test_feature_extraction_common.py 13.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# coding=utf-8
# Copyright 2021 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import json
import os
19
import sys
20
import tempfile
21
import unittest
22
import unittest.mock as mock
23
from pathlib import Path
24

25
from huggingface_hub import HfFolder, delete_repo, set_access_token
26
from requests.exceptions import HTTPError
27
from transformers import AutoFeatureExtractor, Wav2Vec2FeatureExtractor
28
29
30
31
32
33
34
35
36
from transformers.testing_utils import (
    TOKEN,
    USER,
    check_json_file_has_correct_format,
    get_tests_dir,
    is_staging_test,
    require_torch,
    require_vision,
)
37
from transformers.utils import is_torch_available, is_vision_available
38
39
40
41
42


sys.path.append(str(Path(__file__).parent.parent / "utils"))

from test_module.custom_feature_extraction import CustomFeatureExtractor  # noqa E402
NielsRogge's avatar
NielsRogge committed
43
44
45
46
47
48
49
50
51


if is_torch_available():
    import numpy as np
    import torch

if is_vision_available():
    from PIL import Image

52

Yih-Dar's avatar
Yih-Dar committed
53
SAMPLE_FEATURE_EXTRACTION_CONFIG_DIR = get_tests_dir("fixtures")
54
55


NielsRogge's avatar
NielsRogge committed
56
57
58
def prepare_image_inputs(feature_extract_tester, equal_resolution=False, numpify=False, torchify=False):
    """This function prepares a list of PIL images, or a list of numpy arrays if one specifies numpify=True,
    or a list of PyTorch tensors if one specifies torchify=True.
NielsRogge's avatar
NielsRogge committed
59
60

    One can specify whether the images are of the same resolution or not.
NielsRogge's avatar
NielsRogge committed
61
62
63
64
    """

    assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time"

NielsRogge's avatar
NielsRogge committed
65
66
67
68
69
70
71
72
73
74
    image_inputs = []
    for i in range(feature_extract_tester.batch_size):
        if equal_resolution:
            width = height = feature_extract_tester.max_resolution
        else:
            # To avoid getting image width/height 0
            min_resolution = feature_extract_tester.min_resolution
            if getattr(feature_extract_tester, "size_divisor", None):
                # If `size_divisor` is defined, the image needs to have width/size >= `size_divisor`
                min_resolution = max(feature_extract_tester.size_divisor, min_resolution)
75
            width, height = np.random.choice(np.arange(min_resolution, feature_extract_tester.max_resolution), 2)
NielsRogge's avatar
NielsRogge committed
76
77
78
79
80
81
82
83
84
        image_inputs.append(
            np.random.randint(
                255,
                size=(
                    feature_extract_tester.num_channels,
                    width,
                    height,
                ),
                dtype=np.uint8,
NielsRogge's avatar
NielsRogge committed
85
            )
NielsRogge's avatar
NielsRogge committed
86
        )
NielsRogge's avatar
NielsRogge committed
87
88
89

    if not numpify and not torchify:
        # PIL expects the channel dimension as last dimension
NielsRogge's avatar
NielsRogge committed
90
        image_inputs = [Image.fromarray(np.moveaxis(image, 0, -1)) for image in image_inputs]
NielsRogge's avatar
NielsRogge committed
91
92

    if torchify:
NielsRogge's avatar
NielsRogge committed
93
        image_inputs = [torch.from_numpy(image) for image in image_inputs]
NielsRogge's avatar
NielsRogge committed
94
95
96

    return image_inputs

97

NielsRogge's avatar
NielsRogge committed
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
def prepare_video(feature_extract_tester, width=10, height=10, numpify=False, torchify=False):
    """This function prepares a video as a list of PIL images/NumPy arrays/PyTorch tensors."""

    video = []
    for i in range(feature_extract_tester.num_frames):
        video.append(np.random.randint(255, size=(feature_extract_tester.num_channels, width, height), dtype=np.uint8))

    if not numpify and not torchify:
        # PIL expects the channel dimension as last dimension
        video = [Image.fromarray(np.moveaxis(frame, 0, -1)) for frame in video]

    if torchify:
        video = [torch.from_numpy(frame) for frame in video]

    return video


def prepare_video_inputs(feature_extract_tester, equal_resolution=False, numpify=False, torchify=False):
    """This function prepares a batch of videos: a list of list of PIL images, or a list of list of numpy arrays if
    one specifies numpify=True, or a list of list of PyTorch tensors if one specifies torchify=True.

