature_extract_tester.batch_size):
        if equal_resolution:
            width = height = feature_extract_tester.max_resolution
        else:
            # To avoid getting image width/height 0
            min_resolution = feature_extract_tester.min_resolution
            if getattr(feature_extract_tester, "size_divisor", None):
                # If `size_divisor` is defined, the image needs to have width/size >= `size_divisor`
                min_resolution = max(feature_extract_tester.size_divisor, min_resolution)
67
            width, height = np.random.choice(np.arange(min_resolution, feature_extract_tester.max_resolution), 2)
NielsRogge's avatar
NielsRogge committed
68
69
70
71
72
73
74
75
76
        image_inputs.append(
            np.random.randint(
                255,
                size=(
                    feature_extract_tester.num_channels,
                    width,
                    height,
                ),
                dtype=np.uint8,
NielsRogge's avatar
NielsRogge committed
77
            )
NielsRogge's avatar
NielsRogge committed
78
        )
NielsRogge's avatar
NielsRogge committed
79
80
81

    if not numpify and not torchify:
        # PIL expects the channel dimension as last dimension
NielsRogge's avatar
NielsRogge committed
82
        image_inputs = [Image.fromarray(np.moveaxis(image, 0, -1)) for image in image_inputs]
NielsRogge's avatar
NielsRogge committed
83
84

    if torchify:
NielsRogge's avatar
NielsRogge committed
85
        image_inputs = [torch.from_numpy(image) for image in image_inputs]
NielsRogge's avatar
NielsRogge committed
86
87
88

    return image_inputs

89

NielsRogge's avatar
NielsRogge committed
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
def prepare_video(feature_extract_tester, width=10, height=10, numpify=False, torchify=False):
    """This function prepares a video as a list of PIL images/NumPy arrays/PyTorch tensors."""

    video = []
    for i in range(feature_extract_tester.num_frames):
        video.append(np.random.randint(255, size=(feature_extract_tester.num_channels, width, height), dtype=np.uint8))

    if not numpify and not torchify:
        # PIL expects the channel dimension as last dimension
        video = [Image.fromarray(np.moveaxis(frame, 0, -1)) for frame in video]

    if torchify:
        video = [torch.from_numpy(frame) for frame in video]

    return video


def prepare_video_inputs(feature_extract_tester, equal_resolution=False, numpify=False, torchify=False):
    """This function prepares a batch of videos: a list of list of PIL images, or a list of list of numpy arrays if
    one specifies numpify=True, or a list of list of PyTorch tensors if one specifies torchify=True.

    One can specify whether the videos are of the same resolution or not.
    """

    assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time"

    video_inputs = []
    for i in range(feature_extract_tester.batch_size):
        if equal_resolution:
            width = height = feature_extract_tester.max_resolution
        else:
            width, height = np.random.choice(
                np.arange(feature_extract_tester.min_resolution, feature_extract_tester.max_resolution), 2
            )
            video = prepare_video(
                feature_extract_tester=feature_extract_tester,
                width=width,
                height=height,
                numpify=numpify,
                torchify=torchify,
            )
        video_inputs.append(video)

    return video_inputs


136
class FeatureExtractionSavingTestMixin:
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
    def test_feat_extract_to_json_string(self):
        feat_extract = self.feature_extraction_class(**self.feat_extract_dict)
        obj = json.loads(feat_extract.to_json_string())
        for key, value in self.feat_extract_dict.items():
            self.assertEqual(obj[key], value)

    def test_feat_extract_to_json_file(self):
        feat_extract_first = self.feature_extraction_class(**self.feat_extract_dict)

        with tempfile.TemporaryDirectory() as tmpdirname:
            json_file_path = os.path.join(tmpdirname, "feat_extract.json")
            feat_extract_first.to_json_file(json_file_path)
            feat_extract_second = self.feature_extraction_class.from_json_file(json_file_path)

        self.assertEqual(feat_extract_second.to_dict(), feat_extract_first.to_dict())

    def test_feat_extract_from_and_save_pretrained(self):
        feat_extract_first = self.feature_extraction_class(**self.feat_extract_dict)

        with tempfile.TemporaryDirectory() as tmpdirname:
157
158
            saved_file = feat_extract_first.save_pretrained(tmpdirname)[0]
            check_json_file_has_correct_format(saved_file)
159
160
161
162
163
164
165
            feat_extract_second = self.feature_extraction_class.from_pretrained(tmpdirname)

        self.assertEqual(feat_extract_second.to_dict(), feat_extract_first.to_dict())

    def test_init_without_params(self):
        feat_extract = self.feature_extraction_class()
        self.assertIsNotNone(feat_extract)
166
167