    One can specify whether the videos are of the same resolution or not.
    """

    assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time"

    video_inputs = []
    for i in range(feature_extract_tester.batch_size):
        if equal_resolution:
            width = height = feature_extract_tester.max_resolution
        else:
            width, height = np.random.choice(
                np.arange(feature_extract_tester.min_resolution, feature_extract_tester.max_resolution), 2
            )
            video = prepare_video(
                feature_extract_tester=feature_extract_tester,
                width=width,
                height=height,
                numpify=numpify,
                torchify=torchify,
            )
        video_inputs.append(video)

    return video_inputs


144
class FeatureExtractionSavingTestMixin:
145
146
    test_cast_dtype = None

147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
    def test_feat_extract_to_json_string(self):
        feat_extract = self.feature_extraction_class(**self.feat_extract_dict)
        obj = json.loads(feat_extract.to_json_string())
        for key, value in self.feat_extract_dict.items():
            self.assertEqual(obj[key], value)

    def test_feat_extract_to_json_file(self):
        feat_extract_first = self.feature_extraction_class(**self.feat_extract_dict)

        with tempfile.TemporaryDirectory() as tmpdirname:
            json_file_path = os.path.join(tmpdirname, "feat_extract.json")
            feat_extract_first.to_json_file(json_file_path)
            feat_extract_second = self.feature_extraction_class.from_json_file(json_file_path)

        self.assertEqual(feat_extract_second.to_dict(), feat_extract_first.to_dict())

    def test_feat_extract_from_and_save_pretrained(self):
        feat_extract_first = self.feature_extraction_class(**self.feat_extract_dict)

        with tempfile.TemporaryDirectory() as tmpdirname:
167
168
            saved_file = feat_extract_first.save_pretrained(tmpdirname)[0]
            check_json_file_has_correct_format(saved_file)
169
170
171
172
173
174
175
            feat_extract_second = self.feature_extraction_class.from_pretrained(tmpdirname)

        self.assertEqual(feat_extract_second.to_dict(), feat_extract_first.to_dict())

    def test_init_without_params(self):
        feat_extract = self.feature_extraction_class()
        self.assertIsNotNone(feat_extract)
176

177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
    @require_torch
    @require_vision
    def test_cast_dtype_device(self):
        if self.test_cast_dtype is not None:
            # Initialize feature_extractor
            feature_extractor = self.feature_extraction_class(**self.feat_extract_dict)

            # create random PyTorch tensors
            image_inputs = prepare_image_inputs(self.feature_extract_tester, equal_resolution=False, torchify=True)

            encoding = feature_extractor(image_inputs, return_tensors="pt")
            # for layoutLM compatiblity
            self.assertEqual(encoding.pixel_values.device, torch.device("cpu"))
            self.assertEqual(encoding.pixel_values.dtype, torch.float32)

            encoding = feature_extractor(image_inputs, return_tensors="pt").to(torch.float16)
            self.assertEqual(encoding.pixel_values.device, torch.device("cpu"))
            self.assertEqual(encoding.pixel_values.dtype, torch.float16)

            encoding = feature_extractor(image_inputs, return_tensors="pt").to("cpu", torch.bfloat16)
            self.assertEqual(encoding.pixel_values.device, torch.device("cpu"))
            self.assertEqual(encoding.pixel_values.dtype, torch.bfloat16)

            with self.assertRaises(TypeError):
                _ = feature_extractor(image_inputs, return_tensors="pt").to(torch.bfloat16, "cpu")

            # Try with text + image feature
            encoding = feature_extractor(image_inputs, return_tensors="pt")
            encoding.update({"input_ids": torch.LongTensor([[1, 2, 3], [4, 5, 6]])})
            encoding = encoding.to(torch.float16)

            self.assertEqual(encoding.pixel_values.device, torch.device("cpu"))
            self.assertEqual(encoding.pixel_values.dtype, torch.float16)
            self.assertEqual(encoding.input_ids.dtype, torch.long)

212

213
214
215
216
217
class FeatureExtractorUtilTester(unittest.TestCase):
    def test_cached_files_are_used_when_internet_is_down(self):
        # A mock response for an HTTP head request to emulate server down
        response_mock = mock.Mock()
        response_mock.status_code = 500
218
        response_mock.headers = {}
219
        response_mock.raise_for_status.side_effect = HTTPError
220
        response_mock.json.return_value = {}
221
222
223
224

        # Download this model to make sure it's in the cache.
        _ = Wav2Vec2FeatureExtractor.from_pretrained("hf-internal-testing/tiny-random-wav2vec2")
        # Under the mock environment we get a 500 error when trying to reach the model.
225
        with mock.patch("requests.request", return_value=response_mock) as mock_head:
226
227
228
229
            _ = Wav2Vec2FeatureExtractor.from_pretrained("hf-internal-testing/tiny-random-wav2vec2")
            # This check we did call the fake head request
            mock_head.assert_called()

230
231
232
233
234
235
    def test_legacy_load_from_url(self):
        # This test is for deprecated behavior and can be removed in v5
        _ = Wav2Vec2FeatureExtractor.from_pretrained(
            "https://huggingface.co/hf-internal-testing/tiny-random-wav2vec2/resolve/main/preprocessor_config.json"
        )

236

237
@is_staging_test
238
class FeatureExtractorPushToHubTester(unittest.TestCase):
239
240
    @classmethod
    def setUpClass(cls):
241
242
243
        cls._token = TOKEN
        set_access_token(TOKEN)
        HfFolder.save_token(TOKEN)
244
245
246

    @classmethod
    def tearDownClass(cls):
247
        try:
248
            delete_repo(token=cls._token, repo_id="test-feature-extractor")
249
250
251
252
        except HTTPError:
            pass

        try:
253
            delete_repo(token=cls._token, repo_id="valid_org/test-feature-extractor-org")
254
255
256
        except HTTPError:
            pass

257
        try:
258
            delete_repo(token=cls._token, repo_id="test-dynamic-feature-extractor")
259
260
261
        except HTTPError:
            pass

262
263
    def test_push_to_hub(self):
        feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(SAMPLE_FEATURE_EXTRACTION_CONFIG_DIR)
264
265
266
267
268
269
270
271
272
273
        feature_extractor.push_to_hub("test-feature-extractor", use_auth_token=self._token)

        new_feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(f"{USER}/test-feature-extractor")
        for k, v in feature_extractor.__dict__.items():
            self.assertEqual(v, getattr(new_feature_extractor, k))

        # Reset repo
        delete_repo(token=self._token, repo_id="test-feature-extractor")

        # Push to hub via save_pretrained
274
275
        with tempfile.TemporaryDirectory() as tmp_dir:
            feature_extractor.save_pretrained(
276
                tmp_dir, repo_id="test-feature-extractor", push_to_hub=True, use_auth_token=self._token
277
278
            )

279
280
281
        new_feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(f"{USER}/test-feature-extractor")
        for k, v in feature_extractor.__dict__.items():
            self.assertEqual(v, getattr(new_feature_extractor, k))
282
283
284

    def test_push_to_hub_in_organization(self):
        feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(SAMPLE_FEATURE_EXTRACTION_CONFIG_DIR)
285
286
287
288
289
290
291
292
        feature_extractor.push_to_hub("valid_org/test-feature-extractor", use_auth_token=self._token)

        new_feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("valid_org/test-feature-extractor")
        for k, v in feature_extractor.__dict__.items():
            self.assertEqual(v, getattr(new_feature_extractor, k))

        # Reset repo
        delete_repo(token=self._token, repo_id="valid_org/test-feature-extractor")
293

294
        # Push to hub via save_pretrained
295
296
        with tempfile.TemporaryDirectory() as tmp_dir:
            feature_extractor.save_pretrained(
297
                tmp_dir, repo_id="valid_org/test-feature-extractor-org", push_to_hub=True, use_auth_token=self._token
298
299
            )

300
301
302
        new_feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("valid_org/test-feature-extractor-org")
        for k, v in feature_extractor.__dict__.items():
            self.assertEqual(v, getattr(new_feature_extractor, k))
303

304
305
306
307
    def test_push_to_hub_dynamic_feature_extractor(self):
        CustomFeatureExtractor.register_for_auto_class()
        feature_extractor = CustomFeatureExtractor.from_pretrained(SAMPLE_FEATURE_EXTRACTION_CONFIG_DIR)

308
        feature_extractor.push_to_hub("test-dynamic-feature-extractor", use_auth_token=self._token)
309

310
311
312
313
314
        # This has added the proper auto_map field to the config
        self.assertDictEqual(
            feature_extractor.auto_map,
            {"AutoFeatureExtractor": "custom_feature_extraction.CustomFeatureExtractor"},
        )
315
316
317
318
319
320

        new_feature_extractor = AutoFeatureExtractor.from_pretrained(
            f"{USER}/test-dynamic-feature-extractor", trust_remote_code=True
        )
        # Can't make an isinstance check because the new_feature_extractor is from the CustomFeatureExtractor class of a dynamic module
        self.assertEqual(new_feature_extractor.__class__.__name__, "CustomFeatureExtractor")