168
169
170
171
172
class FeatureExtractorUtilTester(unittest.TestCase):
    def test_cached_files_are_used_when_internet_is_down(self):
        # A mock response for an HTTP head request to emulate server down
        response_mock = mock.Mock()
        response_mock.status_code = 500
173
        response_mock.headers = {}
174
175
176
177
178
        response_mock.raise_for_status.side_effect = HTTPError

        # Download this model to make sure it's in the cache.
        _ = Wav2Vec2FeatureExtractor.from_pretrained("hf-internal-testing/tiny-random-wav2vec2")
        # Under the mock environment we get a 500 error when trying to reach the model.
179
        with mock.patch("requests.request", return_value=response_mock) as mock_head:
180
181
182
183
184
            _ = Wav2Vec2FeatureExtractor.from_pretrained("hf-internal-testing/tiny-random-wav2vec2")
            # This check we did call the fake head request
            mock_head.assert_called()


185
@is_staging_test
186
class FeatureExtractorPushToHubTester(unittest.TestCase):
187
188
    @classmethod
    def setUpClass(cls):
189
190
191
        cls._token = TOKEN
        set_access_token(TOKEN)
        HfFolder.save_token(TOKEN)
192
193
194

    @classmethod
    def tearDownClass(cls):
195
        try:
196
            delete_repo(token=cls._token, repo_id="test-feature-extractor")
197
198
199
200
        except HTTPError:
            pass

        try:
201
            delete_repo(token=cls._token, repo_id="valid_org/test-feature-extractor-org")
202
203
204
        except HTTPError:
            pass

205
        try:
206
            delete_repo(token=cls._token, repo_id="test-dynamic-feature-extractor")
207
208
209
        except HTTPError:
            pass

210
211
    def test_push_to_hub(self):
        feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(SAMPLE_FEATURE_EXTRACTION_CONFIG_DIR)
212
213
214
215
216
217
218
219
220
221
        feature_extractor.push_to_hub("test-feature-extractor", use_auth_token=self._token)

        new_feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(f"{USER}/test-feature-extractor")
        for k, v in feature_extractor.__dict__.items():
            self.assertEqual(v, getattr(new_feature_extractor, k))

        # Reset repo
        delete_repo(token=self._token, repo_id="test-feature-extractor")

        # Push to hub via save_pretrained
222
223
        with tempfile.TemporaryDirectory() as tmp_dir:
            feature_extractor.save_pretrained(
224
                tmp_dir, repo_id="test-feature-extractor", push_to_hub=True, use_auth_token=self._token
225
226
            )

227
228
229
        new_feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(f"{USER}/test-feature-extractor")
        for k, v in feature_extractor.__dict__.items():
            self.assertEqual(v, getattr(new_feature_extractor, k))
230
231
232

    def test_push_to_hub_in_organization(self):
        feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(SAMPLE_FEATURE_EXTRACTION_CONFIG_DIR)
233
234
235
236
237
238
239
240
        feature_extractor.push_to_hub("valid_org/test-feature-extractor", use_auth_token=self._token)

        new_feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("valid_org/test-feature-extractor")
        for k, v in feature_extractor.__dict__.items():
            self.assertEqual(v, getattr(new_feature_extractor, k))

        # Reset repo
        delete_repo(token=self._token, repo_id="valid_org/test-feature-extractor")
241

242
        # Push to hub via save_pretrained
243
244
        with tempfile.TemporaryDirectory() as tmp_dir:
            feature_extractor.save_pretrained(
245
                tmp_dir, repo_id="valid_org/test-feature-extractor-org", push_to_hub=True, use_auth_token=self._token
246
247
            )

248
249
250
        new_feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("valid_org/test-feature-extractor-org")
        for k, v in feature_extractor.__dict__.items():
            self.assertEqual(v, getattr(new_feature_extractor, k))
251

252
253
254
255
    def test_push_to_hub_dynamic_feature_extractor(self):
        CustomFeatureExtractor.register_for_auto_class()
        feature_extractor = CustomFeatureExtractor.from_pretrained(SAMPLE_FEATURE_EXTRACTION_CONFIG_DIR)

256
        feature_extractor.push_to_hub("test-dynamic-feature-extractor", use_auth_token=self._token)
257

258
259
260
261
262
        # This has added the proper auto_map field to the config
        self.assertDictEqual(
            feature_extractor.auto_map,
            {"AutoFeatureExtractor": "custom_feature_extraction.CustomFeatureExtractor"},
        )
263
264
265
266
267
268

        new_feature_extractor = AutoFeatureExtractor.from_pretrained(
            f"{USER}/test-dynamic-feature-extractor", trust_remote_code=True
        )
        # Can't make an isinstance check because the new_feature_extractor is from the CustomFeatureExtractor class of a dynamic module
        self.assertEqual(new_feature_extractor.__class__.__name__, "CustomFeatureExtractor")